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Zusammenfassung 

Die Tuberkulose ist die häufigste zum Tod führende bakterielle Infektionskrankheit weltweit. 

Jährlich erkranken etwa 10 Millionen Menschen an einer Tuberkulose; 500.000 davon an einer 

multiresistenten Tuberkulose (MDR-TB) bei der die Bakterien gegenüber Rifampicin und Isoniazid 

resistent sind. Die MDR-TB ist mit einer langen Therapiezeit, hohen Therapiekosten und einer 

hohen Rate an unerwünschten Arzneimittelreaktionen verbunden. Durch eine standardisierte 

Therapiedauer erfahren viele Pateinten eine Überbehandlung. Es fehlt ein Biomarker der es 

erlaubt, die Dauer der Therapie zu individualisieren. 

Ziel dieser Arbeit war die Entwicklung einer RNA-Signatur aus dem Blut der Patienten, die mit 

hoher Sicherheit eine Bakterien-freie Diagnose der Tuberkulose erlaubt und die sich als Biomarker 

zur Steuerung der Therapiedauer eignet. Hierfür wurden Tuberkulosepatienten in insgesamt sechs 

Kohorten prospektiv rekrutiert. Den Patienten wurde zu verschiedenen Zeitpunkten Blut für RNA 

Analysen abgenommen. In zwei Identifizierungskohorten wurde ein mehrstufiger Algorithmus zur 

Ermittlung des Therapieendes entwickelt, dieser wurde in vier Validierungskohorten überprüft. 

Ein weiterer Vergleich mit gesunden Probanden und Patienten mit anderen Erkrankungen diente 

der Überprüfung der diagnostischen Genauigkeit der Gensignatur. 

In den Identifizierungskohorten wurde ein 22-Gen RNA Signatur Modell (TB22) entwickelt. Für die 

Unterscheidung zwischen kulturell bestätigter Tuberkulose und anderen Krankheiten ist die 

diagnostische Genauigkeit von TB22 mit den besten bislang publizierten RNA Signaturen 

vergleichbar (area under the curve [AUC] 0.89; CI: 0.82-0.96). In den Validierungskohorten bei 

Patienten mit sensibler Tuberkulose hat TB22 eine Genauigkeit für die Unterscheidung einer 

laufenden und erfolgreich beendeten Therapie mit einer AUC von 0.94; 95%-CI: 0.90 – 0.98). In 

vier Validierungskohorten mit MDR-TB lag die mittlere Therapiereduktion durch Anwendung von 

TB22 bei 218.0 Tagen, 34.2%, p<0.001, 211.0 Tagen, 32.9%, p<0.001, 161.0 Tagen, 23.4%, p=0.001 

und 254 Tagen, 40.0%, p=0<0.001.  

Im Vergleich mit 17 publizierten RNA Signaturen zeigte TB22 die größte Genauigkeit zur 

Unterscheidung zwischen laufender und erfolgreich beendeter Therapie (p-Wert: <0.001 – 0.070).  

In dieser Arbeit wurde eine auf 22-Genen basierende RNA-Signatur (TB22) aus dem Blut von 

Tuberkulosepatienten identifiziert und validiert, die mit hoher diagnostischer Genauigkeit eine 

Bakterien-freie Diagnose der Tuberkulose erlaubt und die zum Therapiemonitoring der MDR-TB 

geeignet erscheint. Die klinische Anwendung von TB22 kann perspektivisch das Management der 

MDR-TB verändern.  
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Summary 

Tuberculosis is the most common fatal bacterial infectious disease worldwide. Every year, about 

10 million people contract tuberculosis; 500,000 of them have multidrug-resistant tuberculosis 

(MDR-TB) in which the bacteria are resistant to rifampicin and isoniazid. MDR-TB is associated 

with a long duration of therapy, high therapy costs, and a high rate of adverse drug reactions. 

Due to a standardized duration of therapy, many patients experience overtreatment. There is a 

lack of a biomarker that allows individualizing the duration of therapy. 

The aim of this work was the development of a RNA signature from the blood of patients, which 

allows with high certainty a bacteria-free diagnosis of tuberculosis and which is suitable as a 

biomarker to control the duration of therapy. For this purpose, tuberculosis patients were 

prospectively recruited in a total of six cohorts. Blood was drawn from the patients at different 

time points for RNA analyses. In two identification cohorts, a multistage algorithm was developed 

to determine the end of therapy, and this was tested in four validation cohorts. Further 

comparison with healthy subjects and patients with other diseases was used to verify the 

diagnostic accuracy of the gene signature. 

A 22-gene RNA signature model (TB22) was developed in the identification cohorts. For 

discriminating between culturally confirmed tuberculosis and other diseases, the diagnostic 

accuracy of TB22 is comparable to the best RNA signatures published to date (area under the 

curve [AUC] 0.89; CI: 0.82-0.96). In validation cohorts in patients with drug-susceptible 

tuberculosis, TB22 has accuracy for discriminating ongoing and successfully completed therapy of 

AUC 0.94; 95%-CI: 0.90 – 0.98). In four validation cohorts with MDR-TB, the median treatment 

reduction with use of TB22 was 218.0 days, 34.2%, p<0.001; 211.0 days, 32.9%, p<0.001; 161.0 

days, 23.4%, p=0.001; and 254 days, 40.0%, p<0.001.  

Compared with 17 published RNA signatures, TB22 showed the greatest accuracy for 

discriminating between ongoing and successfully terminated therapy (p-value: <0.001 – 0.070)  

In this work, a 22-gene based RNA signature (TB22) was identified and validated from the blood of 

tuberculosis patients, which allows bacteria-free diagnosis of tuberculosis with high diagnostic 

accuracy and appears suitable for therapy monitoring of MDR-TB. The clinical application of TB22 

may perspectively change the management of MDR-TB.  
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1 Introduction 

1.1 Background 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis) 

[1]. In the pre-COVID-19 era of the past decade, TB was the leading cause of mortality by a single 

infectious agent world-wide [2]. The World Health Organization (WHO) estimates that in the year 

2019 approximately 10.0 million individuals developed TB [3, 4].  

An estimated half million TB patients are infected with a multidrug-resistant (MDR) strain of M. 

tuberculosis [3, 4]. Multidrug resistance in TB is defined by a bacillary strain with resistance 

against isoniazid and rifampicin, the two most active anti-TB drugs [5]. 

The numbers of patients affected by MDR-TB have increased dramatically in the new century and 

patients are unequally distributed worldwide [6, 7]. The therapeutic outcome in the presence of 

MDR strains of M. tuberculosis highly depends on the extent of drug-resistance and the anti-TB 

medicines being available [8]. While overall 85 % of patients affected by TB achieve a favourable 

treatment outcome, only 57% of patients with MDR-TB can currently be treated successfully [2]. 

Patients affected by TB with a drug-susceptible strain of M. tuberculosis usually receive a standard 

therapy consisting of isoniazid, rifampicin, ethambutol and pyrazinamide for 2 months, followed 

by therapy with isoniazid and rifampicin for four-month. Results of a systematic review of 

individual patient data suggest that patients with MDR-TB have an optimal treatment outcome 

when they are treated with at least 4 active medicines over a minimum of 18 months [8], 

although results from recent studies show that high cure rates can be achieved with much shorter 

treatment durations when potent therapeutic regimens are administered [9-13]. Treatment of 

MDR-TB is not only longer than treatment for drug-susceptible TB, it is also much more expensive 

[14] and causes a high rate of adverse drug events [15].  

The duration of anti-TB therapies could be substantially shortened in many patients with MDR-TB 

if a biomarker would be available that can safely indicate that treatment can be terminated 

without an increased risk of relapse. So far, microbiological parameters are not suitable as such a 

biomarker. The majority of patients with MDR-TB achieve M. tuberculosis culture conversion 

within 2 months of anti-TB drug therapy [16], but discontinuation of anti-TB treatment at this 

point causes a high rate of relapse [8].  

Recently, there have been attempts to adapt the duration of therapy to the severity of the 

disease and the drug resistance profile of M. tuberculosis [16-18] but until now no biomarker has 

been identified and validated to guide physicians in the decision when to discontinue MDR-TB 

therapy [19]. Furthermore, a suitable therapy monitoring system has not been identified to 
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quickly obtain precise feedback regarding the progress of disease or the therapy response. This 

thesis addresses the development and validation of a biomarker for treatment monitoring and to 

individualize the duration of therapy for patients affected by MDR-TB. 

1.2 The pathogen Mycobacterium tuberculosis 

Hippocrates (~460 - 375 B.C.) used the term phthisis (consumption) for a disease associated with 

physical decay [20]. In 1689 Thomas Morton specified the term as a lung disease and 

characteristic lung lesions were named tubercle, from which Lukas Schönlein derived the term 

tuberculosis in 1832 [21]. 

In 1882, Robert Koch discovered that a micro-organism, M. tuberculosis, is the cause of TB [22]. 

Mycobacteria belong to the Actinobacteria [23]. Mycobacterium is the only class of the family 

Mycobacteriaceae. M. tuberculosis, M. bovis, M. africanum, M. canetti, M. caprae, M. microti, M. 

mungi and M. pinnepedii are representatives of this genus, which form the M. tuberculosis-

complex due to their DNA homology of >95% [21, 24].They are non-spore producing rod bacteria 

[25]. Infections with M. tuberculosis strains are most common [26].  

Following staining with carbol fuchsin the thick mycobacterial cell wall resists decolorizing by acid-

alcohol and the mycobacteria appear as bright red rods under the light microscope.  

The overall growth rate of M. tuberculosis is slow. Under optimal conditions, a division process 

takes 12-24 hours during active disease and no to little growth during the latent phase [27].  

1.3 Epidemiology  

It is estimated that ¼ of the world´s population is infected with M. tuberculosis [28], but the great 

majority of patients who is infected probably never develops active TB [29]. More than one 

quarter of all patients with TB world-wide live in India. More than one-third of affected patients 

live in India and China, the most populous countries in the world. More than two thirds of 

patients affected by TB live in 8 countries [6].  

In Europe, the incidence of TB has been declining for decades. The WHO Office for Europe and the 

European Centre for Disease Control and Prevention (ECDC) report an incidence of 26/100,000 for 

the WHO Europe region in 2018 (compare: global incidence: 130/100,000) [6, 30]. However, the 

proportion of patients with MDR-TB is comparatively high here, and this is increasingly 

problematic, especially in the Eastern European countries [6, 30]. In Germany, since the 

introduction of mandatory electronic reporting in 2001, the number of TB cases also declined 

steadily, except for a slight rebound in 2015. In 2019, 4782 TB cases were reported, and 129 

patients died [31, 32].  
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In some developed countries, there is a trend toward increased extra-pulmonary and 

disseminated TB cases [31]. In Germany, extra-pulmonary TB accounted for approximately 28% of 

all cases in 2019, with lymph node TB accounting for nearly half of those cases [33, 34]. The 

proportion of extra-pulmonary cases has also increased in Germany in recent years. In 2015, the 

proportion of extra-pulmonary cases was only 23% [35]. 

1.4 The disease tuberculosis 

The disease TB is an airborne disease that is transmitted via aero droplets from persons with 

active TB. In case of infection via inhalation, the bacteria can still be killed by phagocytosis of 

alveolar macrophages or neutrophils [36]. If this does not succeed initially, they can survive in 

within dendritic cells and alveolar macrophages. In those who progress to active TB following 

primary infection, the onset of TB may occur between weeks and decades after primary infection. 

In immunosuppressed individuals, the risk of developing active TB is significantly increased and 

the onset period is shorter, than in immunocompetent individuals [37]. 

Latent infection with M. tuberculosis (LTBI) is asymptomatic [38]. LTBI is diagnosed by a positive 

reaction in the tuberculin skin test or interferon- release assays (IGRA) in the absence of active 

TB. Neither test is suitable for predicting the risk of active TB accurately [39]. When TB transitions 

to the active and contagious phase, symptoms appear usually insidiously. In children and 

immunosuppressed patients, however, the disease can also progress much more rapidly. The 

transition from latent to active TB resembles a continuum of bacterial and immunologic 

activity[40] . Therefore, in addition to latent and active TB, it is also appropriate to speak of 

incipient and subclinical TB [41]. While incipient TB is characterized by the fact that specific 

metabolic activity of the pathogen is measurable, in subclinical TB radiological or microbiological 

signs are already evident [41]. The symptoms of extra-pulmonary TB vary and depend largely on 

the organ system affected. If two or more organs are affected, it is called disseminated TB [31]. 

1.5 Clinical manifestations 

Regarding the continuous spectrum, symptoms also appear gradually and with increasing 

intensity [42]. Symptoms for pulmonary TB include cough, night sweats, weight loss, and fatigue. 

Rarely haemoptysis occurs [31]. Pulmonary TB can be divided into parenchymal disease, 

endobronchial TB, and intrathoracic lymph node TB, which are similar overall but differ primarily 

in cough productivity [42]. 

Symptoms of extra-pulmonary TB are usually accompanied by similar nonspecific symptoms. 

Organ-specific symptoms can include painful lymph node swelling, joint pain or headache. Spinal 
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TB is additionally associated with spondylitis [43], and central nervous system involvement leads 

to TB meningitis and/or cerebral abscess formation [44]. In tuberculous pericarditis shortness of 

breath or cardiac arrhythmias may occur [45]. Urogenital TB is often asymptomatic besides 

occasional flank pain [42].  

1.6 Tuberculosis diagnosis 

The detection of M. tuberculosis is performed by laboratory diagnostics. For pulmonary affection, 

sputum is the most important sample type for the diagnosis. With Ziehl-Neelsen light microscopy, 

the specificity of TB is high, but the sensitivity shows a varying range of 20%-80% only [46]. 

Conventional fluorescence microscopy shows a higher sensitivity, but is less feasible in some 

settings due to higher costs and higher equipment requirements [46, 47]. Smear microscopy 

offers fast detection, but the sensitivity and specificity are poor. A polymerase chain reaction 

(PCR) test can also be used in the diagnosis. Here, the overall sensitivity of GeneXpert PCR test is 

69.4% with a specificity of 98.8% in HIV-negative people [48]. 

Imaging techniques are often used to diagnose pulmonary TB. Typical changes are tree-in-bud 

signs and cavities [49]. If the findings are unclear, the x-ray can also be extended to include CT 

scans or MRI procedures in case of extra-pulmonary TB. Radiology provides important 

information, especially for diagnosis, since cultural results sometimes take longer to arrive. In 

addition, radiological findings give an indication of the severity of the disease with regard to the 

classification of pulmonary TB [50], further radiological changes may show progression to active 

TB. However, the same radiological changes are also an indication of the response to therapy, 

since the size and structure of the cavities would have to decrease in the course of therapy [51]. 

PET/CT scans can be used to determine the organ involvement for disseminated or extra-

pulmonary TB [52]. 

Mycobacterial culture is the gold standard for the diagnosis of TB, but has a long turn-around time 

of up to 2 months. Culture-based test methods are not suitable for all patients because some 

cannot produce sputum or the sputum samples do not become positive [53].  

Standard anti-TB drug-resistance testing is performed using culture-based susceptibility testing. 

However, genotypic methods allow for a rapid prediction of phenotypic drug susceptibility testing 

results[54]. Phenotypic and genotypic methods can be used complementarily to ensure the 

highest possible sensitivity and specificity [55].  

 

 

 



16 
 

1.7 Tuberculosis treatment 

Following the discovery of streptomycin in 1947 combination antibiotic therapy against TB rapidly 

became available in the following years with the discovery of other anti-TB medicines [56-58]. 

This was also necessary because soon after the first drug was applied to humans affected by 

tuberculosis it became apparent that TB treatment with a single-agent led to drug resistance and 

relapse [58]. Today, patients with drug-susceptible (DS)-TB are treated with a four-drug 

combination of rifampicin, ethambutol, pyrazinamide and isoniazid for two months, followed by a 

four-month treatment phase consisting of rifampicin and isoniazid. This combination was already 

introduced in the 1970 [58, 59]. 

In the recent past, more effort has been put into the re-design of optimal treatment regimens, 

which may also result in shortened treatment durations [58]. Furthermore, new methods allow 

for the analysis and optimisation of standard doses [60]. The treatment of extra-pulmonary TB is 

similar to the treatment of pulmonary TB. In case of DS-TB that affects bone tissue treatment 

should be prolonged to 9 instead 6 months [59]. Also, TB meningitis requires longer therapy 

duration and should be treated for at least 12 months [19]. 

In contrast to standardized therapy for DS-TB patients, the therapy regimen for patients with 

MDR-TB is adapted to the M. tuberculosis drug resistance present in each case [2]. However, as 

the necessary equipment for drug susceptibility testing is not universally available, the choice of 

drugs is often based on the drug resistance patterns typical of the respective geographical 

location, previously taken drugs for a previous TB, comorbidities and the expected adverse effects 

of the therapy [58]. This standardized treatment approach might be one reason, why therapy 

outcomes show differences between both patients affected by DS-TB and MDR-TB, although 

there is only a limited difference in disease severity [61, 62]. 

The standard therapy duration for MDR-TB is 18-20 months depending on the disease severity [2, 

8]. According to the WHO treatment guide for MDR-TB (recently expanded also to rifampicin-

resistant TB without resistance to isoniazid; RR-TB), the available drugs have been divided into 

groups according to which the treatment regimen is composed. Group A contains 

fluoroquinolones, bedaquiline and linezolid. It is recommended to use all three drugs. In addition, 

one or both drugs of group B (clofazimine and cycloserine or terizidone) should be added to the 

therapy regime. Drug group C includes drugs that should be used if there is resistance to 

antibiotics from groups A and B. Classified in group C are ethambutol, pyrazinamide, delamanid, 

imipenem or meropenem, amikacin, ethionamide or prothionamide, and p-amino salicylic acid. 

Other ungrouped medications are also available, such as kanamycin [2].  
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Baseline smear grade, cavities, adherence and HIV status are associated with treatment outcome. 

These risk factors were used to construct a patient classification system for shortening therapy in 

DS-TB patients, which has so far proved to be non-inferior to the classic six-month approach [63]. 

Due to immunological and infection-susceptible host variability and pharmacokinetic aspects, an 

individually required duration of therapy can be assumed for relapse-free cure in TB treatment 

[64]. This could be achieved with a biological, objective and validated surrogate marker, which 

ideally has diagnostic, prognostic and therapy-accompanying properties [65]. The diagnostic 

biomarkers like sputum and radiology described in Section 1.5. do not have the necessary 

accuracy for personalized therapy duration [65]. Currently, no biomarker-guided therapy 

durations are available [64].  

1.8 Biomarker for tuberculosis  

A biomarker is a quantifiable, measurable and replicable clinical parameter that provides 

information on biological, pathological or pharmacological processes in the body and 

characterizes a diagnostic or prognostic statement or influence on the course of disease and 

treatment [66]. The quality of a biomarker is often described by the area under the curve (AUC) of 

a receiver operating characteristic (ROC) curve. The AUC of a ROC curve shows the proportion of 

cases correctly classified according to a clinical parameter or model [67]. This analysis also allows 

conclusions to be drawn about sensitivity and specificity. While sensitivity describes the 

proportion of individuals who are correctly classified by the biomarker as Y=1 (e.g., diseased), 

specificity measures the proportion of individuals who are correctly identified as Y=0 (e.g., not 

diseased) [68]. 

Supplement Table 1 provides an overview about promising biomarkers for monitoring of TB 

treatment. The gold standard of therapy monitoring and outcome prediction in TB is culture data 

and microscopy results. A combination of microscopy and culture data is recommended because 

the outcome prediction for both methods show sensitivity below 81 % and specificity below 60%, 

respectively. While the sensitivity of both procedures rises to over 90% as the therapy progresses, 

the specificity decreases continuously [69]. Even though the sputum smear microscopy grade has 

a lower sensitivity and specificity, this marker is still well suited as a control instrument after 

culture conversion has been achieved. A persistently high sputum smear microscopy grade and 

positive cultures weeks after initiation of therapy indicate a reduced response to antibiotic 

treatment [31, 69, 70]. A faster alternative for culture positivity could be the Molecular Bacterial 

Load assay (MBLA). Its result is available after few hours, but is also only available if positive 

cultures are present [71]. Radiological changes can also provide information about the response 
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to therapy. Lesions become smaller or disappear completely in the course of therapy. Newly 

appeared lesions may give an indication of deterioration or TB reactivation. Unchanged 

radiological findings beyond six months indicate inactive disease [50]. PET/CT imaging also 

provides a better correlation with therapy response than sputum smear microscopy grade, 

especially in the first two weeks of therapy. It is also suitable for extra-pulmonary TB and HIV 

infected TB patients [72], however 85% of patients with DS-TB who are successfully treated still 

have enhanced PET signals at the end of therapy [73] and the method is unlikely to be 

implemented universally. Sputum smear microscopy grade, culture conversion and radiological 

findings show a correlation with each other [70, 74]. 

In addition to identification in sputum, bacterial DNA can also be detected in urine [75]. However, 

previous studies indicated that while DNA is readily detectable, particularly in the first two weeks, 

no specific patterns were found during this time. Accordingly, early bacterial activity and drug 

efficacy by detection of transrenal DNA is less readily visualized by this marker than by 

microscopy, but offers an alternative when sputum is not available, such as in children or extra-

pulmonary TB [76]. 

Another possible biomarker for TB treatment monitoring is lipoarabinomannan (LAM). LAM is a 

lipoglycan measured from urine samples and allows direct conclusions to be drawn about the 

virulence of mycobacteria [77]. However, it does provide further information about the bacterial 

load. However, it must be remembered that LAM concentration varies with different body fluids 

and continues to be elevated in co-infections such as HIV [78]. For this reason performance of 

LAM is much better for immunocompromised patients [79]. The LAM assay for sputum 

examination was shown to correlate with early bacterial activity [80]. 

Furthermore, there is the possibility to assess the treatment success by means of clinical scores. 

The TBscore II is based on TB symptoms and clinical parameters such as BMI. It has been shown 

that an insufficient reduction of the score during the first four months of therapy is associated 

with a poor therapy outcome [81]. The DZIF clinical score also showed a significant decrease, 

especially in the first two months of therapy, compared to measurements at therapy initiation, 

both in DS-TB and MDR-TB patients. The Ralph score, which refers to radiological changes, 

showed a significant decrease in the six months of therapy [82]. 

The concentration of C-reactive protein (CRP) can also provide information about inflammatory 

processes, but is not sufficiently sensitive or specific [83]. But it is in the early treatment phase 

that conclusions can be drawn about treatment response and adverse outcomes [84]. Insufficient 

sensitivity and specificity also apply to interferon γ-induced protein 10 (IP-10). Alpha-1-acid 

glycoprotein (AGP) has a good sensitive and specific value, at least in diagnostics [83]. Especially in 

fully drug-susceptible TB, Cytokines might be promising as monitoring tool [85]. Cytokines also 
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indicate increased disease severity and show a correlation with bacterial load [86]. Overall, 

cytokines may also play an important role in monitoring and treatment outcome in extra-

pulmonary TB [87]. Chemokines can also serve as biomarkers of disease severity and bacterial 

load and also correlate with delayed culture conversion [88]. The TAM TB assay represents an 

immunological monitoring tool. During the course of therapy, the patient's pattern of T cell 

activation shifts more and more towards LTBI/healthy controls [89]. 

With respect to biomarkers at the OMICS level, proteomics, metabolomics, and transcriptomics 

should be mentioned above all. Proteomics can be host-related as well as bacterium-related. M. 

tuberculosis-specific peptides also paint a picture of treatment response and could be used as 

clearance marker, but the methodology using mass spectrometry is costly and cannot be 

implemented comprehensively [90, 91]. Furthermore, host serum proteomic signature may 

correlate with 8-week culture status with high sensitivity and specificity [92]. As example for 

metabolomics biomarker, SLC1G level in urine correlate with different treatment response 

outcomes. But the sample size of this study was low and an external evaluation is missing so far 

[93]. There is also evidence that the host metabolomics profile changes, especially during the 

acute TB treatment phase for M. tuberculosis but also for other mycobacteria [94-96]. 

