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Abstract

The world has changed with the era of the Internet of Things (IoT) which has evolved
the ways of everyday life by connecting our devices. Moreover, the last decade has
witnessed a rapid increase in the importance of online-connection and with the help of
this connection the modern society is trying to overcome the Covid-19 pandemic. We, as
individuals, have separated, while our devices, which become an inseparable part of our
life, have connected. This connection has produced an exponentially growing amount
of data containing sensitive information. Thus, cryptography that provides privacy and
security for our data developed into something essential. Cryptographic algorithms
are employed by IoT which makes them as cryptographic devices for these purposes.
However the story does not end here as cryptographic devices present adversaries with
new attack surfaces.
Modern cryptography started with an adversarial model known as black-box model,
where only inputs and/or outputs are known. However this model is not sufficient
anymore, since cryptographic devices are accessible by the adversaries. The new
adversarial model is known as gray-box model and it implies additional information
which depends on the sensitive information being accessible by an adversary. This
dependency between sensitive information and such side information has been exploited
to recover sensitive information with a little effort. The attacks are divided into two
classes passive (Side-channel Analysis (SCA)) and active (Fault Attacks (FA)) attacks.
SCA employs passive observations that depend on the processed data or operations such
as power consumption or timing behavior to obtain sensitive information, Differential
Power Analysis (DPA).
FA interferes with the device and manipulates the behavior of the algorithm, e.g.,
faulting an intermediate variable or execution order. The most important example of
such attacks is Differential Fault Analysis (DFA). As these attacks evolve each day, the
countermeasures are widely investigated. The most prominent methods are masking
for SCA and redundancy for FA. However an adversary can always implement both
attacks simultaneously to obtain more advanced attacks. Moreover the attacks have
been pushing the boundaries of our understanding of security. Not only are attacks
evolving, but the adversarial models have been evolving as well. The white-box model
gives adversaries unlimited control over the execution environment and the cryptographic
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implementation. Thus we should consider advanced adversarial models and combined
attacks for the current and the incoming cryptographic algorithms.
In this thesis, we delve into design of advanced countermeasures for cryptographic
implementations. We provide countermeasures for widely-used cryptographic protocols
and yet have not been analyzed in the gray-box model. Moreover we improve well-
known countermeasures to resist combined or advanced attacks. Our design methodology
combines both theoretical and practical aspects. We provide security proofs alongside
practical analysis and formal verification.
First, we focus on improving SCA countermeasures. Our initial aim is to provide a
combined countermeasure against SCA and FA. In order to achieve this, we adopt a well-
known SCA countermeasure —Secure Multi-party Computation (SMC)— and extend
it to resist FA by cooperating with redundancy. We study the effect of faults on masked
implementations and present a design where a detectable fault stays detectable until
the end of the implementation. Next we propose a combined countermeasure against
Differential Computation Analysis (DCA) and Algebraic Differential Computation
Analysis (ADCA) two major attacks in white-box model. Nearly all existing white-box
implementations in the literature are vulnerable to at least one of these attacks. For both
proposed countermeasures, we provide formal security proofs, experimental verification
and performance analyses with the corresponding proof-of-concept implementations.
In the second part of the thesis, we focus on attacks and countermeasures for Post-
quantum Cryptography (PQC) algorithms. As the possible advent of a quantum
computer threatens the security of widely deployed cryptographic schemes, the design
of new quantum-resilient alternatives is a pressing task. Motivated by this issue, the US
National Institute for Standards and Technology (NIST) is currently holding the PQC
Standardization Process, in which Round 3 “finalists” and “alternate candidates” have
been recently announced. Among them is Picnic, a signature scheme, which follows
Ishai et al.’s MPC-in-the-head paradigm for constructing zero-knowledge proof systems.
We show that MPC-in-the-head protocols with or without preprocessing are vulnerable
to side-channel attacks due to the protocol itself. Motivated by this vulnerability, we
show that MPC-in-the-head protocols can be protected against side-channel attacks in
a very natural way. The countermeasures are shown to satisfy provable security notions
and are supported by formal verifications. We provide comprehensive leakage analysis
using either practical setup or simulation. With practical implementations we show that
the resulting overheads are comparably low.
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Zusammenfassung

Die Welt wandelt sich in der Ära des Internets der Dinge, das durch die Vernetzung
unserer Geräte die Art und Weise unseres täglichen Lebens verändert. Mit Hilfe
dieser zunehmenden Vernetzung versucht die moderne Gesellschaft, die Covid-19-
Pandemie zu überwinden. Wir als Individuen haben uns weiter voneinander entfernt,
während unsere Geräte sich immer enger vernetzt haben. Diese enge Vernetzung
führt zu einer exponentiell wachsenden Menge an sensiblen Daten. Daher hat sich die
Kryptographie, die den Datenschutz und die Sicherheit unserer Daten gewährleistet,
zu einem wesentlichen Faktor entwickelt. Kryptographische Algorithmen werden im
Internet der Dinge eingesetzt, was unsere Geräte zu kryptographischen Geräten macht,
die besseren Schutz bieten, aber Angreifern auch neue Angriffsflächen bieten.
Die moderne Kryptographie verwendet klassischerweise ein Angreifer-Modell (bekannt
als Black-Box-Modell), bei dem nur die Eingaben und/oder Ausgaben bekannt sind.
Dieses Modell reicht heutzutage jedoch nicht mehr aus, da die kryptographischen
Geräte nun einen direkten physischen Zugriff durch den Angreifer erlauben. Das
Gray-Box-Modell berücksichtigt aus physischem Zugriff resultierende Angriffe, indem es
dem Angreifer zusätzliche Nebeninformationen gibt, welche von sensiblen Informationen
abhängen. Die physischen Angriffe werden in zwei Klassen eingeteilt: passive (Seitenkanalanalyse)
und aktive (Fehlerangriffe) Angriffe. Seitenkanalanalyse nutzt passive Messungen
von Seiteneffekten, die von den verarbeiteten Daten oder Operationen abhängen,
wie z. B. Stromverbrauch oder Zeitverhalten, um sensible Informationen zu erhalten.
Fehlerangriffe stören die normale Funnktionalität des Geräts und manipulieren beispielsweise
das Verhalten des Algorithmus oder interne Zustände, um aus fehlerhaften Ausgaben
informationen zu gewinnen. Da sich diese Angriffe kontinuierlich weiterentwickeln,
werden mögliche Gegenmaßnahmen umfassend untersucht und verbessert. Die bekanntesten
Methoden sind Maskierung für Seitenkanalanalyse, sowie Redundanz für Fehlerangriffe.
Ein Angreifer kann jedoch stets auch beide Angriffe gleichzeitig durchführen, und
so ausgefeiltere Angriffe erhalten. Darüber hinaus haben die Angriffe die Grenzen
unseres Verständnisses von Sicherheit verschoben. Mit der Verbesserung der Angriffe
entwickeln sich auch die Modelle weiter. Das White-Box-Modell beispielsweise gibt
den Angreifern unbegrenzte Kontrolle über die kryptografische Implementierung. Daher
sollten stets starke Angreifer-Modelle und kombinierte Angriffe für aktuelle und künftige
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kryptografische Implementierungen in Betracht geyogen werden.

Diese Arbeit beschäftigt sich mit der Entwicklung von modernen, beweisbaren Seitenkanal-
Gegenmaßnahmen für kryptographische Implementierungen. Wir konstruieren neue
Gegenmaßnahmen für weit verbreitete kryptografische Protokolle, die bisher noch nicht
im Gray-Box-Modell analysiert wurden, konstruiert. Außerdem verbessern wir bekannte
Gegenmaßnahmen, die kombinierten oder weiterführenden Angriffen widerstehen.
Unsere Entwurfsmethodik kombiniert theoretische und praktische Aspekte. So werden
Sicherheitsbeweise mit praktischer Analyse und formaler Verifikation kombiniert.

Im ersten Teil der Arbeit konzentrieren wir uns auf die Verbesserung der aktuellen
Seitenkanalanalyse-Gegenmaßnahmen. Unser erstes Ziel ist es, eine kombinierte Gegen-
maßnahme gegen Seitenkanalanalyse und Fehlerangriffe zu entwickeln. Um dies
zu erreichen, übernehmen wir eine bekannte Seitenkanalanalyse-Gegenmaßnahme—
Secure Multi-party Computation—und erweitern sie, um auch Fehlerangriffen zu
widerstehen, indem wir Redundanz hinzufügen. Wir untersuchen die Auswirkungen
von Fehlern auf maskierte Implementierungen und stellen ein Design vor, bei dem ein
erkennbarer Fehler bis zum Ende der Implementierung erkennbar bleibt. Als nächstes
schlagen wir Gegenmaßnahmen für das stärkste Angreifersmodell vor: das White-
Box-Modell. Wir erreichen Sicherheit gegen die zwei wichtigsten Angriffe in diesem
Modell: Differential Computation Analysis und Algebraic Differential Computation
Analysis. Fast alle bekannten White-Box-Implementierungen in der Literatur können
mit diesen angriffen gebrochen werden. Für beide Gegenmaßnahmen werden sowohl
formale Sicherheitsbeweise als auch experimentelle Verifikation und Leistungsanalysen
mit den entsprechenden Proof-of-Concept-Implementierungen vorgestellt.

Im zweiten Teil der Arbeit konzentrieren wir uns auf Angriffe und Gegenmaßnahmen
für Post-Quantum-Kryptographie-Algorithmen. Da das mögliche Aufkommen eines
Quantencomputers die Sicherheit weit verbreiteter kryptographischer Verfahren bedroht,
ist die Entwicklung neuer quantenresistenter Alternativen eine dringende Aufgabe.
Aus diesem Grund führt das US National Institute for Standards and Technology
(NIST) derzeit den PQC-Standardisierungsprozess durch, bei dem kürzlich “Finalisten”
und “Alternativkandidaten” der Runde 3 bekannt gegeben wurden. Unter ihnen ist
Picnic, ein Signaturverfahren, das dem MPC-in-the-head-Paradigma von Ishai et al.
zur Konstruktion von Zero-Knowledge-Proof-Systemen folgt. Wir zeigen, dass MPC-
in-the-Head-Protokolle mit oder ohne Preprocessing aufgrund des Protokolls selbst
anfällig für Seitenkanalangriffe sind. Motiviert durch diese Verwundbarkeit zeigen wir,
dass MPC-in-the-Head-Protokolle auf sehr natürliche Weise gegen Seitenkanalangriffe
geschützt werden können. Es wird gezeigt, dass die Gegenmaßnahmen beweisbaren
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Sicherheitsbegriffen genügen, was zusätzlich noch durch formale Verifikation unterstützt
wird. Wir bieten eine umfassende Leakage-Analyse, die entweder durch einen praktischen
Aufbau oder eine Simulation durchgeführt wird. Mit praktischen Implementierungen
zeigen wir, dass die resultierenden Overheads vergleichsweise gering sind.
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Introduction

“A box without hinges, key, or lid,
Yet golden treasure inside is hid.”

– Bilbo Baggins, The Hobbit

Although this is not a hard riddle, Bilbo Baggins asked to gain time against Gollum in
The Hobbit by J. R. R. Tolkien [Tol37]. The answer is eggs as it clearly satisfies the
riddle. More importantly, the only way to get the golden treasure is to crack the egg.
Surprisingly, the embedded devices, on which today’s world depends, meet the same
conditions. The modern world requires us to live in a connected world where not only
us but our devices are linked and reside in a hostile environment. Embedded devices
store our golden treasures, our secrets or sensitive data, without a key1 or lid and there
is always an adversary who tries to crack the shell and reach the golden treasure.
The information age which started in mid-20th century, accelerated the advances in
cryptography with the help of modern computer science and bright minds such as
Alan Turing and Claude Shannon. At first, cryptography was considered a part of
military science. But everything changed with the commercialization of computers and
the importance of cryptography has been increasing rapidly since then.
Commercialization of computers evolved into the age of Internet of Things (IoT) in
which all the devices such as mobile phones, cars, refrigerators are connected, and the
need for modern cryptography to protect the privacy becomes necessary. Therefore we
are obligated to use the cryptography to attain the desired security level and objectives
such as confidentiality, authentication, data integrity and non-repudiation. Here is a
brief description of cryptographic goals as listed in [MvOV96].

• Confidentiality is the functionality of keeping the information from all but
legitimate users.

• Authentication is a service of rightful identification. The parties that communicate
should be able to correctly identify each other (entity authentication) or an

1Here key means a physical key.
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information received from a channel should be authenticated with respect to
origin, content and time etc. (data origin authentication).

• Data integrity addresses the unauthorized modification of data including
insertion, deletion, and substitution.

• Non-repudiation prevents a user from modifications to a committed action. This
hinders parties to deny their actions.

Cryptography enables us to achieve the desired properties in the form of mathematical
expressions that uses an input with a secret key, as simple as in Eq. (1.1), where E is a
publicly available function, p and c are an input/output pair and k is a secret key. The
cryptographic algorithm is known and publicly available while the only unknown (or the
secret) is the secret key [Sha49].

E(k, p) = Ek(p) = c. (1.1)

Depending on the usage of the secret key, cryptographic algorithms are classified into
symmetric and asymmetric cryptography. The first one (symmetric cryptography) uses
the same key for both encryption and decryption, such as the Advanced Encryption
Standard (AES) [DR20] while the latter one (asymmetric cryptography, also known as
public-key cryptography) uses two different keys for encryption and decryption such as
RSA (named after its creators: Rivest, Shamir and Adleman) [RSA83].
A cryptographic algorithm’s strength relies on its mathematical foundation. Here a
secure algorithm essentially means that the only possible way of getting correct ciphertext
and plaintext pairs is by trying all the possible key candidates i.e. using a brute force
attack. Modern cryptographic algorithms need thousand of years to be broken by brute
force attacks (e.g. the simplest AES has a key space of 2128), therefore the main
aim of cryptanalysis is to reduce the key space by analysing the algorithm such that
a relatively small key space leads to a relatively practical brute force attack that results
in a reasonable time.
However the security in theoretical foundation becomes insufficient when these algorithms
are applied to real-world applications such as microcontrollers, IoT devices and personal
computers. The devices that run a cryptographic algorithm and store cryptographic keys
(i.e. secret keys) are called cryptographic devices [MOP07]. As these devices become an
essential part of our life, new adversarial models and attack surfaces appear. Therefore,
cryptographic devices need to be analyzed with respect to their implementation of the
cryptographic algorithm in addition to its mathematical foundation.
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The adversarial objective is to undertake the cryptographic algorithm or a device that
runs an algorithm to recover the secret information. However the abilities of the
adversary and assumptions depend on the adversarial models that are expanded below.

1.1 Adversarial Models

In the following we introduce the three main adversarial models in the literature; the
black-box model, the gray-box model and the white-box model classified according to
the information accessible by the adversary.

1.1.1 Black-box Model

The first model used in the literature is the black-box model. In this model the
adversary is able to access only the plaintext-ciphertext (input-output) pairs. Although
the whole algorithm except the secret key is known [Ker83], the adversary cannot
receive any additional information or characteristics. In this model the attacks are
implementation-free that is, the analysis depends only on the mathematical structure of
the algorithm as seen in Fig. 1.1. Until late 90s, the security assessment of cryptographic
implementations was measured by this model. Using this model, two powerful attacks
emerged: differential [BS91] and linear cryptanalysis [Mat93]. The first one studies the
affect of certain mappings of input differences to the output differences, and the second
one exploits the non-uniformity of linear expressions involving input bits, output bits
and key bits. Here is the list of attacks that can be implemented by an adversary.

1. Ciphertext only attack: The adversary accesses only the ciphertext and tries to
reveal the secret using only this information e.g. linear cryptanalysis.

2. Known-plaintext attack: The adversary knows a arbitrary set of plaintexts and
receives the corresponding ciphertexts.

3. Chosen-plaintext attack: The adversary chooses a specific set of plaintexts and
receives the corresponding ciphertexts. It is used in differential cryptanalysis.

4. Chosen-ciphertext attack: The adversary chooses a specific set of ciphertexts and
receives the corresponding plaintexts.
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Plaintext p Ek(p) Ciphertext c

Figure 1.1: A brief summary of black-box model. The adversary can only access the
plaintext-ciphertext (or input-output) pairs.

1.1.2 Gray-box Model

The second model is the gray-box model which gained attention after the seminal work
by Kocher et al. [Koc96]. The model covers the implementation security of devices that
run a cryptographic algorithm. The adversary may invoke the implementation multiple
times and adaptively choose inputs (e.g. plaintext or ciphertext) and record any side-
channel information such as the power consumption or the timing behavior of the device
while running the implementation as summarized in Fig. 1.2. Moreover the adversary
can interfere with the implementation by means of injecting faults or tampering with the
environment such as high or low temperature. Therefore this model leads to a widely
accepted attacker model that deals not only with the mathematical structure of the
cryptographic algorithms but also the physical implementation of it.
The first attack that uses this model was introduced in 1996 by Kocher et al. [Koc96]
where the timing behavior of a crypto system depends on the secret key and thus an
analysis of the timing of the operations reveals the secret key. Three years later, Kocher
et al. [KJJ99] showed that the power consumption or the electromagnetic radiations of
a device can also be exploited to recover the secret key. As stated earlier, the model also
allows an adversary to inject faults, interfere the operations and collect faulty ciphertext.
The impact of such attacks is shown in the literature with the works on AES [BDL97]
and RSA [Muk09] where even a single faulty ciphertext can lead to a key recovery. In
Chapter 2, we delve into these attacks and give more detailed descriptions.

1.1.3 White-box Model

The third model, the white-box model, is presumably the strongest adversarial model.
White-box cryptography promises implementation security of cryptographic services
in pure software solutions, mainly by protecting keys and intermediate cipher states
through layers of obfuscation. While white-box cryptography is successfully sold by
several companies as one ingredient of secure software solutions (e.g. [Gem]), analysis of
deployed solutions is lacking, as is a sound theoretical framework to analyze white-box
implementations.
The model assumes the cryptographic primitive to run in an untrusted environment
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Plaintext p Ek(p) Ciphertext c
E

Tampering

Side-channel Information
Power, Electromagnetic Emanation,

Timing, Acoustic etc.

Figure 1.2: A brief summary of the gray-box model. The adversary can access plaintext-
ciphertext (or input-output) pairs and receive additional information (side-channel
information) while the device operates on the input. Moreover the adversary can tamper
with the implementation and observe effects of the tampering.

where the adversary has complete control over the implementation. As successor of
the gray-box model, the adversary has all the capabilities of a gray-box model and
additionally may read and modify every memory access or intermediate state and can
interrupt the implementation at will as given in Fig. 1.3.
White-box cryptography was introduced in 2002 by Chow et al. [CEJVO03b,CEJvO03a].
The main idea of their scheme is to represent a cryptographic algorithm as a network
of look-up tables and key-dependent tables. In order to protect the key dependent
tables, Chow et al. proposed to use input and output encodings. Although the
method provides security guarantees for individual tables, the combinations of protected
tables still leaks information [BGEC05]. In fact, all published academic proposals for
White-box cryptosystems (WBC) [Kar10, BCD06, LN05, XL09] have been practically
broken [BGEC05,DMWP10,LRDM+14,WMGP07].
Another hit for the white-box cryptography is the application of attacks from gray-
box model. Side-channel information such as observable intermediate states leads to
attacks called Differential Computation Analysis (DCA) [BHMT16]. These attacks
allows an adversary to perform an automated extraction of the secret key from a white-
box implementation faster and without specific knowledge of the design.
In order to close the gap the between the secure designs and the attacks, white-box
cryptography competitions (or challenges) are organised throughout the years [TWC17,
TWC19, TWC21]. Although all the submitted designs are broken quickly (Most of
the designs lasts less then one day), excellent attacks and design ideas emerged from
these challenges. The most important attack that surfaced is Algebraic Differential
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Plaintext p

Ek(p)
Control Over the Execution

Static & Dynamic analysis
Inspect memory,

Inject faults
Alter implementation.

Ciphertext c

Figure 1.3: A brief summary of white-box model. The adversary not only access the
input-output pair but also all the information within the implementation i.e. all the
internal information about a cryptographic implementation.

Computation Analysis (ADCA) which easily breaks even protected implementations [BU18,
GPRW19]. As a result new design methodologies and security notions are started to be
introduced [BU18,GRW20].

1.2 Summary of Contribution and Road Map

As smart devices become more and more inevitable part of our lives, the protection
of sensitive information becomes essential. The security of the embedded devices are
leaned on cryptographic algorithms in order to use them securely. Unfortunately, we
cannot rely on old cryptographic security assumptions as these devices are effortlessly
accessible by the adversary and the technology (hardware and software) behind them
becomes cheaper. Therefore we need better countermeasure designs that ensure security
against advanced or combined attacks and can evolve as the attacks.
The last decade witnessed stunning series of attacks. Modern processors that exist
nearly on all the IoT devices are shown to be vulnerable against hardware-level
physical attacks such as Spectre [KHF+19] and Meltdown [LSG+18]. The designated
secure modules [MSEH20] and hardware enclaves are shown to be vulnerable against
such attacks [BMW+18]. As we explore the cause of these attacks, we uncover the
vulnerabilities and push the security boundaries one step forward at a time [WWME20,
WWSE21,BOM+19,CGG+19,SLM+19].
Adversaries equipped with such an advance (yet reachable) equipment can push the
boundaries of attacks. For example, laser-assisted attack techniques give the adversary
such a power that makes us question the well-defined security notions [KGM+20].
This work is motivated by the need for strong, reliable and provable countermeasures
as the attacks are evolving each day. In the first part of this work, we boost the state
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of art countermeasures to thwart more advanced attacks or combined attacks. In the
second part we provide countermeasures for unprotected implementations that aim at
the post-quantum era i.e. Post-quantum Cryptography.

1.2.1 Improving Side-channel Countermeasures

In Chapter 2, we introduce the details of SCA with countermeasures and ways of
improving them. As the impact of SCA and FA cannot be ignored and cannot be
stated out-of-scope, there exists several countermeasures to counteract these attacks
individually.

Extending the Secure Multi-party Computation to Resist Fault Attacks.
An adversary can always implement active and passive attacks in a combined manner.
One idea to eliminate combined attacks is to use different countermeasures to resist
both attacks individually. However, the synergy between these countermeasures is
not always given and this methodology can leak information [REB+08, LFZD14]. One
countermeasure that we focus is Secure Multi-party Computation. SMC is shown to
have fault resistant property, yet this property has never been analyzed in that context.
Therefore our first research question is:

Can we provide a combined countermeasure built on secure multi-party
computation that can be efficiently implemented while preserving the information-
theoretic security?

In Chapter 3 we deep dive into this problem and provide a combined countermeasure.
At CHES 2011, Roche and Prouff applied secure multi-party computation to prevent
side-channel attacks. While multiparty computation is known to be fault-resistant as
well, the particular scheme used for side-channel protection does not currently offer this
feature.
This chapter introduces a new secure multiparty circuit to prevent both fault injection
attacks and side-channel analysis. The new scheme extends the Roche and Prouff scheme
to make faults detectable. Arithmetic operations have been redesigned to propagate
fault information until a new secrecy-preserving fault detection can be performed. A
new recombination operation ensures randomization of the output in the case of a fault,
ensuring that nothing can be learned from the faulty output. The security of the new
scheme is proved in the ISW probing model [ISW03], using the reformulated t-SNI
security notion [BBD+16]. Besides the new scheme and its security proof, we also present
an extensive performance analysis, including a proof-of-concept, software-based AES
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implementation featuring the masking technique to resist both fault and side-channel
attacks at the same time. The performance analysis for different security levels are
given for the ARM-M0+ MCU with its memory requirements. A comprehensive leakage
analysis shows that a careful implementation of the scheme achieves the expected security
level.
This work has been published by Okan Seker, Abraham Fernandez-Rubio, Thomas
Eisenbarth and Rainer Steinwandt at IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES 2018) [SFRES18]. A reference microcontroller
implementation is provided and published by the co-author Abraham Fernandez-
Rubio [Rub17].

A Masking Scheme for White-box Designs.

In Chapter 4, we study a new protection mechanism for white-box designs. Protecting
secrets purely in software is a great challenge, especially if a full system compromise
is not simply declared out-of-scope of the security model. With fully homomorphic
encryption still complex and computationally expensive [MOO+14] and secure enclaves
being notoriously buggy at this time [VBPS17,MIE17,BMW+18], industry may opt for
white-box cryptosystems (WBC) or even be required to do so by industry standards like
EMVCo [Pay,BBF+19].
Due to their high utility, white-box cryptosystems (WBC) are deployed by the industry
even though the security of these constructions is not well defined. A major breakthrough
in generic cryptanalysis of WBC was Differential Computation Analysis (DCA), which
requires minimal knowledge of the underlying white-box protection and also thwarts
many obfuscation methods [BHMT16]. To avert DCA, classic masking countermeasures
originally intended to protect against highly related side-channel attacks have been
proposed for use in WBC. However, due to the controlled environment of WBCs, new
algebraic attacks against classic masking schemes have quickly been found [GPRW19].
These algebraic DCA attacks break all classic masking countermeasures efficiently, as
they are independent of the masking order. To sum up, although there exist informal
ideas on how to create a secure white-box design that can resist both computational and
algebraic attacks, formal and generic constructions with a security analysis are missing.
Therefore our second question is:

Can we introduce a combined countermeasure based on basic masking in
such a way that it achieves information-theoretic security against Differential
Computation Analysis and Algebraic Differential Computation Analysis?
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In this chapter, we propose a novel generic masking scheme that can resist both
DCA and algebraic DCA attacks. The proposed scheme extends the seminal work
by Ishai et al. [ISW03] to also resist algebraic attacks. To prove the security of our
scheme, we demonstrate the connection between two main security notions in white-box
cryptography: probing and prediction security. Resistance of our masking scheme to
DCA is proven for an arbitrary order of protection, using the strong non-interference
notion [BBD+16]. Our masking scheme also resists algebraic attacks, which we show
concretely for first and second-order algebraic protection. Moreover, we present an
extensive performance analysis and quantify the overhead of our scheme, for a proof-of-
concept protection of an AES implementation.
This work has been been published by Okan Seker, Thomas Eisenbarth and Maciej
Liśkiewicz at the IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES 2021) [SEL21].

1.2.2 Attacks and Countermeasures for Post-Quantum Schemes

Many public-key protocols used in modern systems such as RSA or the Diffie-Hellman
key exchange have shown to withstand attacks run on classical computers. On the other
hand, it is long known that attackers equipped with quantum computers are provably
able to break these systems [Sho99]. While the deployment of practical quantum
computers seems to be unlikely within the next decade, the cryptographic community
has already started to develop algorithms that withstand these quantum attackers. To
standardize some of these algorithms and to foster their timely adoption, NIST has
started their Post-Quantum Cryptography Standardization project in 2017, where 82
algorithms were submitted, 69 proceeded to the first round, 26 to the second round,
and 15 in the third round [CCJ+16, NIS20a, NIS20b, AASA+20]. The standardization
focuses on key encapsulation mechanisms (KEMs), from which public-key encryption
schemes can be derived easily, and on signature schemes due to their widespread use in
modern systems.
While the security of most of these algorithms relies on problems revolving around
lattices or coding theory that are believed to be intractable for quantum computers, the
signature scheme Picnic [CDG+17] relies on the hardness of SHA-3 and a low-complexity
symmetric cipher called LowMC [ARS+15]. The underlying zero-knowledge protocol of
Picnic follows the MPC-in-the-head paradigm and is called ZKB++ which is an optimised
version of ZKBoo [GMO16]. We will use the ZKBoo protocol as an example both for our
attacks on the general MPC-in-the-head paradigm as well as for our defence mechanisms.
In Chapter 5 we introduce the required background for Post-quantum Cryptography
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and a general overview of side-channel attacks on the algorithms within the NIST PQC
project. We focus on the side-channel analysis of the Picnic Signature Scheme, an
alternate candidate in the ongoing project for post-quantum cryptography by the NIST.
Since the seminal work by Ishai et al. [IKOS07], the MPCitH paradigm has been actively
studied over the past decade. In particular, two closely related protocols ZKBoo [GMO16]
and ZKB++ [CDG+17] brought MPCitH closer to practice, leading to the submission
of Picnic1 to Round 1 of the NIST PQC Standardization Process. Katz, Kolesnikov,
and Wang [KKW18] extended the paradigm to MPCitH-PP and corresponding version,
Picnic2, was added during Round 2. Kales and Zaverucha [KZ20] further optimized
Picnic2 from various implementation aspects and accordingly proposed Picnic3. Yet,
despite such advantages with regard to the underlying assumptions, implementations of
MPCitH-type signatures e.g. Picnic Signature Scheme, are not immune to side-channel
attacks that threaten unprotected software.

In Chapter 6 we show that a direct implementation of MPCitH signing is susceptible to
a probing side-channel attack, which is in practice realized by, e.g., differential power
analysis (DPA). The attack proposed by Gellersen et al. [GSE21] is devastating – it allows
a side-channel attacker to successfully recover the secret signing key, after observing
no more than 30 signatures. To understand their attack, it is useful to review the
underlying “commit-and-open” approach typically used by MPCitH proofs. The attacks
target the three-round ZK proof system underlying some Picnic instances, known as
ZKB++ [CDG+17] (an optimized variant of ZKBoo [GMO16]).

MPCitH proof systems like ZKB++ follow a typical commit, challenge, response
structure (which, in fact, can be seen as a Σ-protocol [Dam10]), and prove knowledge
of a witness w that satisfies a statement for a hard relation. For example, we can prove
knowledge of a key (the witness) that relates a plaintext-ciphertext pair (the statement)
for a block cipher (the relation). The ZKB++ proof system is built on a three-party
MPC protocol Πf for a function f implementing this hard relation (the block cipher in
our example). To initialize the protocol, the prover P first additively secret-shares the
witness such that w = w1 + w2 + w3, and considers each share wi as a private input to
party Pi. Then P runs Πf “in the head”, i.e., it simulates a run of the protocol between
the three parties, and produces for each Pi a commitment to its view, i.e., the input wi,
output, communication, and random tape. These three commitments are sent to the
verifier V, who replies with a challenge, for P to open two of them. Finally, V checks
the opened values for consistency and for an accepting output. The (honest verifier)
ZK property of the protocol is guaranteed by the 2-privacy of Πf , i.e., it is possible
to simulate up to 2 parties’ views given their inputs, and the output of the protocol
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execution. But once a side-channel adversary probes the unopened party’s view, in
particular their share of the witness, the adversary can recover the secret witness.

Fusing Strong Non-interference with MPC-in-the-Head Paradigm.

This analysis shows there is a need for provable security that can work with MPC-in-
the-Head Paradigm. In Chapter 7 we investigate the protection mechanism’s against
side-channel attacks on MPC-in-the-Head Paradigm and ask the question:

Can we improve ZKBoo resp. MPC-in-the-Head paradigm in general in such
a way that the unopened view is provably secure even if the opened views are
reachable by an adversary?

To thwart this attack, we proposed the SNI-in-the-head (SNIitH) approach, which
naturally retains the privacy of MPC protocol, but also adds strong non-interference
(SNI) [BBD+16] security, which is a strong provable security notion for ISW-style
masking countermeasures (as defined by Ishai-Sahai-Wagner [ISW03]). In the SNIitH
approach, the number of parties is generalized to N and the underlying MPC protocol is
assumed to have (N − 1)-privacy, so that the views of up to N − 1 parties may be safely
revealed. However, instead of opening N − 1 parties as a typical MPCitH prover would,
an SNIitH prover only reveals N − t − 1 parties as a response, where the parameter t

serves as the “buffer” for probing security. This way, the prover makes sure that at least
one party’s internal state remains completely hidden, even if the side-channel adversary
observes up to t variables during the execution of MPC protocol Πf . Relying on this
idea, we generalized ZKB++, and gave a variant of Picnic that is provably secure against
probing adversaries. However, as we shall see below, there are still several practical
challenges which seem hard to overcome with SNIitH.
MPC-in-the-head based protocols have recently gained much popularity and are at
the brink of seeing widespread usage. With widespread use come the spectres of
implementation issues and implementation attacks such as side-channel attacks. As
described above the implementations of protocols implementing the MPC-in-the-head
paradigm are vulnerable to side-channel attacks. As a case study, we choose the ZKBoo-
protocol of Giacomelli, Madsen, and Orlandi [GMO16] and show that even a single
leaked value is sufficient to break the security of the protocol.
In order to remedy this situation, we extend and generalize the ZKBoo-protocol by
making use of the notion of strong non-interference of Barthe et al. [BBD+16]. To apply
this notion to ZKBoo, we construct novel versions of strongly non-interfering gadgets
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that balance the randomness across the different branches evenly. Finally, we show that
each circuit can be decomposed into branches using only these balanced strongly non-
interfering gadgets. This allows us to construct a version of ZKBoo, called (n+1)-ZKBoo
which is secure against side-channel attacks with limited overhead in both signature-size
and running time. Furthermore, (n+1)-ZKBoo is scalable to the desired security against
adversarial probes. We experimentally confirm that the attacks successful against ZKBoo
no longer work on (n + 1)-ZKBoo. Moreover, we present an extensive performance
analysis and quantify the overhead of our scheme using a practical implementation.
This work has been published by Okan Seker, Sebastian Berndt, Luca Wilke, Thomas
Eisenbarth at the ACM Conference on Computer and Communications Security (CCS
2020) [SBWE20].

Masking MPC-in-the-Head Paradigm with Preprocessing.

In Chapter 8, we push the security one step forward and consider security against
MPC-in-the-head paradigm with preprocessing used in Picnic3 signature scheme. As
shown in Chapter 6 known countermeasures are not sufficient when the MPC protocol
uses a preprocessing phase, as in Picnic3. To the best of our knowledge, no previous
work explored the possibility of masking the newer MPC-in-the-head paradigm with
preprocessing (MPCitH-PP) of Katz, Kolesnikov, and Wang (KKW, [KKW18]), which
produces much more compact proofs (and shorter signatures in turn). KKW is used in the
latest version of Picnic, Picnic3 [KZ20], and in a similar signature scheme BBQ [dDOS19].
The preprocessing phase is independent of the witness, and is used by the parties to
establish correlated random values, such as multiplication triples, that they can use
during the MPC protocol to improve efficiency. Since it happens before the main,
witness-dependent MPC protocol, the preprocessing phase is also called an offline phase,
and the main part is called the online phase. We first observe that the preprocessing
phase provides additional attack surface not present in MPCitH protocols without
preprocessing in Chapter 6. In the KKW protocol, the prover first simulates many
instances of the MPC protocol consisting of offline and online phases, and commits to
each party’s view in both phases. Then for each instance of the MPC protocol, the
prover opens either the offline phase or the online phase, depending on the challenge
sent from the verifier. To open the offline phase, the prover reveals the views of all N
parties (which is secure, since preprocessing views are independent of the witness). For
the online phase, the prover reveals the views of N − 1 parties (which is secure by the
N − 1 privacy of the MPC protocol). In the former scenario, since the offline phase
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contains the correlated random values used by all parties during the online phase, a
probing adversary can break the privacy of the underlying MPC protocol by probing
values from the corresponding online phase (which is computed by the prover but not
revealed).
We note that the attack succeeds for any number of opened views, since MPCitH-PP
inherently relies on revealing all views for the offline phase. This indicates that the
SNIitH approach cannot mitigate this type of probing attack. We are motivated to
design an alternative countermeasure addressing the following question:

Can we mask signature generation in signature schemes constructed with the
MPC-in-the-head-with-preprocessing paradigm in a provably secure manner,
without modifying the verification algorithm?

We overcome these challenges by showing how to mask the underlying zero-knowledge
proof system [KKW18] for any masking order, and by formally proving that our approach
meets the standard security notions of non-interference for masking countermeasures. As
a case study, we apply our masking technique to Picnic. We then implement different
masked versions of Picnic signing providing first order protection for the ARM Cortex M4
platform, and quantify the overhead of these different masking approaches. We carefully
analyze the side-channel risk of hashing operations, and give optimizations that reduce
the CPU cost of protecting hashing in Picnic by a factor of five. The performance
penalties of the masking countermeasures ranged from 1.8 to 5.5, depending on the
degree of masking applied to hash function invocations.
Although our masked implementation focuses on Picnic3, which is instantiated with
KKW and the LowMc circuit [ARS+15], our generic approach in Section 8.2 also applies
to BBQ (KKW instantiated with the AES circuit) [dDOS19] and Baum and Nof’s variant
of KKW (instantiated over an arithmetic circuit for proving SIS instances) [BN20].
This work have been published by Diego F Aranha, Sebastian Berndt, Thomas
Eisenbarth, Okan Seker, Akira Takahashi, Luca Wilke, Greg Zaverucha at the IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2021) [ABE+21]
where Okan Seker, Akira Takahashi share the first-authorship and the implementation
is provided by the co-authors.
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In this chapter we focus on the background to understand and elaborate the side-channel
attacks and countermeasures. We provide a detailed explanation of passive attacks,
active and combined attacks. Each attack sections are followed by the corresponding
countermeasure descriptions, security assessments and formal security notions. Moreover
we link these attacks and countermeasures to the white-box model.
The modern Side-channel Analysis (SCA) and Fault Attacks (FA) and is a common
threat to cryptosystems if the adversary has physical access to the implementation. A
wide range of such attacks have been shown to circumvent security assumptions and
reveal cryptographic keys, often with little effort, especially if no special precautions
were taken during implementation. Physical attacks can be divided into classes; active
attacks and passive attacks, through the thesis we use the terms Fault attacks and
Side-channel attacks to describe the attacks respectively. Active attacks manipulate the
target implementation and the resulting faulty output can then reveal information about
the state and the key [BDL97, BECN+06]. On the other hand, passive attacks employ
data side-channel sources such as power [KJJR11], sound [GST14], or electromagnetic
emanation [GMO01] of a target implementation.

2.1 Side-channel Analysis

Side-Channel attacks assume the gray-box adversarial model as described in Section 1.1.2.
The main idea is to observe the behavior e.g. power consumption of the device, of the
cryptographic implementation without actively effecting/changing the behavior of the
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Figure 2.1: A brief summary of DPA and Correlation-based DPA. The attacks share a
common hypothesis phase (1 and 2), however the exact attacks have small variations.
DPA uses steps 3, 4 and 5 (left side), while CPA uses the steps 3 and 4 (right side).

device. This attack requires little knowledge about the implementation and can be done
without much effort. As they are passive, the attacks are hard to detect. The primary
motivation behind this attacks is side-channel information produced by the targeted
device depends on the processed data i.e. depends on a secret key that is used and
the input that is assumed to known by the adversary. Therefore, in an unprotected
implementation side-channel information weaken the security of the device. The most
common attacks are Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) using power analysis i.e. the instantaneous power consumption depending on the
data [KJJ99]. Later, different type of analysis methods were introduced in the literature
such as Template Attack (TA) [CRR02] and Correlation Power Analysis (CPA) [BCO04].
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2.1 Side-channel Analysis

Moreover, recent trends combines machine learning with side-channel analysis to recover
secret keys from even protected implementations [BPS+20].

We start with the description of DPA introduced by Kocher et al [KJJ99] to capture the
essence of the attacks. In the DPA setting, the adversary is assumed to know the targeted
algorithm. Thus an intermediate variable v which depends on a known input p (such as
a plaintext or a ciphertext) and secret value k (such as a secret key) can be selected using
a function f such that v = f(p, k). Moreover the adversary chooses a function φ that
models the side-channel information (a common model is a single bit [MOP07]). Then
the adversary collects multiple side-channel traces denoted by (T1, . . . , T`) of the device
with different inputs (p1, . . . , p`) and with the same secret key k. Remark that each
side-channel trace Ti corresponds to a vector of length N i.e. Ti = {ti1, . . . , tiN} where tij
represents the measured information in the jth instance (or jth sample point) during the
ith iteration. For each key candidate from a key space K1 the adversary expresses the
selection bit for all inputs:

v1 = φ(f(p1, k̂)), . . . , v` = φ(f(p`, k̂)).

The traces are then divided into two groups (T0 and T1 resp.) with respect to the value
vi and each group is averaged:

Ti = {Tj | vj = i} and Ti =
∑

Tj∈Ti Tj

|Ti|

Finally, the DPA trace is calculated as the difference of the two averaged trace |T0−T1|.
The average traces is cancel each other out with a random set of inputs. However,
when the predicted value v is correct, sample point that corresponds to the calculation
of the value v reflect the power consumption correctly. Thus the average trace at this
sample point is no more random set of inputs, but corresponds to specific values. In this
instance, the average trace shows a clear difference as shown in Fig. 2.1, Step 5. This
means that v classified into the sets correctly and the key guess k̂ is indeed the correct
key.

As an alternative, the adversary can employ a statistical tool like Pearson’s correlation
coefficient [CKN01] to deduce the best key candidate. In this version of the attack
called as Correlation-based DPA (CPA), adversary calculates the correlation between
v = (v1, . . . , v`) and ti = (t1i , . . . , t

`
i) for each sample points 1 ≤ i ≤ N as in Eq. (2.1),

1|K| is small enough to process the analysis and generally it ranges from 21 to 28.
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ρv,ti =

∑
j∈[1,`](vj − v̄)(tji − t̄i)√∑

j∈[1,`](vj − v̄)2
∑

j∈[1,`](t
j
i − t̄i)2

. (2.1)

Remark that the correlation measures the linear relation between two sets of data.
Similar to DPA, the correlation between two random sets stays in a threshold (such
as [-0.1,0.1]) as there is no linear relation at all. However for the correct key guess
k̂ the guessed values v = (v1, . . . , v`) correctly models the power consumption of the
device. Therefore the correlation value i.e. Eq. (2.1) detect the relation between power
consumption at the specific instance with v. Thus, the analysis results in an observable
peak as shown in Fig. 2.1, Step 4.

2.1.1 Countermeasures

There have been a number of countermeasures in the literature in order to counteract
SCA. Although they can be classified into two groups, hiding and masking, the main
idea stays the same: make the side-channel information independent of the intermediate
process of the device. The goal can be achieved by either making the side-channel
information as stable as possible such that every operation consumes the roughly the
same level of power or randomized it completely.
The hiding schemes are implemented to make the side-channel information randomized
by executing the algorithm in a randomly-reorganized manner i.e. with shuffling
or adding dummy operations randomly. Therefore the traces become time-domain
desynchronized which makes the attack as described in Section 2.1 harder.
The masking is on the other hand is one of the most popular countermeasures against
side-channel analysis. The method was proposed by Chari et al. [CJRR99b]. The main
idea is to randomly split a sensitive variable x into n + 1 shares, such that x can be
recovered from d + 1 (n ≥ d + 1) shares, while no information can be recovered from
fewer than d+ 1 shares. The splitting is done in such a way that the following equation
holds for a group operation ⊥;

x0 ⊥ x1 ⊥ · · ·⊥ xn = x (2.2)

In the literature ⊥ is defined as addition +, xoration ⊕, etc. Most important examples
are Boolean masking introduced by Ishai et al. [ISW03] which has been generalized
by Rivain and Prouff [RP10], Threshold Implementations (TI) defined by Nikova et
al. [NRS09], and polynomial masking as defined in [RP12] based on Shamir’s secret
sharing [Sha79].
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Earlier masking schemes were considered secure under specific security models such
as [OMPR05, CB08], however, they would still leak detectable information under the
presence of glitches in the hardware [MME10, MPO05]. Due to these facts, glitch
resistance masking schemes were introduced. TI were defined by Nikova et al. [NRS09]
and then generalized by [BGN+14,RBN+15]. Gross et al. [GMK16] introduced domain-
oriented masking. While the scheme had the same level of security as TI, it has lower
implementation cost, since it has lower randomness cost.

Boolean Masking. The seminal work by Ishai, Sahai, and Wagner in 2003 [ISW03]
introduced the concept of the private circuits and the idea of Boolean masking. The main
idea of the scheme is to develop a theoretical foundation against side-channel attacks and
private circuits protect the circuits if an adversary is able to access a bounded number
of wires.
The Boolean masking is carried out in two steps. First, the data transformation is
processed by representing each input x by n + 1 values as described before. In the
scheme the field operation defined as xoration ⊕ thus in Eq. (2.2) is realized as:

x0 ⊕ x1 ⊕ · · · ⊕ xn = x, (2.3)

where each xi is an element from a field K and each set of n shares are distributed
uniformly and independently. This achieved by randomly selecting the first n share,
x0, , . . . , xn−1 and calculating the last share as xn = x ⊕ x0 ⊕ · · · ⊕ xn−1. Secondly,
each operation is transformed to masked operations which we called gadgets and we
use typewriter letters to distinguish the masked operations from regular (unmasked)
operations. For example, XOR represents a field operation while XOR represents a secure-
masked xor operation.
In the following we describe the basic gadgets. Let x and y be two elements from a
field and consider an nth-order masking scheme, i.e. x and y have been split into (n+1)

shares such that
⊕n

i=0 xi = x and
⊕n

i=0 yi = y.

• XOR gadgets that calculates a masked representation of z = x ⊕ y such that⊕n
i=0 zi = z, can be summarized as follows:

zi = xi ⊕ yi for 0 ≤ i ≤ n where z = x⊕ y.

• Affine gadgets that calculates an affine function A of x in a secure manner such
that of z = ax⊕ b = A(x) where a, b ∈ K and

⊕n
i=0 zi = z, can be summarized as
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Algorithm 1 nth-order secure multiplication over F2.
Input: Shares of x as (xi)0≤i≤n and shares of y as (yi)0≤i≤n.
Output: Shares of x · y as (zi)0≤i≤n.

1: for i = 0 to n
2: for j = i+ 1 to n
3: ri,j ← rand(0, 1) // Random sampling
4: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi

5: for i = 0 to n
6: zi ← xiyi
7: for j = 0 to n, j 6= i
8: zi ← zi ⊕ ri,j

9: return (zi)0≤i≤n

follows:

zi = axi ⊕ δ0,ib for 0 ≤ i ≤ n where z = ax⊕ b and δ0,i =

1 if i = 0

0 otherwise

• NOT gadgets can simply be represented as follows;

NOT(x0, . . . , xn) = (NOT (x0), x1, . . . , xn).