Total DNA sequencing has given an important impetus to RNA-based research. In recent years, 

several RNA profiles and signatures have emerged for different diseases. Several RNA-signatures 

have been identified that have therapeutic and diagnostic significance [97]. RNA enables not only 

the understanding of the genome, but also an in-depth comprehension of anatomical and 

pathological processes due to the different regulations and signaling pathway cascades [97].  

The cell nucleus contains all the necessary genetic information with the DNA. A gene is a DNA 

section that contains specific information. RNA is transcribed in the nucleus. In contrast to DNA, 

RNA is single-stranded and significantly shorter and reduced to only one gene. Not all cells 

express RNA in the same way, but each cell has a specific expressing repertoire depending on its 

function [98]. RNA has several roles; for example, as messenger RNA (mRNA), it serves as a 

building block for protein biosynthesis; is necessary as transfer RNA (tRNA) to generate the amino 

acid sequence from nucleic acid segments. In addition, ribosomal RNA (rRNA) as a component of 

ribosomes is essential for peptide binding and also has catalytic functions [98]. In addition, there 

are a large number of RNA variants that are not coding but have regulatory functions. In addition, 

there are still a large number of RNA variants that are non-coding but have regulatory roles; 

microRNA and long noncoding RNA (lncRNA) have recently been studied more frequently in 

relation to disease patterns [99, 100]. RNA can be measured using a variety of methods - the most 

common are microarrays and RNAseq for a comprehensive screen or RT-qPCR for the 

measurement of specific gene expressions [101]. Microarrays have been more and more replaced 
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by RNAseq technology in recent years due to better accuracy after the method became less 

expensive than in the past [102]. The idea behind both methods is to quantify RNA 

concentrations. Microarray measurements are based on nucleic acid probes, typically 60-mers, 

covalently bound to glass slides. There, they are scanned by fluorescently labelled target 

sequences and hybridized. The resulting images are translated into signal intensities, which can 

then be bioinformatically processed [102]. The processing of blood samples in the context of RNA 

measurement is relatively inexpensive and efficient if not total RNA, but only a few genes 

determined within a signature are measured [103].  

A transcriptome is defined as the whole set of transcribed RNA by genome of a specific cell type 

or a specific tissue with regard to specific physiological condition [104]. Gene expressions or 

transcriptomics are commonly used to generate profiles based on momentary snapshots of 

biological processes and establish a bridge from genotype to phenotype [98, 105]. These genetic 

profiles are then compared with respect to treatment measures or specific phenotypic features 

[105]. Transcriptome data are semi-quantitative. For this reason, a normalization procedure must 

be applied [106]. A distinction can also be made between pathogen and host transcriptomes at 

the transcriptome level. At the pathogen level, bacterial rRNA in particular was shown to correlate 

with the number of live mycobacteria and may be suitable as a therapy monitoring system [71, 

107, 108].  

Supplement table 2 gives an overview about host transcriptomic signatures and models that were 

described in literature for diagnostic, monitoring and outcome prediction purposes.  

In a systematic review, eight RNA signatures with sensitivities ranging from 47.1 to 81.0% and 

specificities above 90%, showed the onset of active TB 0-3 months prior to disease. This fulfils the 

WHO target product profiles (TPP) criteria at least in part [109]. Goals and needs for biomarkers in 

clinical usage were defined by WHO in 2014 as TPP. These include triage/ systematic screening to 

identify active and latent cases; rapid TB-diagnostic sputum-based / non-sputum based; Next 

generation drug-susceptibility; Treatment-monitoring and distinction between LTBI and active 

cases [79]. However, the longer the signatures were applied before disease onset, the lower the 

accuracy became [109]. An 11-gene version derived from a 16-gene signature [110] showed a 

specificity of 84% and a sensitivity of 71% for predicting TB up to one year before disease onset 

[111]. In a prospective observational study, four transcriptional signatures were able to 

distinguish individuals with and without TB (sensitivity: 83.3 to 90.7%) [112]. A score consisting of 

three genes was described to predict progression from latent to active disease and could also 

monitor treatment progress and correlated with pathological patterns exhibited by patients at 

high risk for treatment failure [113, 114]. Another study was able to diagnose patients with early 

TB from TB-free individuals with an A of 0.86 even before symptoms developed, but contains 86 
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genes [115]. Recently, a meta-analysis described a 22-gene signature with an AUC of 0.86 to 

distinguish active TB cases with and without culture backup from patients with other lung 

diseases [116]. In comparison with other signatures tested there, it achieves the best 

performance. Nevertheless, it did not meet the WHO requirements for TPP either [116].The RISK6 

score, based on a six-gene signature, was able to identify individuals with latent TB who were at 

risk of disease progression (AUC 0.87 within 0-12 months and AUC 0.74 within 12-24 months 

before diagnosis of TB) [117]. RISK6 also showed a continuous decrease in the gene signature-

based score during treatment [117]. 

The signatures and scores described earlier are primarily concerned with the risk of relapse in 

patients with and without HIV-infection and continue to show a difference especially in the early 

treatment phase [111, 117]. A previous described signature that was also used for diagnostic 

purpose and contains 16 genes [110] focused in its validation phase primarily on outcome 

prediction, which became more accurate as therapy progressed. After four weeks of therapy in 

DS-TB patients, an AUC of 0.72 was given for the discriminative ability between cure and failure 

[118]. Interestingly, it was shown that a five gene signature out of the previous 16 was related to 

the inflammatory status, which could be derived from the results of PET/CT measurements in the 

study [118]. Recently, a model was also described that also consists of transcriptomes and clinical 

parameters and can predict outcome as early as four weeks and correlates with inflammatory 

status, which could also allow conclusions to be drawn about treatment progression [119]. 

Another signature also combining clinical and transcriptomic parameters to get an AUC of 0.72 for 

identifying relapse patients even at the beginning of therapy[120]. 

In principle, the end of therapy as such was not considered a variable of interest according to the 

current state of knowledge, which means that a therapy end biomarker has not yet been 

described. Furthermore, there was a lack of suitable data sets with continuous measurements to 

identify a biomarker that could predict the relapse-free end of therapy and serve as a real time 

treatment monitoring tool [113, 114].  

1.9 Bioinformatic and mathematical conditions 

In addition to the experimental work to process blood samples and to obtain RNA-expression 

data, bioinformatics and biostatistical analysis form the second major pillar of transcriptomic 

evaluation. Data quality, analysis strategies are increasingly critical to analysis success for 

multidimensional data, such as transcriptomics data [121]. Two main difficulties can be identified 

as the large amount of data and the high complexity of a transcriptome [104]. Not all statistical 
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programs can evaluate such data. Point and click software is unsuitable in this context. In addition 

to the methodological deficits, it is often unable to process large amounts of data [122].  

Programming language-based analysis programs are necessary for this task. The advantage of the 

programming language R in the field of bioinformatic analysis is that users can develop packages 

with functions themselves and make them available to the community [122]. This is especially 

helpful because professionals know the needs of their work area best [122]. As a result, a broad 

spectrum of methods has been established around the Bioconductor, which is a platform for tools 

for analysing high-throughput OMICS data [121, 123]. Through the package documentation, there 

is still an analysis pipeline, although these are rarely standardized [121, 124].  

In addition, R is suitable for direct statistical processing, extension possibilities can also be found 

through the possibility of integrating components from Python and C++ [123, 125].  

The disadvantage for the programming language lies in the limitation to be able to work on very 

large data sets only with high main memory. The technical progress of the last years created this 

limitation slightly remedy, a high-performance computer and an efficient working package are 

nevertheless necessary [126].  

In Figure 1, the bioinformatic and statistical analysis of transcriptome data is shown in 

compressed schematic form. First, the data is imputed and then a background correction follows. 

While the foreground measurement measures the intensity, the background measurement 

determines the noise that must be corrected. The noises result from the technical replication of 

the genes, which cannot be associated with biological variability [127]. Furthermore, fluorescent 

signals are meant here, which do not result from any binding and are non-spatial [128]. For this 

purpose, there are different methods with different degrees of correction [128]. After that, the 

foreground intensities are corrected so that all arrays have similar distribution bandwidths. This is 

only necessary for two-colour microarrays. Here, too, there are different normalization methods 

[105]. Other types of bias, such as the batch effect, the amount of RNA, or the block effect must 

also be considered and minimized if necessary [129, 130]. This is possible with the help of further 

standardization models [131]. To get an initial impression of the data set, it is useful to apply an 

unsupervised analysis. Firstly, this serves feature selection, secondly, outliers can be identified, 

and thirdly, this offers the possibility of determining multicollinearity [132-134]. After this, further 

data sets can be created, which either contain only selected genetic features, but can also contain 

all genes. Additional clinical, biological or socio-demographic characteristics of the patients to 

whom samples belong can be entered here for further analysis. It is then possible to perform 

directed analyses. This can involve the application of statistical methods to test hypotheses, or 

algorithms can be built that have predictive power on specific clinical or biological questions. 

However, these algorithms require validation in external data sets [135-137]. While pathway 
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analyses are important for gain an overview of the data structure, they main related to underlying 

biological structures and relationships and are less suitable as a data quality control compared to 

unsupervised statistical analysis [138]. 

 

Figure 1 Schematic representation of the bioinformatics and statistical analysis pipeline. 

While the preparatory steps follow a relatively strict procedure, the supervised analysis approach 

offers a variety of possibilities depending on the data set and the research question. On the one 

hand, statistical tests can be applied that compare the log-fold change of genes with respect to 

two groups for significant differences. In this way, it can be determined whether certain genes are 

up- or down-regulated in certain biological or pathological processes [139]. Particularly 

challenging is that tens of thousands of genes must be examined in a relatively small number of 

samples. This poses a challenge to classical statistical testing with respect to first and second kind 

errors and must be countered with the help of correction methods for multiple testing [131, 140]. 

Longitudinal data, such as those available in cohort studies, continue to pose a particular 

challenge. On the one hand, the temporal aspect as such increases the dimensions and on the 

other hand, it makes it difficult to select genes that play a role with regard to both the disease and 

the changes in disease status over time. Further, cohorts usually consist of a relatively small 

number of individuals followed over time [131]. If transcriptome analyses are not only used as a 
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descriptive basis, but have to fulfill a predictive claim, it is necessary that the claim of application 

on external data sets is taken into account in the model development.  

This includes, first and foremost, the existence of independent test data sets to which the model 

developed in the training data set is applied in order to test performance. Performance is largely 

dependent on a meaningful choice of variables. In addition to minimizing overfitting, feature 

selection based on data mining processes has the advantage of reducing the data set, which 

improves computational power and thus enables more efficient work [131]. Prediction models are 

based on the principle of parsimony. This means that only as many variables should be included in 

a model as are necessary to best describing and predicting the dependent variable. Overfitting 

violates this principle by creating a complexity of the model by unnecessarily many variables. 

Estimator parameters are assigned to all predictors in a model. The more variables are used to 

describe the model, the less the influence of each parameter is. The artificial valorization of the 

influence of random variables without actual effect consequently also leads to the devaluation of 

the effect of actually relevant variables [141].  

1.10 Thesis aim 

In this thesis, bioinformatics and biostatistical methods were applied to identify a human 

transcriptional signature from peripheral blood to distinguish between TB patients and healthy 

controls. This signature was then applied to develop a score using statistical models to represent 

treatment responses and to identify individual endpoints of anti-TB therapy. To achieve this, 

patients with DS-TB and MDR-TB were prospectively recruited in a multi-centre trial with six 

different cohorts, two of which served as the training data set and four as the test data set for 

validation. Study visits with blood collection took place at individual and fixed time points, which 

were used after laboratory and bioinformatic preparation to find a transcriptome signature 

suitable for the above objectives.  
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2 Methods 

2.1 Study design and participants 

Between March 2013 and March 2016, patients with culture-confirmed DS pulmonary 

tuberculosis and MDR-TB identified by detection of M. tuberculosis DNA from sputum by the 

Xpert MTB/RIF test (Cepheid, Sunnyvale, USA) were prospectively enrolled into the drug-

susceptible German identification cohort (DS-GIC) and the multidrug-resistant German 

identification cohort (MDR-GIC), at the Medical Clinic, Research Centre Borstel; Karl-Hansen-

Klinik, Bad Lippspringe; Sankt Katharinen-Krankenhaus, Frankfurt; Thoraxklinik-Heidelberg, 

Heidelberg; Asklepios Fachkliniken München-Gauting, Munich, all in Germany, as previously 

described [142]. Between March 2015 and April 2018, patients with DS-TB and MDR-TB were 

prospectively enrolled into the DS-GVC and MDR-GVC at the same centres and additionally at the 

Klinikum Dortmund, Germany, and at the University Clinic of Cologne, Germany. Between May 

2015 and March 2017, patients with MDR-TB were prospectively enrolled into the MDR-RVC at 

the Marius-Nasta-Institute (MNI) in Bucharest, Romania. Another cohort of MD-TB patients were 

enrolled between June 2017 and June 2019 at Research Centre Borstel (MDR-SGVC). Blood 

sampling followed the same scheme than for GVC. To validate the signature and the hypothetical 

therapy endpoints calculated retrospectively, additional clinical data were taken into account. A 

model that can indicate the end of therapy should not at any time confirm the successful end of 

therapy to a patient with a positive culture [143]. 

Additional data sources were used to address clinical differences in patients. First, the clinical 

database for patients hospitalized with TB at the Medical Clinic Borstel that contains information 

about comorbidities, behavioural aspects like smoking or problematic alcohol consumption, TB-

related information like imaging results and microbiological results like time to positivity and time 

to culture conversion for GICs and GVCs besides others. This database contains also patient 

characteristic information about enrolled patients from other German study sites. For patients 

from the RVC, patient characteristic information as well as microbiological data was given [143]. 

Individuals were not included to the study, if they were less than 18 years of age, under legal 

supervision, or living with human immunodeficiency virus (HIV). 

Between June 2015 and December 2015, adult HCs with no history of previous tuberculosis and 

without any known concurrent illnesses at the timepoint of blood sampling were enrolled at the 

Medical Clinic of the Research Centre Borstel (Germany). 

Study visits included clinical assessment and blood sampling for whole-blood RNA measurements 

from PAXgene tubes (Qiagen®, Venlo, Netherlands). Study visits were performed at ideally before 
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treatment initiation, at 14 days of therapy, at the times of smear conversion and following culture 

conversion (not available in the MDR-RVC), at 6 months and/or therapy end in patients with DS-

TB, and additionally, at 10, 15, 20 months of therapy in patients with MDR-TB. After completion of 

4 weeks of therapy, an additional study visit was performed in patients from the MDR-RVC (see 

Figure 2). All patients completed 12 months of evaluation following end-of-therapy to capture 

disease recurrence. A subset of DS/MDR-GVC participants also provided specimens during this 

follow-up period. Sputum samples provided by German study participants were evaluated via 

smear microscopy and culture at the National Reference Centre for Mycobacteria at the Research 

Centre Borstel. Samples provided by study participants at the MNI were analysed at the Romanian 

national reference centre for mycobacteria in Bucharest. Anti-tuberculosis therapy regimens were 

based on comprehensive drug-susceptibility testing and consistent with current therapy 

recommendations [59, 143-145].  

 

Figure 2 Study visits and tasks for drug-susceptible TB (DS-TB) patients and multidrug-resistant TB (MDR-TB) 

patients. 

2.2 Definition of treatment outcomes 

Treatment outcomes were assessed following the TBNET definitions, where relapse-free cure is 

defined by having a negative M. tuberculosis culture status at 6 months after treatment initiation 

without positive cultures thereafter and no disease recurrence during the follow-up period of one 

year after therapy end [146]. For this study TBNET outcome criteria were preferred since the 

WHO outcome definitions do not include one-year follow-up post treatment completion to 
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exclude for recurrent disease (Table 1). In addition, the WHO’s definition for treatment success 

involves certain items that cannot be predicted by a biomarker since they depend on the patient’s 

behaviour or clinical decisions in the course of therapy (i.e. treatment completion or change of 

drugs during the course of treatment) [147]. Furthermore, the WHO uses different definitions for 

patients with and without multidrug-resistant TB [147, 148]. Therefore, WHO treatment outcome 

definitions could not be applied in this study. The TBNET defines treatment failure by at least one 

positive M. tuberculosis culture 6 months after treatment initiation or thereafter, or a relapse 

within one year after treatment completion [146].  
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Table 1 Comparison of the outcome criteria for TB therapy by the WHO and TBnet. Not shown: 

Undeclared/Lost to follow-up/Not evaluated 

Outcome WHO DS-TB Criteria  WHO MDR-TB Criteria TBnet Criteria 

Cure Bacteriologically 

confirmed TB and 

culture- or smear 

negativity during the last 

month of therapy / last 

sampling [147] 

Therapy terminated according to 

national guidelines, no signs of 

failure, at least 3 negative culture 

results at least 30 days after 

completion of the intensive 

phase [147] 

Negative culture after 6 

months of therapy and no 

relapse within 1 ear after 

therapy end [148] 

Completed 

Treatment 

Completion of therapy 

without failure evidence 

but no bacteriological 

available data during the 

last month of therapy / 

last sampling [147] 

Therapy terminated according to 

national guidelines, no signs of 

failure without three negative 

culture samples after at least 30 

days of therapy [147] 

No criteria [148] 

Treatment 

success 

Completed therapy + 

Cure [147] 

Completed therapy + Cure [147] Cure[148] 

Failure Smear or culture 

positivity for more than 5 

months of therapy [147] 

Therapy discontinuation or 

permanent change of at least 

two antibiotics due to lack of 

conversion at the end of the 

intensive phase, renewed 

positive culture data after 

conversion, additional 

development of resistance or 

adverse events [147] 

Culture positivity 6 months 

after therapy start or 

relapse within one year 

after therapy end [148] 

Death Death due to any reason 

during treatment [147] 

Death due to any reason during 

treatment [147] 

Death due to any reason 

during observation time 

[148] 

 

Microarray data have been deposited at Gene Expression Omnibus database (GSE147690, 

GSE147689, GSE147691). 
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2.3 Ethics 

Study approval was granted by the Ethics Committee of the University of Lübeck, Germany (AZ 12-

233), which was then approved by the corresponding local Ethic Committees of all participating 

centres in Germany, and by the Ethics Committee of the MNI (3181/25.03.2015; Bucharest, 

Romania) [143]. 

2.4 Data generation 

2.4.1 RNA processing and data analysis  

Whole blood RNA isolation from PAXgene (Qiagen®, Venlo, the Netherlands) was handled 

according to the manufacturer´s instructions and stored at -80°C until RNA isolation using the 

PAXgene blood RNA isolation kit (Qiagen®, Venlo, the Netherlands). Aliquots of isolated RNA were 

used for quality control to analyze the RNA integrity with the RNA Nano 6000 Kit on an Agilent 

Bioanalyzer (Agilent®, Böblingen, Germany) according to the manufacturer´s instructions. In case 

of an insufficient RNA Integrity Number (RIN) as a measure of sample quality and number or signs 

of degradation, samples were excluded from further analysis [143].  

 

2.4.2 Labelling, hybridization and scanning of microarrays 

Total RNA was used for reverse transcription and subsequent Cy3-labelling with the Low-Input 

Quick Amp Labeling Kit (Agilent®, Böblingen, Germany) according to the One-Color Microarray-

Based Gene Expression Analysis Protocol version 6.9.1 (Agilent®, Böblingen, Germany) with RNA 

Spike-In controls. 1650ng of Cy3-labelled cRNA was hybridized to human 4x44K V2 gene 

expression microarrays according to manufacturer´s instructions. Arrays were scanned on a 

SureScan microarray scanner (Agilent®, Böblingen, Germany) at a resolution of 5 µm [143]. 

 

2.4.3 Data extraction and normalization 

Raw expression data from scanned microarray slides were extracted from tiff files using the 

Feature Extraction Software version 11 (Agilent®, Böblingen, Germany). Raw data files were 

imported into Agilent GeneSpring software version 13 (Agilent®, Böblingen, Germany). Percentile 

Shift was used as normalization method with the 75th percentile as a target and baseline 

transformation was applied to the median of all samples. Prior to data analysis, quality control 
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was performed and compromised probes removed from further analysis. “Normalized 

expression” will refer in the manuscript to Log2 transformed expression values. [143] 

2.5 Development of a multistep-model to monitor the course of therapy and to 

determine the individual therapy endpoint 

2.5.1 General conditions 

This work consists of several steps. The rough procedure was comparable for all intermediate 

steps and goes along the following scheme:  

1. Identification of a research question for the respective intermediate step 

including group definition. 

2. First variable reduction  

3. First model building 

4. Further variable reduction 

5. Validation 

Except for step 1 and step 5, the intermediate steps have different procedures, which will be 

described in more detail in the following chapters. A mixture of several methods within a 

multistep approach improves accuracy and makes it feasible to better elaborate specific features 

for individual questions [149]. 

The data set used to create the model described in this work was cross-validated in the 

identification cohort. Furthermore, two additional independent cohorts were established in 

accordance with the recommendations to verify the results. In the following sections, both the 

general procedures and the three cohorts are explained in more detail. 

Comparisons between cohorts were performed by Kruskal-Wallis Test. The data analyses were 

performed with the software R (versions 3.4.2 to 4.00). The general transcriptomic data 

preparation was performed with the packages limma, reshape2, and tidyr. The packages ggplot2 

and vcd were used for graphical data presentation of model’s results. For pathway and module 

analysis, limma was used and the pheatmap package for heatmap visualisation of KEGG pathways. 

Therapy outcome estimations and the transformation of this factor to a numerical score for the 

development of the therapy outcome score were performed using the R packages caTools, tidyr, 

reshape2, randomForest, dplyr and pROC. The development of the therapy progress score was 

executed by using the R packages MASS, tidyr, reshape2, dplyr, glmnet and caTools. All available 

time points were included for the therapy progression score and the therapy end model 

regardless of therapy outcome status. The R packages car, caTools, tidyr, dplyr, glmnet, 
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randomForest and pROC were used to develop the therapy end model. In general, the outcome 

“lost to follow-up” was not an exclusion criterion to calculate hypothetical end-of-therapy scores. 

The limma package of the Bioconductor in R was used for preparation of raw text files [105]. 

limma is a Bioconductor package that can be used to analyze gene expression data. Gene 

expression experiments have a high complexity on the one hand, but on the other hand there are 

often only a small number of replicates. This makes special preparatory steps necessary, as well as 

statistical procedures. These are summarized in the limma package [105]. In this work, however, 

in addition to the functions of the limma package, other statistical methods are used (see chapter 

2.4.2 – 2.4.5) [143]. 

As shown in figure 3, only data from GIC cohort were used for model training, while GVC and RVC 

data were used for validation. It is important to note that only sub-model 1 and 2 data of both 

MDR and DS-TB patient data were used. The final model was trained only in DS-TB patients. All 

models were cross-validated with a split ratio of 0.7. Figure 3 shows the Flow Chart for the model 

building procedure.  
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Figure 3 Flow Chart for model development. A) Therapy outcome score (TOS). Identification of genes 

corresponding to the outcome (Cure/Failure/Death) by cross-validation in all patients of the identification 

cohort. Conversion of outcomes into numerical values, which act as scores. B) Therapy progress score (TPS). 

Identification of genes that correlate with remaining therapy duration by cross-validation in all patients of 

the identification cohort. Subsequent identification of moderating genes and creation of a model that 

predicts the remaining days to the end of therapy. C) End of therapy gene list identification. Identification of 

genes that are expressed differently after successful completion of therapy than before therapy end and 

adoption of TOS and TPS values from A and B [143]. 

2.5.2  Sub-model 1 – Therapy outcome score (TOS) 

In order to find genes that could make a statement about the therapy outcome; however, genes 

were first identified that were expressed differently between diseased and healthy controls. The 

idea was to discover TB-associated genes and later to reduce the genes to such an extent that 

they could not only reflect diagnostic characteristics but much more the status of the diseased 

person. This was to avoid that those genes that were randomly expressed differently and targeted 
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a specific aspect of the diseased and thus were not globally usable were given too much weight 

and that only disease-associated genes were included in the model. TB-related genes should not 

only differ in their biological plausibility between healthy and TB patients, but should also be able 

to provide information on the individual disease status that could be used for the prediction of 

therapy outcome. 