• AND gadgets suggested by Ishai et al. [ISW03] can be divided into three steps as
below and a summary can be found in Algorithm 1. It require (n+1)2 AND gates
and 2n(n+ 1) XOR gates with n(n+ 1)/2 random bits. The gadget

– For all 0 ≤ i < j ≤ n sample a random bit ri,j ,

– For all 0 ≤ i < j ≤ n calculate rj,i = (ri,j ⊕ xiyj)⊕ xjyi,

– For all 0 ≤ i ≤ n calculate zi = xiyi ⊕
⊕

j 6=i ri,j .

2.1.1.1 Secure Multiparty Computation:

Secure Multi-party Computation (SMC) with secret sharing schemes (denoted by (n, d)-
SMC) allow us to split a sensitive variable into shares in such a way that neither the
shares nor the computations on them reveal any critical information. Relying on this
fact, Roche and Prouff proposed SMC as multiparty circuit (MPC) to counteract higher-
order side-channel analyses, even in the presence of glitches, and showed how to apply it
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to AES [RP12]. Moradi et al. [MM13] provided a first implementation of this scheme in
hardware, as well as a practical side-channel analysis of their implementation. Similarly,
Grosso et al. [GSF14] examined the performance of existing masking schemes in software
for low-power microcontrollers. Both works concluded that the scheme comes with a
significant overhead, even when compared to other side-channel protection schemes. The
latter work proposed the usage of packed secret sharing to make the scheme more efficient
for higher protection orders. They expanded SMC into a (n, d)-multiparty circuit using
a sequence of sub-circuits.

Shamir’s Secret Sharing. The second masking scheme that we would like to focus
is polynomial masking which is based on based on Shamir’s secret sharing [Sha79].
This novel idea is employed by Roche and Prouff [RP11, RP12] and Goubin and
Martinelli [GM11] (which is shown to be flawed in [CPR13]) using secure multi-party
computations (SMC) defined by Ben-Or et al. [Ben88] and Gennaro et al. [GRR98].
The SMC proposed by Ben-Or et al. [Ben88] is both t-private and t-resilient, i.e. it
guarantees that some subset of t parties can neither learn nor modify results. Roche
and Prouff adopted the t-private property to achieve side-channel protection through
glitch-free SMC [RP11, RP12]. It is known that the t-resilient property can be used to
thwart fault attacks [RP12,GSF14].

The scheme was introduced by Shamir in 1979 [Sha79] and it allows players to split
a secret using a polynomial. In the protocol, the trusted dealer generates a random
polynomial, F (x) = x+ f1x + . . .+ fdxd to share a secret x ∈ K with coefficients fi ∈ K
for all 1 ≤ i ≤ d. Here, we use x as the secret and x as the variable of the function F .
The secret value is shared by evaluating F (x) for n+1 distinct and nonzero public points
(α0, . . . , αn). The shared representation of x is shown as Fx = {F (α0), . . . , F (αn)} =

{F0, . . . , Fn}. A visual representation of the scheme can be found in Fig. 2.2.

The secret reconstruction of polynomial masking requires polynomial interpolation and
requires at the shares of least d + 1 players. Without loss of generality let us assume
that the first d′ ≥ d+ 1 shares are combined to reconstruct the polynomial. Evaluating
the formula for x = 0 simply reveals the secret value x:

F (x) =
d′∑
j=1

= Pj(x), where Pj(x) = Fj

d′∏
k=1
k 6=j

x− αk

αj − αk
. (2.4)

Remark that, reconstruction with at least d+ 1 players generates a unique polynomial.
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Figure 2.2: A visual representation of polynomial masking where n = 5 and d =
2. Observe that any set of shares with ≤ 2 elements is distributed uniformly and
independently and in order to reconstruct the value x at least three shares need to
be combined.

Therefore, one can define the connection between the coefficients (C = (f1, . . . , fn))2

and the shares (S = (F0, . . . , Fn)) using the Vandermonde matrix (V ):
1 α0 α2

0 · · · αn
0

1 α1 α2
1 · · · αn

1
...

...
... . . . ...

1 αn α2
n · · · αn

n


︸ ︷︷ ︸

V

·


x

f1
...
fn


︸ ︷︷ ︸

C

=


F0

F1

...
Fn


︸ ︷︷ ︸

S

(2.5)

Using Eq. (2.5) we can formulate the connection as C = V −1S and can reconstruct all
coefficients of F (x). Observe that, V is invertible for αi 6= αj .
As in Boolean masking, the operations are needed to be adjusted to masked values. Let
x and y be two values and consider an (n, d)th-order masking scheme, i.e. x and y have
been split into (n + 1) shares {F0, . . . , Fn} and {G0, . . . , Gn} such that F (0) = x and
G(0) = y.

• Affine transformation of a secret (Affine): An affine transformation A(x) =

ax + b with a 6= 0 can be computed on the secret value by applying A to secret
shares locally:

FA(x) = {A(F0), . . . , A(Fn)}

• Addition of two secrets (Add): Two secret values x + y can be added by
pairwisely adding shares.

2Since F is a degree d polynomial fd+1 = fd+2 = · · · = fn = 0
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Fx+y = {(F0 +G0), . . . , (Fn +Gn)}

• Multiplication of two secrets (Mult): The multiplication of two secret values
xy requires communication between players. An efficient algorithm was proposed
by Gennaro et al. [GRR98], simplifying the original SMC multiplication proposed
by Ben-Or et al. [Ben88]:

1. Each player computes Hi = Fi ·Gi.

2. Each player generates a degree d polynomial Qi(x) such that Qi(0) = H(αi),
and sends the value Qi(αj) to jth player.

3. Each player computes its secret share by Qi =
∑n−1

j=0 λjQj,i where (λ0, λ1, . . . , λn)

corresponds to the first row of the inverse Vandermonde matrix.

The shares calculated in step 1 cannot be used as a valid secret sharing because of
two main problems: (1) the polynomial is a degree 2d polynomial. (2) It is not a
random polynomial [Ben88]. In step 2 and 3, degree reduction and randomization
are done in order to generate a proper (n, d)-secret sharing of xy.

• Efficient squaring operation (Sqrk): Efficient squaring operations can be used
to eliminate costly multiplications in GF(2m) [RP12]. Squaring can be defined as
ηk(y) = y2

k and requires two conditions on public points αi :

1. αi 6= 0 for i = 0, . . . , n.

2. For every αi there exists αj such that α2
i = αj .

Each player calculates the operation on its share locally by ηk(Fi). The family
of shares (ηk(Fi))i=0,...n is a valid secret share of x2

k . However, communication
between players is needed to do the reordering of the secret shares.

2.1.2 Probing attacks and Its Connection to Real-world Adversaries

Until now what we have assumed is an adversary observes a physical leakage defined as
noisy leakage model [CJRR99b]. This model assumes an intermediate variable x leaks
information as x+χ where χ sampled from a Gaussian distribution and adversary obtains
x + χ. In this section we introduce probing model by Ishai et al. [ISW03] a theoretical
model of probing adversaries i.e. a model where an adversary that can access a bounded
number of intermediate variables. We would like to give a better understanding of
probing attacks due to its importance in the analysis of masked implementations.
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Briefly, a probing adversary may invoke a cryptographic implementation multiple times
with chosen inputs. Before each call, the adversary can choose a set of up to t wires of
the circuit and observe the values on these wires during the invocation. After c calls, an
attacker can then combine the c×t observations in arbitrary ways to extract information
about sensitive variables. This model is closely related to concrete physical attacks: For
example, in [KGM+20], eight simultaneous probes are given as an upper limit achievable
by modern commercially-available probe stations, and we therefore assume that t is at
most sixteen. While the t-probing model is a clean theoretical model, Duc et al. [DDF19]
showed that security in this model implies security in the more practical SCA-inspired
noisy leakage model [PR13]. To protect against multi-probe attacks, generally higher-
order masking is applied, where the number of independent shares is increased. Higher-
order SCA is expensive, as the number of measurements needed grows exponentially with
the masking order, effectively limiting the attack order or the number of simultaneous
probes an adversary may use (which we assume is below sixteen). Kranchenfels et al.
[KGM+20] describe a new attack technique, laser logic state imaging, that can potentially
have an unlimited number of probes, however this attack is quite new and may not be
widely applicable, but in any case must be mitigated with countermeasures below the
software level (at the package, device or circuit level).
In this thesis, we use the noisy leakage model introduced by Chari et al. [CJRR99b]
and extended by Prouff and Rivain [PR13]. The model enables an adversary to obtain
each intermediate value perturbed with a noisy leakage function. Furthermore, as stated
above we use the connection between probing and the noisy leakage model given by Duc
et al. [DDF19]. Therefore a probing adversary reflects the capabilities of a real world
adversary such as DPA and security against probing adversaries as defined in [ISW03]
implies security in the noisy leakage model.
Note that a single probe will only provide a few key bits, but the attack scales linearly in
the key size. Side-channel countermeasures depend on the quality of the side-channel, its
signal-to-noise ratio. If the implementation is noisy or has weak side-channels, security
against t = 2 can be sufficient. Currently, protection against t = 4 probes is often an
upper bound on security in practical systems [Nik20].

2.1.3 Security Notions

In the previous section we focused on some secure solutions in the literature. One of the
main challenges of proposing such a construction is using the proper security notion. In
this section we focus on the formal security notions used in the literature.
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The ISW Probing Model. Ishai et al. [ISW03] introduced how to build secure circuits
against an adversary that can probe a portion of intermediate variables of the circuit.
The most basic security notion for a masking countermeasure is the t-privacy of a
gadget G [ISW03]. Remark that, in the setting of the probing model an adversary
may invoke the (randomized) construction multiple times and adaptively choose the
inputs. Prior to each invocation, the adversary may fix an arbitrary set of t wires of the
circuit values which can be observed during that invocation.
The notion requires the existence of a simulator [ISW03]. The simulator attempts to
simulate the view of the adversary using only black-box access (i.e., without having access
to any internal wires) to the masked. The presence of a simulator (or simulatability)
implies that t probes are indeed independent of the processed data and therefore t probes
will not provide any information to the adversary.
Informally, this means that the information provided by t probes of outputs or
intermediate variables can also be obtained by probing t input variables, as long as
the inputs are an encoding of x.
While the idea behind the notion is relatively simple, it is unfortunately not composable
as the output of a t-private gadget is not necessarily a truly uniform encoding. The
composition of two t-private gadgets is thus not necessarily t-private [BBD+15a].

Example 2.1. Assume that we have two secret (x, y) shares as (x0, x1) and (y0, y1) such
that x = x0 ⊕ x1 and y = y0 ⊕ y1. Let’s consider the following gadget;

G((x0, x1), (y0, y1)) = (x0 ⊕ y1, x1 ⊕ y0) = (z0, z1).

Clearly a single probe (a single variable) can be simulatable by at most one share of each
input sets e.g. zi can be simulatable by xi and yi+1. Now consider the following copy
gadget an a secret a shared as (a0, a1) such that a = a0 ⊕ a1;

C(a0, a1) = ((a0, a1)(a0, a1)).

Again, a single variable can be simulatable by a share of input set. Now lets consider the
composition G ◦ C:

G[C(a0, a1)] = G[(a0, a1), (a0, a1)] = (a0 ⊕ a1, a1 ⊕ a0) = (z0, z1).

Clearly this composition is not secure anymore, since e.g. z0 can only be simulatable
using both shares a0 and a1.
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Non-interference. In order to remove the requirement that the inputs have a certain
distribution, the notion of non-interference was introduced [BBD+16]. Non-interference
gets rid of the dependency of the uniformly encoded inputs, but a more subtle issue
still prevents a composability result. To give an intuitive overview of this problem,
consider a gadget G with two shared-sensitive inputs (x0, x1, . . . , xn) and (y0, y1, . . . , yn)

and output a shared-sensitive output (z0, z1, . . . , zn). Non-interference now implies that
for any Iy ( [n], the values {zi}i∈Iz can be simulated from {xi}i∈Ix and from {yi}i∈Iy for
two sets Ix, Iy of cardinality at most |Iz|. Now, if G is used in another circuit, it might be
the case that x and y are correlated (or even identical). Then {xi}i∈Ix ∪ {yi}i∈Iy might
reveal information about x. See e.g., [BBD+16] for a more detailed explanation. Hence,
an even stronger notion, called strong non-interference was introduced [BBD+16], that
guarantees a clear separation between input variables and output variables.
In the following, perfectly simulatable means that there is a probabilistic algorithm that
on input x|I generates t intermediate variables and |O| output variables with the same
probability distribution as the gadget.

Definition 2.1 (t-NI, t-SNI). Let G be a gadget with inputs in Fn+1 and t ≤ n.
Suppose that for any set of t1 intermediate variables and any subset of O of output indices
with t1 + |O| ≤ t, there exists a subset of indices I such that the output distribution of
the t1 intermediate variables and the output variables z|O is perfectly simulatable from
I. Then

(i) if |I| ≤ t1 + |O| we say G is t-non-interfering (t-NI), and

(ii) if |I| ≤ t1 we say G is t-strong-non-interfering (t-SNI).

Note that linear operations which can be performed share-wise (such as addition or
multiplication by a constant) are trivially t-NI, as each computation on share i can be
simulated from the input share xi.
Note that in SNI the size of the input set I depends only on the intermediate variables.
For a given set Int of t1 intermediate variables and a subset O of output indices with
t1 + |O| ≤ t, we say that the output variables O′ ⊆ O that are simulatable without
any knowledge about I are (Int, O, t)-input-ignorant. Hence, if no intermediate variable
was probed, the output of the circuit is independent of its input (from observing at
at most t positions) and thus all subsets of at most t outputs are input-ignorant. We
will occasionally talk about the concrete distribution of these input-ignorant variables.
If all (Int, O, t)-input-ignorant output variables of a t-SNI gadget G are distributed
according to a distribution D, we say that G is t-strong-non-interfering (t-SNI) with
output-distribution D.
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2.1 Side-channel Analysis

Finally, the SNI notion guarantees that the composition of two t-SNI gadgets is t-
SNI again. For the sake of completeness, we repeat the corresponding proposition
from [BBD+16].

Lemma 2.1 (Proposition 4 [BBD+16]). Let C be a circuit built from gadgets
G1, . . . , Gr such that all Gi are t-NI, all encodings are used at most once as input
of a gadget call other than RefreshM. Then C is t-NI. Moreover, C is t-SNI if it is
t-NI and all encodings corresponding to the outputs of C are refreshed through RefreshM
before output.

The commonly used term probing-security can either mean privacy [BBC+19] or non-
interference [CGPZ16]. Classically, the non-interference notions only deal with gadgets
where all of the inputs and outputs are sensitive. To also handle public, non-sensitive
values, the notion of NI with public output (t-NIo) was proposed in [BBE+18]. As
mentioned in [BBE+18, Lemma 1], if a gadget G is t-NI secure it is also t-NIo secure for
any public outputs.
The notion of t-SNI security is known to provide scalable protection against a broad class
of side-channel attacks up to t-th order under few additional assumptions [DDF14], where
the needed number of observations grows exponentially in t. It has been widely adopted
e.g. for automation of applying and checking side-channel resistance in hardware and
software designs [BBC+19] and can be viewed as a reliable and fairly efficient method
to achieve a desired degree of side-channel resistance. Similarly, SNI can also be used to
ensure and verify protection of hardware circuits, where special care needs to be taken
to account for glitches, either by extending the model or by carefully placing registers
to interrupt unintended asynchronous propagation of signals [FGP+18].
Masking schemes are commonly used to protect against SCA, such as the ones achieving
SNI security, are also MPC protocols. In the case of masking, the parties are just different
parts of the same circuit (one might call it MPC-in-the-circuit), forcing an attacker to
consider more than t parts of the circuit in parallel to infer about secret intermediate
values.

Formal Verification. The verification of such masked implementations is a manual
and error-prone task. The tool assisted formal verification has been adopted by the
academia and industry. The most famous tool is maskVerif developed by Barthe et
al. [BBC+19]. The tool is language-based and provides an automatic and formal security
verification of higher-order masking implementations based on the various notions such
as NI, SNI and probing. NI and SNI notions. Briefly speaking, it checks every possible
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attack combination within the implementation and either provides a security proof for
the specified order or gives a list of potential attack targets in the implementation.
The bottleneck of the tool is the order of the masking and the complexity of the
implementation. It has been used in the literature to provide assurance of masked
implementations [BBD+15b,GSDM+19,SEL21].
Another work by Bloem et al. [BGI+18] provide a formal verification using the circuit’s
netlist. This approach results in the direct localization of the vulnerabilities and provides
concrete security assessment. More recent works such as SILVER [KSM20] uses symbolic
and exhaustive analysis of statistical independence of joint distributions between every
set of probes and every subset of input shares. This tool is used to analyze the tools
that generated masked implementations [KMMS21].

2.1.4 Leakage Assessment

Main aim of the assessment is to provide a quantitative and statistically sound answer
to the question if a cryptographic implementation is vulnerable to physical attacks or
not. Remark that it is infeasible to test and verify security against all possible attack
vectors. Therefore leakage assessment focuses on a specific question; are side-channel
information corresponding to a cryptographic device data dependent or not. If the
device fails the test, i.e if the device shows data dependent behavior, we cannot conclude
the actual vulnerability with respect to key recovery attacks. But this result proves
the existence of such a vulnerability. On the other hand if the device pass the test,
the assessment experimentally provides a desired security level with a confidence level.
These analysis methods are extensively used in academia and industry. One example is
test vector leakage assessment (TVLA) by Goodwill et al. [GGJR+11], which is based
on Welch’s t-test. Another version employs χ2-test as the statistical tool [MRSS18].
More recent works shows that deep-learning techniques can improve the efficiency of the
analysis [MWM21].
In this thesis we employ TVLA by Goodwill et al. [GGJR+11]. The analysis detects
leakage at a given order and has two different versions: the non-specific and the specific
method. The first version is defined as Fixed-vs-Random (FvR) and it aims to detect
all possible sources of first-order leakage. During the trace collection phase, a set of
side-channel traces is collected by processing either a fixed input or a random input
under the same conditions. An example image of the collection phase can be found in
Table 2.1.
If the t-test only gives a very small value, this indicates that the run of the algorithm on
a fixed input is indistinguishable from a run of the algorithm on a random input. Hence,
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plaintext ciphertext
000 00000000000000000000000000000000 → 7DF76B0C1AB899B33E42F047B91B546F
001 99DB065D7FE92B34FE7FB00A799F370C → 3FB07D4DABF39BD297CFFE0977B0F17C
002 28BE3BB98D2D8807C6421B05B04F7F2C → A2109EFD661C7084960925A6865CFBF7
003 00000000000000000000000000000000 → 7DF76B0C1AB899B33E42F047B91B546F
004 00000000000000000000000000000000 → 7DF76B0C1AB899B33E42F047B91B546F
005 0AF4EE9B536C77DFFD435C355F8F51A0 → FF22FB6E4FC14452CF0B094E7575D4F3
006 00000000000000000000000000000000 → 7DF76B0C1AB899B33E42F047B91B546F
007 11F416B019A6767F32106CE446F6937A → C3F574B6BA665E42A04EA505C8F71458
008 00000000000000000000000000000000 → 7DF76B0C1AB899B33E42F047B91B546F
009 961E6187F93AEAC55660C99C0E5F998E → 8B9A136A74D167760F7CD93076129117
010 DF1CE29BE0FF201D727613494026A3E6 → 25D77EC44F76B39560CA12D634CEC522

...
...

...
...

Table 2.1: A visual representation of the collection phase. The device is set to process
fixed input or a random input in a random patter.

a small value in the fixed-vs-random scenario implies the absence of sensitive leakage.
The test assumes no other information and it can be used to detect leakage through the
entire algorithm.
The second test is defined as Random-vs-Random (RvR), and employs only traces with
a random input, and uses a function of inputs to sort the traces. The main advantage of
the RvR method is that it can identify specific sources of exploitable leakage and thus
shows the feasibility of an actual attack.
After collecting and sorting the traces, the means (µ0, µ1) and standard deviations (σ0,
σ1) for the two sets are calculated. Welch’s t-test is computed as;

t =
µ0 − µ1√

(σ2
0/n0) + (σ2

1/n1)
, (2.6)

where n0 and n1 denote the number of traces for the sets, respectively. Remark that the
value t is defined as the t-value in the statistics and different from t-probes. The t-test
indicates whether the two distributions are indistinguishable for a first-order side-channel
analysis.
The threshold value for t value is determined as for general purposes 4.5 [SM15] in the
literature. For more specific targets (depending on the length of the traces) different
threshold values are suggested by [DZD+18]. For specific targets we use the value 5.7

for traces of length more than 104, and the value 6.1 for traces of length more than 106.
This threshold rejects the null-hypothesis of non-leakage with > 99.99% probability.
Observe that Eq. (2.6) analyze the indistinguishably of the means of traces corresponding
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the first-order side-channel attacks. Using the similar idea one can define higher-order t-
test can be defined analyzing the other moments of the distribution of the sample points
corresponding higher-order t-tests such as variance and skewness [SM15].
Moreover, one can employ multivariate t-test to analyze the masked implementation. A
multivariate t-test combines multiple points in the trace thus catches the shares processed
at the different instances. De Cnudde et al. [CBR+15] uses this method to analyse the
higher-order masked AES S-box implementation and show that even any combination
of two sample points leaks no information.

2.2 Fault Attacks

Next, we focus on active attacks or Fault Attacks (FA). Unlike the side-channel
attacks where the adversary can only observe the side-channels, this type of attack is
implemented by an adversary who can interact and/or manipulate the implementation
and can observe unexpected behaviors such as faulty outputs, abort signal etc. [BDL97].
The faults can be injected e.g. by overheating, under/over-powering or optical beams.
These unexpected behaviors cause a faulty computation which results in information
related with the secret key. Prominent examples are on RSA [BDL97] and AES [Muk09]
where single faulty ciphertext to successfully recover the secret key.
Before delving into some fault attack examples, we introduce the different fault models in
the literature. The models range from bit level faults to data path faults or control flow
faults. Briefly, bit level faults can be summarized as reset (change a wire value to zero),
set (change a wire value to one) or toggle (flipping the wire value) attacks [IPSW06].
More general faults, such as data path targeted faults can be classified according to the
distribution of the injected faults. An attacker can sample the injected faults from a
uniform distribution or from a biased distribution, where one set of faults is significantly
more probable then the set or remaining faults [SMG16]. Moreover, an extreme case of
this idea is used by Reparaz et al. [RMB+17] and it gives the attacker full control of
the faults and is known as known-value faults. Depending on the security models, the
distribution of the faults is combined with the number of injections or number of wires
to inject the fault. For example, known-value faults can be used with limited number
of wires to inject the faults or a uniform fault model can be used to injects faults
to all wires [RMB+17]. A fault model is an important part of the attack description
and it summarizes what does it to mean by manipulating the implementation. It is a
mathematical description of the characteristic of the injected fault which includes the
mathematical representation, duration etc. In the following, we list the most common
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aspects of a fault model as introduced in [KSV13].

• Number of faulted bits is the first characteristics we need to define the fault
model. This can be single bit faults, word-size faults and variable size faults.

• Fault Type defines the mathematical effect of the fault on the implementation.
Stuck-at-zero/one (fixing value of a bit to zero or one resp.) and bit flip (toggling
the value of the bit) are three most used bit level faults. For the larger size faults
in addition to stuck-at and flip faults, random faults (adding a random value with
a given distribution) can also be defined.

• Fault Duration impacts the lifespan of a fault and there exists three categories:
transient, permanent and destructive. While the transient faults last only a
limited time and after a certain duration the correct value is presented again. The
permanent faults last until the value is rewritten. Finally, the destructive faults
lasts indefinitely by damaging the physical layer of an implementation. Stuck-at
faults can be listed as an example for this type of fault attacks.

• The last item is the Controllability over the Fault Timing. These can be
divided into two sub-classes as spatial and temporal fault control. This defines the
adversaries’s control over the timing and the place over the fault point.

The most remarkable fault attacks in the literature are Differential Fault Analysis
(DFA) [BS97], Safe-Error Attack (SEA) [YJ00], Fault Sensitivity Analysis (FSA) [LSG+10],
and Statistical Ineffective Fault Attack (SIFA) [DEK+18].

Differential Fault Analysis. During DFA an adversary injects a fault which changes a
variable inside the algorithm E, ideally close to the end of the encryption and collects
the correct and faulty ciphertext corresponding to the same plaintext i.e. pairs (p, c)

and (p, c′):

E
Ek(p) = c and Ek(p) = c′.

Using this pair and a key guess, an adversary can compute the partial decryption until
the point where the fault is injected and check if the effect of the fault injection is correct
or not.

33



2 Introduction to Physical Embedded Security

Safe-Error Attack. This fault attack uses the fact that a fault has no effect on the
output if the key bit has a specific value. Unlike DFA, this attack only concerns if the
non-faulted output is equal to the faulted output. If an adversary inject a stuck-at-zero
fault to a key bit and if there is no difference in the behavior of the device e.g. the output
is correct then the value of the targeted key bit is revealed. Therefore, this attack can
eliminate countermeasures that ensure the correctness of the output. Using this idea the
adversary can proceed with the same methodology.

Fault Sensitivity Analysis. As in DFA this attack requires an adversary to collect
faulty and non-faulty ciphertext pairs, however the value of the faulted ciphertext is not
important. The core idea is that by increasing the intensity of the fault (e.g by disturbs
the power supply or manipulating clock) one can find the distinguishable characteristic,
e.g. the first appearance of a faulty output.

2.2.1 Countermeasures

A common technique to prevent fault induction is error detection through adding
redundancy. Often, error detection requires the duplication of computation in space or
time [BECN+06], especially for symmetric ciphers, to achieve the desired error detection
ratio. For asymmetric ciphers, lower overheads are often possible [Sha99,Gir06]. Another
technique proposed by Genkin et al. [GIP+14] uses algebraic manipulation detection
(AMD) codes to protect sensitive variables. The idea is to compute a proof that the
output is correct. However, this approach requires generating a MAC tag for each
gate. Other branches of fault prevention are infective countermeasures, which aim at
randomizing the secret state if an error occurs. Lomné et al. [LRT12] introduced an
infective countermeasure using multiplicative random masking. Gierlichs et al. [GST12]
presented the idea of dummy rounds. However, these countermeasures were broken
by Bastellini et al. [BG13]. The second scheme was improved by Tupsamudre et
al. [TBM14]. The updated scheme has been analyzed in [BG16], showing that getting
the countermeasure right and efficient is difficult. The countermeasures are classified as
follows:

• Redundant Operations: this is the simplest and naive way of providing a
countermeasure. The redundancy can be supplied to the implementation in two
ways: spatial and temporal. In the first one the circuit is repeated using the same
circuit (redundancy in time) or using the same circuit in parallel (redundancy in
space). As a result, if the implementation is repeated k times, a total of k − 1
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faults can be detected just by comparing the outputs [KW02]. On the other, hand
in the temporal redundancy the implementation is protected by error correction
and/or detection codes on intermediate values [KKT04].

• Infective Countermeasures: As described in the previous sections, the essence
of the fault attacks relies on interpretation of the faulty outputs. The infective
countermeasure aim at this connection and randomize the connection between
faults and corresponding outputs. When a fault is injected, the implementation
does not try to detect but propagate the faults and randomize the output [LRT12].

• Sensors and Shields: The main idea of this type of countermeasure is to reduce
the efficiency of the fault attacks or preventing the attacks completely [SA02]. In
case of a detection an abort signal is created to prevent the output to be produced.

2.2.2 Security Notions

As given in Section 2.1.3, the security notions for side-channel analysis is a well-
defined and already explored area. Recent years also gave us the information-theoretic
foundations against fault attacks. The notions are inspired from non-interference and
defined as k-Non-Accumulative (k-NA) and k-Strong Non-Accumulative k-SNA.

Definition 2.2 (k-NA, k-SNA [DN20]). Let G be a gadget and suppose there exists
k1 errors on each input and k2 errors on the intermediate variables, with k1 + k2 ≤ k.

(i) if the gadget either aborts or gives an output with at most k1 + k2 errors, we say
G is t-non-accumulative (k-NA), and

(ii) if the gadget either aborts or gives an output with at most k2 errors, we say G is
t-strong non-accumulative (k-SNA).

The main idea of this notion accumulation is to show that an injected fault affects only
one of the output share of the gadget. Therefore it is ensured that faults does not spread
and accumulate on a limited number of shares which allows error detection mechanisms
to to detect faults. The number of faults k is defined as the maximum number of circuit
wires that can be faulted and still return the correct output. However the composability
needs to be considered in this case. An adversary can always inject faults on output,
therefore the notion cannot guarantee that all the outputs are correct. Therefore, the
notion deals with faults on inputs shares or intermediate values such that the fault spread
to other share. This case is dealt with the abort mechanisms within the gadget. Thus
the notion requires the error detecting methods and provides a composability result as
in NI and SNI.
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Formal Verification. Despite the importance of the fault attacks, there was a gap
between fault detection and formal verification. The tool by [AWMN20] provides the
analysis tool of an implementation of fault-injection countermeasures at the gate level,
called VerFI. The tool can be seen as a fault simulator and provide an vulnerability
assessment for the design. The tool checks if a fault model is detectable or not with a
given set of inputs (selected by the user). Therefore it does not provide a complete proof
of security but an analysis of the fault detection capabilities of the implementation.
A recent work by Richter-Brockmann et al. [RSS+21] introduces the tool FIVER: a
formal verification approach for fault attacks that provides a security proof. The case
studies show that the tool provide an efficient way of security evaluation depending on
the number of gates in the design.

2.3 Combined Attacks

As the attacks become more and more apparent, combined attacks becomes a real threat.
They can be defined as a combination of certain side-channel model and a fault model
independently. As shown in [AVFM07] a passive and active combined attacks (PACA)
is a real threat and can be implemented efficiently.
To achieve both fault and side-channel resistance, two countermeasures can be combined.
However, while the interactions between the countermeasures have not been studied in
much depth, combining ad-hoc methods can have adverse effects [REB+08, LFZD14].
Furthermore, overheads are huge and become larger for combined methods. Nevertheless,
resistance against both attacks is important, since attacks can be combined to have
greater effects on partially protected implementations [RLK11, LRT12]. So far, the
amount of research in this area is scarce. Ishai et al. extended private circuits [ISW03]
by adding redundancy via encodings [IPSW06]. Therefore, they were able to generate a
circuit which resists both SCA and tampering attacks. Depending on the fault model,
they defined two different encodings. Therefore they managed to detect faults by means
of invalid encodings. Schneider et al. [SMG16] proposed a combined side-channel and
fault countermeasure using TI and error detecting codes [MS77]. While their proposal is
fairly efficient, the fault coverage depends on the fault distribution. The scheme does not
by itself ensure the randomness of the output. The SCA resistance of scheme relies on
security of a TI. Another countermeasure was introduced by De Cnudde et al. [DCN16]
which enhanced [IPSW06] with TI. The idea is the same which forwards the valid inputs
unless a faulty encoding is detected. A recent countermeasure introduced by Reparaz et
al. [RMB+17] builds on doing computations on shared values and MAC tags. The side-
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channel resistance of the scheme relies on the secret sharing while fault resistance of the
scheme relies on the MAC-tag shares. Using a similar idea De Meyer et al. [MAN+19]
combined masking with information-theoretic MAC tags and infective computation.

2.3.1 Security Notions

As a natural approach the Section 2.1.3 and Section 2.2.2 can be combined to generate
a security notion for combined security. To things are needed to be full filled in the
combination case: the correctness of the output (concerning injected faults) and the
privacy of the gadgets (the combination of injected faults and probed variables.)
The main idea is to seen faulted values as a probing tool. As given by [Cla07], fault
attacks can be considered as a probing tool. Therefore the faulted values give an extra
share to the simulator. Moreover the notion requires an abort signal to guarantee the
correctness of the output. Remark that this signal should be simulated by the simulator.
The following notion captures the security notion for d-probes and k-faults in such a way
that d′ probes and k′ faults can be combined with d′ + k′ ≤ d and k′ ≤ k. Moreover it
provides composability.

Definition 2.3 ((d, k)-NINA, (d, k)-SNINA [DN20]). Let G be a gadget and
suppose there exists k1 errors on each input, k2 errors on the intermediate variables,
with k1 + k2 ≤ k and there exists d1 intermediate probes, d2 output probes such that
d1 + d2 + k1 + k2 ≤ d,

(i) if the gadget either aborts or gives an output with at most k1+k2 errors and probes
can be simulated by an input set of shares I such that |I| ≤ d1 + d2 + k1 + k2, we
say G is t-non-interfering non-accumulative (k-NINA),

(ii) if the gadget either aborts or gives an output with at most k2 errors and and probes
can be simulated by an input set of shares I such that |I| ≤ d1 + k1 + k2, we say
G is t-strong non-interfering non-accumulative (k-SNINA).

As given above the faults and probes act as same. In the next notion the adversary
does not learn anything by faulting the gadget i.e. the simulator does not get additional
shares by injecting a fault.

Definition 2.4 ((d, k)-ININA, (d, k)-SININA [DN20]). Let G be a gadget and
suppose there exists k1 errors on each input and every set of k2 errors on the intermediate
variables, with k1+k2 ≤ k and there exists d1 intermediate probes and d2 output probes
such that d1 + d2 ≤ d,
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(i) if the gadget either aborts or gives an output with at most k1+k2 errors and probes
can be simulated by an input set of shares I such that |I| ≤ d1 + d2 + k1 + k2, we
say G is t-Independent non-interfering non-accumulative (k-ININA),

(ii) if the gadget either aborts or gives an output with at most k2 errors and and probes
can be simulated by an input set of shares I such that |I| ≤ d1 + k1 + k2, we say
G is t-strong independent non-interfering non-accumulative (k-SININA).

2.4 Physical Attacks on White-box Designs

Cryptanalysis of WBCs usually requires a time-consuming reverse engineering step
to surpass included obfuscation layers [GPRW19]. To overcome this, Differential
Computation Analysis (DCA) or in short computational analysis of white-box cryptosystems
has been proposed by Bos et al. [BHMT16]. The attack is inspired by physical
gray-box attacks, mainly side-channel attacks and perform a statistical analysis of
observable intermediate states of a cryptographic implementation. Following this work,
further generic computational analysis techniques have been proposed for white-box
implementations, such as Zero Difference Enumeration [BBIJ17], Collision Attacks,
and Mutual Information Analysis [RW19]. Alpirez-Bock et al. [BBMT18] analyzed the
ineffectiveness of internal encodings and explained why DCA works so well in the white-
box setting. Even fault attacks [BDL97,BECN+06] have been shown to be an effective
method for state and key recovery attacks on white-box implementations [BHMT16,
BBB+19]. Biryukov et al. [BU18] introduced two new types of fault attacks to reveal the
structure of a white-box implementation, an important step of overcoming obfuscation
in WBC.
Let’s deep dive into DCA, as it is regarded as one of the most efficient attacks against
white-box implementations, since it does not require full knowledge of the white-box
design and thus avoids the time-consuming reverse engineering process [BHMT16]. It
utilizes internal states of the software execution (such as memory accesses) to generate
software traces. The first step of DCA consists of collecting software traces consisting of
memory addresses, intermediate values, or values written/read by the implementation
and this step corresponds to only distinction between DCA and DPA/CPA. The second
step consists of a statistical analysis of the software traces collected during the first step
i.e. difference of means or Pearson’s correlation as outlined in Fig. 2.1
The second most important attacks on WBC is the Algebraic attack which has been
introduced during the WhibOx contest of Ches 2017 [TWC17]. Although the majority
of the implementations in the contest were broken in less than one day, even the strongest
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design (by means of the surviving time: 28 days) was broken by algebraic analysis [BU18,
GPRW19]. Algebraic attacks try to find a set of circuit nodes whose linear (or higher)
order of combination equals to a predictable vector. Observe that if an implementation
is protected by a classical masking scheme (Eq. (2.3)), there exists a set of circuit nodes
(corresponding to the secret shares) such that a linear combination (i.e. a first-order
combination) is always equal to a predictable secret value. This means that classical
masking schemes are inherently vulnerable to first-order algebraic attacks independently
of the masking order [BU18,GPRW19]. Like computational attacks, algebraic attacks do
not require complex reverse engineering and are thus a generic threat that any white-box
implementation needs to address.

2.4.1 Masking on White-box Designs and Its Challenges

In order to counteract DCA, the natural approach is to apply masking. The dedicated
masked white-box implementations have been introduced in the literature. As an
example for this methodology, consider the dedicated masked white-box implementation
introduced in [LKK18] which was broken in [RW19]. Classical masking schemes are
also not sufficient to procure a secure implementation as the strength of the masking is
related to the noise within the implementation and a DCA adversary can produce noise
free software traces [BRVW19].
Remark that the security of masking schemes against SCA require noisy observations [CJRR99a].
Higher order variants of DCA have been shown to be effective when applied to masked
white-box implementations due to the adversary’s ability to observe shares without
noise [BRVW19]. To deal with this problem, artificial noise sources such as control flow
obfuscation [BBIJ17], shuffling [BRVW19], and input and output encodings [BBMT18]
have been analyzed in the literature. The artificial noise introduced by these methods
increases the complexity of computational attacks dramatically. It has been shown
in [BRVW19] that the complexity of attacks increases with the order of the masking
and the order of the obfuscation layers. Therefore, the gray-box adversarial model is a
valid approach to analyze the security of masking schemes of white-box implementations
against computational attacks. Due to the artificial noise sources, it becomes infeasible
for an attacker to combine the required number of shares to recover the sensitive
information.
Furthermore, algebraic attacks are able to break masked WBC independently of the
masking orders if the masking is linear as in Eq. (2.3). Thus, all current masking
proposals resisting DCA are vulnerable to algebraic attacks. Only the scheme defined
by [BU18] resists first-order algebraic attacks due to its non-linear structure, but as we
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will show, does not resist computational attacks.
Another challenge for the secure constructions is the source of randomness source.
Masking schemes rely on the availability of good randomness, which is usually provided
by secure RNGs, e.g. in the form of a secure and efficient Pseudorandom Generator [IKL+13,
CGZ19]. Similarly, randomness generation for white-box implementations has been
analyzed in the literature. Due to the adversarial ability to control the execution
environment in the white-box model, the attacker can simply disable any external
randomness sources. Therefore, white-box implementations have to rely on internal
randomness sources in combination with additional obfuscation countermeasures [BBIJ17,
BU18,BRVW19].
The effectiveness of computational attacks comes from its universality and its ability
to avoid reverse-engineering, which can be extremely costly [GPRW19]. By combining
masking with an obfuscation layer, the adversary is thus again forced to do a time-
consuming reverse engineering step to bypass the obfuscation, while the masking prevents
obfuscation-oblivious attacks.
Throughout this thesis we assume a reliable randomness source is provided as part of the
implementation, in other words, randomness can be provided via pseudorandom values
derived from the input and protected by obfuscation layers, as done in [BBIJ17, BU18,
RW19]. Therefore, the attacks on randomness sources and the adversaries’ ability to
disable randomness are out-of-scope in this work. For a full white-box implementation,
other techniques (fault protection, randomness generation, obscurity layers) need to be
added [BU18,BRVW19] in addition to a secure masking scheme.
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3.1 Motivation

This chapter examines the fault-resistance of the glitch-free secure multiparty circuits
proposed by Roche and Prouff [RP11, RP12] and proposes a new combined protection
scheme for both side-channel and fault attacks with its security proof in the ISW probing
model [ISW03].
We start with analyzing the fault behavior of the operations, namely affine transformation,
squaring of a secret share, addition of two secret shares, and multiplication of two
secret shares. It is shown that, while most parts of the glitch-free Secure Multi-party
Computation (SMC) can be naturally extended to detect faults, the multiplication
operation makes faults undetectable and the circuits become vulnerable to fault attacks.
We propose a new multiplication circuit that properly maintains fault information and
thus allows for the composition of glitch-free fault-detecting SMCs in which errors are
propagated by the algebraic operations. Thus, the fault information will be detectable
until the end of the circuit. Therefore, we eliminate the cost of fault detection. We
introduce a new recombination operation which randomizes the output, if an error
occurred anywhere in the circuit, ensuring that the attacker cannot learn anything from
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the output.
We are able to construct arbitrary fault-resistant circuits using the basic arithmetic
operations and a new recombination-fault detection operations. As a result, the attacker
gets random outputs at the end of the cryptographic operations. Our scheme differs from
previous proposals, as it does not have the same requirement of n ≥ 3d + 1 to detect
d cheaters in an (n, d)-secret sharing scheme. Instead, our scheme can detect up to ε

errors, where n > 2d + ε with very high probability. In fact, the detection probability
is 1 after the first operation on faulty shares, but can slightly decrease, depending on
the number of subsequent additions and multiplications. Even in the worst case, if only
one of the inputs of the operations is faulty, the faulty output can always be detectable.
Moreover, we provide a secrecy-preserving fault detection operation to increase the fault
detection capabilities of the users as an option. This operation provides a trade-off
between performance and security. It can be used securely (i.e., without leaking sensitive
information) and therefore, perfect fault detection can be achieved.
To be able to prove the security against probing attacks, we follow the t-SNI security
notions and give the formal proof of our schemes. First, we reformulate the t-SNI
security notions to cover arbitrary (n, d)-secret sharing schemes. Then, we show
that each operation defined in this work satisfies t-probing security. Since, the new
multiplication scheme is an extension of the one used in [RP12], the first formal security
proof of the multiplication scheme [RP12] is provided within this work. Moreover, we
introduce a refresh masking operation for polynomial masking to construct complete
t-SNI algorithms.
To analyze the fault detection properties of our scheme we use Coverage [SMG16] and
define a new security notion Propagation, which states the probability of detecting
faults using output shares if the input shares are faulty. We give a theoretical analysis
of the proposed scheme using the new security notion. Moreover, we examine the fault
resistance of the scheme by a simulation written in SAGE.
Implementation and leakage analysis of the original scheme was performed in hardware [MM13]
and Grosso et al. [GSF14] analyze its performance with several methods for speeding up
polynomial masking. To the best of our knowledge, however, there are no software
implementations of the scheme tested under a comprehensive leakage assessment.
Thus, we propose a practical C implementation tested on a popular ultra-low power
architecture, the ARM Cortex M0+ core. Our analysis goes beyond the implementation
itself by demonstrating its level of side-channel resistance and measuring its performance.
The implementation provides multiple masking schemes easily portable to higher orders.
However, by precomputing and inserting different public shares and corresponding
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Vandermonde matrices in the code, other orders of masking can be employed without
modification of the operations and functions. To show the side-channel resistance of our
implementation, we address a full leakage analysis including higher order moments on
the SMC multiplication. High assurance of the mask quality is ensured through utilizing
a built-in true random number generator available on the MCU. These tests enable us
to see the relation between processed sensitive variables and side-channel leakage, the
results show how they are statistically independent.

The code has also more advanced constant-time features: we present different types of
field multiplication, some of which rely on input-dependent table accesses and thus give
better performance. However, we also present true constant-time multiplication, which
is slower, but is constant-time even on systems featuring caches. All of these schemes
execute in constant time regardless of the selected version of field operations. To that
end, the code features a fully constant execution flow with constant memory accesses
and is available as open source.

https://github.com/vernamlab/Robust-AES

Notation. In the protocol, the trusted dealer generates a random polynomial, F (x) =
x + f1x + . . . + fdxd to share a secret x. The secret value is shared by evaluating F (x)
for n distinct and nonzero public points (α0, . . . , αn−1).1 The shared representation of x
is shown as Fx = (F (α0), . . . , F (αn−1)) = (F0, . . . , Fn−1) and throughout the work, we
denote them as secret shares or secret states. As seen in the Eq. (2.5) in a valid secret
sharing scheme fd+1 = . . . = fn−1 = 0. This fact is used in the following sections to
detect faults.

We denote the secret values as x and y from a fixed finite field F and the nonzero public
points as (α0, . . . , αn−1). To generate corresponding (n, d)-secret sharing schemes, the
trusted dealer generates two random polynomials F (x) = x⊕ f1x⊕ . . .⊕ fdxd ∈ F[x] and
G(x) = y⊕g1x⊕ . . .⊕gdxd ∈ F[x]. Therefore, the sets (F0, . . . , Fn−1) and (G0, . . . , Gn−1)

represent the sets of the secret states of x and y respectively. Moreover, a valid secret
sharing means when we perform a polynomial interpolation to the set (F0, . . . , Fn−1),
the deg(F (x)) will be less then or equal to d. Similarly, an invalid secret sharing means
deg(F (x)) > d.

1In this chapter we adapt the SMC literature and denote a secret sharing with n player.
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3.2 SMC as a Fault Injection Countermeasure

In this section, we describe our fault model and extend the description of Shamir’s Secret
Sharing as outlined in Section 2.1.1
In our model, we address data targeted faults on the secret state only. As studied in
most of the works, fault injections on the control flow are excluded from the model and
need to be prevented by other means. The attack model is similar to known-value faults
defined in [RMB+17] or the extreme case of a biased fault model in [SMG16]. It can be
described as blindly-chosen, non-adaptive, and additive faults. That is, the attacker can
pre-calculate a set of faults and induce single or multiple faults from this set to the secret
states. The attacker can target any instance of the operation, can choose the specific
elements from the secret states, and can inject multiple faults in one clock cycle. More
precisely, the logical effect of a fault σ to a share Fi will be Fi ⊕ σ and the faulty state
denoted by F ′

i . Therefore, the additive fault model describes a wide class of errors that
can be observed in practice, such as flipping one bit of Fi. Using this model, we eliminate
cases like limitation of Hamming weight or selecting faults from a distribution. Faults on
randomness are also allowed due to the additive fault property: Adding a blindly-chosen
fault to an unknown random value results in an unknown random value.
Since the computations continue with the faulty state F ′

i , the degree of the polynomial
generated by the faulty state (denoted by F ′(x)) is greater than d with a high probability,
so we can detect the faults by checking the degree of the secret sharing polynomial.
Therefore the effect of multiple fault injections in one clock cycle will be the same in our
analysis. The advantage of the additive model is that we can clearly define the relation
between the secret state and the secret sharing polynomial using the Vandermonde
representation. To examine this relation, we use the matrix representation of Eq. (2.5)
as in Section 2.1.1: V −1S = C.