To find suitable genes for this purpose, healthy controls and therapy-naïve patients from the 

training set from GICs were analyzed by a moderated T-test with a fold-change cut-off of ≥2 and a 

Benjamini-Hochberg multiple testing correction of p ≤0.01 [143]. The advantage of the moderated 

T-test with Benjamini-Hochberg correction is that for small p-values the misclassification rate is 

close to the optimum and comparable to Bayesian methods[150]. Hierarchical clustering was run 

on samples and entities with a Pearson Centered similarity rule and Ward´s Linkage rule [151]. 

Correlation was calculated according to Pearson´s correlation coefficient [152]. Due to the 

previously performed normalization, also reduces the variable variance, extreme outliers are not 

to be expected in the data set, which means that Pearson's method can be used [153]. Analysis of 

gene lists for enriched pathways was performed via the web-interface of g:Profiler [154]. Here, 

KEGG and Reactome pathways were chosen from the curated gene sets with a p-value cut-off for 

multiple corrections below 0.05. With this procedure more than 200 genes were identified, which 

were expressed differently between healthy and TB patients. In addition, stepwise model 

reduction based on Akaike information criterion (AIC) and recombination using hierarchical 

clustering was used to identify a gene set of minimal size and optimal fitting [143]. 

AIC is defined as 

2.5.2. −1.  

𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛(𝐿) 

Where k is the number of estimated parameters and the maximum of likelihood function is L [155, 

156].  

For this purpose, the randomForest package for R was used, since it offered the possibility to use 

Breiman's random forest algorithm to create regression models for predicting therapy outcome 

[157]. For tree building V is the number of all relevant variables. For each node a number v<V is 

determined, which is the best splitting ratio. Each node receives a random combination of V of 

size v and remains constant for all trees throughout the operation. The error rate is significantly 

dependent on the correlation of two trees. The higher the degree of correlation is, the greater the 

error rate. Variable reduction leads to a decrease in correlation and so using as less variables as 

necessary not only reduces overfitting but also error rates [158]. In summary, an additional level 
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of bagging randomness is given in random forest algorithms. A different bootstrap of sample and 

data is used for each tree, which lead to different classifications in each tree [143, 157].  

Single models and sub-models from different gene combinations were chosen to select the most 

promising gene candidates. The models were adjusted using the Mean Decrease Gini coefficients 

of random forest analysis [159]. Mean decrease Gini is defined as: 

2.5.2. −2. 

 ∆ 𝑖(𝜏) =  𝑛 𝑖(𝜏) −  𝑛𝑙  𝑖(𝜏) −  𝑛𝑟𝑖(𝜏) 

Where Kendall’s 𝜏 coefficient described the rang correlation between variables and Gini impurity 

𝑖(𝜏) is defined as 

 2.5.2. −2.1.  

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − 𝐺𝑖𝑛𝑖 

with 

 2.5.2. −2. 2. 

 𝐺𝑖𝑛𝑖 =  ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

Where 𝑝𝑖
2 is probability of all labels within a node. 

This resulted in a number of possible models. These selected models were tested for their ability 

to discriminate between outcome status (see supplement table 4) at therapy start via ROC 

analysis by comparing AUCs [160, 161]. The AUC for ROC curves is a performance parameter that 

allows conclusion about test validity [161]. 

The ability to differentiate between patients with therapy failure and cure at different time points 

after the start of therapy was evaluated. The model that offered the best possible predictive 

potential for outcome prediction was identified by repeated ROC-curve analysis. This should be 

seen as a first step for the sub-model. Following the identification of genes that could be classified 

as having excellent performance, the therapy outcomes cure, failure and death were transformed 

to numerical values in DS-GIC and MDR-GIC dataset. This numerical translation acted as a 

dependent variable in the therapy outcome score model (TOS). The previously identified genes of 

the six gene signature were used as independent variables using a generalized linear model (GLM) 

[162-166]. It was applied in therapy naïve patients of GICs regardless of their resistance status and 

resulted in effect estimators for each gene. This TOS model was then applied to the whole GICs 

datasets, so each patient receives an individual score at each measurement point [143].  
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Final formula for TOS is defined as: 

2.5.2. −3.  

𝑇𝑂𝑆 =  −∝  + 𝛽1 ∗ 𝐶𝐷274 +  𝛽2 ∗ 𝐹𝐴𝑀20𝐴 +  𝛽3 ∗ 𝐺𝑌𝐺1 +  𝛽4 ∗ 𝐻𝐼𝑆𝑇1𝐻1𝐵 

+ 𝛽5 ∗ 𝐿𝑃𝐶𝐴𝑇2 + 𝛽6 ∗ 𝑇𝑅𝐼𝑀27 +  𝜀𝑖 

Where βi is the estimator for the variables and εi is the residual standard error. 

2.5.3 Sub-model 2 – Therapy progress score (TPS) 

Block B, shown in Figure 3, was created independently of those in the previous chapter on TOS. 

Accordingly, all genes were taken as a starting point here again. However, for this step only 

therapy naïve patients of the GICs were included in the analysis. In order to be able to map the 

patient’s temporal status of therapy, the genes that had the highest correlation to the observed 

left duration of therapy (in days) were pre-selected by using least absolute shrinkage and 

selection operator (LASSO) regression [143]. Here, this works with a penalty term that truncates 

the estimator of each variable. In lasso regression, the estimator can be reduced to 0, whereby de 

facto no influence is attributed to a variable. Their β estimator is pushed to 0. The optimal ʎ is 

determined in a cross-validation procedure (80:20). The best ʎ value leads to the smallest root 

mean square error (RMSE) and thus the smallest prediction error [119, 122, 167]. Lasso is defined 

as: 

2.5.3 −  1. 

𝐿𝐴𝑆𝑆𝑂 =  ∑(

𝑛

𝑖=1

𝑦𝑖 −  𝑥𝑖
′𝛽)² + 𝑛ʎ ∑ |𝛽𝑗|

𝑝

𝑗=1

 

Where xi=(xi1,...,xip) is the p-dimensional regression co-variate, β=(β1,...,βp) are the associated 

regression coefficients, and βj=0 for j≤p0 and βj=0 for j>p0 for p0≥0[168]. 

Lasso regression was used here to preselect from the total data set of ~44,000 genes [119, 137, 

168-170]. 

Resistance status (DS-TB / MDR) was included as an additional variable in the initial model of this 

block [119]. Using stepwise regression based on AIC, a reduced regression model was developed. 

Other variables, which were not significantly regressed after the AIC-based stepwise regression, 

were further removed from the model. Using GLM again, the effect estimators for the respective 

genes enables the generation a numerical value, which allows a conclusion to be drawn about the 

therapy progression. 
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Final formula for TPS is defined as: 

2.5.3 −  2.  

𝑇𝑃𝑆 = −∝  + 𝛽1 ∗ 𝐴33𝑃3281041
+ 𝛽2 ∗ 𝐵𝐴𝑇𝐹2 −  𝛽3 ∗ 𝐶2 −  𝛽4 ∗ 𝐺𝐾3𝑃 + 𝛽5 ∗ 𝐼𝐹𝐼𝑇2 

− 𝛽6 ∗ 𝐼𝐹𝐼𝑇𝑀1 +  𝛽7 ∗ 𝐾𝑅𝐸𝑀𝐸𝑁1 +  𝛽8 ∗ 𝑃𝐷𝐸4𝐷 +  𝛽9 ∗ 𝑅𝑃𝐴𝑃3  

+ 𝛽9 ∗ 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝐷𝑅,𝑦𝑒𝑠 +  𝜀𝑖 

Where βi is the estimator for the variables and εi is the residual standard error. 

2.5.4  End of therapy (EOT) gene list 

The identification of genes that had a significant effect on the end of therapy was performed in 

the DS-GIC cohort. 

Lasso regression was applied to the binary variable "end of therapy" (1= yes/ 0=no, ongoing) in 

order to identify from the microarray data set those variables by which the dependent variable 

can be described. The model calculated from the selected variables was further reduced using 

stepwise regression based on AIC. This resulted in a list of genes that had a significant effect on 

the probability of reaching the end of therapy. These genes, together with the TOS and the TPS, 

formed the basis for the final model, which is explained in the following section. 

2.5.4 −  1. 

𝐸𝑛𝑑 − 𝑜𝑓 − 𝑡ℎ𝑒𝑟𝑎𝑝𝑦 = ∑ (

44000

𝑖=1

𝑦𝑖 −  𝐺𝑒𝑛𝑒𝑠𝑖
′ ∗ 𝛽)² + 44000 ∗ ʎ ∑ |𝛽𝑗|

44000

𝑗=1

 

Where yithe probability of therapy end, β is the estimator for each gene and ʎ is the amount of 

shrinkage for β. 

2.5.5 Signature identification and final TB22 model 

TOS, TPS and EOT list from the previous steps have now been merged into a common model with 

the binary variable end of therapy. This model was created using only data from DS-TB patients of 

the identification cohort and cross-validated by train- and test-set in this group. First, a post-

double selection was performed to better test the multiplicative effects [171-173]. Subsequently, 

the stepwise backward regression based on the AIC was performed for the purpose of variable 

reduction. The model was then further reduced by removing non-significant variables and testing 

model performance with an ANOVA and AIC [143].  

The remaining 22 genes were used to test diagnostic performance in an external dataset 

(GSE144127). This was used because this data set is the data basis for a meta-analysis comparing 

the diagnostic performance of different signatures [116]. Using the same methodology as stated 
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in the article, comparability with other signatures has been achieved. For data analysis, the 

dataset provided by Hoang et al at GEO repository was used (GSE144127) [116, 174].  

First, binary variables were created from the given dataset in terms of diagnosis, which 

corresponded to the research question. These were active culture confirmed pulmonary TB vs. 

other diseases; highly probable active pulmonary TB vs. other diseases; all active pulmonary TB vs 

other disease; active extra-pulmonary TB vs. other diseases; latent vs. active TB and latent TB vs. 

other diseases. For each analysis, the inapplicable cases in comparison-specific datasets were 

removed. Then, the remaining datasets were split into a respective training set (80%) and a test 

set (20%) using the sample function of the R package caTools with a split ration of 80:20.  

The random forest algorithm of the randomForest package was used to train the TB22 signature 

in the training datasets.  

The random forest models were then applied to the test set using predict function. The roc 

function of the pROC package determined the match rate of observed and predicted diagnostic 

results by means of the area under the curve (AUC). 

For final setting, the random forest algorithm was used. The results from this final model can be 

summarized in two ways. On the one hand there is the simplified, binary statement whether the 

therapy can be terminated or not, on the other hand a metric variable arises with the probability, 

which also permits a progress check during the therapy and thus a monitoring. 

Final TB22 is defined as: 

2.5.5 −  1.  

𝑇𝐵22 = −∝  + 𝛽1𝐵𝐴𝑇𝐹2 − 𝛽2𝐺𝐵𝑃5 ∗ 𝑇𝑂𝑆 − 𝛽3 𝐼𝐹𝐼𝑇𝑀1, −𝛽4𝐼𝐿27

+ 𝛽5𝐾𝐶𝑁𝐽2𝐴𝑆1, + 𝛽6𝑆𝐸𝑅𝑃𝐼𝑁𝐺, + 𝛽7𝑆𝑇𝐴𝑇1

+  𝛽8 𝑇𝑁𝐹𝑅𝑆𝐹21, + 𝛽9𝑉𝐴𝑀𝑃5, + 𝛽10𝑇𝑂𝑆, + 𝛽11𝑇𝑃𝑆 + 𝛽12𝑇𝑂𝑆 ∗ 𝑇𝑃𝑆

+  𝜀𝑖 

Where 𝛽𝑖 is the estimator for the variables and 𝜀𝑖  is the residual standard error and 

2.5.5 −  1.2.  

𝑇𝐵22(𝑚𝑟 (𝑋, 𝑌)) =  𝑃∅(ℎ(𝑋, ∅) = 𝑌)  −  𝑚𝑎𝑥𝑗≠𝑌𝑃∅(ℎ(𝑋, ∅) = 𝑗) 

Where hk(X)are an esemble of classifiers and X,Y is the distribution of random vectors. In random 

forest, h(X, ∅) =ℎ𝑘(𝑋). 

The remaining 22 genes were used to test diagnostic performance in an external dataset 

(GSE144127). This was used because this data set is the data basis for a meta-analysis comparing 

the diagnostic performance of different signatures [116]. Using the same methodology as stated 

in the article, comparability with other described signatures could be achieved.  

First, binary variables were created from the given dataset in terms of diagnosis, which 
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corresponded to the research question. These were culture confirmed TB vs other diseases; highly 

probable TB vs other disease; TB (confirmed and not confirmed) vs. other diseases; latent vs. 

active TB; latent TB vs. other diseases. The cases that were not needed in the respective analyses 

were removed. Then, the respective remaining dataset was split into a training set (80%) and a 

test set (20%) using the sample function of the R package caTools with a split ration of 80:20.  

The random forest algorithm of the randomForest package was used to train the respective 

models for the signature in the training dataset.  

Random forest models were then applied to the test set using predict function. The roc function 

of the pROC package determined the match rate of observed and predicted diagnostic results by 

means of the area under the curve (AUC). 

2.6 Model Validation 

2.6.1 Comparison to existing signature 

As shown supplement table 2, previous studies have already presented RNA-based biomarker 

signatures, which were developed for prognostic purposes of various clinical endpoints. Although 

a point-of-care signature has not yet been described with regard to shortening the duration of 

therapy in TB, it would be theoretically possible to rewrite different progression signatures to the 

final therapeutic classification as described in this work. In order to compare the performance of 

the signature described in this thesis with previous achievements in TB biomarker research and to 

determine the added value of this work’s model, biomarker signatures have been identified in the 

literature [143]. 

In order to further validate the discriminative performance of the model, published RNA 

signatures and scores were also assessed for their capability to identify end-of-therapy timepoints 

and compared with the model [114, 117, 118, 175-184]. For this purpose, TB associated 

signatures or scores with less than 100 genes were identified. The gene sets or scores were 

trained in the training set of the DS-GICs (split ratio 0.7) using random forest algorithms to classify 

between for the probability of cure associated end-of-therapy time points. Duplicate genes in 

single signatures and unspecific sample names were not considered for the models. The resulting 

models were then applied to the independent DS-GVC data set to test for their discriminative 

performance in an external data set (Supplement Table 2 and Figure 3). In a subsequent step, the 

application of the models was extended to both DS and MDR-GVC data sets to test for plausibility. 

In comparison to the model development and verification in the previous section, the entire DS-

GIC was used as the model training data set in this section, since the previously fixed 
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compartments meant that model optimization via cross-validation did not have to take place. At 

the same time, GVC, RVC and SGVC were merged, as a simple validation was sufficient for the 

purpose of this section and thus to have a larger validation data set. Since all samples were 

processed in the same laboratory by the same staff and under the same conditions, and since 

statistical analysis and data preparation were also performed by a single person, a negligible 

batch effect, if any, was assumed for which no special countermeasures were taken [185]. 

For TOS and TB22, AUC was used to determine how well they indicate the end of therapy. Again, a 

random forest algorithm was trained with the respective genes and applied to the validation 

cohort. For the model, which is described in this thesis, the respective preceding sub-models for 

TOS and TPS were applied as well. No other signature described a comparable data splitting for 

modelling, but when gene signature was described as a replicable score, the respective calculated 

score was used for performance testing.  

In brief, the signatures used for the comparison are described in Supplement table 3 

2.6.2 Systems biology validation 

After the bioinformatic and biostatistical identification of the genes, the check for clinical 

plausibility and the performance comparison with existing TB-related signatures, the biological 

functionality was examined. For this purpose, two approaches were used. First, the respective 

genes that were part of the model, where described for their overall biological function, their 

related systemic pathways and their previous description with regard to TB in literature. Second, 

an unbiased approach was used to identify related pathways that showed significantly up- or 

downregulated genes in this dataset.  

An enrichment analysis identifies genes that are overrepresented in the dataset. While each gene 

is present only once in DNA analyses, the expression level in RNA data is more differentiated and 

a conclusion can be drawn depending on whether they are up- or down-regulated in a group, 

meaning that they are over- or under-expressed. Since in the context of the several 10,000 

transcriptomes an unsorted result representation took place, significant transcriptomes must be 

summarized here, in order to be able to make a concrete conclusion[186, 187]. Genes and their 

up- and downregulation have been grouped a priori into different pathways that describe specific 

functionalities or are characteristic of specific disease phenotypes.  

These gene sets and the resulting pathways are the basis for gene enrichment analyses. In this 

work, two different enrichment analyses are performed. First, the pathways involved are 

identified based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) [187]. Those were 

identified by using kegga function of limma package after applying Empirical Bayes Statistics for 
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Differential Expression (ebayes) to all genes with regard to the specific question (see next 

paragraph). With ebayes a microarray linear model fit is built, which also compute moderated F- 

and T-statistics and log-odds of differential expression by empirical Bayes moderation of the 

standard errors [105]. After identification of KEGG pathways, analysis of transcriptional modules 

(tmod) is further performed [186]. These transcriptional modules were already described in 2008 

and differ from pathways in that they were classified using a data-mining algorithm and do not 

follow biological pathways alone. The constructed modules are based on biological variability. A 

cluster analysis was performed to identify the associated genes to specific disease and functional 

classifications [188]. The genes are first sorted with respect to their coefficient from the previous 

ebayes analysis and then an enrichment analysis is performed. Then, based on coefficients and 

significance value, the number of up- and down-regulated genes of each module is calculated and 

subsequently plotted [186].  

Here, several disease-related categorizations were made to identify KEGG pathways and tmods 

that are relevant for those comparisons. For the analyses the data from all cohorts were used to 

be able to identify also smaller effects in an enlarged sample size [189]. 

The categories tested were the following: 

 TB patients vs. healthy controls 

 DS-TB patients vs. MDR-TB patients 

 Therapy naïve patients vs. patients with ongoing therapy 

 Therapy naïve patients vs. patients after two weeks of treatment 

 Patients with ongoing therapy vs. patients with clinical therapy end 

 Patients with clinical therapy end vs. patients with calculated therapy end 

 Patients with cavities vs. patients without cavities 

 Patients before culture conversion vs. patients after culture conversion 

 Patients with therapy outcome cure vs. patients with therapy outcome death and failure 

at baseline 

 Calculated therapy end vs. healthy controls 

Module and pathway results were clustered to identify related questions. Furthermore, the KEGG 

Pathways were assigned to head categories and further clustering was also done for this purpose. 

The background is the representation of the multidimensional involvement of different pathways, 

since the disease cannot be reduced to direct immunological aspects only.  

The KEGG pathways were also subjected to an analysis with regard to their concordance rates of 

the individual questions.  
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3 Results 

3.1 Patient characteristics  

Seventy-nine patients were included in the GIC, 60 in GVC, 52 in RVC and 20 in SGVC. Table 2 

shows the results from study enrolment. While the GICs and the GVCs had a multi-centric 

character, only patients from MNI where enrolled for the RVC and the SGVC included patients 

from Research Centre Borstel only [143].  

Table 2 also gives an overview of the individual cohorts in terms of age and gender structure as 

well as TB-related clinical data; namely, time to positivity (TTP+) at therapy initiation, time to 

culture conversion (TTC), and therapy outcome according to TBnet criteria [148].  

 

Table 2 Characteristics of TB patients, observed and predicted therapy durations in patients from the 

German identification cohort (GIC), the German validation cohort (GVC), and the Romanian validation 

cohort (RVC).  

 DS-TB (n=81) MDR (n=100) 

 GIC 

n= 50 

GVC 

n= 28 

GIC 

n= 30 

GVC 

n= 31 

SGVC 

n=20 

RVC 

n= 52 

Baseline Age  

(mean, SD) 

48.2 

(40.0-60.2) 

34.6 

(22.1-49.3) 

36.2 

(32.0-41.6) 

33.2 

(24.5-44.7) 

29.2 

(25.1 – 39.4) 

37.0 

(28.3-46.7) 

Baseline TTC+ in 

days (mean, SD) 

21.0 

(8.0-29.0) 

10 

(7.0-12.0) 

22.0 

(11.8-32.5) 

22.0 

(11.8-32.5) 

15.0 

(13.0 – 20.0) 

40.0 

(27.5-56.0) 

Time to culture 

conversion in days 

(mean, SD) 

47.5 

(25.8-75.0) 

46.0 

(24.5-55.0) 

38.0 

(33.0-215.5) 

50.0 

(30.5-59.8) 

21.0 

(17.0 – 87.0) 

32.0 

(27.0-60.0) 

Therapy outcome 

 Cure 

 Failure 

 Death 

 

29 (58.0%) 

7 (14.0%) 

1 (2.0%) 

 

20 (71.4%) 

1 (3.6%) 

1 (3.6%) 

 

17 (56.7) 

3 (10.0%) 

2 (6.6%) 

 

20 (62.5%) 

1 (3.1%) 

1 (3.1%) 

 

2 (9.5%) 

0 (0.0%) 

0 (0.0%) 

 

34 (65.4%) 

4 (7.7%) 

- 

Lost to follow-up/ 

undeclared/pending 
13 (26.0%) 6 (21.4%) 8 (26.7%) 10 (31.3%) 18 (90.5%) 14 (26.9%) 

SD= standard deviation, TTC+=time to culture positivity, MDR-TB= multidrug-resistant and extensively drug-

resistant tuberculosis. 
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3.2 Signature performances  

In this chapter the results and performance of the individual models are presented. The array data 

went through three individual steps as shown in Figure 4. First, transcriptomes were identified 

that were significantly up- or down-regulated in comparison between therapy naïve patients and 

HCs, from which the model for the TOS consisting of 6 genes - CD274, GYG1, FAM20A, HIST1H1B, 

TRIM27 and LPCAT- was generated. The second step identified the genes that had a significant 

influence on the remaining therapy time even after estimator penalizing by lasso regression. After 

model reduction steps the genes RPAP3, A_33_P3281041, BATF2, C2, GK, IFIT2, IFITM1, KREMEN1 

and PDE4D remained for the TPS. As a last step, genes were identified for the EOT 64 by lasso 

regression, which after estimator penalizing showed significant influences on the binary 

determination of the end of therapy. The EOT, TPS and TOS were then used in the fourth step to 

create a model that can distinguish between ongoing therapy and cure-associated therapy end 

[143].  

 

Figure 4 Multi-step development of the TB22 for tuberculosis treatment Simplified flow chart showing the 

multi-step approach of transcriptomic and clinical data analysis to develop TB22 that identifies the optimal 
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timepoint to stop anti-tuberculosis therapy. A. Development of therapy outcome score (TOS). Showing the 

volcano plot representing differentially expressed genes in healthy controls vs. therapy naïve drug-

susceptible (DS-) and multidrug-resistant (MDR) tuberculosis patients from the German identification 

cohorts (GICs). Genes that were significantly up- or down-regulated (significant 2-fold change after 

Benjamini-Hochberg correction) form the basis for the TOS development. B. Therapy progression score 

(TPS) development. Depiction of penalizing regression coefficient adjustment (y-axis) and the explained 

deviation as a function of Log-ʎ (x-axis) for variable selection to identify genes that predict the remaining 

days of therapy that has been conducted in reality in all sample measurements from DS- and MDR-GIC 

tuberculosis patients. Each line represents one gene of interest and the genes shown in the plot were pre-

selected by the initial Lasso regression step. The initial data selection was carried out on the entire data set 

with 44,000 gene targets. C. End-of-therapy list (EOT list). Showing penalizing regression coefficient 

adjustment (y-axis) and the explained deviation as a function of Log-ʎ (x-axis) for variable selection to 

identify genes that classify between sample measurements in DS-GIC tuberculosis patients under therapy 

vs. timepoints at the end of relapse-free therapy in DS-GIC tuberculosis patients. Each line represents one 

gene of interest and the gene targets shown in the plot were pre-selected by the initial Lasso regression to 

reduce the number of genes of interest. D. Therapy end model (TB22). Implementing the gene scores (TOS 

and TPS) and the EOT list into a machine learning algorithm model (Random Forest), a final simplified TB22 

for the calculation of end-of-therapy timepoints was developed via Generalized Linear Model (GLM). The 

initial TB22 evaluation was carried out on data from DS-GIC tuberculosis patients. The ROC-curve shows 

TB22 classification accuracy in the independent data set of DS German validation cohort (GVC) tuberculosis 

patients (Area under the curve (AUC) 0.937, confidence interval (CI) 0.899-0.976)). TB22 was further applied 

to patients with multidrug-resistant tuberculosis from the GIC, GVC, and from the Romanian validation 

cohort (MDR-RVC) [143]. 