V −1 ·



F0

...
Fi−1

Fi

...
Fn−1


︸ ︷︷ ︸

Secret states.

=



x
...
fd

0
...
0


︸ ︷︷ ︸

The coefficients
of F (x).

Fault Injection−−−−−−−−−→ V −1 ·



F0

...
Fi−1

F ′
i

...
Fn−1


︸ ︷︷ ︸

Faulty states.

=



x′

...
f ′
d

f ′
d+1
...

f ′
n−1


︸ ︷︷ ︸

The coefficients
of F ′(x).

(3.1)

According to the additive fault model, the relation between F ′(x) and F (x) can be
summarized as F ′(x) = F (x) ⊕∆(x), where ∆(x) is the polynomial generated by faults
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i.e. interpolated by the points, (0, . . . , 0, σ, 0, . . . , 0) as seen in Eq. (3.2).

V −1 ·



F0

...
Fi−1

F ′
i

...
Fn−1


= V −1 ·





F0

...
Fi−1

Fi

...
Fn−1


⊕



0
...
0

σ
...
0




=



x
...
fd

0
...
0


⊕



σ0
...
σd

f ′
d+1
...

f ′
n−1


(3.2)

For an (n, d)-secret sharing scheme, faults are undetectable if and only if the degree of
∆(x) is smaller than or equal to d, i.e., the coefficients of the terms of degree d+1, . . . , n−1
are zero. We refer to these terms as error detection terms.

3.2.1 Fault Detection and Propogation

Another important feature of secure multiparty computation schemes is that they can
be used to detect faults. Depending on the number of faulty shares, errors are detectable,
undetectable, or correctable. To be able to correct faults on d shares, previously proposed
schemes require at least 3d + 1 shares [Ben88]. Furthermore, robust multiplication
requires cheater detection at the input and the output of every multiplication, which
is a very costly operation [GRR98].
Fault injection countermeasures are less concerned with the correction of errors. The
main goal is usually to detect faults and to ensure nothing can be learned from a faulty
output. Therefore, our aim is to preserve faults and detect them only once the output
is produced. To be able to detect the faults without conducting additional operations,
we need to observe the propagation of the faulty state for each SMC component. In this
section, we discuss the preservation of the faulty state and show the vulnerabilities of
the computations. Remark that, in the following analysis, we assume that at least one
of the input polynomials is faulty, i.e. deg(F (x)) > d or deg(G(x)) > d.
Let x and y be two values and consider an (n, d)th-order masking scheme, i.e. x and y

have been split into (n) shares {F0, . . . , Fn−1} and {G0, . . . , Gn−1} such that F (0) = x

and G(0) = y.

• Affine transformation of a secret (Affine): An affine transformation L(x) =
ax⊕b with a 6= 0 can be computed on the secret value by applying L to secret shares
locally; also each player Pi computes its component by L(Fi). If deg(F (x)) > d,
then clearly deg(L(F (x))) > d as well. L(x) changes the faults only in magnitude
while the localization of the faults is preserved. Moreover, the behavior of the
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faulty state is the same if the faults are injected during the computation of the
affine transformation.

• Addition of two secrets (Add): Two secret values x ⊕ y can be added by
pairwisely adding shares. Each player Pi computes Fi ⊕ Gi. According to our
fault model, if only one polynomial is faulty, i.e. has a degree greater than d, then
the degree of the resulting polynomial will be also greater than d and therefore the
faults are propagated. However, an attacker can inject faults to both polynomials
in different or in the same shares. In these cases, there is a probability that faults
can become undetectable. The error detection terms can be zero if corresponding
coefficients of F (x) and G(x) are equal, that is:

fd+1 ⊕ gd+1 = . . . = fn−1 ⊕ gn−1 = 0.

As we assumed, deg(F (x)) > d and deg(G(x)) > d, fi 6= 0 and gj 6= 0 for at least
one i, j ∈ {d+ 1, . . . , n− 1}. So, Pr[(fi ⊕ gi = 0)d+1≤i<n] ≈ (1/|F|)d+ε. 2

• Efficient squaring operation (Sqrk): Efficient squaring operations can be used
to eliminate costly multiplications in GF(2m) [RP12]. Squaring can be defined as
ηk(y) = y2

k and requires two conditions on public points αi :

1. αi 6= 0 for i = 0, . . . , n− 1.

2. For every αi there exists αj such that α2
i = αj .

Each player calculates the operation on its share locally by ηk(Fi). The family
of shares (ηk(Fi))i=0,...n−1 is a valid secret share of x2k . However, communication
between players is needed to do the reordering of the secret shares. Faulty shares
are preserved as in the affine transformation.

• Multiplication of two secrets (Mult): The multiplication of two secret values
x ·y requires communication between players. An efficient algorithm was proposed
by Gennaro et al. [GRR98], simplifying the original SMC multiplication proposed
by Ben-Or et al. [Ben88]:

1. Each player Pi computes Hi = Fi ·Gi.

2. Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) =

H(αi), and sends the value Qi(αj) to player Pj . In this step, faults in F (x)
and G(x) spread to all shares and they become undetectable, since Qi(x) is a
degree d polynomial.

2The exact probability can be calculated as (1/|F∗|) · (1/|F|)d+ε.
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3. Each player Pi computes its secret share by Qi =
∑n

j=0 λ
0
jQj,i and gets a

valid (n, d)-secret sharing of the faulty secret value.

The shares calculated in step 1 cannot be used as a valid secret sharing because of
two main problems: (1) the polynomial is a degree 2d polynomial. (2) It is not a
random polynomial [Ben88]. In step 2 and 3, degree reduction and randomization
are done in order to generate a proper (n, d)-secret sharing of xy. As a result,
the output shares are always be a valid secret sharing and an adversary can inject
faults without detection.

Remark 3.1. Castagnos et al. [CRZ13] suggested an improvement of the SMC
multiplication by using the connection between Reed-Solomon codes [Ber68] and
Shamir’s secret sharing scheme. Although Reed-solomon codes provide extensions
and generalization of the sharing [MS], the improved secure multiplications have the
same undetectable fault problem. The improvement focuses on the randomization
part of the multiplication scheme (or encoding procedure as stated in [CRZ13]).
The output is produced by the Re-encoding algorithm ( [CRZ13], Algorithm 3).
The output of the algorithm is always a valid secret state. Therefore, a faulty input
will always result in a valid secret sharing and faults become undetectable.

3.3 Error Preserving Multiparty Computation

The error-preserving multiparty computation scheme below differs significantly from
other proposals, such as robust SMC. Unlike, e. g., [GRR98, GIP+14], detecting errors
after each operation is not convenient in many cryptographic implementations, as it can
reveal critical information. The basic ideas of our scheme are as follows:

• Error Detection Only: Our scheme does neither try to correct errors, nor detect
where the error occurred. As in most application scenarios, the scheme only aims
at detecting the errors and ensures that the attacker cannot learn anything from
a faulty output.

• Fault Detection Without Leaking Information: The scheme aims to
eliminate the leakages that can occur during the detection and keep the fault
detection probability as one.

• Error-Preserving Computation: Once an errors occurs, it will spread through
the state and remain part of the state. The advantage of this is that error detection
can be performed once an output is produced.
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Figure 3.1: A detailed visualization of (4,1)-SMC Multiplication. Dashed lines show the
communications between players (Pi). The shares of error detection terms of H(x), F (x), and
G(x) are forwarded to shares of xy during the randomization step. Thus, each Q′

i contains a
share of error detection terms of F (x), G(x), or H(x).

• Infective Computation: If an error occurs, it is important to ensures the output
does not reveal information to the attacker. We show that the randomization
property of the secret sharing together with the redundant error detection
coefficients ensure random outputs of faulty parts of the state if an error occurs.

Most of these goals can be achieved with the SMC described in [RP12] in a straightforward
manner. However, the multiplication is difficult to construct in such a way that error
detection is not performed once for each multiplication on each input and output.
Instead, we propose a new multiplication engine that, in addition to the shared inputs
and outputs, also uses additional shared error detection coefficients. The main advantage
of error detection coefficients is that they add redundancy while only introducing minor
overhead. In summary, all circuits can be represented by a classic SMC addition, our
updated SMC multiplication, and a new recombination step. SMC squaring and affine
transformation can still be used as before, as they do not influence the fault propagation.

3.3.1 Error Preserving Multiplication (EPMult)

Multiplication is the most critical SMC operation. Even without error detection,
multiplication is the reason why n > 2d is required, since the product of two degree-d
polynomials is of degree-2d, To achieve error detection, more shares are needed. In fact,
we show that to detect ε errors, a total of n > 2d+ε shares are needed. A representation
of the (4,1)-error preserving multiplication can be seen in Fig. 3.1.
In the new scheme, the error propagation is achieved by using the error detection terms
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Algorithm 2 Error Preserving Multiplication (EPMult)
Input: Shares of f0 as (Fi)0≤i<n and shares of g0 as (Gi)0≤i<n.
Output: Shares of f0g0 as (Qi)0≤i<n.

1: for i = 0 to n− 1
2: Hi ← FiGi

3: for i = 0 to n− 1
4: (ri,1, . . . , ri,d)← F2m // Coefficients of the random polynomial.
5: for j = 0 to n− 1
6: Qi,j ← Hi // referred to as Q0

j,i.
7: for k = 1 to d // Evaluate the polynomial.
8: Qi,j ← Qi,j ⊕ ri,kα

k
j // referred to as Qk

j,i.
9: Qi,j ← Qi,j ⊕ Ei,j // Add a share of an error detection term.

10: Qj ← Qj ⊕ λ0
iQi,j // referred to as Qj,i.

11: return (Q0, . . . ,Qn−1)

of input polynomials and the intermediate polynomial H(x). A step-by-step description
of our new multiplication scheme that can resist ε faults can be introduced as follows:

1. Each player Pi locally computes Hi = Fi ·Gi.

2. Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = Hi and
evaluates the polynomial for the public points Qi(αj) (denoted by Qi,j). The main
difference in our scheme occurs in this step: Pi also calculates a share of error
detection coefficients (denoted by Ei,j) of Hi or Gi ⊕ Fi with the corresponding
Vandermonde element. The resulting Q′

i,j = Qi,j ⊕ Ei,j is sent to player Pj for
j = 0, . . . , n− 1 and j 6= i. Ei,j is defined as follows:

Ei,j =


λn−j
i

λ0
i
Hi if 0 ≤ j < ε

λn−j
i

λ0
i
(Fi ⊕Gi) if ε ≤ j < ε+ d

0 if ε+ d ≤ j < n

. (3.3)

3. In the third step, each player calculates its share by Q′
i =

∑n−1
j=0 λ

0
iQ′

j,i.

Remark 3.2. The 11th line in the Algorithm 2 corresponds to the error propagation.
Without it, the EPMult corresponds to the SMC-Multiplication defined by Gennaro et
al. [GRR98] and applied by Roche and Prouff [RP12]. The advantage of Ei,j is that it
ensures the propagation of error detection terms as faults to the output by using only
the local information. Therefore, the first ε+ d players implicitly get an error detection
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coefficient of H(x) or F (x) ⊕ G(x). For example, player Pi (0 ≤ i < ε) calculates its
share Q′

i by:

Q′
i =

n−1∑
j=0

λ0
iQ′

j,i =

n−1∑
j=0

λ0
i (Qj,i ⊕ Ej,i)

=
[
λ0
0Q0,i ⊕ λn−i

0 H0

]
⊕ . . .⊕

[
λ0
n−1Qn−1,i ⊕ λn−i

n−1Hn−1

]
=

[
λ0
0Q0,i ⊕ . . .⊕ λ0

n−1Qn−1,i

]︸ ︷︷ ︸
=Qi in Section 3.2.1 SMC mult.

⊕
[
λn−i
0 H0 ⊕ . . .⊕ λn−i

n Hn−1

]︸ ︷︷ ︸
=hn−i−1 by Eq. (3.1)

= Qi ⊕ hn−i−1.

The propagation of the faults within the output shares can be summarized as follows:

Q′
i =


Qi ⊕ hn−i−1 if 0 ≤ i < ε

Qi ⊕ gn−i−1 ⊕ fn−i−1 if ε ≤ i < ε+ d

Qi if ε+ d ≤ i < n

,

where hi, gi and fi represent ith degree the coefficients of H, G and F , respectively.
Remark that, (hi)2d<i<n = 0 and (fi ⊕ gi)d<i<n = 0 for valid secret sharing schemes.

3.3.2 Fault Detection Operation (FDect)

In order to maintain the error detection probability as one, faults need to be detected
before each multiplication and addition. Detection can be performed according to the
Vandermonde representation. However, this operation can leak sensitive information.
Therefore, we add a randomization step to provide the confidentiality of the secret value.

1. Randomization: This step adds a random degree-d polynomial to the shared
secret, thereby masking the secret value, but not deleting fault information.

a) A random degree d polynomial R(x) is generated, the value R(αi) is sent
(denoted by Ri) to player Pi.

b) Each player calculates the new share by simply adding the random share to
their own share.

FRi = Fi ⊕Ri for i = 0, . . . n− 1.

2. Detection: Error detection coefficients are reconstructed in the natural way as
given in Eq. (3.1):

fj =

n−1∑
i=0

λj
iFRi for j = d+ 1, . . . , n− 1.
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Algorithm 3 Fault Detection Operation
Input: Shares of f0 as (Fi)0≤i<n.
Output: Fault Decision.

1: (r0, . . . , rd)← F2m // Coefficients of the random polynomial.
2: for i = 0 to n− 1 // Randomization.
3: FRi ← Fi

4: for k = 0 to d // Evaluate the polynomial.
5: Ri ←Ri ⊕ rkα

k
j // Referred to as Rk

i

6: FRi ← FRi ⊕Ri

7: Fault Detection using the set of secret shares: (FRi)0≤i<n// Detection.

The randomized share of a player (denoted by FRi) corresponds to a secret sharing
of a random value. Therefore, the reconstruction cannot leak information about the
real secret value. Moreover, FR(x) = F (x) ⊕ R(x), and we know that deg(Ri(x)) ≤ d.
Therefore, if F (x) is faulty, i.e. deg(F (x)) > d, then deg(FR(x)) > d, and fault detection
can be achieved easily in the detection step by reconstructing and checking the error
detection terms. The algorithm can be found in Algorithm 3.

Remark 3.3. While in-circuit fault detection is an option, our aim is not to give any
error message or stop the execution. The scheme outputs the faulty ciphertext even if
the fault is detected. The degree of the polynomial is used as a fault flag. The output
can then be randomized using this flag.

3.3.3 Recombination Operation (ReComb) and Infective Computation

In order to avoid costly fault detection operations, we first propose a recombination
operation which detects the faults when the output is produced. We explain the
infectiousness of the faults while introducing a recombination algorithm.
The recombination operation is composed of two main steps, re-sharing and reconstruction.
The main idea is to share the secret variable while adding randomized error detection
terms. The first part can be seen as a modified version of EPMult using a different Ei,j .
The details can be found in Algorithm 4. The inputs of the operation are secret shares
Fi for 0 ≤ i < n and a random vector (r0, . . . , rε+d−1) where ri ∈ GF(28)\0. The outputs
are the secret value f0 and a fault decision.

1. Re-Sharing: Players share the secret value as in the second part of the EPMult,

51



3 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Algorithm 4 Recombination Operation
Input: Shares of f0 as (Fi)0≤i<n and non-zero random values (r0, . . . , rε+d−1).
Output: f0 and Fault Decision.

1: for i = 0 to n− 1 // Re-Sharing
2: (ri,1, . . . , ri,d)← F2m // Coefficients of the random polynomial.
3: for j = 0 to n− 1
4: Qi,j ← Fi // referred by Q0

j,i.
5: for k = 1 to d // Evaluate the polynomial.
6: Qi,j ← Qi,j ⊕ rkα

k
j // referred to as Qk

j,i.
7: Qi,j ← Qi,j ⊕ ERi,j // Add a share of an error detection term.
8: Qj ← Qj ⊕ λ0

iQi,j // referred to as Qj,i.
9: Reconstruction using the set of secret shares: (Qi)0≤i<n// Reconstruction.

the only difference is that we update Ei,j as follows:

ER
i,j =

rj
λ
n−(j−1)
i

λ0
i

Fi if 0 ≤ j < d+ ε

0 if d+ ε ≤ j ≤ n− 1
.

The adversary is still able to get information from the output, so we ensure the
randomization of the secret value by using fresh random values.

a) Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = Fi

and evaluates the polynomial for the public shares Qi(αi) (denoted by Qi,j)
and sends the value Q′

i(x) = Qi(x)⊕ ER
i,j to player Pj .

b) Each player calculates its new share Q′
i by

∑n−1
j=0 λ

0
iQ′

j,i.

Remark 3.4. As in the EPMult, the first ε+d players implicitly get the randomized
error detection coefficient of F (x).

Q′
i =

Qi ⊕ rifn−i−1 if 0 ≤ j < ε+ d

Qi if ε+ d ≤ j < n
.

Reconstruction. In the last step, the secret value and error detection coefficients are
reconstructed using Equation (3.2):

fj =

n−1∑
i=0

λj
iQ

′
i for j = d+ 1, . . . , n− 1 and 0.
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Clearly, if F is faulty, then at least one of the error detection terms is non-zero. In the
second step, the secret value is randomized by these terms, and, therefore, the output
is randomized in case of fault injections. Thus, infective computation is achieved. The
details and security features of the operation can be found in Section 3.4.

3.4 Security Analysis

Previously proposed schemes that combined countermeasures against side-channel
analysis and fault injection have different security claims depending on their used
adversarial models. The SCA security of works like [IPSW06] are based on the
ISW transformation [ISW03], while others [SMG16, DCN16] are based on Threshold
implementations. Both the ISW transformation and TI can achieve tth-order security.
However, it was recently shown Moos et al. [MMSS18] that TI and derived schemes can
have security issues due to the insufficient refreshing in higher order variants and thus
require special care during implementation. There are bigger differences in the fault
resistance properties of the proposed schemes. For example, in [IPSW06] security against
reset attacks and set, reset and toggle attacks are formally proven. In [SMG16] authors
defined a notion called Coverage to quantify the fault coverage of their scheme. They
analyzed the fault resistance of the scheme using this notion. Similarly, in [RMB+17]
the authors examined the conditions where faults are undetectable. In this section,
we discuss the security features of our combined countermeasure under specific attack
models. We formally prove the t-probing security of individual operations and analyze
the side-channel resistance of a combination of operations. Then a similar discussion
in [SMG16, RMB+17] will be done to explain the fault resistance of our scheme. First
we define a new notion called Propagation, which states the probability of detecting
faults using output shares if the input shares are faulty. Then we examine the conditions
where faults are undetectable for each individual operation and for a combination of
operations.

3.4.1 Side-Channel Resistance

As stated in Section 2.1, t-SNI security notion becomes the standard way of proving
the security against probing attacks. However, we cannot use the security notion
directly. The notion is specialized for Boolean masking where (n − 1)-tuples of n

intermediate variables are uniformly distributed. On the other hand, an (n, d)-secret
sharing corresponds to n intermediate variables such that every d-tuple of them is
uniformly distributed and independent of any sensitive variable instead of (n− 1)-tuple.
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Therefore, we extend the definition to cover (n, d)-SMC and we focus on the modified
version of the security notion defined as follows:

Definition 3.1 (t-SNInd Security). Let G be a gadget which takes as input n shares
(xi)0≤i<n and as outputs n shares (yi)0≤i<n. The gadget G is said to be t-SNInd secure
if for any set of t probed intermediate variables and any subset O ⊂ [0, n) of output
indices, such that t+ |O| < d+ 1, there exists a subset I ⊂ [0, n) of input indices which
satisfies |I| ≤ t, such that the t intermediate variables and the output variables y|O can
be perfectly simulated from x|I .

Clearly, the original definition corresponds to t-SNInn−1 in our notation. We show that it
is possible to construct t probes as well as a set of output shares O such that t+ |O| <
d + 1, using a subset of input shares with at most t elements. The elements in the
subset will be uniformly distributed and be independent from the shared secret value. It
should be noted that, the set of probed variables and the output shares can be perfectly
simulated by d-tuple of random variables. Therefore, the modified security notion will be
equivalent to the original definition and the perfect t-probing security defined by Carlet
et al. [CPRR15] as well as Lemma 1 in [RP10].

Theorem 3.1 (t-SNInd of EPMult). Let (Fi)0≤i<n and (Gi)0≤i<n be the input shares
of the Error Preserving Multiplication operation, and let (Qi)0≤i<n be the output shares.
For any set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such
that t1+ t2 < d+1, there exist two subsets I and J of indices with |I| ≤ t1 and |J | ≤ t1,
such that those t1 intermediate variables as well as the output shares Q|O can be perfectly
simulated from F|I and G|J .

Proof. In the first part of the proof, we construct the sets of the input share indices I

and J depending on the intermediate variables that are probed. We denote U as the
intersection of I and J . We divide the probes into 2 groups.

• Group 1: If Fi or Gi is probed, add i to I or J , respectively. If Hi, Q0
i,j or Ei,j is

probed, add i to I and J .

• Group 2: If ri,j or Qk
i,j where k ∈ {1, . . . , d} is probed, add i to I and J .

According to our selection, we add at most one index to I and J for each probe and,
therefore, |I| ≤ t1 and |J | ≤ t1.

1. The simulations of the probed variables in Group 1 are straightforward. Since
i ∈ I (i ∈ J resp.), we can perfectly simulate Fi (Gi resp.), because Fi and
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Gi are known values. Similarly, we can simulate Hi and Q0
i,j , since i ∈ I and

i ∈ J . Finally, since the elements λi of the inverse Vandermonde matrix are public
variables, we can simulate Ei,j as defined in Eq. (3.3).

2. If Qk
i,j is probed, we need to consider two cases:

• If ri,k is also probed, we leave ri,k as in the real circuit, therefore, we can
simulate Qk

i,j as Hi ⊕ ri,kα
k
j where αj is a public value.

• If ri,k is not probed, it does not enter into the computations of Qk
i,j , therefore,

we can perfectly simulate Qk
i,j with a random value.

3. If Qj,i is probed, we need to consider two cases as in the previous step:

• If all the values ri,k for 1 ≤ k ≤ d are probed, we can perfectly simulate
the values Qk

i,j , and hence Qj,i can be simulated. Remark that, the λ0
i is an

element of the inverse Vandermonde matrix so it is a public value.