3.2.1 Diagnostic performance 

In the article by Hoang et al., based on the dataset used here to review diagnostic performance, 

different signatures are described to distinguish between culture confirmed and/or very likely 

pulmonary and extra-pulmonary TB and other diseases [116]. TB22 signature showed similar 

performances to discriminate between culture-confirmed tuberculosis and other diseases 

compared with best signature provided by Hoang et al (Hoang et al. area under the curve [AUC]: 

0.88 (95%-confidence interval (CI): 0.77-0.96) [116], TB22 AUC: 0.89 (CI: 0.82-0.96)); Figure 5). For 

non-culture confirmed pulmonary TB, the AUC was 0.80 (95% CI: 0.66 - 0.93) in Hoang et al. [116] 

and also (95% CI: 0.68 - 0.93) for TB22 signature (Figure 5). The overall performance for the 

diagnosis of pulmonary TB was thus AUC=0.87 (95%-CI: 0.81 - 0.92) for Hoang et al. [116] and 

AUC=0.84 (95%-CI: 0.77 - 0.91) for the TB22 signature (Figure 5). For the diagnosis of extra-

pulmonary TB, the best signature of Hoang et al. shows an AUC of 0.86 (95%-CI: 0.68 - 0.94) [116], 
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while the TB22 signature has an AUC of 0.89 (95%-CI: 0.82 - 0.96) (Figure 5). In addition to the 

comparisons described in the article, we tested how well TB22 can distinguish between active and 

latent TB. Here, TB22 shows a performance of AUC=0.86 (95%-CI: 0.63 – 1.00) (Figure 5). 

 

Figure 5 ROC curves for TB22 Signature diagnostic performance for different discriminations. 

TB=tuberculosis; OD= other diseases; AUC= area under the curve. 

3.2.2 Performance of TOS and TPS 

The best predictive property for discriminating between healthy controls and therapy-naive TB 

patients was given by a signature with 6 genes - CD274, FAM20A, GYG1, HIST1H1B, LPCAT2 and 

TRIM27.The discriminative performance of the individual genes of the TOS patients show AUCs 

between 0.74 and 0.93 at different time points. In the next step, all genes were processed into a 

signature using an RF machine learning algorithm. The performance of the six-gene signature in 

terms of its ability to discriminate between outcome groups (cure/failure/death) at different 

points in time can be rated as outstanding, with AUCs between 0.85 and 1[190]. With regard to 

the TOS resulting from the genes, it can be seen that patients who die during the course of 

therapy have a higher TOS at the beginning of therapy (Figure 6). Patients with failure have a 

higher TOS on average at the beginning of therapy [143].  
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Further validation of this finding was performed by using the patients’ culture conversion status, 

the drug-resistance status, and the radiographic extent of disease at baseline to re-assure the 

plausibility of the therapy outcome score. Kruskal-Wallis test showed highly significant differences 

of the therapy outcome score between outcome groups at baseline in the GICs (p<0.001). MDR- 

and DS-GIC patients with prolonged times of culture conversion (2-month culture conversion 

status) also showed higher baseline score values (median: 3.4, IQR: 1.6–5.0) when compared to 

those with early culture conversion (median: 1.8, IQR: 0.5–3.4, p=0.111). Therapy naïve MDR- and 

DS-GIC patients experiencing cure had a median score of 0.86 (IQR: -0.37–2.3) while patients with 

therapy failure exhibited a median score of 1.3 (IQR: 0.34–4.61) and deceased patients a value of 

5.83 (IQR: 5.08–10.04; Figure 6). The performance of this outcome score to predict therapy 

outcome in therapy naïve patients was 0.85 (95% CI 0.78–0.92) [143]. 

 

 

Figure 6 Violin plots showing the comparison of logarithmic therapy outcome score (TOS) values in therapy 

naïve tuberculosis patients, irrespectively of drug-resistance status, from the German identification cohorts 

(GIC) with regard to their therapy outcome (cure, failure, or death according to the TBNET-criteria) [148]. 

Figure adapted from the original publication [143]. 

Figure 7 shows the course of the TPS as function of the days since the start of therapy stratified by 

cohort and resistance level. It becomes apparent that the model shows similar courses for DS-TB 

patients independent of cohort. The same is the case for MDR-TB patients but patients that are 
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infected by an MDR strain of M. tuberculosis showed a higher level in the beginning. The model 

claim was not to predict the upcoming or remaining therapy duration.  

 

Figure 7 Y-axis: Therapy progression score (TPS) as a function of days since therapy start (x-axis) stratified 

by cohorts. 

Supplement table 4 gives an overview about the model´s parameter. The table summarizes the 

methodology once again, but also shows the genes used in each case. In addition, it also shows 

the respective performance parameters of the individual models, including the explanation of the 

variance, the mean decrease Gini index and the discriminatory ability in the form of the AUC 

[143]. 

3.2.3 TB22 performance in the cohorts 

The TB22 model finding and validation was completed in three steps. First, the model was trained 

in the training data set of DS-TB GIC patients and cross-validated in the test data set of the same 

cohort and patient group. Second, was then applied to the group of DS-TB patients of the GVC to 

test the performance of the model in an independent data set. Third, model was then applied to 

the MDR-TB patients in all three cohorts to determine the likelihood that the therapy could be 

terminated for all patients at all measurement time points. Afterwards, a simplification was made 

as a GLM model to ensure complete and reliable reproducibility of results, which is not given for 

random forest Models [143].  
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Figure 8 ROC curve analysis to evaluate the biomarker model’s performance to predict DS-TB patient 

therapy end. Clinically conducted therapy end time points are correlated with biomarker defined therapy 

end timepoints. Figure 8A: Biomarker model performance in DS-TB patients from the German identification 

cohort (GIC), Area under the curve (AUC) = 0.999 (confidence interval (CI) 0.996 – 1). Figure 8B: Biomarker 

model performance in DS-TB patients from the German validation cohort (GVC), AUC = 0.912 (CI 0.868 – 

0.956) [143]. 

Each measurement resembles an independent end-of-therapy calculation for a TB patient under 

therapy. All calculation results above the cut-off ≥0.5 indicate for hypothetical end-of-therapy 

timepoints with cure as final treatment outcome. The model identified end-of-therapy timepoints 

with high accuracy in DS-GVC patients (area under the curve [AUC] 0.94; 95% confidence interval 

[CI]:0.90-0.98; Table 4 and Figure 8). It was applied to MDR-GIC, and to patients from the 

independent DS- and MDR-GVCs, and patients from the MDR-RVC to calculate hypothetical 

therapy durations. Figure 9A-D shows the end-of-therapy probabilities of the different cohorts as 

a function of time under therapy [143]. 

The proportion of patients who reached the model´s threshold for the calculated end-of-therapy 

at the end of clinical anti-tuberculosis treatment was 100% in the DS-GIC and 97.4% in the DS-

GVC. Patients who did not reach the threshold indicating a relapse-free end-of-therapy at month 

6 showed an increased time to sputum culture conversion when compared to those who did 

(median of 68 days, IQR: 50.0–126.0 days vs. median of 46.0 days, IQR: 30.0–63.0 days; p=0.041). 

None of the patients in the MDR-GIC, MDR-GVC and MDR-SGVC reached the threshold for cure at 

6 months. In MDR-RVC only one patient (1.9%; culture conversion within 2 weeks) was above the 

threshold after 6 months of therapy. Following 15 months of therapy, the overall proportions of 
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MDR-TB patients having reached cure according to the model were 84.6% in the MDR-GIC, 40% in 

the MDR-GVC. 60.0% in MDR-SGVC and 88.5% in the MDR-RVC [143]. 

The calculated therapy durations did not differ significantly from observed durations for the DS-

GIC patients (median calculated 175.0 days vs. observed 184.0 days, p=0.104) but they do for the 

DS-GVC group (median calculated 225 vs. observed 273.0 days, p=0.001), which could be 

explained by the larger gaps between sampling timepoints, or higher bacillary burden at baseline. 

Calculated therapy durations were significantly shorter compared to those observed in patients of 

the MDR-GIC (median calculated 420.0 days vs. observed 638 days, p=0.001), the MDR-GVC group 

(median calculated 430.0 days vs. observed 641 days, p<0.001) and MDR-SGVC (median 

calculated 355.0 days vs. observed 641 days, p=0.001). Calculated therapy durations in MDR-RVC 

patients were also significantly shorter than the observed durations (median calculated 450.0 vs. 

observed 609.0 days, p=0.001). For patients in the MDR-GIC, this would have resulted in a median 

reduction of therapy duration by 218 days. In the MDR-GVC, therapy would have been reduced by 

a median of 211 days, and for a median of 161 days in the MDR-RVC. In the MDR-SGVC, the 

median reduction from observed therapy to calculated end point is 254 days. According to the 

therapy end model, 32.9% of patients with MDR-TB who had a negative M. tuberculosis culture 

status at 6 months of therapy reached the therapy end model threshold after 10 months, 69.5% 

were above the therapy end model threshold after 15 months and 97.6% were above the therapy 

end threshold after 20 months of treatment, respectively. Also, in patients from the DS-GVC, 

52.0% of patients who had a negative culture status at 2 months of anti-TB therapy had a therapy 

end model status at month 6 of anti-TB treatment indicating cure. In contrast, 10.0% of patients 

who had a positive culture status at 2 months of anti-TB therapy had a TB22 status at months 6 of 

anti-TB treatment indicating cure [143]. 
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Figure 9 TB22 scores for end-of-therapy by the therapy end model (TB22) over the time of anti-TB 

treatment for the five cohorts of drug-susceptible (DS) tuberculosis (TB) and multidrug-resistant (MDR) TB 

patients of German Identification cohort (GIC), German Validation cohort (GVC) and Romanian Validation 
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cohort (RVC) following the therapy end model. Y-axis: TB22 scores for end-of-therapy, horizontal line: 

probability threshold (P≥0.5) for relapse-free end-of-therapy; X-axis: time under treatment (months), first 

vertical dotted line indicates 6 months of therapy, the common timepoint of therapy end (TE) in drug-

susceptible TB, second vertical dotted line indicates the usual timepoint for TE in multidrug-resistant TB 

after 20 months of therapy. Figure 9A: TB22 scores in DS-GIC and MDR-GIC over time (blue: DS-GIC, orange: 

MDR-GIC) Figure 9B: TB22 probabilities in DS-GVC and MDR-GVC patients over time (blue DS-GVC, orange: 

MDR-GVC) Figure 9C: TB22 scores in MDR-RVC patients over time (orange). Figure 9D: TB22 scores in MDR-

SGVC patients over time (orange) [143]. 

 

Probabilities for end-of therapy for all patients from the different cohorts were below the 

threshold at baseline (Figure 10A). The majority of patients with DS-TB reached the end-of-

therapy threshold at 6 months while drug-resistant TB patients did not (Figure 10B). Nearly all TB 

patients from the different cohorts reached the end-of-therapy threshold at the end of clinical 

therapy (Figure 10C). The model probabilities for end-of-therapy were also compared between 

patients with DS-TB and with MDR-TB at relevant bacteriologically defined endpoints such as the 

individual time of sputum culture and smear microscopy conversion. End-of-therapy probabilities 

were well below the threshold for both DS-TB and MDR-TB at these timepoints, but probability 

values were significantly lower for patients with MDR-TB when compared to DS-TB patients in the 

GICs (median probability at smear conversion: DS-GIC P=0.21 vs. MDR-GIC P=0.06, p=0.038; 

median probability at culture conversion: DS-GIC P=0.29 vs. MDR-GIC P=0.04, p=0.007) and the 

GVCs (median probability at smear conversion: DS-GVC P=0.09 vs. MDR-GVC P=0.01, p=0.040; 

median probability at culture conversion: DS-GVC P=0.29 vs. MDR-GVC P=0.04, p=0.007). Of note, 

no patient with positive sputum culture result reached the threshold for end-of-therapy as 

classified by the model. When the model probabilities for therapy end were stratified for drug-

resistance status in pooled data from the different cohorts, they showed low probabilities for 

therapy end at baseline, after 2 weeks of therapy, but probabilities above the threshold at clinical 

therapy end timepoints [143]. 
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Figure 10 Violin plot with comparison of the calculated therapy end probabilities between the cohorts at 

different times. Y-axis: probabilities for therapy end, dotted line: threshold for cure-associated therapy; X-

axis showing the different cohorts. 10A: at therapy beginning, 10B: after 14 days of therapy 10C: at smear 

conversion, 10D: at culture conversion 10E: at first measurement after six months 10F: after successful 

completed therapy. MDR= multidrug- TB, DS-TB= susceptible and mono-resistant TB. Drug susceptible 

German Identification cohort (DS-GIC), multidrug resistant German Identification cohort (MDR-GIC), drug 

susceptible German Validation cohort (DS-GVC), multidrug resistant German Validation cohort (MDR-GVC), 

multidrug resistant Romanian Validation cohort (MDR-RVC), multidrug resistant second German Validation 

cohort (MDR-SGVC) [143]. 

3.2.4 Clinical validation 

In this chapter, therapy durations and model results are examined using clinical and 

sociodemographic parameters. Table 8 shows the comparison between observed and calculated 

therapy duration with regard to their influence by clinical parameters. It becomes clear that the 

clinical parameters have a significantly lower influence on the observed therapy duration of MDR-

TB patients than on the observed therapy duration of DS-TB patients. Cavities have a similar 
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impact on observed and calculated duration of therapy in DS-TB patients; however, the impact on 

calculated duration is significant. The effect of cavities is most pronounced on the calculated 

duration of therapy in MDR-TB patients. In contrast, culture conversion at two months had a 

much stronger and significant impact on DS-TB therapy durations (calculated and observed), 

which is not the case for MDR-TB patients.  

The baseline smear grade shows no significance on any observed or calculated duration of 

therapy. 

 

Table 3 Additional days on therapy in the presence of cavities and a high baseline smear grade, and failure 

to achieve culture conversion (CC) at 2 months for observed duration of therapy and calculated duration of 

therapy. DS-TB patients: drug-susceptible tuberculosis patients from DS-GIC and DS-GVC. MDR-TB patients: 

multi-drug resistant TB patients from MDR-GIC, MDR-GVC, MDR-RVC and MDR-SGVC. 

 DS-TB patients  MDR-TB patients  

 Observed 

(p-value) 

Calculated 

(p-value) 

Observed 

(p-value) 

Calculated 

(p-value) 

Cavities +40.2 

(0.302) 

+47.7 

(0.008*) 

+7.9 

(0.523 

+76.7 

(<0.001*) 

No CC after two months +182.8 

(<0.001*) 

+32.7 

(0.044*) 

+23.2 

(0.006*) 

+19.4 

(0.089) 

Baseline smear grade >2 -54.3 

(0.134) 

+9.5 

(0.551) 

+9.2 

(0.282) 

+2.3 

(0.831) 

DS-TB= Drug-susceptible tuberculosis patients, MDR-TB=Multidrug-resistant tuberculosis, CC=Culture 
conversion 

A further validation was carried out by analysing, which classification patterns exist regarding the 

cultural status in the course of therapy. The mosaic plot shows results for patients of the GIC, GVC 

and SGVC. Here, all measurement points were selected for which information was still available, 

whether the culture status was positive (1) or negative (0). The classification between successful 

therapeutic and ongoing therapy and the cultural status shows a highly significant correlation 

with p<0.001 (Figure 10). Here, it is shown how high the proportions of the final therapy 

classifications (0= ongoing, 1= calculated end of therapy) were depending on the culture status. 

No measurement time of patients with positive culture was classified as TB22= 1. Altogether, 

patients at 105 measurement (20.9%) had a negative culture and were classified as successfully 

completed therapy. At 193 time points (38.4%), patients had a negative culture but did not reach 



53 
 

the threshold to be classified as successfully completed therapy. At 204 measurement points 

(40.6%) patients showed a positive culture status and a classification for continuation of therapy.  

 

Figure 11 Mosaic plot shows relationship between Therapy End Model (TB22) classification (x-axis) and 

culture status (y-axis; positive/negative), p-value <0.001 shows a highly significant correlation. 

3.3  Model’s added value validation and biological plausibility  

In this chapter, the model will be examined once again with regard to its added value and 

biological plausibility. For this purpose, the performance comparison with other published 

signatures is presented. This is followed by a critical evaluation of the genes taking into account, 

their pathways, and previous TB-related mentioning in the literature in order to discuss their 

biological plausibility. 

3.3.1 Performance comparison with previously in literature described signatures 

for clinically relevant endpoints in tuberculosis 

16 Signatures that were described previously dealing with TB were used to compare their ability 

to reflect therapy course [110, 114, 118, 175-179, 181-183, 191-194]. If one authors described 

several signatures, the distinction was made by numbers of genes in signature, respectively.  

Table 4 shows the AUCs of the signatures for the classifications that the end of therapy has been 

reached as well as the mean monthly changes for the therapy end probability for each tested 

signature. With regard to the identification of the end of therapy for DS-TB patients, TB22 shows 

the best performance (Table 4). 
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Table 4 Comparison of the area under the curve (AUC), in drug-susceptible (DS-TB) patients of German 

validation cohort (GVC), generalized linear model (GLM)-Estimator for monthly changes of probabilities & 

scores for DS-TB GVC patients and multidrug-resistant (MDR-TB) GVC and Romanian Validation cohort (RVC) 

patients 

 Identification of 

therapy end in GVC DS-

Patients 

p-Value ROC 

compared to 

TB22 

Mean monthly change in therapy end 

Probability in DS-GVC patients and MDR-TB 

patients from GVC and RVC patients ΔP(TE) 

TB22 0.94 (0.90 – 0.98) - 0.023 

Anderson44 0.77 (0.68 – 0.85) 0.007* 0.003 

Berry83 0.68 (0.57 – 0.78) <0.011* 0.004 

Blankley4 0.77 (0.69 – 0.86) 0.007* 0.013 

Kaforou27 0.81 (0.74 – 0.89= 0.047* 0.007 

Kaforou44 0.74 (0.64 – 0.84) 0.023* 0.003 

Kaforou53 0.79 (0.70 – 0.88) 0.043 * 0.005 

Laux da 

Costa5 

0.79 (0.70 – 0.88) 0.045* 0.007 

Maertzdorf3 0.76 (0.66 – 0.86) 0.008* 0.009 

RISK6 0.70 (0.60 – 0.82) 0.001* <0.001 

Sambaray10 0.75 (0.65 – 0.84) 0.006* 0.003 

Singhania20 0.71 (0.61 – 0.80= <0.001* 0.004 

Suliman4 0.65 (0.54 – 0.76) <0.001* 0.007 

Sutherland4 0.56 (0.45 – 0.67) <0.001* 0.003 

Sweeney3 0.75 (0.65 – 0.84) 0.002* 0.007 

Thompson9 0.81 (0.71 – 0.89) 0.048* <0.001 

Thompson16 0.62 (0.51 – 0.73) <0.001* 0.001 

Thompson32 0.65 (0.54 – 0.76) <0.001* 0.004 

Zak16 0.78 (0.70 – 0.87) 0.041* 0.004 

DS-GVC= Drug-susceptible German validation cohort, MDR-TB= Multidrug-resistant tuberculosis, RVC= 
Romanian validation cohort, ΔP(TE) = Mean monthly changes for probability of having therapy end 

Except for TB22, most of the signatures showed an insufficient increase in the mean probabilities, 

so that the end of therapy was not correctly detected. This also becomes clear when one looks at 
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the average monthly probability changes. With an increase of ΔP(TE)=0.023 per month, the TB22 

shows the clearest mean increase, while the probability change of the other signatures is clearly 

below this performance with between ΔP(TE)= 0.003 and ΔP(TE)=0.013. This is also reflected by 

looking at Figure 12. Here, the mean probability for the end of therapy is shown for the six 

signatures with the highest probability change per month for DS-TB and MDR-TB patients. Table 

adapted from original publication [143]. 
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Figure 12 Comparison of the 22-RNA gene signature model with published RNA-signatures and scores to 

identify end-of-therapy timepoints in drug-susceptible and multidrug-resistant tuberculosis patients from 

the German Validation cohort (GVC). Calculated therapy end timepoints in drug-susceptible (DS)-German 

Validation cohort (GVC) patients (blue) and multidrug-resistant (MDR)-GVC patients (orange) for different 

RNA signatures and scores. Y-axis: probabilities (P[TE]) from random forest models for the classification of 

the end-of-therapy with a cut-off of ≥0.11, X-axis: time under therapy in months. Figure 12A: 22-RNA gene 

therapy end model (TB22). Figure 12B: Anderson et al., 43 genes [175]. Figure 12C: Berry et al., 87 genes 

[176]. Figure 12D: Kaforou et al., 27 genes [177]. Figure 12E: Kaforou et al., 44 genes [177]. Figure 12F: 



57 
 

Kaforou et al., 143 genes [177]. Figure 12G: Laux da Costa et al., 3 genes [178]. Figure 12H: Maertzdorf et 

al., 3 genes [179]. Figure 12I: Penn-Nicholson et al., 6 genes [117]. Figure 12J: Sambaray et al., 10 genes 

[194]. Figure 12K: Singhania et al., 20 genes [181]. Figure 12L: Suliman et al., 4 genes [182]. Figure 12M: 

Sutherland et al., 4 genes [183]. Figure 12N: Sweeney et al., 3 genes [114]. Figure 12O: Thompson et al., 9 

genes [118]. Figure 12P: Thompson et al., 13 genes [118]. Figure 12Q: Thompson et al., 32 genes [118]. 

Figure 12R: Zak et al., 16 genes [110] [143]. 

3.3.2 Immunological examination 

The main aim of this work was to find a gene signature model to calculate the probability that the 

therapy was successful. 22 genes were identified in total. In this chapter, these RNA targets will be 

discussed in more detail. Supplement table 4 shows the fundamental function of the genes as 

well as their previous TB-related description in literature. Furthermore, respective pathways will 

be shown. Except A_33_P33271041, KCNJ2-AS1 and TNFRSF21, all genes where formerly 

descripted at least in being up- or downregulated in correlation with TB-related scientific issues. 

The numbers and areas of activities vary a lot between the 22 genes. Most of them were placed in 

at least one of the following subcategories: immune signaling; metabolism; DNA and RNA 

regulation and repair and/or neurotransmitters. Two genes, STAT1 and TRIM 27, also show an 

affiliation to tuberculosis related pathways. 

After considering the individual genes with respect to their involvement in the respective 

pathways in Supplement table 4, in a second step enrichment analyses were performed on the 

complete gene set in order to have an unbiased insight into what is important with respect to 

relevant TB-related questions.  

Supplement table 5 shows all involved pathways for respective comparisons. No comparison 

showed an association with the tuberculosis pathway. However, the results of the topkegg 

function showing the 20 most important pathways of each comparison are shown here. 

Nevertheless, genes associated with the TB pathway are significantly up- and down-expressed 

[195]. Furthermore, a total of 10 other pathways have been shown to be significant, assigned to 

other infectious diseases such as hepatitis B, influenza, SARS-COV19, shigellosis, or Chagas. Those 

occurred in the comparison of patients with cavitary lung disease vs patients without cavitary 

disease at baseline, favorable outcomes vs unfavorable outcomes at baseline, before culture 

conversion vs. after culture conversion therapy naive patients vs. patients after two weeks of 

therapy, discordance between observed and calculated therapy end, DS-TB patients vs. MDR-TB 

patients at baseline and healthy controls vs. TB patients at baseline. In addition, 10 pathways 

associated with the immune system were named. These are Phagosome, mTOR signaling 

pathway, Neutrophil extracellular trap formation, Toll-like receptor signaling pathway, RIG-I-like 
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receptor signaling pathway, Natural killer cell mediated cytotoxicity, Th17 cell differentiation, T 

cell receptor signaling pathway, Fc epsilon RI signaling pathway and Leukocyte transendothelial 

migration, which were significantly up- or downregulated for therapy naive patients vs. patients 

after two weeks of therapy, therapy naive patients vs. patients under therapy, patients under 

therapy vs. patients after therapy end, healthy controls vs. TB patients at baseline, patients with 

cavitary disease vs patients without cavitary disease at baseline, favorable outcomes vs 

unfavourable outcomes at baseline and DS-TB patients vs. MDR-TB patients at baseline. For the 

comparison between healthy controls and patients at the calculated end of therapy, the 20 most 

important pathways are pentose phosphate pathway, central carbon metabolism in cancer, 

purine metabolism, glycolysis/gluconeogenesis, glutamatergic synapse, melanogenesis, relaxin 

signaling pathway, olfactory transduction, ECM-receptor interaction, hedgehog signaling pathway, 

apelin signaling pathway, autophagy – animal, basal transcription factors, protein digestion and 

absorption, nucleotide excision repair, DNA replication, autophagy – other, primary bile acid 

biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid elongation. The last one shows the 

highest percentage with an upregulation of 25% of all genes involved in the pathway. 