• If at least ri,k for 1 ≤ k ≤ d is not probed, that means ri,k does not enter into
the computation of Qj,i, therefore Qj,i can be simulated by a random value.

Now we explain how to simulate output shares Qi for all i ∈ O where O is an arbitrary
subset of [1, n] with t2 elements such that t1 + t2 < d + 1. Clearly, using t1 probes,
we can observe at most t1 intermediate variables of Qi, where Qi can be written as:
Qi =

∑n−1
j=0 λ

0
iQj,i. Since t1 + t2 < d+ 1, at least one intermediate variable of Qi is not

probed. Therefore, we can simulate Qj,i with j /∈ U by generating a random degree d

polynomial and evaluating it for αi. Hence, we can simulate Qi for each i ∈ O. �

We show that any set of t1 intermediate variables and any subset of t2 output shares can
be perfectly simulated by at most d independent and uniformly distributed variables.
Therefore, we can say that EPMult is secure in the d-probing model which is followed by
security in the noisy leakage and bounded moment leakage models [DDF14,BDF+17].
Next, we give the security notion of SMC-addition, affine transformation, and efficient
squaring. These operations perform sharewise computations. Therefore, they can be
computed using affine gadgets as defined in [BBD+16]. As given in Section 2.1.3
composition of t-NI and t-SNI gadgets are also t-SNI with the help of a mask refreshing
operation. For our work we denote this gadget by RefreshM and define in Algorithm 5.
RefreshM ensures the independence of the inputs of the EPMult operation and we can
implement an arbitrary function with t-SNInd security. The following theorem provides
the security of our RefreshM operation.
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Algorithm 5 Mask Refreshing (RefreshM)
Input: Shares of f0 as (Fi)0≤i<n.
Output: Shares of f0 as (Ci)0≤i<n.

1: (r1, . . . , rd)← F2m // Coefficients of the random polynomial.
2: for j = 0 to n− 1
3: for k = 1 to d // Evaluate the polynomial.
4: Qj ← Qj ⊕ rkα

k
j // referred to as Qk

j .
5: Cj ← Fj ⊕Qj

6: return (C0, . . . , Cn−1)

Theorem 3.2 (t-SNInd of RefreshM). Let (Fi)0≤i<n be the input shares of RefreshM
and let (Ci)0≤i<n be the output shares. For any set of t1 intermediate variables and any
subset |O| ≤ t2 of output shares such that t1+ t2 < d+1, there exist a subset I of indices
with |I| ≤ t1, such that those t1 intermediate variables as well as the output shares C|O

can be perfectly simulated from F|I .

Proof. The proof is relatively straight forward. For every probed variable Fi, Ci, or Q|

add i to I. Clearly, we add at most one index to I and, therefore, |I| ≤ t1.

• If rk or Qk
j probed, we let the variables as in the circuit and perfectly simulate

them.

• if Ci is probed, we can perfectly simulate the variable by Fi⊕Qi, by letting Qi as
in the real circuit.

Therefore, we are able to simulate all the probed variables. Now, we consider the
simulation of output variables. We need to show that Ci for i ∈ O can be simulated from
F|I . If i ∈ I, we can simulate Ci as explained above. We now examine the simulation of
output variables Ci, where i /∈ I. That means, Qj is not probed and is not involved in
the computation of Ci. Hence, we can perfectly simulate Ci by a random value. �

Furthermore, the security analysis of the fault detection and recombination operations
can be found below. Before going into the proofs of fault detection operation and
recombination operation, we need to clarify that the detection parts are excluded from
the proofs to make definitions compatible. As given in Eq. (3.1), the detection mechanism
requires all shares. However, during fault detection we already randomize the sensitive
variable.

Theorem 3.3 (t-SNInd of Fault Detection Operation). Let (Fi)0≤i<n be the input
shares of Fault Detection Operation and let (FRi)0≤i<n be the output shares. For any
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set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such that
t1 + t2 < d + 1, there exists a subset I of indices with |I| ≤ t1, such that those t1

intermediate variables as well as the output shares FR|O can be perfectly simulated from
F|I .

Proof. The proof is very similar to the proof of Theorem 3.2. For every probed variable
Fi, FRi , or Rd

i add i to I. Clearly, we add at most one index to I and, therefore, |I| ≤ t1.

1. If Rk
i is probed, we can perfectly simulate it with a random value, since it does

not depend on any variable.

2. If FR is probed, we can simulate it as Fi ⊕Ri. Note that, Ri can be simulated as
in the first step.

Therefore, we are able to simulate all the probed variables. Now, we consider the
simulation of output variables. We need to show that FRi for i ∈ O can be simulated
from F|I . If i ∈ I, we can simulate FRi as explained above. We now examine the
simulation of output variables FRi , where i /∈ I. That means, Rd

i is not probed and is
not involved in computation of FRi . Hence, we can perfectly simulate FRi by a random
value. �

Theorem 3.4 (t-SNInd of Recombination Operation). Let (Fi)0≤i<n be the input
shares of the Recombination Operation and let (Qi)0≤i<n be the output shares. For
any set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such that
t1 + t2 < d + 1, there exists a subset I of indices with |I| ≤ t1, such that those t1

intermediate variables as well as the output shares Q|O can be perfectly simulated from
F|I .

Proof. As stated in Section 3.3.3, the recombination operation can be seen as a modified
version of EPMult, therefore, the proof is built on the same structure as in the proof of
Theorem 7.2 in Section 3.4.
In the first part of the proof, we construct the sets of input share indices I depending
on the intermediate variables that are probed. If Fi, ri,j , F k

j,i or ER
i,j is probed, add i to

I

• Group 1: If Fi or F0
i,j or ER

i,j is probed, add i to I.

• Group 2: If ER
i,j or rj is probed, add i to I.

• Group 3: If ri,j or Qk
i,j where k ∈ {1, . . . , d} is probed, add i to I and J .
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According to our selection, we add at most one index to I and J for each probe and,
therefore, |I| ≤ t1 and |J | ≤ t1.

1. The simulations of the probed variables in group 1 are straightforward. Since i ∈ I,
we can perfectly simulate Fi. Similarly, Q0

i,j , since i ∈ I.

2. Since the elements λi of the inverse Vandermonde matrix are public variables, we
can simulate ER

i,j as defined in Eq. (3.3). In fact we let rj for j ∈ {0, . . . , ε+ d+1}
as in the real circuit.

3. If Qk
i,j is probed, we need to consider two cases:

• If ri,k is also probed, we let ri,k as in the real circuit, therefore, we can simulate
Qk

i,j as Fi ⊕ ri,kα
k
j where αj is a public value.

• If ri,k is not probed, it does not enter into the computations of Qk
i,j , therefore,

we can perfectly simulate Qk
i,j with a random value.

4. If Qj,i is probed, we need to consider two cases as in the previous step:

• If all the values ri,k for 1 ≤ k ≤ d are probed, we can perfectly simulate the
values Qk

i,j , and hence Qj,i can be simulated. Note that, λ0
i is an element of

the inverse Vandermonde matrix so it is a public value.

• If at least ri,k for 1 ≤ k ≤ d is not probed, that means ri,k does not enter into
the computation of Qj,i, therefore, Qj,i can be simulated by a random value.

Now we explain how to simulate output shares Qi for all i ∈ O where O is an arbitrary
subset of [1, n] with t2 elements such that t1 + t2 < d + 1. Clearly, using t1 probes,
we can observe at most t1 intermediate variables of Qi, where Qi can be written as:
Qi =

∑n−1
j=0 λ

0
iQj,i. Since t1 + t2 < d+ 1, at least one intermediate variable of Qi is not

probed. Therefore, we can simulate Qj,i with j /∈ U by generating a random degree d

polynomial and evaluating it for αi. Hence, we can simulate Qi for each i ∈ O. �

3.4.2 Fault Resistance

First, we discuss the resistance capabilities of the systems using fault detection
operations. As given in Section 3.2.1, affine transformation and efficient squaring
operations can be listed as fault preserving, while addition and multiplication are fault
preserving with high probability. Therefore, fault detection operations should be used
before all multiplication and addition operations to ensure perfect fault detection.
However, depending on the circuit and the number ε, this number can be decreased.
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Therefore, an optimal point between performance and security can be achieved. The
advantage of using fault detection operations is that it can be carried out without
leaking sensitive information.
Next, we discuss the fault resistance features of the proposed scheme without using
the fault detection operation. The fault detection mechanism relies on the degree of
the polynomial generated by the secret state. We illustrate the methodology with the
following example:

Example 3.1. Assume (4, 1)-secret sharing (F0, F1, F2, F3) is used to share a secret.
Clearly, the secret sharing polynomial deg(F (x)) ≤ 1 and the following equation holds:

V −1 ·


F0

F1

F2

F3


︸ ︷︷ ︸

Secret states.

=


x

f1

0

0

 .

︸ ︷︷ ︸
The coefficients

Assume the fault, denoted by σ, is injected to the last share. After the injection, the secret
sharing polynomial F ′(x) becomes a polynomial generated by the points (F0, F1, F2, F3⊕σ).
Remark that, as stated by the additive fault model, the relation between polynomials can
be seen as F ′(x) = F (x)⊕∆(x) and can be illustrated as follows:

V −1 ·


F0

F1

F2

F ′
3

 = V −1 ·



F0

F1

F2

F3

⊕

0

0

0

σ


 =


x

f1

0

0

⊕

σ0

σ1

σ2

σ3

 .

Error polynomial ∆(x) has one nonzero point and three zero points. In other words ∆(x)
is generated by the points (0, 0, 0, σ). Clearly these points belong to an at least degree-3
polynomial. Hence, we can detect the fault by looking at the degree of the polynomial
resulting F ′(x). Clearly, the only way of generating undetectable faults is arranging ∆(x)
as a degree-1 polynomial.

Using this motivation, we introduce the following lemma which constitutes a basis of
our error detection method.

Lemma 3.5. Let (Fi)0≤i<n ∈ F represent an (n, d)-secret sharing of f0 ∈ F with n =

d + ε + 1 and ∆(x) represents the polynomial generated by the faults. If k faults are
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injected to secret states, generating an error polynomial degree greater than d is,

Pr[deg(∆(x)) > d] =

1 k ≤ d+ ε

1− |F|k−ε−1
|F|k−1

k > d+ ε
.

Proof. Let α0, . . . , αn−1 ∈ F be public evaluation points and F (x) = x⊕f1x⊕. . .⊕fdxd ∈
F[x] be the secret sharing polynomial. Without loss of generality, assume there exist k

faults in the first k secret shares and let us denote the corresponding error polynomial
by ∆(x) = δ0 ⊕ δ1x ⊕ . . . ⊕ δd+1xd+1 ⊕ . . . ⊕ δd+εxd+ε ∈ F[x]. From Equation (3.1), the
relation between faulty shares and coefficients of F (x) and ∆(x) can be seen as follows:

V −1



F0 ⊕ σ0
...

Fk−1 ⊕ σk−1

Fk

...
Fn−1


︸ ︷︷ ︸

Faulty state

= V −1



F0

...
Fk−1

Fk

...
Fn−1


︸ ︷︷ ︸

Points of F (x)

⊕V −1



σ0
...

σk−1

0
...
0


︸ ︷︷ ︸

Points of ∆(x)

=



x
...
fd

0
...
0


⊕



δ0
...
δd

δd+1

...
δn−1



where V = (αi
j) is the n× n Vandermonde matrix. As seen in the above equation ∆(x),

is the polynomial generated by the points (σ0, . . . , σk−1, 0, . . . , 0), i.e. it has n − k zero
points and, therefore, it generates at least a degree n− k polynomial.
Assume that k ≤ d + ε. Since n = d + ε + 1, it is clear that n − k ≥ d + 1. Therefore,
deg(∆(x)) > d with probability 1 and faults are always detectable.
Assume k > d + ε. Then we need to focus on the Vandermonde representation of the
secret shares. Using V −1

i,j = λi
j , we can form a system of linear equations for error

detection terms of ∆(x):

σ0λ
n−1
0 ⊕ . . .⊕ σk−1λ

n−1
k−1 = δn−1

σ0λ
n−2
0 ⊕ . . .⊕ σk−1λ

n−2
k−1 = δn−2

...

σ0λ
n−ε
0 ⊕ . . .⊕ σk−1λ

n−ε
k−1 = δd−ε

To arrange ∆(x) as degree d polynomial, the above equations should be solved for δi = 0

for i = (d + 1, d + 2, . . . , d + ε). The parameters of this homogeneous system of linear
equations are k unknowns and ε equations. Since k > ε, the number of non-trivial
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solutions for this system is |F|k−ε − 1. Therefore, Pr[deg(∆(x)) ≤ d] = |F|k−ε−1
|F|k−1

. Hence,

Pr[deg(∆(x)) > d] = 1− |F|
k−ε − 1

|F|k − 1
.

which proves the lemma. �

Next, we can state the following theorem, to clarify our fault detection properties.
Remark that the following theorem was already proven in [YO13, Sec. 4.1].

Theorem 3.6. Let F ′(x) be the faulty secret sharing polynomial. If deg(F ′(x)) > d, the
faults can be detectable.

Using this theorem and the notation given by Schneider et al. [SMG16], we can define
the fault coverage of our scheme. Let F ′(x) be the faulty secret sharing polynomial, then
the probability of a set of faults to be undetectable is defined as our fault coverage:

Coverageε = 1− Pr[deg(F ′(x)) ≤ d].

Assume the number of injected faults to the system is k, in the first multiplication, faults
are propagated with probability 1 if k ≤ ε as given in Lemma 3.5. However, we cannot
use Lemma 3.5 as the fault coverage for a set of operations, since faults can be injected
in different instances or one fault can spread to a large number of shares. As a result,
faults become unstable and potentially undetectable. In a sequence of operations, faults
can become undetectable after an SMC addition or multiplication. In the following, we
perform the security analysis and derive the probability of undetectable faults in SMC
multiplication.

Corollary 3.7 (Propagationε(EPMult)). Let (Fi)0≤i<n ∈ F and (Gi)0≤i<n ∈ F be
the input shares of the Error Preserving Multiplication operation and let (Qi)0≤i<n be
the output shares. And let us denote the sets of faulty indices as kF and kG respectively,
with k = |kF ∪ kG|. If the fault is detectable using both of the set of input shares
(Fi)0≤i<n and (Gi)0≤i<n, the faults can be detectable using output shares (Qi)0≤i<n with
the following probability:

Propagationε(EPMult) =

1− 1
qd+k k ≤ ε

1− 1
qd

(
1

(q+1)e + 1
qk

)
k > ε

, where |F∗| is denoted by q.
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Proof. Assume there exists 2 sets of faults within the input shares (Fi)0≤i<n and
(Gi)0≤i<n, such that if ith share Fi (resp. Gi) is faulty, then σFi 6= 0 (resp. σGi 6= 0)

otherwise σFi = 0 (resp. σGi = 0). And clearly, kF = {i|σFi 6= 0} and kG = {i|σGi 6= 0}.
The polynomial H(x) is generated by the shares Fi ·Gi for 0 ≤ i < n and the faults in
Hi can be calculated as follows:

Hi = [Fi ⊕ σiF ] · [Gi ⊕ σiG ] = FiGi ⊕ FiσiG ⊕GiσiF ⊕ σiF σiG︸ ︷︷ ︸
The fault in Hi denoted by σHi

.

Remark that Ei,j is used to propagate the faults. The faults in (Qi)0≤i<n become
undetectable if and only if the following equations, which correspond to the partial
sums in step 3, hold:

n−1∑
j=0

λ0
i Ei,j = 0 for 0 ≤ i < ε+ d. (3.4)

From the definition of Ei,j we know that the variables correspond to shares error detection
terms of F (x) ⊕ G(x) or H(x). Hence, faults become undetectable if and only if error
detection terms are zero, i.e. the following equations hold:

1. fd+1⊕ gd+1 = . . . = f2d⊕ g2d = 0. Remark that we assumed the fault is detectable
using both of the sets of input shares (Fi)0≤i<n and (Gi)0≤i<n, therefore, at least
one fi 6= 0 and gi 6= 0 where i ∈ {d+ 1, . . . , 2d}. Therefore,

Pr[(fi ⊕ gi = 0)d<i≤2d] =
1

q

(
1

q + 1

)d−1

≈ 1

qd
.

2. h2d+1 = . . . = h2d+ε+1 = 0. In other words deg(H(x) ≤ 2d). And deg(H(x) ≤ 2d)

if and only if

a) The polynomial generated by σHi ’s is at most a degree 2d polynomial or

b) σHi = 0 for i = 0, . . . , n− 1.

From Lemma 3.5, the probability of condition (a) is:

Pr[deg(H(x)) ≤ 2d] =

0 k ≤ ε

(q+1)k−ε−1
(q+1)k−1

≈ 1
(q+1)ε k > ε

.

And the probability of condition (b) is:

Pr[(σHi = 0)0≤i<n] ≈
1

qk
.
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Using the conditions listed above we can calculate the probability of the Equation (3.4)
to be hold is:

Pr

(n−1∑
j=0

λ0
i Ei,j = 0)0≤i<ε+d

 =


1

qd+k k ≤ ε

1
qd

(
1

(q+1)ε + 1
qk

)
k > ε

.

Therefore,

Propagationε(EPMult) =

1− 1
qd+k k ≤ ε

1− 1
qd

(
1

(q+1)ε + 1
qk

)
k > ε

.

�

Using propagation probabilities of individual operations, we can analyze the fault
resistance of a composition of operations. The following theorem formally analyzes the
fault resistance properties of a combination of operations. The main idea of the theorem
is to examine the propagation of fault indices and calculate the individual Propagationε.

Theorem 3.8. Let A1, . . . , At be a sequence of operations and let us denote the sets of
faulty indices of Aj as kF j and kGj respectively, with kj = |kF j ∪ kGj |. Without loss of
generality let’s assume that the fault is detectable using the inputs of Ai where 1 ≤ i ≤ t.
Then, Propogationε can be calculated as follows:

Propogationε(A1, . . . , At) =

t∏
j=i

Propogation
kj
ε (Aj).

Proof. First, let us categorize operations into to two sets depending on the number of
inputs as follows: A1 = {Affine, Sqr, RefreshM, FDect}3 and A2 = {EPMult, Add}.
Since a fault is detectable using the inputs of Ai, we know that the degree of the secret
sharing polynomial is greater than d and ki > 0 from Theorem 3.6. First, we analyze
propagation of the number of faulty indices in three cases:

• Case 1: ki+1 = ki if Ai+1 ∈ A1 and Propagationε(A ∈ A1) = 1.

– Ai+1 ∈ {Affine, Sqr}, then the magnitude of faults is changed however the
number of faulty indices is preserved, as explained in Section 3.2.1.

– Ai+1 ∈ {RefreshM, FDect}. Since RefreshM and FDect can be seen as
additions with a valid (i.e degree-d) secret sharing, the number of faulty
indices are preserved with their magnitudes.

3We excluded the ReComb operation from the analysis, since it can only be the last operation. The case
where a fault is detectable using the inputs of ReComb is already explained in Section 3.3.3.
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• Case 2: 0 ≤ ki+1 ≤ ki if Ai+1 = Add, The number of fault indices can be
decreased depending on the magnitudes and the indices of the faults. As explained
in Section 3.2.1 Propagationε(Add) = (1/q)d+ε.

• Case 3: 0 ≤ ki+1 ≤ ε + d if Ai+1 = EPMult, then the number of faulty indices
changes depending of the Equation (3.4) in Corollary 3.7.

Using these discussions we analyzed the propagation of the number of faulty indices of
each operation. Depending on the operation and number of fault indices we can calculate
Propogationε of operations individually. Hence, the following equation holds:

Propogationε(A1, . . . , At) =

t∏
j=i

Propogation
kj
ε (Aj). (3.5)

�

Remark 3.5. In Theorem 3.8 we assumed that faults are injected before the ith

operation. The attacker can inject additional faults into the scheme, which can change
the number of faulty indices. However, the propagation of faulty indices of individual
operations works as analyzed in Theorem 3.8 and the propagation of faults can be
calculated using the Equation (3.5) for a composition of individual operations in the
presence of faults.

The infective computation property of our scheme is based on the Propogationε. As
given in Section 3.3.3, the infective property of our scheme is provided by ER

i,j . If a fault
is detectable using input shares (Fi)0≤i<n, then fi ≤ 0 for at least one i ∈ {d+1, . . . , n−1}
from Theorem 3.6. As a result, the output shares are randomized by at least one nonzero
coefficient and a random value. Therefore, the infective computation is achieved.
The analyzed fault model considers faults on intermediate states only. However, it has
been shown that faulting the control flow, e.g. the number of rounds of a cipher, is also
sufficient for key recovery [CT05,DMN+12]. We consider such attacks out of the scope
of this work. Indeed, such attacks might not be a concern for fully unrolled circuits, but
other implementation styles would require additional protection of the control flow to
prevent such attacks.

3.4.3 Resistance Against Combined Attacks

After describing the side-channel and fault resistance of our scheme, a natural question
arises: what will be the security properties if an attacker is able to mount SCA and
FA together? In this section we focus on two attacks described in [CFGR10]. Due to
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Table 3.1: Number of operations in Gennaro et al. [GRR98] and EPMult in Section 3.3.1,
where Mul., Add. and Rand. represents the field multiplication, field addition, and
randomness requirements respectively.

Gennaro et al. [GRR98] EPMult Overhead
step 1 step 2 step 3 step 1 step 2 step 3

Mul. n n2d n2 n n2d+ n(ε+ d) n2 n(ε+ d)

Add. - n2d (n− 1)n - n2d+ n(ε+ 2d) (n− 1)n n(ε+ 2d)

Rand. - nd - - nd - -

the infective properties of our scheme, the attacker will not be able to collect useful
faulty ciphertexts. Secondly, even if the attacker successfully chooses ε faults in such a
way that the shared values are fixed to a predefined value, the attacker should probe
d + 1 variables to recover the secret, which is not possible in our model. Therefore,
the combined attacks as defined in [CFGR10] are naturally eliminated by the scheme.
Another advantage of the scheme is that our fault model is defined as blindly-chosen
and non-adaptive. Therefore, the attacker cannot observe the secret states and forge
a fault to inject. The model inherently creates a timing limitation which eliminates
rushing adversary [RMB+17]. As a result, Propagation probabilities are not affected by
probing d variables. Moreover, fault injections targeting randomness sources to disable
masking could be a serious threat to the system. In our model, the faults on randomness
would change the randomness in a way the attacker cannot control, thereby keeping the
side-channel protection intact.

3.4.4 Performance Analysis

Next we analyze the performance of our scheme in terms of basic operations such as
field multiplications, field additions and randomness requirements, and compare the
perormance to related work. Table 3.1 compares the SMC multiplication of Gennaro et
al. [GRR98] to the EPMult defined in Section 3.3.1 in terms of field additions (XOR),
multiplications, and required fresh randomness. As shown in Table 3.1, performance
overhead is only introduced in the second step, while calculating the Ei,j . The additional
costs of adding Ei,j are n(ε+d) field multiplications and n(ε+2d) field additions. Except
this overhead, both schemes have identical cost: each player generates a random degree-d
polynomial and sends the corresponding values to the other players, requiring nd random
values and n2 polynomial evaluations, where each evaluation costs d field multiplications
and d additions.
An overview of the computational cost for the SMC operations described in Section 3.2.1
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Table 3.2: Number of field multiplications, additions, and randomness requirements for
the SMC operations.