In order to provide a better overview, the pathways were summarized with respect to their 

known function. Figure 13 shows the mean percentage of genes that were up- or downregulated 

for the different comparisons with respect to their compressed functionality. Zero (dark blue) 

means that the pathway was not implicated. It is also clear here that the up- or down-regulation 

for the discordance comparison between observed and calculated end of therapy in percentage 

terms is very low overall for all functions. For the comparison between healthy controls and the 

calculated end of therapy, differences are mainly found with regard to the cell life cycle, DNA and 

RNA regulation and metabolism. However, hormonal regulation and neuronal signal transmission 

also stand out.  
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Figure 13 Summary of KEGG Pathway participations and mean percentage of down- or up-regulated genes 

for various TB-related comparisons. 

Both, Supplement table 4 and Figure 13, show that the involvement of metabolic, immunological 

and DNA- and RNA-regulating pathways also playing an important role in disease processes. The 

comparison of patients with and without cavities; before and after culture conversion and the 

comparison of ongoing therapy, successfully completed therapies and before the start of therapy 

show significant up- and down-regulations of genes. 

The next step was to further summarize the results. The agreement rate of the pathways between 

the individual comparison questions was determined. This is shown in Figure 14. The pathway 

agreement of the individual questions with respect to the toppkegg results shows a very low 

agreement between the individual comparisons. The highest agreement was 20% and was found 

in the comparison between patients before and after culture conversion and therapy-naive 

patients vs. patients under therapy, as well as in the comparison between cavities and the 

difference between calculated and calculated therapy end. For the latter, the same pathways are 

carbon metabolism, type II diabetes mellitus, shigellosis, and thyroid cancer. 



60 
 

 

Figure 14 Pathway concordance rates. 

Analysis of tmods shows compressed results from an algorithmic approach of gene clustering in 

Figure 15. Here, it is shown that in the disease process, modules from the area of T cells, B cells, 

NK cells, monocytes and other immune system-related modules are predominantly addressed. 

However, cell cycle regulation and DNA/RNA regulatory aspects are also addressed here. Overall, 

the results found here are congruent with the KEGG Pathway analysis, but this is a more compact 

presentation. Whereas in the KEGG analysis the 16 most represented pathways were used in each 

case, in the tmods only the significant modules are used, resulting in a different number of gene 

clusters involved. It is striking that the discordance between calculated and observed end of 

therapy shows a difference only in one module. This is the cell cycle. Even more remarkable, 

however, is that in the comparison between healthy controls and patients from the time of the 

calculated end of therapy, no module with significantly up- or down-regulated genes could be 

found. For this reason, this comparison could not be shown in Figure 15.  
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Figure 15 tmods analysis 21 A) Healthy controls vs. TB-patients at baseline. B) DS-TB vs. MDR-TB patients at 

baseline. C) Favourable vs unfavourable outcomes at baseline. D) Patients at observed therapy end vs 

healthy controls. E) Discordance of observed and calculated therapy end. F) Calculated therapy end vs. 

healthy controls.  
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4 Discussion 

4.1 Evaluation of results 

In contrast to most other infectious diseases TB is characterized by a very long duration of therapy 

to achieve relapse-free cure. Until now, the recommended duration of antibiotic therapy for 

patients who developed TB is highly standardized depending on the presence or absence of 

antibiotic drug-resistance and the extend of the disease. However, in theory, each patient 

affected by TB needs an individual duration of anti-TB therapy until the disease is cured.  

The aim of this thesis is the identification and validation of a biomarker for the bacterial-free 

diagnosis of TB, for treatment monitoring and to individualize endpoints of therapy where 

relapse-free cure has occurred in a step-wise approach. First, bioinformatics and biostatistical 

methods were used to identify a human transcriptional (RNA) signature to distinguish between TB 

patients from healthy controls. Second, this signature was applied to develop a score using 

statistical models to represent treatment responses. Subsequently, this score was used to identify 

individual time points in the course of anti-TB treatment suggesting that a status of cure was 

reached. To achieve this, two cohorts of TB patients were recruited in Germany, one with DS-TB 

patients, one with MDR-TB patients (identification cohorts). Whole-blood transcriptome analysis 

resulted in a 22-gene RNA signature (TB22) to distinguish between TB patients and healthy 

controls and individuals with other diseases in an external dataset (GSE144127, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144127). This 22 gene signature was 

also the basis for a multistep statistical to calculate the TB22 score that indicates individual 

therapy durations in two cohorts, one with patients with DS-TB and one with patients with MDR-

TB. Subsequently TB22 was validated in four independent cohorts, one with patients with DS-TB 

and three with patients with MDR-TB.  

The model provides individual probabilities for cure-associated end-of-therapy time points at any 

given moment throughout therapy, therefore providing unique data for therapy monitoring. The 

performance to detect the successful end of therapy described by sensitivity/1-specificity is 

AUC=0.93 in the external validation cohort. In comparison to presently published RNA signatures 

or scores TB22 shows superiority in identifying end-of-therapy timepoints [143]. 

In addition, TB22 shows good diagnostic performance for the diagnosis of active TB in 

differentiation from other diseases and/or latent infection with M. tuberculosis [174]. TB22 is 

non-inferior to the best described RNA signatures for diagnosis of active TB [174]. Additionally, 

TB22 also shows changes in the course of therapy that correlate with the response to therapy. By 

exceeding the threshold value of 0.5, the end of therapy in DS-TB patients can be detected with 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144127


63 
 

high accuracy. By using the TB22 model, individual therapy end points can also be determined for 

MDR-TB. The kinetics in the course of therapy and the accuracy of the end-of-therapy 

determination are superior to other TB-related gene signatures tested [143]. 

The gold standard for TB-diagnosis is culture data [196]. Approximately 15-17% of all newly 

diagnosed pulmonary TB patients have culture negative TB and the diagnosis in these patients is 

made by clinical considerations [197]. This is especially the case in extra-pulmonary cases and in 

children [197-199]. Comparing the diagnostic performance of TB22 with the existing clinically 

used pathogen-based diagnostic tools, the signature identified here is non-inferior. The diagnostic 

performance of TB22, which in this work is AUC=0.85, is superior to the AUC of the Ziehl-Neelsen 

microscopy (AUC=0.80) technique [200]. 

Xpert MTB/RIF and Xpert Ultra are widely used screening tools for diagnosing TB [201]. GeneXpert 

shows a sensitivity of 90.9% and a specificity of 95.6% for the latest model (Xpert Ultra) and a 

sensitivity of 8.7% and a specificity of 98.4% for the previous model (Xpert MTB/RIF) [202]. In 

people living with HIV, sensitivity is 61.8% and specificity 98.8% [48] and shows even better 

results in diagnosing TB in children [203].  

LAM shows sensitivity for pulmonary TB between 34 – 60% in a pooled meta-analysis [222] and 

differs between TB forms of extra-pulmonary TB between 47 and 94% in people living with HIV 

[223]. The diagnostic performance of TB22 does not seem to be inferior compared to currently 

used clinical tests. This can be particularly helpful for the diagnosis of patients with culture-

negative TB. 

In the recent past, efforts were already made to shorten the standardized therapy durations. 

Standardized short-course treatments of patients with DS-TB were evaluated for non-inferiority in 

three clinical trials: REMOX [204], OFLOTUB [205], and RIFAQUIN [206]. While standardized 

shorter therapies were not non-inferior to standard of care in these trials treatment of pulmonary 

TB over 4- months with a four-drug regimen of rifapentin, isoniazid, moxifloxacin and 

pyrazinamide recently showed to achieve comparable cure rates to the standard 6-month 

treatment regimen and may soon become a new gold standard [207]. For MDR-TB patient, as a 

result of an observational cohort study performed in Bangladesh [208], shorter durations of 

therapy for patients with MDR-TB with a fixed combination of medicines over 9-12 months were 

adopted by the WHO in 2019, providing that patients did not have TB before, that there was no 

extra-pulmonary involvement, women were not pregnant and there was a limited extend of 

disease and pattern of M. tuberculosis drug resistance [2, 209]. Although promising results with 

success rates up to 85-90%, less than 5% of all MDR-TB patients worldwide would have the co-

morbidity and resistance profile that is expected from treatment according to the Bangladesh 

regime [210-212]. Furthermore, there is the possibility to administer a shortened all-oral 
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bedaquiline-based therapy regime for about 9-12 months [2]. Currently, further non-inferiority 

trials are underway to test the efficacy of new approaches with shortened treatment durations 

[209, 210]. Therapy reduction has also been recommended by the WHO for the use of delamanid 

and bedaquiline. However, this is only recommended if there is no resistance to fluoroquinolones, 

and no second-line medication may have been administered in advance [2]. There have been 

efforts in the past to reduce the duration of therapy for DS-TB patients with culturally and smear 

negative, drug susceptible TB to four months [69]. However, a number of further requirements 

are necessary for this; most importantly, the absence of any co-morbidity. Although some of the 

requirements for therapy shortening correspond with the study characteristics of this work were 

not tested here - namely the absence of HIV infection, the limitation to pulmonary TB and the age 

of majority of the patients, the TB22 offers a potential tool for condition-free individualized 

therapy duration compared to generalize therapy duration shortening [36, 157-160]. Therefore, 

the standardized short-term treatment for MDR-TB patients is only suitable for a marginal group 

of patients, but does not provide a solution for the majority of patients who still need to be 

treated for 18-20 months. The "one-fits-all" therapy duration of the current standard therapy is 

shortened according to certain criteria and then applied in a standardized manner to the 

appropriate group of patients [2].  

In comparison, TB22 score offers individualized therapy duration instead of a standardized 

therapy shortening, which, at least in the cohorts reviewed here, is accompanied by a therapy 

shortening compared to the standard therapy for most patients.  

Based on the procedure used here to determine the individual end of therapy, there is a kinetic in 

the course of TB22 that indicates a response to therapy in patients. Kinetics due to changes in the 

course of therapy were also found in other immune-based test procedures, which were initially 

investigated primarily for their diagnostic capability [213, 214]. The IGRA test used for the 

diagnosis of LTBI also shows some potential for use as a biomarker in therapy monitoring. 

However, the results found in a systematic review on the changes during therapy were 

controversial [215]. While some studies found a decline in IGRA over the course of therapy, others 

found no changes; a few studies even reported an increase [215]. However, if one compares the 

individual values of the IGRA during therapy, arbitrary courses become apparent [216]. 

The Tam-TB test, which was developed for culture-free diagnosis, especially in children and extra-

pulmonary therapy, shows a dynamic course during therapy and could serve as therapy 

monitoring [217]. However, the time points studied show relatively large intersections in the 

TAM-TB results [217]. Further studies, possibly including individual courses, would be desirable to 

assess the suitability of the TAM-TB as a therapy monitoring tool. 



65 
 

Another possible immunological approach to therapy monitoring is fluorescence-activated flow 

cytometry (FACS). Here, cell populations and surface markers of the immune cells are measured. 

With regard to TB, a FACS therapy monitoring system that usually consists of a combination of 

different populations and markers, could distinguishes between LTBI and active TB as well as 

between active TB and treated TB [218, 219]. Despite significant differences, there are still 

relatively large overlaps between the groups and continuous measurements for concluding 

performance assessment is missing [218, 219]. 

The TB22, on the other hand, reflects the disease severity and the patient's response to therapy 

on an individual level. There is a clear cut-off of TB22=0.5 to distinguish between treatment-naive 

and treatment-responsive TB, with no overlap of numerical values between the two conditions. 

Also, directional changes clearly indicate a worsening or improvement of the disease state and do 

not show random movements. The TB22 score could therefore represent a therapy monitoring 

tool that is similarly easy and unambiguous to interpret as culture data, but can be used in the 

case of culture negativity additionally.  

Transcriptomes are well suited for real-time therapy monitoring and the determination of 

individual therapy duration for two reasons: On the one hand, RNA is particularly suitable as a 

biomarker because they are relatively easy to detect and quantify [104]. It can provide a very 

dynamic insight into cell status and process flows, which is not the case with DNA [101]. Also, the 

fact that multiple copies of RNA are present in cells provides a higher level of information content 

than DNA, which is present in a single version in the cell [101]. Furthermore, RNA offers higher 

sensitivity and specificity compared to other systems biology data, such as proteomics [101, 220]. 

Transcriptomes are used to identify expression profiles that allow conclusions to be drawn about 

specific processes. Mutations or epigenetic changes that allow an increased basic risk for certain 

diseases are not considered here [101]. It is above all the potential of having a pathogen-free tool 

that makes the analysis of transcriptomes so attractive for clinical use. Therapies can be initiated 

more quickly and the M. tuberculosis transmission rate could be reduced [221].  

The TB22 as a score based on transcriptomic data was developed using a multistep approach that 

accommodated three different foci that were merged into a single score in the end. The severity 

of the disease, the progress of the therapy and the successful completion of the therapy are the 

cornerstones of the score, which was created using machine learning algorithms.  

The data preparation in this work was done using limma, a validated package of the program R. It 

includes tools that allow stable analyses and is well suited for both complex and small data sets 

[105, 222]. 
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A mix of methods was used; while the genes of the TOS were identified by moderated t-test and 

Benjamini-Hochberg correction, the identification of the relevant genes for the TPS and the TB22 

was based on Lasso regression. The t-test describes the expression levels of the genes in isolation 

from each other and the usage of Benjamini-Hochberg shows a low misclassification rate [150]. 

Statistical filtering methods such as the identification of statistically significant genes by corrected 

T-test, partly including a log-fold threshold, have already been described frequently for 

transcriptome studies in tuberculosis [176, 179, 180]. Although the method is well suited for 

variable reduction, no variable dependencies are examined, which is why in this work the 

important variables are identified for the last model step using lasso regression, which places the 

genes in context with each other and also takes multicollinearity into account [223]. Genes that 

have no effect will be excluded from further analysis, which is particularly helpful in large datasets 

where qualitative variable selection by hypothesis is not feasible [168-171, 223]. The method mix 

opens up the possibility of identifying a large number of genes by different methods. By using the 

T-test, important genes with high differences in expression levels were identified. In addition, 

lasso regression allowed the inclusion of genes that would not have been identified by the T-test 

but are important as part of a highly multi-correlated data set, since gene expressions in signal 

cascades in transcriptomic processes are highly dependent from each other [224, 225].  

A general problem in modelling is overfitting. First, from a qualitative point of view, it is better to 

look only at the variables that make up a real effect in order to understand the - in this case 

biological - correlations. If there are too many variables in the model, the estimation parameters 

reflect an arbitrary distribution rather than the actual influence. Second, economic considerations 

also play a role in the further application - the analysis of fewer genes is much less expensive, and 

the model runs much faster and results can be determined quicker. Last but not least, accuracy is 

significantly increased if only variables of actual relevance are included in the model. With many 

unnecessary variables, genes that have no actual influence are given unnecessarily much 

influence, while the effect of actually significant genes would be massively underestimated in this 

case. This would have the consequence that the model would show excellent results in the 

training data set, but that these results could not be replicated on other data sets and would 

therefore become useless for the actual research question [135, 226, 227]. In the field of 

transcriptome research, different methods can be used to reduce the variables reduction. These 

can be unsupervised clustering, the application of multiple corrected tests or penalized regression 

methods [228-230]. In this work, LASSO regression was used as a method of penalized regression. 

The idea behind penalized regression models is that the estimator of each variable is shrunk, 

leaving only those that have a real effect and accounting for the multicollinearity of the variables 

[137, 230]. Genes that exhibit high multicollinearity are thus dropped from the data set [231]. The 
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LASSO regression can shrink the estimator down to 0, which would make the respective variable 

insignificant for the model and is a well suited approach for genetic high-dimensional data [232]. 

Ridge regression as another form of penalized regression would not have been appropriate for 

this work, as with this method the estimator always remains >0 and variables are not eliminated 

[233]. This method would therefore not be suitable for pre-selecting important variables. Elastic 

net regression as another form of penalized regression, which is a mixture of LASSO and ridge 

regression, is also not as suitable as LASSO regression due to the reduced variable reduction rate 

[233]. Elastic net was already previously used for transcriptomic variable selection [175], however, 

the resulting signature contains 44 genes and is thus significantly larger [175]. Furthermore, the 

elastic net regression was not applied there as a first step for variable reduction, but for model 

stabilization [175]. In Anderson et al. the dimensionality reduction took place with a principal 

component analysis (PCA) [175], in which the covariance matrix is generally considered difficult to 

interpret [234]. Furthermore, the detection of invariances is fraud with risk and requires a larger 

training data set with explicit information, which means that the PCA method would not have 

made sense for the present work [234]. Singhania et al. also used a network analysis, which 

resulted in a correlation matrix of the 5000 most important genes determined by log2 fold change 

and could take into account biological connections in the form of formed modules from individual 

genes [181]. However, the actual performance and identifiability of module clusters is not clear 

[235], which is why module-based analyses were not used as a preselection tool in this work, but 

rather for validation. 

 It was also shown that the LASSO regression has the highest accuracy especially in genetic 

variable selection [236]. LASSO regression is a widely used method in transcriptome research 

[237-241] and other genetic studies, such as GWAS [242]. Sambaray et al. used a different 

approach to pre-select by setting up their model as a Human Protein-Protein Interaction Network 

[194]. This incorporates interactions of the individual proteins into the model and gives the model 

an additional component of biological significance instead of just statistical significance only [194]. 

But this kind of network modelling requires a huge amount of very specific data, which is not the 

case when using classic statistical and machine learning algorithms like t-test or LASSO regression 

[194].  

Stepwise regression, which was used for further variable reduction, primarily provides a quick 

procedure for selecting the final model. Variables are removed as long as model performance is 

maintained. If the performance drops significantly with further exclusion of variables, the final 

model was identified. The stepwise regression used here is based on AIC. Although it only takes 

statistical significance into account and ignores biological aspects, it is particularly useful for 
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complex causal variables such as those in this work [243]. Stepwise regression was also used for 

only 2 of the 3 models in this paper. Variable selection for the final model was done using random 

forest. Here, variable importance is determined in different sub-models to have an accurate 

representation of the importance of individual variables. The importance offers a very sensitive 

measurement for variable selection, which is particularly limited when different variable types are 

used in the model [244]. The random forest algorithm of Breiman and Cutler was introduced in 

2001 and is based on the classification tree approach [158, 245]. It is a black box classification test 

method, where each classification consists of an arbitrary set of disjoint expressions of 

parameters. The parameters considered relevant are used to create the classifications [158, 245]. 

Random forest represents a combination of different classification trees, all interacting 

independently. The advantage of the random forest algorithm is that there is no need to make 

any prior statistical assumptions about the distributions of the individual variables [246]. This 

provides much greater flexibility with regard to the weighting of individual variables and the 

combination of the individual variables with each other [247]. Although random forest algorithms 

require a high computing capacity, which increases exponentially with the number of variables, 

this limitation is countered by the technical development, which allows computing capacity for 

increasingly complex algorithms [247]. The quality of random forest algorithms is strongly 

dependent on the input quality of the data. While this is generally the case for all machine 

learning algorithms, the recombinant nature of random forest trees makes data quality even 

more important for this algorithm [246]. However, this is not the case in this work. Interestingly, 

previous TB-related transcriptomic signatures were also identified using random forest [178, 179]. 

Compared to other binomial regression methods, this shows high accuracy [248], but the 

reproducibility of the algorithm is severely limited [249]. For this reason, the results of the 

random forest algorithm were translated into a model that offers fixed estimators. The use of 

logistic regression as alternative to random forest to identify a TB signature has also been 

described [183]. However, this algorithm offers significantly poorer performance compared to the 

random forest and was therefore not used in this work [250]. 

Even after dimension reduction, probability of finding random results with statistical significance 

in these high-dimensional data sets is very high given the number of variables. For this reason, 

there is a need to validate the findings from the original dataset. For this purpose, the original 

data set is divided into a training set and a test set. The model is trained using the first data set 

and then tested in the test set. However, there is also a risk that the results in the test set may be 

randomly replicable. This may be due to similar patient structures or similar stitching of the 

observations in a data set to each other, although this was not done for some TB-related 
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signatures described in other studies; instead, an existing data set was split into training and test 

set only without further external validation [175, 176, 178]. In summary, it is helpful to plan 

biomarker studies or “OMICS” studies for a multi-centre study design in order to provide a certain 

variance in the data set. However, this is not sufficient to eliminate the risk of randomly 

significant results that are subject to the error of second kind. For this reason, results from 

“omics” studies should without exception be replicated in independent validation cohorts before 

they are published [135]. A good transcriptome signature is defined by being as small as possible, 

i.e. containing as few genes as possible, and having a high discriminatory power between 

categories of interest [251]. 

Due to the standardized, protocol-based blood sample collection and sample processing, as well 

as the use of a standardized preparation pipeline through the use of limma, this work met the 

requirements of the random forest algorithm to the greatest extent possible [252]. 

In some studies, the methodology was not described in enough detail to compare the procedure 

with the methods used here [110, 114, 117, 118, 182, 253, 254]. 

It was found that the calculated and observed durations of therapy in DS-TB patients showed a 

high concordance. Furthermore, it became clear that the observed and calculated durations of 

therapy were similarly influenced by clinical parameters, such as the presence of cavities. 

Although the smear grade showed no significant effects here, a trend in the courses was 

nevertheless discernible.  

The genes included in the therapy end model are involved in different functional signaling 

pathways and cannot be connected to a single functional background. All genes that are part of 

the therapy end model, except KCNJ1-AS1, PDE4D, TMFRSF21 and A_33_P33271041, were 

previously described as part of host responses to TB [176, 177, 181, 193, 251, 254-259]. The genes 

that were identified for the therapy end model belong to several signaling cascades (e.g., related 

to metabolism, cell signaling, DNA repair and RNA transport), which reflects the complexity of 

individual treatment responses for the host. Supplement table 6 displays a list of all genes of the 

TB22 score with an overview of which TB- or immune-related studies they have already been 

described in and a list of all pathways in which the respective genes are involved. 

4.2 Limitations and strengths  

This thesis has several limitations. The number of cases in the identification cohort used for model 

training is relatively small, which implies a risk of overfitting [260] although efforts were made to 

reduce this risk as much as possible and to validate the findings. Furthermore, there is a whole 

series of patients in this cohort for whom no measurement time is available. This and the fact 
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that, as expected, later time points are missing for deceased patients in whom a severe disease 

manifestation can be suspected, can lead to a model bias in which patients with a complete data 

series are given a higher weight than persons with missing measurement time points [261, 262]. 

The signature identified and verified in this work contains 22 genes. Compared to other signatures 

that already use single-digit gene signatures, this number is relatively high. However, genetic 

information was aggregated into sub-models. With this approach, numbers of variables in the 

final were reduced by compressing, which also reduces the risk of severe overfitting. In addition, a 

mathematical strengths of this work lay in the presence of multiple validation cohorts [136]. This 

can reduce the risk of severe overfitting as well, as the application to the validation cohorts with 

poor fitting could have already given indications of this. Furthermore, one cohort was enrolled in 

another European country, which reduces the risk of an unidentified centre bias, since patients 

from one related to one centre might be more similar to each other than patients from another 

centre [263]. 

Furthermore, the translation of outcomes - cure, failure, death - into numerical expressions as a 

basis for TOS modeling is an artificial approach. With regard to the creation of the TOS, low 

number of cases of patients who died and patients with treatment failure must also be 

mentioned. But TOS is also to be regarded as a variable in the TB22, which was only designed as 

an intermediate step. This reduces the problem of the artificial approach and the low number of 

cases due to the application restriction. Moreover, the model described here was created and 

evaluated using microarray transcriptome analysis, while the RNAseq procedure is actually state 

of the art. In this work, microarrays were used because at the beginning of the patient 

recruitments in 2013, the RNAseq method was not yet so widespread and microarrays were used 

more frequently. The method has not been adapted over the years to have a consistent method 

for evaluation. In the current non-inferiority study, mainly RNAseq data are evaluated in addition 

to microarrays as reference.  

An advantage of this approach is that measurements can be taken at any time without any 

interference between previous measurements. Each measurement is completely independent of 

previous results. Although the inclusion of previous results and progressions could increase the 

precision and would also be able to make future-oriented prognoses, it seems impractical for daily 

clinical practice to work with a model that is dependent on strict measurement schedules. 

However, making predictions using a prediction model based on probability calculations of 

previous measurement dates is in principle possible, regardless of the model premise of 

independence of probability for the original calculation. This can be a complementary aspect 

when validating the model in a non-inferiority study. 
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One of the advantages of the work presented here is the different validation cohorts that are 

available. [175, 176, 178]. However, the disadvantage here is that the test set is too similar to the 

training data set and thus the performance is overestimated. In this work, however, the 

performance in an actual external data set was decisive, which makes the estimation of the actual 

performance more robust. Although the fitting was not 100% consistent in the data set of DS-GVC 

patients, the value shows a clinical plausibility. The DS-GVC included many cases of patients with 

drug susceptible TB but severe disease progression who were treated for more than 6 months. 

The additional time was estimated on the basis of expertise. For these patients, too, there is no 

biomarker that could reliably determine individual end of therapy time points being associated 

with relapse free cure. With regard to the difference between observed and predicted therapy 

duration, the result of the model nevertheless appears conclusive. Compared to most other 

published marker combinations, the findings were affirmed by considering various established 

clinical endpoints such as smear and culture status, radiological findings, and strict outcome 

criteria [142, 146, 264], which include a follow-up period of one year after completion of therapy 

to capture disease recurrence. In contrast to the other signatures included in the comparison, the 

model was specifically trained to identify end-of-therapy time points, this distinction also explains 

the model’s superior performance when compared to other published signatures that were 

mainly developed to predict the future onset of disease and to diagnose active TB rather than for 

the conduction of individualized therapy durations [110, 114, 117, 118, 175-183]. 

A limitation of this work is that clinical data are not fully available for all patients. Furthermore, 

not all clinical aspects could be tested extensively, as the group size was too small for 

comorbidities or certain sociodemographic and behavioral aspects (e.g., intravenous drug use, 

problematic alcohol use, diabetes) or did not meet the study inclusion criteria from the outset 

(HIV-positive patients, children). Furthermore, except TCC, clinical parameters that were available 

at the beginning of the therapy were used for plausibility examination without follow-up of those 

clinical aspects. The signature presented here mirrors the therapy response. This can be explained 

not only by the occurrence of individual risk factors, but also by the presence of several risk 

aspects and also by events during therapy, such as interruptions due to lack of compliance or side 

effects. Changes in dosage or medication can also have effects that are more serious than 

individual risk factors. The creation of complete risk profiles and the determination in multiple 

regressions was not possible due to the small number of cases.  

Another aspect that has to be addressed is that mortality in both German cohorts is higher than 

the average [33]. One reason for this could be that most patients of the German cohorts were 

recruited in the Research Centre Borstel. The hospital of the Research Centre Borstel is specialized 

in the treatment of TB. As a result, mainly severe and/or multidrug-resistant cases are referred 



72 
 

there, which explains the increased mortality. There were no data on mortality among patients of 

the RVC. But relapse cases are missing in the cohorts to verify whether the calculated end of 

therapy would start later than the observed end of therapy before relapse. Furthermore, the 

number of failure cases due to delayed culture conversion is relatively small. The TB22 

performance for this accordingly requires further validation. The cohort composition of patients 

with DS-TB and MDR-TB patients also does not correspond to reality in its ratio [6, 32]. The lost to 

follow up rates in our cohorts are much higher than in WHO TB report [6]. The reason for this is 

that the TBnet criteria for the treatment outcome in TB were applied in this study, which includes 

a follow-up period of one year after the successful completion of therapy. Also, the lost to follow 

up in this study is not synonymous with an overall lost to follow up with respect to the disease in 

general, but rather implies that the study was terminated by the patient or that no further 

samples were collected [3, 4]. Reasons for this include the fact that many patients did not come 

from Germany and (had to) leave the country in the course of therapy or in the subsequent 

follow-up period. In addition, many patients left the area surrounding the hospital after the 

hospital stay. Follow-up general practitioner care was not always stringent or contact with the 

treating general practitioner could not be established. 

Nevertheless, the close integration of transcriptome data with extensive patient data from the 

database must be considered an unique strength of this work. The model could be validated with 

respect to culture data, which is currently used as a standard therapy monitoring tool. This 

includes treatment response (TCC) and initial bacterial load and disease severity (TTP+, sputum 

smear grade). In addition, imaging results could be used as a clinical plausibility tool.  

Furthermore, all cohorts seem to be representative for TB patients without HIV co-infection. In 

Germany as well as worldwide, TB mainly affects the age group of 20-40 years (except in the 

Western Pacific region, where mainly over-65 years of age are affected) [6]. The mean age of the 

cohorts considered here corresponds to this relatively young average age of the disease. The fact 

that there are more men than women in the cohorts also reflects well on the total population of 

patients [6]. 
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5  Summary and outlook 

In conclusion, a host 22-gene RNA-based model was prospectively identified in two cohorts and 

subsequently validated in four additional cohorts with avtive TB that categorizes patients with 

active TB and that may predict individual treatment durations for patients treated against drug 

susceptible and MDR-TB. Application of this model may potentially shorten treatment duration in 

the majority of patients with MDR-TB and may have substantially impact on clinical management. 

The method of comparing transcriptomic signatures not only in a descriptive way but also testing 

their ability to discriminate between two outcomes is a previously unused approach for 

transcriptomics in translational medicine. The presented data are plausible and the validation of 

the model is based on clinical and microbiological findings. Nethertheless, the model’s translation 

into clinical practice will require further evaluation in larger studies and diverse patient 

populations and the development of an implementable platform to support feasibility in resource 

limited settings. 

To ascertain superiority of a biomarker-guided approach to individualize the duration of anti-TB 

therapy, a prospective, non-inferiority trial has been initiated (ClinicalTrials.gov Identifier: 

NCT04783727). This study includes centres in Germany, Ukraine, Moldova and Romania for 

enrollment of MDR-TB patients. The primary aim of this two-armed clinical trial is to compared he 

rate of relapse in patients with MDR-TB treated as long as the TB22 model suggested vs 

standardized treatment duration as recommend by national treatment guidelines.  

In addition, it will be evaluated whether the TB22 signature model may also have a role to guide 

the decision for duration of treatment in TB-patients living with HIV or immune-compromising 

conditions, children with TB and patients with extrapulmonary TB. Furthermore, it needs o be 

evaluated, whether the TB22 signature model is also applicable to non-caucasian TB-patient 

population. [174]. 

 



Ausführliche Zusammenfassung als deutsche Beilage zur Doktorarbeit 

Tuberkulose ist die häufigste zum Tod führende bakterielle Infektionskrankheit weltweit. Die 

Krankheit wird durch eine Infektion mit einem Bakterium, Mycobacterium tuberculosis, verursacht. 

Die Weltgesundheitsorganisation (WHO) schätzt, dass etwa ein Viertel der Weltbevölkerung mit M. 

tuberculosis infiziert ist, wobei nur ca. 5 - 10% der Infizierten eine Tuberkulose entwickelt. Jährlich 

erkranken etwa 10 Millionen Menschen an einer Tuberkulose. In ca. 5 % der Fälle sind die Bakterien 

gegen die beiden best-wirksamen Medikamente, Rifampicin und Isoniazid, resistent (multiresistente 

Tuberkulose [MDR-TB]). 

Wenn die Tuberkulosebakterien gegen alle Medikamente empfindlich sind beträgt die Mindestdauer 

der Behandlung mit einer Kombinationstherapie aktuell 6 Monate. Für die Standardtherapie der 

MDR-TB empfehlen die Leitlinien aktuell 18 Monate einer Kombinationstherapie mit 

Zweitlinienmedikamenten. Die Behandlung der MDR-TB ist nicht nur langwierig, sie ist auch mit 

hohen Kosten und einer hohen Rate von medikamentenbedingten Nebenwirkungen verbunden. Die 

Dauer der Therapie folgt aktuell einem Einheitsansatz, da es keine Biomarker gibt, um die Dauer der 

Therapie zu individualisieren. Obgleich es kulturelle Nachweismethoden gibt, welche auch den 

Goldstandard in der Diagnostik darstellen, stellt die Bakterienkultur im späteren Therapieverlauf 

keinen geeigneten Marker für die Gesamtdauer der Therapie dar, da ein Bakterienwachstum in der 

Regel nur zu Beginn der Therapie nachweisbar ist. Der Zeitpunkt, an dem dieses Wachstum nicht 

mehr nachweisbar ist, die sogenannte Kulturkonversion, bedeutet nicht das Ende einer erfolgreichen 

Therapie. 

Die lange Dauer der MDR-TB wird empfohlen, um die Rate der Patienten, die erfolgreich behandelt 

werden, optimal hoch zu halten. Sicherlich werden die meisten Patienten länger behandelt, als es 

notwendig wäre, um eine Heilung zu erzielen. Unter bestimmten Voraussetzungen empfiehlt die 

WHO aktuell auch kürzere MDR-TB Therapieregime, allerdings kommen diese aufgrund von 

Ausschlußkriterien kaum für Patienten in Westeuropa in Betracht. In diesem Kontext ist es wichtig zu 

betonen, dass diese Empfehlungen der WHO auch eine standardisierte Behandlungsdauer bedeuten. 

Biomarker zur Individualisierung der Behandlungsdauer der MDR-TB stehen aktuell nicht zur 

Verfügung.  

In den letzten Jahren mehren sich die wissenschaftlichen Erkenntnisse, dass RNA-Profile aus dem 

Blut von Patienten dazu geeignet sind, einen Progress von einer latenten Infektion mit M. 

tuberculosis zur einer aktiven Tuberkulose vorherzusagen. RNA-Signaturen eignen sich außerdem zur 

bakterien-freien Diagnose einer Tuberkulose und könnten geeignete Marker für ein 

Therapiemonitoring darstellen.  
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Ziel dieser Arbeit ist die Entwicklung eines RNA-Signatur Modells für eine individualisierte 

Therapiedauer der MDR-TB. Hierfür wurden Patienten in sechs unabhängigen Kohorten rekrutiert: 

Patienten mit sensibler Tuberkulose (drug-sensitive German identification cohort DS-GIC, n=49; drug-

sensitive German validation cohort DS-GVC, n=32), Patienten mit MDR-TB (multidrug-resistant 

German identification cohort MDR-GIC, n=30; multidrug-resistant German validation cohort MDR-

GVC, n=21; multidrug-resistant Romanian validation cohort MDR-RVC, n=52; multidrug-resistant 

second German validation cohort MDR-SGVC, n=20). Nach Prüfung von Einschluß und 

Ausschlußkriterien und Einwilligung der Patienten wurde ihnen vom Zeitpunkt der Diagnose bis ein 

Jahr nach Beendigung der Therapie Blut zu RNA Microarray Analysen abgenommen. Die Zeitpunkte 

umfassen für die Patienten mit sensibler Tuberkulose den Therapiestart, 14 Tage nach Therapiestart, 

den Zeitpunkt der mikroskopischen Konversion, den Zeitpunkt der Kulturkonversion, 6 Monate nach 

Therapiestart und – falls die Therapie nicht nach 6 Monaten beendet werden konnte, eine 

zusätzliche Visite zum Therapieende. Bei der Validierungskohorte wurde weiterhin ein Jahr nach 

Therapieende eine Visite initiiert. Die Kohorten mit Patienten mit MDR-TB hatten weiterhin 

planmäßige Visiten nach 10 Monaten, 15 Monaten und 20 Monaten nach Therapiebeginn. Auch hier 

wurden zusätzliche Visiten initiiert, wenn die Therapie nach 20 Monaten nicht beendet werden 

konnte und die deutschen Validierungskohorten wiesen ebenfalls zusätzlich eine Visite ein Jahr nach 

Therapieende auf. Daten aus der Identifizierungskohorten dienten als Trainingsdatensätze, in 

welchen die Algorithmen entwickelt wurden, während aus den Validierungskohorten unabhängige 

Datensätze generiert wurden, um die entwickelten Algorithmen in externen Datensätzen zu 

überprüfen. Außerdem wurde ein weiterer Datensatz generiert, um Patienten mit einer Tuberkulose 

von Patienten mit anderen Krankheiten und gesunden Kontrollen zu unterscheiden (Hoang-

Datensatz). Weiterhin wurde die diagnostische Genauigkeit der hier entwickelten RNA Signatur zu 

den in der wissenschaftlichen Literatur beschriebenen Signaturen verglichen. 

Der Algorithmus zur Identifizierung einer RNA Signatur wurde in einem mehrstufigen 

mathematischen Ansatz mithilfe der Programmiersprache R entwickelt. Im ersten Schritt wurden 

Gene identifiziert, welche zu Therapiebeginn unterschiedlich zwischen Patienten mit erwünschtem 

(Heilung) und unerwünschtem (Therapieversagen und Tod) Therapieausgang unterschieden und nach 

Variablenreduktionsverfahren verblieben sechs Gene, welche die Basis für einen Punktwert zur 

Erfassung des Erkrankungsschweregrades gemäß dem Therapieausgang bildeten. Im zweiten Schritt 

wurden Gene identifiziert, welche mit zunehmender Therapiedauer unterschiedliche 

Expressionslevel aufwiesen. Hier wurden die Anzahl der Gene auf acht reduziert, die den 

Therapiefortschritt als Punktwert auf Basis der Therapiedauer angeben. In einem dritten Schritt 

wurden Gene identifiziert, die bei Patienten mit sensibler Tuberkulose während der Therapie und 

nach erfolgreicher Beendigung der Therapie unterschiedlich exprimiert sind. Diese Liste von Genen 
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wurde gemeinsam mit den Punktwerten errechnet aus den beiden oben beschrieben Verfahren zur 

Krankheitsschwere und dem Therapiefortschritt einem Variablenreduktionsverfahren unterzogen, 

um die wichtigsten Punktwerte und Gene beizubehalten, um zwischen erfolgreichem Therapieende 

und laufender Therapie bei Patienten mit sensibler Tuberkulose zu unterscheiden. Neun Gene sowie 

die Punktwerte zur Krankheitsschwere und dem Therapieverlauf verblieben im finalen Modell. Einige 

Gene waren sowohl bei der Errechnung des Therapiefortschritts als auch für die Unterscheidung 

zwischen laufender und erfolgreich beendeter Therapie von Bedeutung, sodass insgesamt 22 Gene 

für den Algorithmus der vorliegenden Arbeit von Bedeutung sind. Der Algorithmus liefert einen 

Punktwert, den sogenannten TB22, welcher mittels Schwellenwert von 0.5 einen Rückschluss darauf 

zulässt, ob die Therapie theoretisch beendet werden könnte oder weitergeführt werden muss.  

Bei der Anwendung des TB22 Algorithmus in den unabhängigen Datensätzen der 

Validierungskohorten zeigte sich zunächst, dass TB22 bei Patienten mit sensibler Tuberkulose mit 

einer area under the curve (AUC) von 0.937 eine sehr hohe Genauigkeit bei der Unterscheidung für 

die laufende und erfolgreich beendete Therapie aufweist. Bei der Nutzung von TB22 bei den 

Kohorten mit einer MDR-TB zeigte sich eine potentielle mittlere Therapiereduktion um 218 Tage in 

der MDR-GIC, um 211 Tage in der MDR-GVC, 161 Tage in der MDR-RVC und um 254 Tage in der MDR-

SGV. In keiner Kohorte wurde der Schwellenwert für ein potentielles Therapieende überschritten, 

während noch positive Kulturen vorlagen. Die errechnete Therapiedauer zeigte weiterhin 

Korrelationen zur Krankheitsschwere, welche mittels klinischer Aspekte wie Kavernen, Bakterienlast 

und Zeit bis zur Kulturkonversion abgebildet wurden.  

Um den zusätzlichen Nutzen der identifizierten Gensignatur und des TB22 zu ermitteln, wurden 

verschiedene bereits in der Literatur beschriebenen Tuberkulose-bezogenen RNA-Signaturen 

identifiziert und entweder als Genset oder der Beschreibung in der Literatur entsprechend als 

Punktwert ebenfalls im Trainingsdatensatz der Patienten mit sensibler Tuberkulose trainiert und 

anschließend auf die anderen Kohorten angewendet. TB22 zeigte dabei die größte Genauigkeit zur 

Therapieunterscheidung zwischen Patienten mit sensibler Tuberkulose während und nach der 

Therapie. Außerdem handelte es sich hierbei um das einzige Verfahren, welche einen Anstieg 

während des Therapieverlaufs aufweist, während andere Signaturen und Punktwerte eher 

stagnierende Verläufe anzeigten. Auch eine zusätzliche Überprüfung der TB22 Signatur hinsichtlich 

der diagnostischen Eigenschaften im Hoang-Datensatz zeigte, dass die TB22 Signatur sowohl bei der 

Identifizierung von Tuberkulosepatienten von anderen Erkrankungen als auch bei der 

Unterscheidung von latenter Infektion mit M. tuberculosis und aktiver Tuberkulose den besten 

bislang publizierten Signaturen vergleichbar ist. 
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Systembiologische Analysen zeigten, dass die identifizierten Gene keine Unterscheidung zwischen 

Patienten mit MDR-TB und sensibler Tuberkulose aufzeigen. Zum Zeitpunkt des mittels TB22 

kalkulierten Therapieendes unterscheidet sich das Expressionsniveau der TB22 Gene nicht mehr 

zwischen den Tuberkulosepatienten und gesunden Probanden. 

Als weitere Schritte stehen nun die Untersuchung des Biomarkers TB22 in einer nicht-

Unterlegenheitsstudie gegenüber dem Therapiestandard mit festgelegter Behandlungsdauer an 

(diese Studie ist bereits angelaufen). Es muss außerdem geklärt werden, ob die bisherigen Ergebnisse 

auch auf andere Patientengruppen, z.B. Menschen mit einer HIV-Infektion, Kindern oder Menschen 

aus verschiedenen Regionen der Erde übertragbar sind.  

Zusammenfassend wurde mit dem TB22 RNA-Signatur Modell in der hier vorliegenden Arbeit 

erstmalig ein Biomarker entwickelt, um die Dauer der Tuberkulosetherapie zu individualisieren. Nach 

prospektiver Identifizierung der TB22 Signatur in zwei unabhängigen Kohorten wurde das RNA-

Signatur Modell an vier unabhängigen Kohorten prospektiv validiert. Das auf 22 Genen basierendes 

RNA-Modell ist in der Lage die individuelle Dauer der antimikrobiellen Therapie bei 

Tuberkulosepatienten vorauszusagen und ist darin anderen bislang publizierten RNA-Signaturen zur 

Diagnose der Tuberkulose überlegen. Die Anwendung des TB22 Modells könnte die 

Behandlungsdauer bei der Mehrzahl der Patienten mit MDR-TB substantiell verkürzen[174]. 
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6. Appendix: Supplement tables 

Supplement table 1 Overview about biomarkers considered for treatment monitoring and outcome prediction in TB 

Group Systematic Marker Description Usage 

Pathogen     

 Sputum    

  TCC Time to culture conversion Survival prediction, treatment response, 

treatment outcome [19] 

  TTP+ Time to positivity Treatment response, MDR-TB suspicion 

when delayed [19] 

  TB-RNA Quantification of mycobacterial RNA Treatment response [71, 107, 108] 

 Sputum & others    

  TB-DNA Mycobacterial DNA in sputum and urine Treatment response [76] 

  TB-RNA Mycobacterial RNA in sputum  Treatment response [19] 

  TB-metabolomes Changes in mycobacterial metabolomics activity Treatment response [19] 

  TB-antigens Mycobacterial antigens in sputum, urine and serum Treatment response [70] 

 Whole Blood    

  Whole blood bactericidal 

activity 

Blood culture testing for bactericidal activity against 

M. tuberculosis 

Treatment response [265] 
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Group Systematic Marker Description Usage 

Host     

 Clinical Parameter    

  Clinical score Evaluation of changes in patient characteristics 

during treatment 

Treatment response [81, 82]. 

 Imaging    

  Chest X-rays Changes of X-ray results Treatment response [266] 

  Chest CT scan  Changes of CT scan results  Treatment response [266] 

  PET/CT scan Changes of PET/CT scan results  Treatment response [72, 267] 

 Chemokines, cytokines, 

proteins, and peptides 

   

  Acute phase proteins Specific proteins and peptides in serum and plasma  Therapy response, treatment outcome 

[19, 84] 

  Cytokines and chemokines Specific cytokines and chemokines in sputum, plasma 

and serum 

Therapy response, therapy outcome 

prediction [19] 

  Nutritional markers Specific markers in plasma Determination of disease severity, 

treatment response [19] 

 Assays and cells    

  Immunophenotype of 

certain cells 

Differences in cytokine response of antigen-specific 

T-cells in whole blood and PBMC 

Therapy response, outcome prediction 

[19] 

  Immune cells without 

stimulation 

Surface marker expression in whole blood and PBMC Treatment response, disease severity [19] 

  Antibodies High throughput proof off circulation TB antigens in 

serum 

Treatment response [19] 



112 
 

Group Systematic Marker Description Usage 

Host     

 OMICS    

  Gene expression levels  RNA patterns for different signatures or candidate 

gene expression  

Treatment response & outcome [85, 111, 

117-119]. 

  Protein levels Protein (patterns) from serum proteins Treatment response [90, 91] 

  Metabolomics Pattern identification and metabolomic changes with 

mass spectrometry 

Treatment response [94-96]. 