EPMult Sqrk Add Affine RefreshM
Field Mul. n2(d+ 1) + n(ε+ d+ 1) nk - n nd

Field Add n2(d+ 1) + n(ε+ 2d− 1) - n n nd

Randomness nd - - - d

Table 3.3: Number of field multiplications, additions, and randomness requirements for
the Recombination Operation and Fault Detection Operation

Recombination Fault Detection
Re-Sharing Reconstruction Randomization Detection

Mul. n2(d+ 1) + n(2ε+ 2d+ 1) n(ε+ d+ 1) n(d+ 1) n(ε+ d)
Add. n2(d+ 1) + n(ε+ d− 1) (n− 1)(ε+ d+ 1) n(d+ 2) (n− 1)(ε+ d)
Rand. ε+ d+ nd - d+ 1 -

and in Section 3.3.1 is provided in Table 3.2. The table lists the required number of field
multiplications, additions, and the randomness requirements for every secure operation
of an (n,d) masking scheme. Besides the arithmetic operations, the scheme requires the
recombination and fault detection operations. The costs for both are listed in Table 3.3.
A single recombination is more costly than an error preserving multiplication; however,
only one recombination operation per secret value is needed, keeping the contribution
to the overall cost small. The total overhead of the fault detection operation depends
on the sequence of operations and security level of the implementation. In the first step,
(d + 1) random values are needed to generate a random polynomial. The evaluation
of the polynomial for all players costs n2d field multiplications and n2d field additions.
Thus, the cost is small compared to the multiplication, allowing for frequent checks of
the state.
We compare our results with other side-channel countermeasures and one other combined
side-channel fault countermeasure in Table 3.2. We consider the total number of
field multiplications and additions of the side-channel protected scheme by Roche
and Prouff [RP11], the scheme by Rivain and Prouff [RP10] and combined side-
channel fault countermeasure (CAPA) by Reparaz et al. [RMB+17]. Remark that,
our work and [RP11] operate on polynomial masking while [RMB+17] and [RP10]
use Boolean masking, hence d = n − 1. The only comparable numbers corresponds
to a combined countermeasure are given in Table 1 in [RMB+17]. For CAPA, the
number of operations shown in Table 3.2 include the computations required for public
values, output calculations and MAC check functionalities [RMB+17]. While some
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3.5 Side-Channel and Fault Resistant AES Implementation

Table 3.4: Performance Comparison of Secure Operations in terms o field operations;
field additions are shown in normal font while the number Field Multiplications are in
bold font.

SMC Multiplication SMC Square SMC Addition

Our Work n2(d+ 1) + n(ε+ d+ 1) n -
n2(d+1)+n(ε+2d− 1) - n

Roche-Prouff [RP11] n2(d+ 1) + n n -
n2(d+1)− n - n

CAPA [RMB+17] 8n 2n -
11n+4n(n− 1)+1 2n2+3n+1 2n

Rivain-Prouff [RP10] n2 n -
2n(n− 1) - n

operations like addition and square transformation cost more in [RMB+17], the secure
multiplication is the bottleneck of our scheme when applied for higher order masking.

3.5 Side-Channel and Fault Resistant AES Implementation

The AES block cipher consists of multiple rounds of operations on its state. The
iterations include three linear layers: MixColumns, ShiftRows, and AddRoundKey and
one non-linear layer named SubBytes. In order to protect these functions from leaking
information about the data they are processing, they must be designed to work on shares
of the secret variables. These operations are known as secure or SMC addition(Add),
multiplication(EPMult), squaring(Sqrk), and affine transformation(Affine); furthermore,
the secure operations are composed of simpler field addition, multiplication, and
squaring. The details of the simpler operations can be found in the appendices. Also,
even though it is not an operation itself, a reliable source of randomness is fundamental.
Thus, our implementation is built bottom-up, the field operations and randomness
represent the building blocks, and more complex functions are layered on top of them

3.5.1 SMC Operations

The linear layers can be implemented in a straightforward manner with computations
done locally. The MPC implementation of SubBytes consists of squarings and multiplications [RP12].
As explained in Section 3.2.1, faults injected during this part remain undetected in the
previous scheme [RP12], which makes the SubBytes vulnerable. The SubBytes layer
consists of two main stages.

• The power function x → x254 over GF(28), denoted by Exp254(x), can be
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Algorithm 6 Exp254((Fi)0≤i<n)

Input: Shares of f0 as (Fi)0≤i<n.
Output: Shares of f254

0 as (Yi)0≤i<n.
1: (Zi)0≤i<n = Sqr1((Fi)0≤i<n) // z ← f2

0

2: (Zi)0≤i<n = RefreshM((Zi)0≤i<n)
3: (Yi)0≤i<n = EPMult((Zi)0≤i<n, (Fi)0≤i<n) // y ← f3

0

4: (Wi)0≤i<n = Sqr2((Yi)0≤i<n) // w ← f12
0

5: (Wi)0≤i<n = RefreshM((Wi)0≤i<n)
6: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Wi)0≤i<n) // y ← f15

0

7: (Yi)0≤i<n = Sqr4((Yi)0≤i<n) // y ← f240
0

8: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Wi)0≤i<n) // y ← f252
0

9: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Zi)0≤i<n) // y ← f254
0

10: return (Y0, . . . , Yn−1)

calculated using the Algorithm 6. Using Theorem 7.2 and Theorem 3.2, we
can prove the t-SNInd security of the Exp254(x) operation, as already proven
in [BBD+16].

Theorem 3.9 (t-SNInd of Exp254). Let (Fi)0≤i<n be the input shares of Exp254,
and let (Yi)0≤i<n be the output shares. For any set of t1 intermediate variables
and any subset |O| ≤ t2 of output shares such that t1 + t2 ≤ d, there exist two
subsets I and J of indices with |I| ≤ t1, such that those t1 intermediate variables
as well as the output shares Y|O can be perfectly simulated from F|I .

• The second part of the SubBytes operation is the GF(2)-affine transformation and
it is denoted by τ(y) [RP12]:

τA(y) = 0x63 ⊕ (0x05 · y)⊕ (0x09 · y2)⊕ (0xf9 · y4)⊕ (0x25 · y8)

⊕ (0xf4 · y16)⊕ (0x01 · y32)⊕ (0xb5 · y64)⊕ (0x8f · y128).

Using the EPMult, we are able to compute the output of SubBytes securely while the
probability of generating undetectable faults is 2−12 in the worst case for a (4, 1)-
MPC where all the shares are faulty. To further break down the SMC design into
its fundamental components, Table 3.5 shows the total number of SMC operations in
one round of AES-128.
Based on these results, we provide the performance analysis and cost of different
(n, d)-SMC schemes. The analysis is performed by using the total number of field
multiplications, additions, and randomness requirements for one round of AES-128 as
seen in Table 3.5 and Table 3.2. Results are shown in Table 3.6.
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Table 3.5: The number of SMC operations in one round of AES.
Exp254 τ(y) MixColumns AddRoundKey ShiftRows

EPMult 16× 4 - - - -
Sqr1 16× 7 16× 7 - - -
Add - 16× 7 12 16× 1 -
Affine - 16× 8 16 - -
RefreshM 16× 2 - - - -

Table 3.6: Total number of operations for different (n, d)-scenarios for one round of
AES-128.

ε = 0 ε = 1 ε = 2 ε = 3
(3,1) [GRR98] (3,1) (4,1) (6,2) (5,1) (6,1)

Field Mul. 2448 2640 4288 10656 6320 8736
Field Add 1428 2196 3696 10152 5580 7848
Randomness 192 192 256 768 320 384

Next, we analyze first-order side-channel resistant AES-128 implementations. Using
(4,1)-SMC, we are able to extend the first-order side-channel implementation of
Roche and Prouff [RP12] to a combined first-order side-channel and fault resistant
implementation. The extension increases the number of field multiplications by 62%,
additions by 68%, and randomness requirements by 33%. Since the error detection
coefficients are used for error propagation, our scheme is more efficient than simple
duplication. Moreover, we can increase the side-channel resistance of the system to
second order by using (6,2)-SMC. The cost of this implementation requires 148% more
field multiplications and also 164% more additions, since it heavily depends on n and
ε. On the other hand, the randomness requirement increases by 200%, because the cost
of it is proportional to n and d. Also, as Table 3.6 shows, (4,1), (5,1), and (6,1)-SMCs
have the same side-channel resistance and have the first, second, and third order fault
resistance, respectively. The number of field multiplications and additions is nearly
proportional to half of the fault resistance order. Therefore, we can conclude that
increasing the order of fault resistance costs less than the increase of the side-channel
resistance.

3.5.2 Software Implementation

Up to this point, we have only discussed the theoretical performance results; the next
section describes the performance results in terms of execution time of the whole
encryption and its building blocks om ARM Cortex M0+ (the details of our setup can
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Table 3.7: AES-128 encryption execution time, code and RW-data size depending on
the GF(28) operations variations. I:Instruction Only, M:Mixed, L:LUT, E:Exp-Log.

(3,1) (5,2) unmasked
GF(28) mult. I M E I M E -
GF(28) sqr. I L L I L L -

Encryption [GRR98] 1.45M 1.11M 0.52M 8.04M 6.48M 2.90M -
Our scheme 1.75M 1.37M 0.64M 9.21M 7.47M 3.4M -

Code Size (kB) 3.4 3.3 3.3 3.6 3.4 3.5 7.2
RW-data (B) 12 524 780 32 544 800 12
RO-data (B) 224 224 224 224 224 224 870

Table 3.8: Execution time for GF(28) and SMC operations in µs with the CPU running
at 4 MHz. I:Instruction Only, M:Mixed, E: Exp-Log

(3,1) (4,1) (5,1) (5,2) (6,2)
I M E I M I M I M E I M

GF(28) mult. 54.5 44.5 17.5 54.5 44.5 54.5 44.5 54.5 44.5 17.5 54.5 44.5
GF(28) sqr. 13.8 1.5 1.5 13.8 1.5 13.8 1.5 13.8 1.5 1.5 13.8 1.5

getrn() 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
SMC add. 15.2 15.2 15.2 18.2 18.2 21.2 21.2 21.2 21.2 21.2 24.2 24.2

Mult [GRR98] 1.2k 1.0k 0.48k 2.1k 1.7k 3.2k 2.7k 9.1k 7.5k 3.4k 13k 10.8k
EPMult 1.4k 1.1k 0.54k 2.4k 2k 3.8k 3.2k 9.8k 8.1k 3.7k 13.5k 11.2k

be found in Chapter B). The overall encryption execution timings for the (3,1) and (5,2)
schemes are shown in Table 3.7. As a reference, we consider the 32-bit C implementation
of AES in OpenSSL 1.0.1g, compiled for the ARM Cortex-M0+ and run at core clock
frequency of 4 MHz. The execution time for this unmasked encryption is 481.5 µs.
Table 3.7 shows its corresponding code and data size. Even though full unrolling is
disabled, the code and data size is significantly larger, however, the execution time is
1090X faster than the fastest masked encryption in Table 3.7.
SMC multiplication is the bottleneck of the algorithm and in turn it relies on the
field multiplication. The execution time can also be reduced by running at higher
frequencies but the performance would remain the same, however, power consumption
would increase. Table 3.7 details the amount of code and RW-data according to selected
combinations of field operations, noted that other combinations are also possible to
produce different code and data sizes.
Table 3.8 summarizes the execution timings corresponding to the different versions of
field operations and the SMC multiplication. Based on Table 3.5, these building block
operations represent the key elements to boost the performance of the masking scheme,
that is the reason to look for faster methods to perform field arithmetic.
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Performance Analysis. The only comparable implementation was presented in [GSF14]
and features, according to its Figure 2, an approximate number is 4.5 million cycles for a
(5,2) scheme. Our fastest second order implementation takes 11.6 million cycles which is
nearly 2.6X slower. The comparison is based on the graphs in Figure 2 of [GSF14]. We
surmise that part of the performance degradation is due to different platform features
and the fact that our implementation is of constant time and performs on-the-fly mask
generation. It also suggests that significant performance gains can be achieved through
further optimizations of our proof-of-concept implementation.

Hardware Implementation. The proposed scheme is also well-suited for hardware
implementation, due to its glitch-resistance. A proof-of-concept implementation of
the Roche and Prouff scheme was analyzed by Moradi and Mischke [MM13]. Their
reference implementation introduces a rather high overhead, in area but also in lost
performance. Our scheme will increase this overhead due to the fault resistance, as
quantified in Section 3.4.4, mainly due to the increased number of shares. It should
be noted that the reference implementation in [MM13] has parallel hardware, but still
performs serialized processing of all shares. However, parallel processing of shares can
be secure [BDF+17] and would provide a significant performance boost over the fully
serialized implementation in [MM13].

3.5.3 Side-channel Analysis

Using the software traces we demonstrate a simple leakage detection test by the test
vector leakage assessment (TVLA) by Goodwill et al. [GGJR+11] as described in
Section 2.1
To demonstrate the effectiveness of our implementation, an initial t-test was performed
with a switched-off masking on a small set of samples and later with the masking enabled
on a much larger set of measurements. To disable the masking scheme, during the sharing
of the input operands, the highest-degree coefficient was hardcoded to 0x1.
Fig. 3.2 shows the intense leakage spread around three different points in time. They
correspond to the initial three field multiplications that are done within the SMC
multiplication. The peaks are generated because there is an immediate relationship
between the operands and their corresponding shares. The shares for the fixed operands
are always the same and thus consume an approximately equal amount of power on
every execution so, when compared to the power consumption of random operands, a
huge difference is revealed after just 12,000 traces.
After demonstrating the effectiveness of the t-test, results corresponding to (3,1)-EPMult
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Figure 3.2: Leakage analysis with disabled masking after 12,000 traces.

and (5,2)-EPMult are displayed in Fig. 3.3. While (3,1)-EPMult executed with a 4 MHz
clock, (5,2)-EPMult’s clock was switched to 16 MHz, due to its execution length with 4
MHz clock would turn the trace collection impractical.
For all subplots in Fig. 3.3 are showing analysis results for 1st through 5th order. As the
figure shows, the level of leakage is contained within the acceptable boundaries. Also,
Fig. 3.4 shows the t growth over the number of samples for the first-order t-test.

Multivariate t Test. SMC hardware implementations process their shares in parallel,
therefore, the power consumption reflects the processing demand of all of them
simultaneously. In our single-threaded software implementation, the operations on every
share or pair of shares are performed sequentially. As a result, the power consumption
at certain intervals may only be related to a single share or pair of shares being
processed [SM15]. The multivariate t-test combines a sample from a particular point
in time to other samples at different intervals of time. The objective is to identify if
there is a relationship between the processing of the sets of shares that occur at different
points in time.
Fig. 3.5 shows the results of the multivariate analysis on relevant sections of the
(3,1)-EPMult. Each of the plots belongs to the combination of the points in the section
where the first pair of shares is processed and those of the sections where the remaining
pairs are processed. Although the Exp-Log field multiplication uses table look-ups,
the result in Fig. 3.5 does not show any evidence of leakage derived from the memory
accesses.

72



3.5 Side-Channel and Fault Resistant AES Implementation

Figure 3.3: HO t-test for (3,1)-EPMult and (5,2)-EPMult with Exp-Log GF(28)
multiplication using 250.000 traces.
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Figure 3.4: First order t growth for (3,1)-EPMult and (5,2)-EPMult with Exp-Log GF(28)
multiplication. The black lines show the evolution of the maximum and minimum first-
order t values over the number of traces. The stars mark how the index of the last
maximum value grew over the number of traces. The circles mark the last minimum
values.

The multivariate analysis is a useful tool to reveal potential sources of interdependent
side-channel leakage that otherwise would be hidden from the regular t-test. However,
the time execution and memory constraints are significant factors to constrain the
extension of the analysis to certain sections. Remark that for all of the multivariate
analysis subplots, the horizontal axis does not represent time since the analysis itself
requires the combination of traces at different points.

3.5.4 Fault Analysis

Next, we present experimental results of fault injection on the proposed scheme on the
simulation in SAGE. As given in Section 3.4, faults can be undetectable in a sequence of
operations. As the only non-linear operation of AES, we focused on SubBytes operation.
We start with the Exp254 operation to our analyses. First, we do the theoretical analyses
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Figure 3.5: Multivariate t-test for sections of the (3,1)-EPMult based on Exp-Log
GF(28) multiplication. Share-1 vs Share-1 shows the multivariate t-test results of all
combinations of points during the first GF(28) multiplication. Share-1 vs Share-2 shows
the results of the multivariate t-test for the combination of points from the first field
multiplication to the second one. Share-1 vs Share-3 corresponds to the multivariate
t-test analog to the previous case. Share-1 vs Other shows the results of multivariate
t-test of the points during the first field multiplication combined with all the points of a
section close to the end of EPMult.

on EPMult and Exp254. In Table 3.9 and in Table 3.10, one can see the probabilities of
generating undetectable faults for EPMult and Exp254, respectively. For these analyses,
we randomly select the instances withing the gadgets and add a random fault to these
instances. For EPmult, the faults are detectable using (Fi)(0≤i<n) and (Gi)(0≤i<n) in
Algorithm 2. And for Exp254, the faults are detectable using (Fi)(0≤i<n) in Algorithm 6.
Note that, k is defined as the number of faulty shares as in Corollary 3.7. As seen
both tables, the probabilities slightly changes, depending on the conditions listed in
Corollary 3.7. Also, even if we used a sequence of operations, the generating undetectable
faults for Exp254 mostly depend on the last multiplication (line 9 in Algorithm 6). Notice
that, the faults in the initial input shares spread to first ε + d shares of both inputs of
EPMult operations within Exp254. Therefore, the number of faulty shares after the first
EPMult is calculated as max(n, 2(ε+ d)).

In the second part, we verify the theoretical analyses with the experimental results. We
look the fault detection capabilities of Exp254 and τa ◦Exp254. The experimental setup
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Table 3.9: Probabilities of generating undetectable faults for EPMult.
k = 1 k = 2 k = 3 k = 4

(4,1) 1.54× 10−5 1.54× 10−5 1.53× 10−5 1.53× 10−5

(5,1) 1.54× 10−5 6.03× 10−8 6.01× 10−8 5.98× 10−8

(6,1) 1.54× 10−5 6.03× 10−8 2.37× 10−10 2.35× 10−10

(6,2) 6.03× 10−8 6.03× 10−8 6.01× 10−8 6.01× 10−8

Table 3.10: Probabilities of generating undetectable faults for Exp254.
k = 1 k = 2 k = 3 k = 4

(4,1) 1.53× 10−5 1.53× 10−5 1.53× 10−5 1.53× 10−5

(5,1) 5.98× 10−8 5.98× 10−8 5.98× 10−8 5.98× 10−8

(6,1) 2.34× 10−10 2.34× 10−10 2.34× 10−10 2.34× 10−10

(6,2) 6.03× 10−8 6.01× 10−8 6.01× 10−8 6.01× 10−8

can be summarized as follows:

1. Select a secret variable x ∈ GF(28) and create an (n, d)-sharing of x as (Fi)(0≤i<n).

2. Select k faults σi ∈ GF(28) \ {0} and inject the faults to the first k shares of x.

3. Process the detection on the Exp254((Fi)0≤i<n) and the τa ◦ Exp254((Fi)0≤i<n).

For example in the (4, 1) case, even if faults spread to all shares, the probability of
generating undetectable errors at most 2−12, as expected. In each multiplication, faults
are spread to k′ ≤ ε+d shares and these shares become input for another multiplication.
Therefore, Propogationε changes for each multiplication. As seen in Table 3.11, if we
increase n, the probability of undetectable faults decreases with respect to the conditions
in Corollary 3.7. In these experiments, we maximize the attackers capabilities to simulate
the real-world settings, and efficiently analyze the fault model and detection capabilities
of our scheme. Remark that, for an (n, d)-scheme with k faults, the total number of
secret shares is (28)d+1 and the total number of all possible faults is (28)k.
The number of undetectable faults are same in Exp254 and τa ◦ Exp254. Therefore,
we can conclude that τa does not produce undetectable faults. And if the fault is
detectable using the output of Exp254, the attacker should inject another fault to τA

to generate undetectable faults. Moreover, in some experiments, all faults become
detectable even if the propagation probability is not 1. Although we perform the
experiments with maximized number of faults, randomness is added in the nature of
multiplication. Therefore, the numbers are not exact values, but rather upper bounds.
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Table 3.11: Probabilities of generating undetectable faults for Exp254 and τA ◦Exp254
using SAGE simulation.