 

     

 Other    

  Volatile organic 

compounds 

Identification of mycobacterial parts in breath Treatment response [19] 

TB= Tuberculosis; TTP = Time to culture positivity; TCC= Time to culture conversion; CT= Computer tomography; PET=Positron emission tomography, PBMC= Peripheral blood 
mononuclear cell 
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Supplement table 2 Existing tuberculosis host RNA signatures and models for diagnosis, treatment monitoring and therapy outcome predictions 

Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Diagnostic      

 24785206 [175] 42 Children 

HIV + and - 

TB vs LTBI Sensitivity=0.83 

Specificity= 0.84 

 20725040 [176] 86 

 

393 

Adults 

HIV - 

TB vs ODs 

 

TB vs LTBI and controls 

p<0.001 – p<0.01 

 26025597 [178] 3 Adults 

HIV - 

TB vs. ODs and LTBI AUC = 0.89 

 29559120 [240] 24 Adults 

HIV - 

TB vs. LTBI AUC=0.98 

 27734027 [268] 1 

 

4 

Adults 

HIV - 

TB vs controls  

 

TB vs. ODs 

AUC= 0.52 – 0.83 

 28724962 [269] 7 Children 

HIV - 

TB vs controls and ODs AUC=0.81 
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Diagnostic      

 33763081 [270] 3 Adults 

HIV + and - 

TB vs LTBI AUC=0.94 – 0.97 

 26405955 [271] 13 Adults 

HIV - 

TB vs. ODs and LTBI Sensitivity=0.92 

Specificity= 0.95 

 24167453 [177] 27 

 

44 

Adults 

HIV + and - 

TB vs LTBI 

 

TB vs ODs 

Sensitivity=0.95 

Specificity=0.90 

Sensitivity=0.93 

Specificity=0.88 

 26682570 [179] 4 Adults 

HIV - 

TB vs controls Sensitivity=0.88 

Specificity=0.75 

 27826286 [272] 1 

 

1 

 

1 

Adults  TB vs controls 

 

TB vs controls 

 

TB vs controls 

AUC=0.88 

 

 

AUC=0.73 

 

 

AUC=0.66 
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Diagnostic      

 27450006 [273] 17 Adults 

HIV - 

TB vs. ODs and LTBI AUC=0.71 – 0.88 

 23940611 [193] 144 Adults  

HIV - 

TB vs. ODs 

 

p>0.001 – p<0.05 

 30462176 [274] 5 Adults 

HIV + 

TB vs controls (active case finding among people 

living with HIV) 

AUC=0.87 

 30919880 [275] 3 Adults 

HIV - 

Incipient TB vs controls PPV=5.6-50% 

NPV=99.3% 

 29921861 [181] 20 Adults 

HIV - 

TB vs. ODs and LTBI AUC=0.74 – 1  

 29624071 [182] 2 

 

 

4 

Adults 

HIV - 

Incipient TB vs controls 

 

 

Incipient TB vs controls 

AUC= 0.77 – 0.86 

 26907218, 30646264 [113, 

114] 

3 Adults 

HIV + and - 

TB vs. ODs and LTBI AUC=0.84-0.9 
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Diagnostic      

 26582831 [276] 51 Adults 

HIV - 

TB vs LTBI AUC=0.91-0.97 

 28065665[180] 10 Adults 

HIV + and - 

TB vs. LTBI and controls Accuracy=0.74 – 

0.93 

 23375113 [277] 9 Adults 

HIV - 

TB vs. LTBI and controls Prediction error 

=11% 

 27706152 [192] 380 Adults 

HIV - 

TB vs. ODs and LTBI AUC=0.87 

 29523312 [278] 11 Adolescents 

HIV - 

TB vs. LTBI and incipient TB and controls AUC=0.97 

 32451443 [253] 6 Adults 

HIV + and - 

TB vs controls AUC=0.85 

 33508221 [116] 13 Adults 

HIV + and - 

TB vs LTBI, controls and ODs  

 33692804 [279] 2 Adults 

HIC + 

TB vs controls AUC= 0.95 – 1  
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Diagnostic      

 32330522 [115] 7 Adults 

HIV - 

TB vs controls 

 

TB vs- LTBI 

0.86 

 

0.88 

Treatment response and 

monitoring 

     

 26907218, 30646264 [113, 

114] 

3 Adults 

HIV + and - 

Baseline 

Treatment 1 week 

Treatment 2 weeks 

Treatment 4 weeks 

Treatment 6 months 

Not given 

 27826286 [272] 1 

 

Adults  Controls 

Baseline 

Treatment 2 weeks 

Treatment 12 weeks 

p=0.004 

 31297103 [111] 11 Adults 

HIV +  

Baseline 

Treatment 8 weeks 

AUC=0.63 
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Treatment response and 

monitoring 

     

 32451443 [117] 6 Adults 

HIV + and - 

Baseline 

Treatment 1 week 

Treatment 4 weeks 

AUC=0.77 – 0.88 

 27941850 [280] 11 Children 

HIV - 

Baseline 

Treatment 8 weeks 

Treatment 24 weeks 

Not given 

 23940611 [193] 144 Adults  

HIV - 

Pre-treatment vs. post-treatment 

Good therapy response vs inadequate therapy 

response 

p<0.001 

 

p<0.001 

 23056259 [191] 320 Adults 

HIV- 

Baseline 

treatment 2 weeks 

Treatment 24 weeks 

Treatment 48 weeks 

p<0.001 – p<0.5 

 29050771 [118] 13 

 

32 

Adolescents 

HIV - 

Cure vs. failure 

 

Cure vs. failure 

AUC= 0.70 – 0.99 
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Aim Pubmed ID Number of genes 

included 

Population Intended application performance  

Outcome prediction      

 31297103 [111] 11 Adults 

HIV + and - 

Relapse vs- no relapse 

 

 

Culture conversion after 2 months 

AUC=0.72 

 

 

AUC= 0.46 – 0.73 

 32451443 [117] 6 Adults 

HIV + and - 

Cure vs failure AUC=0.77 – 0.95 

 27941850 [280] 11 Children 

HIV - 

Smear and culture positivity after 2 and 6 months 

X-Ray changes 

BMI changes 

AUC = 0.52 – 0.62 

 32647325 [119] 12 + 6 clinical 

parameters 

Adults 

HIV - 

Cure vs failure AUC=0.88 

 26907218, 30646264 [113, 

114] 

3 Adults 

HIV + and - 

Cure vs failure AUC=0.93 

HIV= Human immunodeficiency virus; +=positive, -=negative; TB=tuberculosis; LTBI= latent tuberculosis infection; AUC= area under the curve, OD=other disease, PPV=positive 
predictive value; NPV= negative predictive value 

  



120 
 

Supplement table 3 Overview of the signatures described in the literature, which are compared with the performance of the therapy end model described in this work. 

First main authors Signature abbreviation for this work including numbers 

of genes 

Described comparison in original article 

Anderson [175]  Anderson44 ATB vs LTBI 

Berry [176] Berry83 ATB vs LTBI and controls 

Blankley [192]  Blankley4 Pulmonary TB vs. extra-pulmonary TB & Sarcoidosis 

Kaforou [177] 

 

Kaforou 27 ATB vs LTBI 

Kaforou44 ATB vs other diseases 

Kaforou53 ATB vs LTBI and other diseases 

Laux da Costa [178]  Laux da Costa5 ATB vs other diseases 

Maerztdorf [179] Maertzdorf3 ATB vs LTBI and controls 

Penn-Nicholson [117] RISK6 ATB vs LTBI and controls 

Cure vs failure of DS-TB patients after therapy start 

Sambaray [194] Sambaray10 ATB vs LTBI and controls 

Singhania [181] Singhania20 ATB vs LTBI and controls 

Suliman [182] Suliman4 ATB vs LTBI 

Sutherland [183] Sutherland4 ATB vs LTBI 

Sweeney [114]  Sweeney3 ATB vs LTBI and controls 
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First main authors Signature abbreviation for this work including numbers 

of genes 

Described comparison in original article 

Thompson[118] 

 

Thompson9 ATB vs LTBI 

Cure vs failure of DS-TB patients after therapy start 

Thompson16  ATB vs LTBI 

Cure vs failure of DS-TB patients after therapy start 

Thompson32 ATB vs LTBI 

Cure vs failure of DS-TB patients after therapy start 

Zak [110] Zak16 ATB vs LTBI 

TB= Tuberculosis, LTBI= Latent tuberculosis infection, DS-TB= Drug-susceptible tuberculosis, ATB= Active tuberculosis 

  



122 
 

Supplement table 4 Model parameters of three steps leading to the end-of-therapy model for patients with tuberculosis. 

 Therapy outcome score (TOS) Therapy progression score (TPS) End-of-therapy (EOT) list  Therapy end model (TB22) 

Type Random forest for initial gene selection,  

GLM for score creation, 

logistic regression 

GLM Lasso RF 

GLM 

Outcome 

information 

Therapy outcome prediction Progression of therapy Clinical therapy end 

timepoint reached 

1. Binary classification for therapy 

end (yes/no. Probability (P) 

threshold for end-of therapy ≥0.5) 

2. Numeric probability value for 

monitoring therapy response  

Variables Dependent: score value 

Independent: CD274, FAM20A, LPCAT2, 

TRIM27, GYG1, HIST1H1B 

Dependent: Remaining days of therapy 

at sampling timepoint 

Independent: RPAP3, A_33_P3281041, 

BATF2, C2, GK, IFIT2, IFITM1, 

KREMEN1, PDE4D, multidrug-resistant 

(yes/no) strain. Days since therapy 

start subtracted from calculated value.  

Clinical therapy end 

timepoint reached 

Independent: 44.000 

genes in transcriptomic 

data 

Dependent: Clinical therapy end 

timepoint reached /probability of 

therapy end 

Independent: sub-model 1 and 2; 

BATF2, GBP5, IFITM1, IL27, KCNJ2-

AS1, SERPING, STAT1, TNFRSF21, 

VAMP5 

Model building 

data set 

All GICs patients with available outcome 

data (cross validation, split ratio: 0.7:0.3) 

including DS-TB and MDR-TB patients 

All GICs patients (cross validation, split 

ratio: 0.7:0.3) including DS-TB and 

MDR-TB patients 

All patients from DS-GIC All patients from DS-GIC (cross 

validation, split ratio: 0.7:0.3), first 

validation in MDR-GIC 
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 Therapy outcome score (TOS) Therapy progression score (TPS) End-of-therapy (EOT) list  Therapy end model (TB22) 

Model 

performance 

parameter  

Overall GLM model’s p-value <0.001 

-AUC for TOS in therapy naïve patients for 

the ability to differentiate between cure 

and failure: 0.85 (95% CI: 0.78 – 0.92) 

-AUC for TOS in therapy naïve patients for 

the ability to differentiate between 

survivors and deceased: 0.96 (0.88 –1) 

-AUC for TOS in therapy naïve patients to 

predict smear conversion before and after 

2 months: 0.59 (0.44 – 0.73) 

-AUC for TOS in therapy naïve patients to 

predict culture conversion before and after 

2 months: 0.70 (0.55 – 0.85) 

-AUC for TOS in therapy naïve patients to 

predict culture conversion before and after 

6 months: 0.56 (0.36 – 0.77) 

-AUC for TOS to correlate with the 

presence of positive culture at sampling 

timepoint: 0.66 (0.53 – 0.80) 

Overall GLM model’s p-Value: <0.001 

Coefficient of determination R²: 0.53 

 

 

 

64 out of 44.000 targets 

with β>0 

Out of bag estimate of error rate: 

5.78% 

Classification error specificity: 0.20 

Classification error sensitivity: 0.02 

Mean decrease in Gini: 

TPS: 23.4 

TNFRSF21: 4.74 

BATF2: 4.73 

IFITM1: 4.62 

IL27: 3.32 

GBP5: 3.17 

SERPING1: 2.81 

STAT1: 2.32 

KCNJ2-AS1: 2.20 

VAMP5: 2.1 

TOS: 1.89 

Overall GLM model’s p-value: <0.001 

Coefficient of determination R²: 0.64 

Difference between RF-Probabilities 

(μP=0.244) and GLM Model 
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(μP=0.234) not significant with 

p=0.686 

RF= Random forest, GLM= generalized linear model, GIC= German identification cohort, DS-TB= Drug-susceptible tuberculosis, MDR-TB= Multidrug-resistant tuberculosis, TOS= 
Therapy outcome score, TPS= Therapy progression score, EOT= End of therapy, AUC= Area under the curve [143] 



Supplement table 5 Involved KEGG pathways for different comparisons 

KEGG pathway 

identifier 

Pathway Category Number 

of genes 

Upregulated 

genes 

Downregulated 

genes 

Contrast 

path:hsa00010 

 

Glycolysis /gluconeogenesis 

 

Metabolism 

 

55 

 

 

6 18 Before culture conversion vs. after culture 

conversion 

4 15 Therapy naive patients vs. patients under 

therapy  

2 5 Healthy controls vs. calculated therapy end 

path:hsa00020 Citrate cycle (TCA cycle) Metabolism 29 0 1 Disconcordance between observed and 

calculated therapy end 

path:hsa00030 Pentose phosphate pathway Metabolism 22 0 3 Healthy controls vs. calculated therapy end 

path:hsa00051 Fructose and mannose 

metabolism 

Metabolism 28 7 2 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa00061 

 

Fatty acid biosynthesis 

 

Metabolism 

 

10 

 

1 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

1 1 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa00062 Fatty acid elongation 

 

Metabolism 

 

12 

 

3 0 Healthy controls vs. TB patients at baseline 

3 0 Healthy controls vs. calculated therapy end 

path:hsa00100 Steroid biosynthesis Metabolism 17 0 1 Favourable outcomes vs unfavourable 
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outcomes at baseline 

path:hsa00120 Primary bile acid biosynthesis Metabolism 15 3 1 Healthy controls vs. calculated therapy end 

path:hsa00130 Ubiquinone and other 

terpenoid-quinone biosynthesis 

Metabolism 6 1 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00230 Purine metabolism Metabolism 98 2 8 Healthy controls vs. calculated therapy end 

path:hsa00240 Pyrimidine metabolism Metabolism 37 2 1 Patients under therapy vs. patients after 

therapy end 

path:hsa00260 Glycine, serine and threonine 

metabolism 

Metabolism 32 2 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00270 Cysteine and methionine 

metabolism 

Metabolism 38 2 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00280 Valine, leucine and isoleucine 

degradation 

Musculoskeletal 39 4 9 Therapy naive patients vs. patients under 

therapy  

path:hsa00290 Valine, leucine and isoleucine 

biosynthesis 

Musculoskeletal 3 1 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00310 Lysine degradation Musculoskeletal 36 1 0 Disconcordance between observed and 

calculated therapy end 

path:hsa00400 Phenylalanine, tyrosine and 

tryptophan biosynthesis 

Musculoskeletal 4 1 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00440 Phosphonate and phosphinate Musculoskeletal 4 0 3 Before culture conversion vs. after culture 
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metabolism conversion 

path:hsa00520 

 

Amino sugar and nucleotide 

sugar metabolism 

Metabolism 31 

 

0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

10 5 Before culture conversion vs. after culture 

conversion 

path:hsa00524 Neomycin, kanamycin and 

gentamicin biosynthesis 

Metabolism 4 1 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa00561 Glycerolipid metabolism Metabolism 36 1 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa00562 Inositol phosphate metabolism Cell 

communication 

55 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa00620 Pyruvate metabolism Metabolism 41 

 

0 1 Disconcordance between observed and 

calculated therapy end 

1 11 Therapy naive patients vs. patients under 

therapy  

path:hsa00630 Glyoxylate and dicarboxylate 

metabolism 

Metabolism 20 0 1 Disconcordance between observed and 

calculated therapy end 

path:hsa00740 Riboflavin metabolism Metabolism 6 0 4 Before culture conversion vs. after culture 

conversion 

path:hsa00740 Riboflavin metabolism Metabolism 6 1 0 Patients under therapy vs. patients after 

therapy end 
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path:hsa00860 Porphyrin and chlorophyll 

metabolism 

Metabolism 28 2 0 Patients under therapy vs. patients after 

therapy end 

path:hsa00910 Nitrogen metabolism Metabolism 16 3 0 Healthy controls vs. TB patients at baseline 

path:hsa01040 

 

Biosynthesis of unsaturated 

fatty acids 

Metabolism 14 

 

3 1 Healthy controls vs. TB patients at baseline 

3 0 Healthy controls vs. calculated therapy end 

path:hsa01200 Carbon metabolism 

 

Metabolism 97 

 

3 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

0 2 Disconcordance between observed and 

calculated therapy end 

path:hsa01210 2-Oxocarboxylic acid 

metabolism 

Metabolism 14 0 1 Disconcordance between observed and 

calculated therapy end 

path:hsa01230 Biosynthesis of amino acids Metabolism 63 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa01521 EGFR tyrosine kinase inhibitor 

resistance 

Cell 

communication 

74 7 2 Healthy controls vs. TB patients at baseline 

path:hsa03008 Ribosome biogenesis in 

eukaryotes 

DNA/RNA 

regulation 

43 4 15 Before culture conversion vs. after culture 

conversion 

path:hsa03010 Ribosome DNA/RNA 

regulation 

95 8 4 Healthy controls vs. TB patients at baseline 

path:hsa03022 Basal transcription factors DNA/RNA 36 4 1 Healthy controls vs. calculated therapy end 
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regulation 

path:hsa03030 DNA replication DNA/RNA 

regulation 

30 4 1 Healthy controls vs. calculated therapy end 

path:hsa03060 Protein export Cell life cycle  17 1 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa03320 PPAR signaling pathway DNA/RNA 

regulation 

65 2 14 Therapy naive patients vs. patients under 

therapy  

path:hsa03420 Nucleotide excision repair DNA/RNA 

regulation 

40 

 

1 0 Disconcordance between observed and 

calculated therapy end 

5 1 Healthy controls vs. calculated therapy end 

path:hsa03430 

 

Mismatch repair DNA/RNA 

regulation 

22 8 2 Before culture conversion vs. after culture 

conversion 

3 0 Therapy naive patients vs. patients after two 

weeks of therapy 

7 0 Therapy naive patients vs. patients under 

therapy  

path:hsa03440 Homologous recombination DNA/RNA 

regulation 

32 9 1 Therapy naive patients vs. patients under 

therapy  

path:hsa03460 Fanconi anemia pathway Cell life cycle  31 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 
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path:hsa04010 MAPK signaling pathway Neuro 

transmission 

272 26 42 Therapy naive patients vs. patients under 

therapy  

path:hsa04015 

 

Rap1 signaling pathway 

 

Neuro 

transmission 

186 

 

4 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

1 7 Patients under therapy vs. patients after 

therapy end 

23 31 Therapy naive patients vs. patients under 

therapy  

14 4 Healthy controls vs. TB patients at baseline 

path:hsa04022 cGMP-PKG signaling pathway Neuro 

transmission 

152 22 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04024 cAMP signaling pathway Neuro 

transmission 

195 9 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04068 

 

FoxO signaling pathway 

 

Cell life cycle  

 

119 

 

14 21 Therapy naive patients vs. patients under 

therapy  

10 3 Healthy controls vs. TB patients at baseline 

17 5 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04070 Phosphatidylinositol signaling 

system 

Cell 

communication 

73 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa04071 Sphingolipid signaling pathway Cell 102 10 1 Healthy controls vs. TB patients at baseline 
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communication 

path:hsa04080 Neuroactive ligand-receptor 

interaction 

Neuro 

transmission 

301 51 67 Before culture conversion vs. after culture 

conversion 

path:hsa04110 Cell cycle Cell life cycle  116 0 5 Patients under therapy vs. patients after 

therapy end 

path:hsa04130 SNARE interactions in vesicular 

transport 

Neuro 

transmission 

26 1 2 Patients under therapy vs. patients after 

therapy end 

path:hsa04136 Autophagy - other Cell life cycle  18 3 0 Healthy controls vs. calculated therapy end 

path:hsa04140 Autophagy - animal Cell life cycle  101 9 2 Healthy controls vs. calculated therapy end 

path:hsa04144 Endocytosis Cell life cycle  178 22 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04145 Phagosome Immune system 120 1 2 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04150 mTOR signaling pathway Immune system 113 15 21 Therapy naive patients vs. patients under 

therapy  

path:hsa04210 Apoptosis Cell life cycle  124 0 2 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa04218 Cellular senescence Cell life cycle  140 0 7 Patients under therapy vs. patients after 

therapy end 

path:hsa04270 Vascular smooth muscle 

contraction 

Musculoskeletal 112 2 0 Favourable outcomes vs unfavourable 

outcomes at baseline 
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17 8 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04310 Wnt signaling pathway Cell 

communication 

129 17 14 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04330 Notch signaling pathway Neuro 

transmission 

45 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa04340 

 

Hedgehog signaling pathway 

 

Neuro 

transmission 

 

37 

 

3 4 Healthy controls vs. calculated therapy end 

4 12 Before culture conversion vs. after culture 

conversion 

5 1 Healthy controls vs. TB patients at baseline 

path:hsa04350 TGF-beta signaling pathway Neuro 

transmission 

79 12 9 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04360 Axon guidance Neuro 

transmission 

143 3 6 Patients under therapy vs. patients after 

therapy end 

15 27 Therapy naive patients vs. patients under 

therapy  

path:hsa04371 Apelin signaling pathway Tissue-related 

function 

118 

118 

10 5 Healthy controls vs. calculated therapy end 

0 2 Disconcordance between observed and 

calculated therapy end 

path:hsa04512 ECM-receptor interaction Neuro 

transmission 

78 

 

6 2 Healthy controls vs. calculated therapy end 

0 2 Therapy naive patients vs. patients after two 
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weeks of therapy 

path:hsa04514 Cell adhesion molecules Neuro 

transmission 

119 2 3 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04520 Adherens junction Cell life cycle  64 4 14 Therapy naive patients vs. patients under 

therapy  

path:hsa04550 Signaling pathways regulating 

pluripotency of stem cells 

Cell life cycle  126 17 24 Therapy naive patients vs. patients under 

therapy  

path:hsa04613 Neutrophil extracellular trap 

formation 

Immune system 153 2 6 Patients under therapy vs. patients after 

therapy end 

path:hsa04620 Toll-like receptor signaling 

pathway 

Immune system 94 9 0 Healthy controls vs. TB patients at baseline 

path:hsa04622 RIG-I-like receptor signaling 

pathway 

Immune system 59 6 0 Healthy controls vs. TB patients at baseline 

path:hsa04650 Natural killer cell mediated 

cytotoxicity 

Immune system 114 3 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa04659 Th17 cell differentiation Immune system 99 2 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

19 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04660 T cell receptor signaling pathway Immune system 100 2 3 Therapy naive patients vs. patients after two 

weeks of therapy 
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path:hsa04664 Fc epsilon RI signaling pathway Immune system 63 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa04670 Leukocyte transendothelial 

migration 

Immune system 95 4 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa04720 Long-term potentiation Neuro 

transmission 

64 6 18 Before culture conversion vs. after culture 

conversion 

path:hsa04723 

 

Retrograde endocannabinoid 

signaling 

 

Neuro 

transmission 

 

126 

 

2 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

19 33 Before culture conversion vs. after culture 

conversion 

0 2 Disconcordance between observed and 

calculated therapy end 

0 7 Patients under therapy vs. patients after 

therapy end 

path:hsa04724 

 

Glutamatergic synapse 

 

Neuro 

transmission 

 

95 

 

4 7 Healthy controls vs. calculated therapy end 

22 12 Therapy naive patients vs. patients under 

therapy  

14 12 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04725 Cholinergic synapse Neuro 

transmission 

99 25 15 Before culture conversion vs. after culture 

conversion 
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0 2 Disconcordance between observed and 

calculated therapy end 

path:hsa04727 

 

GABAergic synapse 

 

Neuro 

transmission 

 

75 

 

0 2 Disconcordance between observed and 

calculated therapy end 

1 4 Patients under therapy vs. patients after 

therapy end 

5 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04740 Olfactory transduction Neuro 

transmission 

92 7 5 Healthy controls vs. calculated therapy end 

path:hsa04742 Taste transduction Neuro 

transmission 

51 5 15 Before culture conversion vs. after culture 

conversion 

path:hsa04744 Photo transduction Neuro 

transmission 

24 1 0 Disconcordance between observed and 

calculated therapy end 

path:hsa04910 

 

Insulin signaling pathway 

 

Hormones 

 

121 

 

2 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

3 1 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

17 22 Therapy naive patients vs. patients under 

therapy  
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path:hsa04911 Insulin secretion Hormones 78 5 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04911 Insulin secretion Hormones 78 13 8 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04913 Ovarian steroidogenesis Hormones 43 6 13 Before culture conversion vs. after culture 

conversion 

path:hsa04916 Melanogenesis Hormones 86 4 7 Healthy controls vs. calculated therapy end 

path:hsa04917 Prolactin signaling pathway Hormones 67 8 19 Before culture conversion vs. after culture 

conversion 

9 3 Healthy controls vs. TB patients at baseline 

path:hsa04918 Thyroid hormone synthesis Hormones 64 4 0 Therapy naive patients vs. patients after two 

weeks of therapy 

1 6 Healthy controls vs. TB patients at baseline 

path:hsa04925 Aldosterone synthesis and 

secretion 

Hormones 85 5 1 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04926 Relaxin signaling pathway Hormones 112 8 3 Healthy controls vs. calculated therapy end 

path:hsa04929 GnRH secretion Hormones 61 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa04930 Type II diabetes mellitus Hormones 43 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

0 1 Disconcordance between observed and 
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calculated therapy end 

path:hsa04933 AGE-RAGE signaling pathway in 

diabetic complications 

Hormones 96 14 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04934 Cushing syndrome Hormones 136 2 2 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa04935 Growth hormone synthesis, 

secretion and action 

Hormones 110 16 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04960 Aldosterone-regulated sodium 

reabsorption 

Hormones 36 

 

6 12 Before culture conversion vs. after culture 

conversion 

3 0 Therapy naive patients vs. patients after two 

weeks of therapy 

4 9 Therapy naive patients vs. patients under 

therapy  

7 3 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04962 Vasopressin-regulated water 

reabsorption 

Hormones 34 1 0 Disconcordance between observed and 

calculated therapy end 

path:hsa04966 Collecting duct acid secretion Metabolism 20 1 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa04971 Gastric acid secretion Metabolism 66 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 
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path:hsa04973 Carbohydrate digestion and 

absorption 

Metabolism 40 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

4 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa04974 Protein digestion and absorption Metabolism 77 9 2 Healthy controls vs. calculated therapy end 

path:hsa04975 Fat digestion and absorption Metabolism 32 1 0 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa04976 Bile secretion Metabolism 70 6 20 Before culture conversion vs. after culture 

conversion 

6 14 Therapy naive patients vs. patients under 

therapy  

11 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa04978 Mineral absorption Metabolism 47 3 5 Healthy controls vs. TB patients at baseline 

path:hsa05014 Amyotrophic lateral sclerosis Neurological 

disease 

283 19 7 Healthy controls vs. TB patients at baseline 

path:hsa05022 Pathways of neurodegeneration 

- multiple diseases 

Neurological 

disease 

398 25 10 Healthy controls vs. TB patients at baseline 

path:hsa05031 Amphetamine addiction Neurological 

disease 

59 11 6 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05032 Morphine addiction Neurological 81 0 2 Disconcordance between observed and 
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disease calculated therapy end 

0 4 Patients under therapy vs. patients after 

therapy end 

path:hsa05033 

 

Nicotine addiction 

 

Neurological 

disease 

 

32 

 

3 14 Before culture conversion vs. after culture 

conversion 

0 2 Disconcordance between observed and 

calculated therapy end 

0 6 Patients under therapy vs. patients after 

therapy end 

path:hsa05100 Bacterial invasion of epithelial 

cells 

Infectious 

disease 

66 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa05110 Vibrio cholerae infection Infectious 

disease 

41 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

3 13 Before culture conversion vs. after culture 

conversion 

path:hsa05120 Epithelial cell signaling in 

Helicobacter pylori infection 

Infectious 

disease 

58 1 2 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05131 Shigellosis Infectious 

disease 

202 4 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

2 0 Disconcordance between observed and 

calculated therapy end 
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path:hsa05142 Chagas disease Infectious 

disease 

97 15 7 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05161 Hepatitis B Infectious 

disease 

150 20 9 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05164 Influenza A Infectious 

disease 

150 13 6 Healthy controls vs. TB patients at baseline 

path:hsa05166 Human T-cell leukemia virus 1 

infection 

Infectious 

disease 

202 25 10 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05168 Herpes simplex virus 1 infection Infectious 

disease 

250 34 56 Before culture conversion vs. after culture 

conversion 

5 3 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05171 Coronavirus disease - COVID-19 Infectious 

disease 

213 19 6 Healthy controls vs. TB patients at baseline 

path:hsa05200 Pathways in cancer Cancer 493 0 4 Disconcordance between observed and 

calculated therapy end 

path:hsa05202 Transcriptional misregulation in 

cancer 

Cancer 170 0 2 Disconcordance between observed and 

calculated therapy end 

path:hsa05205 Proteoglycans in cancer Cancer 190 4 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 
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19 35 Therapy naive patients vs. patients under 

therapy  

path:hsa05206 MicroRNAs in cancer Cancer 151 0 2 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa05210 Colorectal cancer Cancer 82 8 3 Healthy controls vs. TB patients at baseline 

12 4 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05213 Endometrial cancer Cancer 55 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

path:hsa05214 Glioma Cancer 67 0 4 Patients under therapy vs. patients after 

therapy end 

4 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05216 Thyroid cancer Cancer 34 2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

0 1 Disconcordance between observed and 

calculated therapy end 

path:hsa05217 Basal cell carcinoma Cancer 52 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

path:hsa05220 Chronic myeloid leukaemia Cancer 73 6 15 Therapy naive patients vs. patients under 

therapy  
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path:hsa05230 

 

Central carbon metabolism in 

cancer 

 

Cancer 

 

64 

 

1 6 Healthy controls vs. calculated therapy end 

2 0 Patients with cavitary disease vs patients 

without cavitary disease at baseline 

4 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05231 Choline metabolism in cancer Cancer 83 3 1 Patients under therapy vs. patients after 

therapy end 

5 0 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05320 Autoimmune thyroid disease Autoimmune 

disease 

52 13 1 Therapy naive patients vs. patients under 

therapy  

path:hsa05321 Inflammatory bowel disease Autoimmune 

disease 

57 11 5 DS-TB patients vs. MDR-TB patients at baseline 

path:hsa05323 Rheumatoid arthritis Autoimmune 

disease 

82 0 2 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05340 Primary immunodeficiency  Autoimmune 

disease 

33 0 1 Favourable outcomes vs unfavourable 

outcomes at baseline 

1 2 Therapy naive patients vs. patients after two 

weeks of therapy 

path:hsa05415 Diabetic cardiomyopathy Cardiovascular 187 21 44 Before culture conversion vs. after culture 
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disease conversion 

path:hsa05416 Viral myocarditis Cardiovascular 

disease 

57 3 6 Healthy controls vs. TB patients at baseline 

path:hsa05418 Fluid shear stress and 

atherosclerosis 

Cardiovascular 

disease 

128 2 2 Therapy naive patients vs. patients after two 

weeks of therapy 
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Supplement table 6 Presentation of the genes in the signature with regard to their biological function, pathways and previous mention in the scientific literature with regard to 

tuberculosis 

Gene Name Short description Previous TB-Biomarker or immunological 

related description in literature  

Related Pathways 

CD274 Programmed cell 

death 1 ligand  

Protein coding gene. The protein 

PD-L1 expressed by CD274 binds to 

the PD-1 receptor, which is found 

on activated T and B cells. In 

activated CD4 cells PD-1 is 

upregulated and the binding of PD-

L1 can thereby induce the 

production of IL-10 [62, 63].  

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Upregulated in latent infected compared 

to healthy controls [255] 

 Potential biomarker for Progress from 

latent to active TB [176, 181] 

 Correlation between CD274 and 

detectable acid-fast bacilli on sputum 

smear microscopy [281] 

 Increased sensitivity to infection in PD-1 

knock out mice with equal CD4 cell count 

[256]  

 Actor in programmed cell-death [282] 

CD274-inhibitor immune therapy was 

shown to be associated with increased 

growth of M. tuberculosis [283] 

•Translocation of ZAP-70 to immunological 

synapse  

•T-cell co-signaling pathway: ligand-receptor 

interactions  

•CD28 co-stimulation  

•Cell adhesion molecules (CAMs)  

•T-cell receptor signaling pathway  

•NF-kappaB Signaling  

•Class I MHC mediated antigen processing and 

presentation  

•Innate immune system 

FAM20A Golgi associated 

secretory pathway 

Protein coding gene. FAM20A 

belongs to the secreted proteins 

and is found in many tissues. It is 

 Upregulated in patients with active TB 

compared to latent controls [254] 

•Regulation of insulin-like growth factor (IGF) 

transport and uptake by insulin-like growth factor 
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Pseudokinase involved in haematopoiesis and 

also plays an important role in 

biomineralization [64-66]. 

 Potential biomarker for progress from 

latent to active TB [176, 181, 284] 

 Possible diagnostic biomarker regardless 

of HIV status [177]  

binding proteins (IGFBPs)  

• Regulation of insulin-like growth factor (IGF) 

transport and uptake by insulin-like growth factor 

binding proteins (IGFBPs)  

•Post-translational protein phosphorylation 

LPCAT2 Lyso-

phosphatidylcholin

e Acyltransferase 2 

Protein coding gene. Acts as a 

biocatalyst for the biosynthesis of 

the platelet-activating factor and 

the glycerophospholipid precursor 

[285, 286]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Possible diagnostic biomarker ability [176] 

 Upregulated in latent infected compared 

to healthy controls [255] 

 Link between LPCAT2 and Asthma has 

been shown, so might be an indicator in 

pathogenic lung functions [287] 

•Acyl chain remodelling of PE  

•Glycerophospholipid biosynthesis  

•Metabolism 

TRIM27 Tripartite Motif 

Containing 27 

Protein coding gene. This gene 

encodes a protein with zinc-binding 

domains, a V-Box type 1 and 2, a 

RING and a coiled-coil region. 

TRIM27 has a repressive effect on 

cellular transcriptions [69, 70] 

 Influence of TRIM 27 at macrophages and 

survival ability of M. tuberculosis [288] 

 Potential Biomarker for progress from 

latent to active TB [254, 258] 

  Host restriction factor antagonized by M. 

tuberculosis [288] 

•PI3/AKT signaling  

•PTEN regulation 

•Infection with M. tuberculosis 

GYG1 Glycogenin-1 / 

glycogenin 

gkycosyltransferase 

Protein coding gene. Forms 

oligosaccharide primers for the 

synthesis of glycogen by 

autoglycolisation and provides a 

 GYG1 was significantly different expressed 

in patients with low bacterial load in 

comparison to patients with high bacterial 

load [257]  

•Glycogen storage disease type 0 (muscle GYS1)  

•Glycogen storage diseases  

•Glycogen metabolism  
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core protein of glycogen as a result 

of the whole process [61]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Correlates with infection risk of newborns; 

suspected to be linked to innate immune 

system [257, 289] 

•Galactose metabolism  

•Diseases of metabolism  

•Glucose metabolism  

•Angiopoietin like protein 8 regulatory pathway  

•Glycosaminoglycan metabolism  

•HIV life cycle  

•Innate immune system  

•Metabolism 

HIST1H1B H1.5 Linker Histone  Protein coding gene. As cluster 

member HIST1H1B is involved, 

among other things, in the 

regulation of transcriptome and 

the compaction of chromatin in 

cells [290]. 

 Discriminative ability between memory 

CD4 cells in latent infected and healthy 

controls [251] 

•Apoptosis induced DNA fragmentation  

•CDK-mediated phosphorylation and removal of 

Cdc6  

•DNA damage/telomere stress induced 

senescence  

•Granzyme-A pathway  

•Cellular senescence 

A_33_P332

71041 

- - -  

RPAP3 RNA polymerase II-

associated protein 

3 

Protein coding gene. Provide a part 

of the RNA and transcription 

processing apparatus [291]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

•NF-kappaB signaling 

BATF2 Basic leucine zipper Protein coding gene. BATF2 is  Upregulated in patients with active TB •T-cell receptor signaling pathway  
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ATF-like 

transcription factor 

2 

expressed in immune cells and is 

involved in the control of linear 

specific differentiation of these 

cells [292]. 

compared to latent controls [254] 

  Diagnostic biomarker ability [110, 176, 

181, 275, 293, 294] 

  Possible biomarker for treatment 

response/outcome prediction [118] 

 Upregulated in latent infected compared 

to healthy controls [255]  

 plays a role in the differentiation of 

interleukin-17 producing helper T-cells and 

CD8 cells [292] 

•PD-L1 expression and PD-1 checkpoint pathway 

in cancer 

C2 Complement 

component 2 

Protein encoding gene for serum 

glycoprotein. As part of the 

classical component pathways, it 

plays a role in both the innate and 

the acquired immune system [295]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

•Complement pathway  

•Immune response lectin induced complement 

pathway  

•Creation of C4 and C4 activators  

•Innate immune system  

GK3P Glycerol kinase 3 

pseudogene 

Pseudogen, which as a key enzyme 

plays an important role in 

metabolism and in particular in 

glycerol absorption [296].  

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Influence on glycerol processing. M. 

tuberculosis is able to recycle the glycerol 

3-phosphates resulting from glycerol to 

glycerophospholipid [297] 

 Increased need for glycerol in patients 

metabolism with active TB [297] 

•Polyol metabolism  

•Glycerol degradation via glycerol kinase pathway  

•Sn-glycerol 3-phosphate from glycerol 
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IFIT2 Interferon induced 

protein with 

tetratricopeptide 

repeats 2 

Protein coding gene. Part of 

interferon gamma signaling 

pathway. Therefore it plays an 

important role in cytokine 

regulation in adapted and innate 

immune system [298].  

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Possible diagnostic biomarker ability [176] 

 Upregulated in latent infected compared 

to healthy controls [255]  

 Key role in in interferon- signaling with 

M. tuberculosis specific interferon- 

response (IGRA) [299, 300] 

•Type II interferon signaling (IFNG)  

•Immune response IFN alpha/beta signaling 

pathway  

•Interferon gamma signaling  

•Cytokine signaling in immune system  

•Innate immune system 

IFITM1 Interferon Induced 

Transmembrane 

Protein 1 

Protein coding gene. Protein 

inhibits cell infection [298]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Expression level correlates with bacterial 

load [301] 

 Possible diagnostic biomarker ability [176] 

 Possible marker for therapy response 

[191] 

 Upregulated in latent infected compared 

to healthy controls [255]  

 Correlation with M. tuberculosis [301] 

 T-cell death is supported and the survival 

of mycobacteria is inhibited [288] 

 Key role in in interferon- signaling with 

M. tuberculosis specific interferon- 

response (IGRA) [299, 302] 

•Immune response IFN alpha/beta signaling 

pathway  

•B cell receptor signaling pathway (KEGG)  

•Immunoregulatory interactions between a 

lymphoid and a non-lymphoid cell  

•Interferon gamma signaling  

•Cytokine signaling in immune system  

•Class I MHC mediated antigen processing and 

presentation  

•Innate immune system 
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KREMEN1 Kringle Containing 

Transmembrane 

Protein 1 

Protein coding gene, binds to 

Dickkopf1 genes, which makes 

KREMEN 1 to an important Wnt/β 

catenin signaling inhibitor [303].  

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Possible biomarker in paediatric TB [304] 

 Possible diagnostic biomarker ability [176] 

 KREMEN1 is an important protein in 

Wnt/β-catenin signaling [303], which 

controls the key functions of all cells - 

proliferation, differentiation, migration, 

genetic stability, apoptosis, and stem cell 

renewal [305]. 

 Association between Wnt/β-catenin 

signaling and macrophages is also known 

[306] 

•Negative regulation of TCF-dependent signaling 

by WNT ligand antagonists  

•Wnt signaling network  

•Misspliced GSK3beta mutants stabilize beta-

catenin  

•Wnt signaling pathway and pluripotency  

•WNT signaling  

•HIV life cycle  

•Signaling by GPCR 

PDE4D Phosphodiesterase 

4D 

Protein coding gene whose enzyme 

hydrolyzes cAMP and cGMP in cells 

[307] 

 Modifies gene expression and improves 

isoniazide-mediated clearance of M. 

tuberculosis in rabbit lungs [308] 

 PDE4D is regulated by the protein kinase C 

(PKC)-Raf-MEK-ERK [309]. This protein 

kinase C zeta signaling cascade also plays 

an important role in the extracellular 

activation of monocytes and macrophages 

via the TOLL-2 receptor during infection 

with M. tuberculosis [310]. 

•Neurophysiological process glutamate regulation 

of dopamine D1A receptor signaling  

•Human thyroid stimulating hormone (TSH) 

signaling pathway  

•Signal transduction  

•PKA signaling  

•Parathyroid hormone synthesis, secretion and 

action  

•Regulation of CFTR activity (norm and CF)  
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•ADP signaling through P2Y purinoceptor 12  

•G alpha (s) signaling events  

•Metabolism of nucleotides  

•GABAergic synapse  

•Myometrial relaxation and contraction pathways  

•cAMP signaling pathway  

•DAG and IP3 signaling  

•Sweet taste Signaling  

•Signaling by GPCR  

•Metabolism 

GPB5 Guanylate binding 

protein 5 

Protein-coding gene that acts as an 

activator of the NLRP3 

inflammosome in the innate 

immune system and is thus 

involved in the immune response 

to inflammatory processes [311]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Possible biomarker for progress from 

latent to active TB [110, 176, 181, 294] 

 Discrimitative ability between healthy 

persons and TB patients [257] 

 Diagnostic discrimination between TB and 

other pulmonary diseases [178] 

  Possible biomarker for treatment 

response/outcome prediction [118] 

 Upregulated in latent infected compared 

to healthy controls [255]  

•NF-kB (NFkB) Pathway  

•NOD-like receptor signaling pathway  

•Interferon gamma signaling  

•Cytokine signaling in immune system  

•Innate immune system 
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 Possible diagnostic biomarker regardless 

of HIV status [177] 

IL27 Interleukin 27 Protein-coding gene with pro- and 

anti-inflammatory properties. 

Influences formation, proliferation 

suppression and stimulation of T-

cells and B-cells of the innate 

immune system [259, 312, 313]. 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Inhibits autophagy formation, production 

of pro- inflammatory cytokines and 

phagosomal acidification in macrophages. 

Supresses Th1 cell response and Th17 cell 

development; induces IL-10 producing Tr1 

cells in T-cells [314] 

 Regulation of naïve B- and T-cells [315] 

•Th1 differentiation pathway  

•Interleukin-6 family signaling  

•PEDF induced signaling  

•Cytokine signaling in immune system  

•Innate immune system 

KCNJ2-AS1 Potassium inwardly 

rectifying channel 

subfamily J 

member 2 - 

antisense RNA 1 

Long non-coding RNA [316]  - •GABA receptor activation 

SERPING1 Serpin family G 

member 1 

A protein encoding gene which is 

an inhibitor of C1 complex, fXIa, 

fXIIa, chymotrypsin and kallikrein 

[317].  

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Different expressed levels between QDT+ 

and QFT- tested persons [318] 

  Possible biomarker for progress from 

latent to active TB [110, 176, 181] 

 Possible biomarker for treatment 

•Complement pathway  

•Immune response lectin induced complement 

pathway  

•Formation of fibrin clot (Clotting Cascade)  

•Cell adhesion 

•Plasmin signaling  



152 
 

response/outcome prediction [118] 

 Upregulated in latent infected compared 

to healthy controls [255]  

 Possible diagnostic biomarker regardless 

of HIV status[177] 

 Plays as a C1 inhibitor a role in apoptotic 

cell clearance [319] 

•Complement and coagulation cascades  

•Pertussis  

•Response to elevated platelet cytosolic Ca2+ 

STAT1 Signal transducer 

and activator of 

transcription 1 

Protein coding gene that mediates 

intracellular response to 

interferons, cytokines and growth 

factors [320] 

 Upregulated in patients with active TB 

compared to latent controls [254] 

 Possible biomarker for progress from 

latent to active TB [110, 176, 181] 

 Possible marker for therapy response 

[118] 

 Upregulated in latent infected compared 

to healthy controls [255] 

 Involved in macrophage apoptosis and 

phagocytosis after Infection with M. 

Tuberculosis [321] 

 JAK/STAT signaling cascade has an 

important influence on M. tuberculosis 

phagocytosis [322] 

 Influences the activation of those due to 

interferon- stimulation[323, 324] 

 STAT1 knock-out mice showed a more 

•Immune response 

•Oncostatin M signaling via JAK-Stat in human 

cells  

•Peginterferon alpha-2a/peginterferon alpha-2b 

pathway (hepatocyte), pharmacodynamics  

•Development thrombopoetin signaling via JAK-

STAT pathway  

•EGF receptor (ErbB1) signaling pathway  

•Interleukin-6 family signaling  

•FGFR1 mutant receptor activation  

•IL-7 signaling pathway  

•Type II interferon signaling (IFNG)  

•Type III interferon signaling pathways  

•Growth hormone receptor signaling  

•p38 MAPK signaling pathway  
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severe and more frequent fatal course of 

disease than mice with existing STAT 

genes [325] 

•Signaling events mediated by TCPTP  

•Jak/STAT signaling pathway intracellular 

regulation  

•IL-6 signaling pathway  

•Integrated cancer pathway  

•Interferon type I signaling pathways  

•FGF signaling pathway  

•PDGFR-beta signaling pathway  

•Interleukin-11 signaling pathway  

•TGF-beta receptor signaling  

•P38 MAPK signaling pathway  

•Signaling by FGFR2 in disease  

•Thymic stromal lympho-poietin (TSLP) signaling 

pathway  

•BRCA1 pathway  

•Development EPO-induced Jak-STAT pathway  

•AGE/RAGE pathway  

•Th1 differentiation pathway  

•Endochondral ossification  

•Immune response IFN gamma signaling pathway  

•Glucocorticoid receptor regulatory network  



154 
 

•CXCR4-mediated signaling events  

•Human thyroid stimulating hormone (TSH) 

signaling pathway  

•IL-2 signaling pathway  

•TNF signaling  

•Bacterial infections in CF airways  

•IL-1 family signaling pathways  

•RANK signaling in osteoclasts  

•AGE-RAGE signaling pathway in diabetic 

complications  

•Kit receptor signaling pathway  

•Jak-Stat signaling pathway  

•ErbB1 downstream signaling  

•Immune response IFN alpha/beta signaling 

pathway  

•Development EGFR signaling via small GTPases  

•Toll comparative pathway  

•UVA-induced MAPK signaling  

•G-protein signaling Ras family GTPases in kinase 

cascades (scheme)  

•IL12-mediated signaling events  
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•MAPK pathway  

•CNTF signaling  

•Development IGF-1 receptor signaling  

•Interleukin-4 and 13 signaling  

•Toxoplasmosis  

•Integrated breast cancer pathway  

•C-type lectin receptor signaling pathway  

•Osteoclast differentiation  

•Brain-derived neurotrophic factor (BDNF) 

signaling pathway  

•Type I interferon signaling pathways  

•Immune response IL-23 signaling pathway  

•Development ERBB-family signaling  

•Common cytokine receptor gamma-chain family 

signaling pathways  

•Prolactin signaling pathway  

•Thyroid hormone signaling pathway  

•Adipogenesis  

•Endometrial cancer  

•Necroptosis  

•Colorectal cancer metastasis  
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•TCR signaling  

•Mesodermal commitment pathway  

•Tuberculosis  

•ErbB signaling pathway  

•EGF/EGFR signaling pathway  

•T-cell receptor signaling pathway  

•Th17 cell differentiation  

•Transport of the SLBP independent mature mRNA  

•NOD-like receptor signaling pathway  

•Interferon gamma signaling  

•JAK-STAT signaling pathway (KEGG)  

•4-1BB pathway  

•MAPK-Erk pathway  

•Allograft rejection  

•Regulation of lipid metabolism Insulin signaling-

generic cascades  

•CCR5 pathway in macrophages  

•NF-kappaB signaling  

•Measles  

•Toll-like receptor signaling pathway  

•IL-2 pathway  
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•Human cytomegalovirus infection  

•p70S6K signaling  

•Pathways in cancer  

•Herpes simplex virus 1 infection  

•Integrin pathway  

•PI3K-Akt signaling pathway  

•Akt signaling  

•GPCR pathway  

•TGF-beta pathway  

•HIV life cycle  

•Cytokine signaling in immune system  

•RET signaling  

•ERK signaling  

•Signaling by GPCR  

•Innate immune system  

TNFRSF21 TNF Receptor 

Superfamily 

Member 21 

Apoptosis promoting Protein 

coding gene [326] 

  TNF superfamily members induce 

apoptosis in T-cells as immune 

response to infection [327] 

 Apoptosis-related network due to altered 

Notch3 in ovarian cancer 

 Apoptosis and autophagy 

 Apoptosis modulation and signaling 

 TNFR1 pathway 

 TRAF pathway 

 Regulation of lipid metabolism by peroxisome 
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proliferator-activated receptor alpha 

(PPARalpha) 

 Akt signaling 

 PEDF induced signaling 

 PAK pathway 

 ERK signaling 

 Metabolism 

VAMP5 Vesicle-associated 

membrane protein 

5 

Protein coding gene that is 

involved in docking and fusion of 

cell membranes and vesicles [328] 

 Upregulated in patients with active TB 

compared to latent controls [254].  

 Possible diagnostic biomarker ability [176, 

181] 

 Upregulated in latent infected compared 

to healthy controls [255] 

 Possible diagnostic biomarker regardless 

of HIV status[177] 

 VAMP5 knock out mice had insufficient 

lung development at birth [329] 

  Was found the bronchial epithelial cells 

predominantly [329] 

 Belongs to the soluble-N-ethylmaleimide-

sensitive-factor accessory protein receptor 

proteins (SNARE) [329], which are 

essentially important for the immune 

system [330] 

 Nicotine pathway (dopaminergic neuron) 

 Pharmacodynamics 
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 SNARE proteins have an essential function 

for granulocytes, since SNARE are involved 

with different secretory granule [330] 
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