# Secret Shares / # Fault Injections
k = 1 k = 2 k = 3 k = 4

216 / 28 28 / 216 28 / 216 28 / 216

(4,1) 1.45× 10−5 1.52× 10−5 3.04× 10−7 2.88× 10−5

(5,1) 2.40× 10−7 6.01× 10−8 6.01× 10−8 1.20× 10−7

(6,1) 0 0 0 0
(6,2) 0 0 1.20× 10−7 1.26× 10−5

3.6 Conclusion

Fault and side-channel attacks have become a real threat to cryptographic systems if the
adversary can observe and interact with the physical implementation. In this chapter,
we propose a new secure multiparty computation to achieve both fault and side-channel
resistance. It is shown that the proposed schemes can be used to perform addition, affine
transformation, multiplication, and squaring while resisting both well-defined fault and
side-channel adversaries. One advantage of the proposed scheme is a reduced overhead,
as only an extra operation within the error preserving multiplication is needed.
We define a new multiplication engine in such a way that, once a fault occurs, information
about the error remains as a part of the shares. The error propagates through the
algebraic operations with high probability. It will be detectable even after further
computations on the shares. This gives implementers the choice to perform error
detection regularly (for higher detection rates at a higher overhead) or only implicitly
during recombination at the end of the circuit. The error detection method is based
on the degree of the secret sharing polynomial, which increases when errors occur.
After the initial increase, additional levels of logic operations can result in a loss of
degree for faulty states, leaving a small probability of undetected errors. A secrecy-
preserving fault detection operation is defined to perform the detection. Also the idea of
forwarding faults allows us to delay any error detection as late as the final recombination
step. We introduce a recombination gate which is used for both fault detection and
reconstruction of the secret. Hence, fault detection can be carried out when the output
is produced. Moreover, the recombination gate features another desired property:
Infective Computation. If an error occurs, our scheme ensures that attackers cannot
learn anything since the output is random.
Security properties of our scheme are given using ISW probing model and a formal
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analysis of fault resistance. Every gadget, including fault detection operation and
recombination operation is proven to be secure in ISW probing model using the
reformulated t-SNI security notion. Also, the first formal security proof of the
multiplication scheme [RP12] is proven within this work, since the previous scheme
can be seen as a subset of our scheme. Fault detection of our scheme is examined using
notion of Propagation. The error-detection capacities of each operations are formally
given by analysing the undetectable faults for each operation.
We propose a practical C implementation AES-128, tested on a popular ultra-low
power architecture, the ARM Cortex M0+ core. We also measure its performance and
demonstrate its level of side-channel resistance by addressing a full leakage analysis
including higher order moments on the SMC multiplication. Also, to show the fault
resistance capabilities of the proposed scheme, we perform the experiments on the
SubBytes operation which can be considered as the most to vulnerable part of AES.
The implementation provides multiple masking schemes with different types of field
operations and is easily portable to higher orders. Different masking orders with
different field operations executed in constant time. The code provides a fully constant
execution flow with constant memory accesses.
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4.1 Motivation

White-box cryptography attempts to protect cryptographic secrets in pure software
implementations. Due to their high utility, white-box cryptosystems (WBC) are
deployed by the industry even though the security of these constructions is not well
defined. A major breakthrough in generic cryptanalysis of WBC was Differential
Computation Analysis (DCA), which requires minimal knowledge of the underlying
white-box protection and also thwarts many obfuscation methods. To avert DCA,
classic masking countermeasures originally intended to protect against highly related
side-channel attacks have been proposed for use in WBC. However, due to the controlled
environment of WBCs, new algebraic attacks against classic masking schemes have
quickly been found. These algebraic DCA attacks break all classic masking countermeasures
efficiently, as they are independent of the masking order.
In this chapter, we provide the first generic and combined masking scheme that resists
state-of-the-art white-box attacks: computational and algebraic attacks. Classic masking
schemes can be applied to WBC, however none of them can individually achieve security
against both attacks. To fill this gap, we examine the ISW transformation introduced by
Ishai et al. [ISW03] and extend it to the white-box context.
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We improve the ISW transformation by adding a multiplicatively shared nonlinear share.
This additional nonlinear share provides security against algebraic attacks. The secret
sharing of our masking scheme then consists of two components; linear shares to resist
computational attacks and non-linear shares to increase the degree of the decoding
function to prevent algebraic attacks. We present the structure of generic masking
that resists an arbitrary order computational and first or second-order algebraic attacks
in Section 4.2. To analyze the security of our construction in Section 4.3, we focus
on two security notions in cryptography: probing security addresses security against
computational attacks, while prediction security addresses security against algebraic
attacks. Remark from Section 2.1.1, the probing model was introduced by Ishai et
al. [ISW03]. The model states that every tuple of n or less intermediate variables must
be independent of any sensitive variable. As stated in [BRVW19], an nth-order masking
provides security against nth-order probing attacks and nth-order computational attacks
with additional obfuscation layers.

To cover algebraic attacks, a new security notion called Prediction Security was defined
in [BU18]. The prediction security of a circuit C (with an encoding function E), is based
on the probability of an adversary (A) to accurately predict values of any single function
(of dth order) over intermediate values computed in the circuit C (composed with
encoding E). The aim of such a prediction is to distinguish two sequences of plaintexts
(chosen by the adversary) by analyzing the corresponding software trace. For example,
an nth-order Boolean masking that is inherently protected against computational attacks
is vulnerable against first-order algebraic attacks, since the adversary can utilize a linear
function (i.e. a first-order function) and combine a subset of intermediate variables to
recover the secret value.

In this work, we further show that the probing security and prediction security notions
are incomparable. First, we prove that our masking scheme is indeed secure against
computational attacks by showing that it is secure in the probing model with the given
order using the non-interference notions by Barthe et al. [BBD+16]. We give a concrete
construction for first and second-order prediction security and prove their security. We
extend the security definitions given in [BU18] and give a novel composability proof for
the second-order prediction secure constructions. Besides the formal proofs, we verify the
probing security of our masking scheme using the tool maskVerif [BBC+19] for specific
orders. Furthermore, we update and use the tool produced by [BU18] to experimentally
verify the first-order prediction security of our scheme. The implementation that can
be used with maskVerif and the updated version of the tool produced by [BU18] is
available as open source.
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https://github.com/UzL-ITS/white-box-masking

In Section 4.4 we introduce a proof-of-concept AES implementation to analyze the
overhead and experimentally verify the security properties of our scheme using a simple
leakage test. The analysis includes the number of needed gates and number of required
randomness for different orders of protection. We show that our combined approach
outperforms the previous approaches which required to combine two different masking
schemes to resist both attacks.

Notation. First, we summarize the notation used throughout the chapter. In the
following, we use some finite ring (K,⊕,⊗) with an addition operation ⊕ and a
multiplication operation ⊗. We often omit the multiplication symbol ⊗ and thus write
xy instead of x⊗ y. Although we introduce the notations using K, we fix K = GF(2). A
vector space over K of dimension ` is denoted by K`. For a, b ∈ Z with a < b, we define
[a, b] := {a, a + 1, . . . , b − 1, b}. The letters x, y, z, . . . represent the sensitive variables.
Random variables are represented by the letter r, with an index as ri or ri. To denote
a random selection of a variable r from the field K, we use r ∈R K.
A sensitive variable x is split into n+ 1 linear shares x0, . . . , xn such that x =

⊕n
i=0 xi

and a single share (e.g. x0) split into d + 1 non-linear shares x̃0, . . . , x̃d such that
x0 =

∏d
j=0 x̃j . A vector of elements (x1, . . . , xn) is denoted by x. For a subset I ⊆ [0, n]

of indices, we denote by x|I = (xi)i∈I the sub-vector of shares indexed by I.
A gadget G for a function f : Ka → Kb (with regard to a masking order) is an arithmetic
circuit with a · (n + d + 1) inputs and b · (n + d + 1) outputs grouped into a vectors
of shares x(1), . . . , x(a), resp. b vectors of shares y(1), . . . , y(b). The gadget needs to be
correct, i. e. G(x(1), . . . , x(a)) = (y(1), . . . , y(b)) iff f(x(1), . . . , x(a)) = (y(1), . . . , y(b)) for all
possible inputs and for all values generated by the random gates. The values assigned
to wires that are not output wires are called intermediate variables.
As usual, we model the white-box implementations as Boolean circuits (C) represented
by directed acyclic graphs. Each node in a circuit C, with k > 0 inputs, corresponds to
a k-ary Boolean function. Nodes with the indegree equal to zero are called inputs of C
and nodes with the outdegree equal to zero are called outputs of C.
Let z be an input of C : FN

2 → FM
2 and x = (x1, . . . , xN ) be a vector of input nodes in

some fixed order. For each node v in C, we say that it computes a Boolean function
fv : FN

2 → F2 defined as follows:

• for all 1 ≤ i ≤ N set fxi(z) = zi,
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• for all non-input nodes v in C set fv(z) = gv(fc1(z), . . . , fck(z)), where c1, . . . , ck

are nodes having an outgoing edge to v and gv : Fk
2 → F2.

The set of fv for all nodes v in C is denoted F(C), the set of fxi for all input nodes xi
is denoted X (C), and the set of fv for all non-input nodes v in C is denoted F(C \ X ).
Recall, that any Boolean function f : Fn

2 → F2 has a unique representation of the form
f(x) =

⊕
b∈Fn ab xb11 . . . xbnn , with ab ∈ F2. The (algebraic) degree of f , denoted deg(f),

is the maximum degree of a monomial xb11 . . . xbnn , with ab = 1. The bias of a Boolean
function g : F`

2 → F2 is represented by E(·) i.e., E(g) = |1/2− wt(g)/2`| and wt(g) is the
weight of g, i.e., the number of nonzero entries of its truth table. Bold numbers 0 and 1
are used to denote constant functions.
If V = {g1, . . . , g|V|} is a set of Boolean functions with the same domain Fn

2 then the
d-th order closure of V (denoted V(d)) we call the vector space of all functions obtained
by composing any function of degree at most d with functions from V, i.e., V(d) contains
functions of the form f ◦ (g1(x), . . . , g|V|(x)) for all f : F|V|

2 → F2, with deg(f) ≤ d. For
example, F (1)(C) is spanned by {1} ∪ F(C) and F (2)(C) is spanned by {1} ∪ {gigj |
gi, gj ∈ F(C)}.
In the next section, we introduce our masking scheme, which resists both computational
and algebraic attacks by using an adapted version of the ISW transformation.

4.2 Secure Masking Construction

The proposed masking scheme is based on two ideas: an ISW-like masking to increase the
number of shares required to eliminate computation attacks and using a multiplicative
sharing to increase the degree of the decoding function. We call the first part linear
sharing of order n and the second part non-linear sharing of degree d. The resulting
construction is named (n, d)-masking. We start with the data transformation and define
our masking function as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = (x̃0, . . . , x̃d, x1, . . . , xn) ,

where x̃0, . . . , x̃d, x1, . . . , xn−1 ∈R F2 are chosen randomly and independently from F2,
and

xn = x⊕
∏d

j=0 x̃j ⊕
⊕n−1

i=1 xi .

Observe that our masking scheme is obtained from the ISW transformation by replacing
the first share x0 in ISW by a non-linear sharing x0 =

∏d
j=0 x̃j . The unmasking function
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is defined as follows:

Decode(x̃0, . . . , x̃d, x1, . . . , xn) =
∏d

j=0 x̃j ⊕
⊕n

i=1 xi.

The data transformation is followed by the transformations of each AND and XOR gate.
Throughout the chapter, we define the transformed gates as And and Xor (or And[n, d]
and Xor[n, d]) gadgets respectively.

4.2.1 Gate Transformations

In this section the generic constructions for the Xor and And gadgets are presented.
Additionally, we provide definition of the RefreshMask gadget, which is needed to protect
against algebraic attacks. The scheme can be used for an arbitrary order n of linear
masking and any degree d of the non-linear component. Though the constructions are
general, the algebraic security depends on the variable structure (details can be found in
Section 4.3). Depending on the non-linear degree d, the following intermediate variables
need a special structure:

• The intermediate variable U used in Xor and specified in Equation (4.1),

• The intermediate variables rj,0 in Equation (4.2), used in And,

• The intermediate variables W and R used in RefreshMask, Equation (4.3).

In the following descriptions we first introduce the functionalities of these variables
which can be defined for arbitrary orders of n and d. Afterwards, we will show the
computational structure of these variables for d = 1 and d = 2.
Let x and y be two bits and consider an (n, d)-masking scheme, i.e. x and y have been
split into (n+d+1) shares such that

∏d
j=0 x̃j⊕

⊕n
i=1 xi = x and

∏d
j=0 ỹj⊕

⊕n
i=1 yi = y.

Xor[n, d] Gadget. A masked representation of z = x ⊕ y with n + d + 1 shares such
that

∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step 0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step 1: The values of the non-linear shares are processed:

z̃i = x̃i ⊕ ỹi for 0 ≤ i ≤ d.
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Algorithm 7 Xor(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The shares of x⊕ y as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).

1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ j ≤ d
4: z̃j ← x̃j ⊕ ỹj

5: for 1 ≤ i < n
6: zi ← xi ⊕ yi

7: zn ← xn ⊕ yn ⊕ U
8: return z̄ = ((z̃j)j∈[0,d], (zi)i∈[1,n])

Step 2: Computation of linear shares:

zi =

xi ⊕ yi, for 1 ≤ i < n

xi ⊕ yi ⊕ U , for i = n.

where the functionality of U is defined as follows:

U =
⊕

I({0,...,d}
I 6=∅

∏
i∈I x̃i

∏
j 6∈I ỹj (4.1)

Moreover, we can introduce the computational structure of U for a secure masking
scheme as follows:

• Xor[n, 1]: U = x̃0ỹ1 ⊕ x̃1ỹ0

• Xor[n, 2]: U = x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

• Xor[n, d] for d ≥ 3, the functionality of U can be defined as in Equation (4.1).
However the computational structure should be described carefully in order
not to create vulnerabilities in algebraic security.

And[n, d] Gadget. A masked representation of z = xy with n+ d+ 1 shares such that∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step 0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).
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Step 1: The calculations of the values with multiplicative representation are processed.
Additional random bits ri,j are generated in order to attain algebraic security in
the second step.

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d where i′ = i+ 1 mod(d+ 1).

Step 2: The variables rj,i for 0 ≤ i < j ≤ n are generated as follows:

rj,i =

(ri,j ⊕ (x̃0 · · · x̃d)yj)⊕ xj(ỹ0 · · · ỹd), for i = 0 (a)

(ri,j ⊕ xiyj)⊕ xjyi, for 1 ≤ i ≤ n where ri,j ∈R F2 (b) ,

The calculations for 1 ≤ i ≤ n are processed as identical to the ISW-And gadget.
However, for i = 0 the calculations require a special computational structure:

rj,0 = [r0,j ⊕ (x̃0 · · · x̃d)yj ]⊕ xj(ỹ0 · · · ỹd) for 1 ≤ j ≤ n. (4.2)

Observe that ri,j for 1 ≤ i < j ≤ n is assigned a uniformly random value. However,
r0,j cannot be assigned as random. Instead, r0,j should be defined in such a way
that the following equation holds:

n⊕
j=1

r0,j =
⊕

I⊂{0,...,d}
I 6=∅

∏
i∈I x̃iỹi′

∏
j 6∈I(r

j,1 ⊕ · · · ⊕ rj,n) where i′ = i+1 mod(d+1).

We denote the right-hand side of the above equation as V. Note that the above
functionality for rj,0 (given on the right-hand side of Equation (4.2)) is not secure
against an algebraic attack, even if it is only a first-order one. Below we provide a
secure computational structure for the case of an (n, 1) and (n, 2)-masking.

• And[n, 1] : rj,0 = x̃1(x̃0yj ⊕ r0,j ỹ0)⊕ ỹ1(ỹ0xj ⊕ r1,j x̃0)⊕ r1,j(r0,1 ⊕ . . .⊕ r0,n).

• And[n, 2] : rj,0 = x̃0
[
x̃2(x̃1yj ⊕ r0,j ỹ0)⊕ r1,jvỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2xj ⊕ r1,j x̃2)⊕ r0,jux̃2

]
⊕

x̃0ỹ1(r
1,j x̃2ỹ0 ⊕ r2,j x̃1ỹ2)⊕ r0,j x̃1ỹ2(v ⊕ x̃2ỹ0)⊕

x̃2ỹ0(r
0,j x̃0 ⊕ r1,j ỹ1)⊕ uvr0,j .

where u = r1,1 ⊕ · · · ⊕ r1,n and v = r2,1 ⊕ · · · ⊕ r2,n.
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Algorithm 8 And(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The vector of shares of xy as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).

1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ i ≤ d
4: z̃i = x̃iỹi′ // i′ = i+ 1 mod(d+ 1)
5: for 1 ≤ j ≤ n
6: ri,j ← rand(0, 1)
7: z̃i = z̃i ⊕ ri,j

8: for 0 ≤ i ≤ n
9: for i < j ≤ n

10: if i = 0 then
11: rj,0 ← as described in the text.
12: else
13: ri,j ← rand(0, 1)
14: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi

15: for 1 ≤ i ≤ n
16: zi ← xiyi
17: for 0 ≤ j ≤ n and j 6= i
18: zi ← zi ⊕ ri,j // Denoted by zi,j

19: return z = ((z̃j)j∈[0,d], (zi)i∈[1,n])

• And[n, d] for d ≥ 3 the circuit nodes that calculates rj,0 should be structured
in such a way that algebraic security properties are satisfied.

Step 3: The final step can be performed identical to an ISW-And gadget: For every
1 ≤ i ≤ n, compute zi = xiyi ⊕

⊕
i 6=j ri,j .

RefreshMask[n, d] Gadget. This operation has a crucial importance for generating an
algebraically secure implementation. In fact, it has to be combined with each Xor and
And gadget in order to obtain a fully secure masking scheme. The security details can
be found in Section 4.3.

Step 1: For 0 ≤ i ≤ d, calculate x̃′i = x̃i ⊕ r̃i where r̃i ∈R F2.

Step 2: First initialize x′i ← xi for all i ∈ [1, n] and for 1 ≤ i < j ≤ n, calculate
x′i = x′i ⊕ ri,j and x′j = x′j ⊕ ri,j where ri,j ∈R F2.
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Step 3: In the last step we sample r0 ∈R F2 and define two intermediate variables as
follows:

W ′ =
⊕

I({0,...,d}

∏
i∈I x̃i

∏
j 6∈I r̃j and W =

⊕
I({0,...,d}

I 6=∅

∏
i∈I(x̃i ⊕ r0)

∏
j 6∈I r̃j ,

Here, as usual, a product over the empty set I is evaluated as 1. Using the above
equations we define the variable R =W⊕W ′. Now, we can introduce the variables
that need to be added to the final share xn as:

x′n ← x′n ⊕W ⊕R where R =W ′ ⊕W. (4.3)

Remark that we cannot directly add W ′ to the final share xn due to algebraic security
properties. Therefore, the variablesW and R should be added to the final share in order
to define an algebraically secure mask refreshing gadget. The computational structure
of the circuit nodes to calculate W and R for RefreshMask[n, 1] and RefreshMask[n, 2]
can be found below.

• RefreshMask[n, 1] :W = r̃0(x̃1⊕ r0)⊕ r̃1(x̃0⊕ r0) and R = (r̃0⊕ r0)(r̃1⊕ r0)⊕ r0.

• RefreshMask[n, 2] :W = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)]⊕ [r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)]⊕

[r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)]

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕

r0 [r̃2(x̃0 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)]⊕

r0 [r̃2(x̃1 ⊕ r0)⊕ r̃1(x̃2 ⊕ r0)⊕ r̃0(x̃2 ⊕ r0)] .

• RefreshMask[n, d] for d ≥ 3 the circuit nodes that calculate W and R should be
constructed in such a way that algebraic security properties are satisfied.

4.2.2 Correctness and Performance Analysis

Next, we introduce the transformation T(n,d) to generate a Boolean circuit that is
protected by an (n, d)-masking scheme by using the gadgets described in Section 4.2.1.
The following lemma summarizes the correctness of the transformation T(n,d) and proof
can be found in Chapter A.

Lemma 4.1. Let us denote the Boolean circuit C initialized with data D by C[D]. The
transformation T(n,d) : C[D] 7→ C ′[D′] where C ′ uses And, Xor, RefreshMask gadgets
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Algorithm 9 RefreshMask(x)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n])
Output: The shares x = ((x̃′j)j∈[0,d], (x

′
i)i∈[1,n])

1: for 0 ≤ j ≤ d
2: r̃j ← rand(0, 1)
3: x̃′j ← x̃j ⊕ r̃j

4: for 1 ≤ i ≤ n x′i ← xi

5: for 1 ≤ i ≤ n
6: for i+ 1 ≤ j ≤ n
7: ri,j ← rand(0, 1)
8: x′i ← x′i ⊕ ri,j // Denoted by ai,j
9: x′j ← x′j ⊕ ri,j // Denoted by bj,i

10: r0 ← rand(0, 1) // r0 is used to compute W and R
11: x′n ← x′n ⊕W ⊕R
12: return (((x̃′j)j∈[0,d], (x

′
i)i∈[1,n])

and Encoding, Decoding functions described in Section 4.2 with randomness gates is a
functionality preserving transformation, i.e. C[D] and C ′[D′] have the same input-output
behavior.

In conclusion, the transformation T(n,d) can be used to transform any circuit to an (n, d)-
masked circuit in a functionality preserving manner. Although we are using an nth order
linear masking, the scheme only provides an (n− 1)th probing security. Due to the non-
linear sharing, the masking loses one share to increase the decoding order. The algebraic
security depends on the structure of Equations (4.1), (4.2), and (4.3) in each gadget as
discussed above. Further details can be found in Section 4.3.2.

Performance Analysis. In order to compare our construction with the previous
schemes, we analyze the performance of our scheme in terms of bitwise operations
and randomness requirements. An analytical comparison of different orders and a
comparison between the ISW transformation and (n, d)-masking scheme can be found in
Table 4.1.
In the following analysis, for simplicity, we use the symbol vertical bar (|) to separate
the number of Xor, And operations respectively. We exclude the RefreshMask gadgets
inside the Xor and And gadgets to analyze the constructions straightforwardly. Since the
structure of the special variables depends on the non-linear degree d, we use a symbolic
approach to analyze the performance numbers for the higher orders (i.e. for d ≥ 3). We
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use subscripts to denote the number of operations within U , V, W, and R, e.g., Ux and
Ua represent the number of bitwise Xor, And operations within U respectively.

Table 4.1: The number of bitwise operations in a masked Xor, And and RefreshMask (or RefM
in short) gadget. Remark that (n, 0)-masking scheme corresponds to ISW gadgets. The last
part of the table corresponds to the overhead of (n, d)-masking scheme compared to the ISW
transformation.

Xor And Randomness
Xor[n, 0] n+ 1 - -
And[n, 0] 2n(n+ 1) (n+ 1)2 n(n+ 1)/2

RefM[n, 0] n(n− 1) - n(n− 1)/2

Xor[n, 1] n+ 4 2 -
And[n, 1] 2n2 + 5n− 1 n2 + 7n+ 2 n(n+ 3)/2

RefM[n, 1] n(n− 1) + 8 3 (n(n− 1)/2) + 2

Xor[n, 2] n+ 9 6 -
And[n, 2] 2n2 + 15n− 2 n2 + 27n+ 3 n(n+ 5)/2

RefM[n, 2] n(n− 1) + 26 16 (n(n− 1)/2) + 3

Xor[n, d] n+ d+ 2 + Ux Ua -
And[n, d] n(2n+ d− 1) + Vx n2 + d+ 1 + Va n(n+ 2d+ 1)/2

RefM[n, d] n(n− 1) + d+ 1 +Wx +Rx Wa +Ra (n(n− 1)/2) + d+ 1

Overhead
Xor[n, d] d+ 1 + Ux Ua -
And[n, d] n(2n+ d− 3) + Vx − 1 d+ Va − n nd

RefM[n, d] d+ 1 +Wx +Rx Wa +Ra d+ 1

As seen in Table 4.1, the Xor gadget can be transformed efficiently. The cost of the
gadget in the ISW transformation is n+1 bitwise Xor operations while an (n, d)-masking
requires n + d + 2 bitwise Xor operations and the additional cost of the variables U .
Therefore, the cost of the Xor gadget can be calculated as; (n+ d+ 2 + Ux)|Ua.
The cost of an And gadget can be analyzed easily by comparing it step-by-step with
the ISW transformation. As seen in the construction in Section 4.2, the gadget can be
divided into three stages.

• Step 1 requires n(d + 1) random bits; the cost of processing these values can be
calculated as n(d+ 1)|d+ 1.

• Step 2(a) includes the calculations of rj,0 for 1 ≤ j ≤ n. For the (n, 1) masking,
Vx = 4n and Va = 7n. Additionally, the calculations of r0,1⊕ . . .⊕r0,n require n−1
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Xor operations. Similarly, for the (n, 2) masking, we get Vx = 12n and Va = 27n.
The intermediate variables u, v, and uv are calculated only once and they require
2(n− 1)|1 gates.

• Step 2(b) & Step 3 involve the calculations of rj,i for 1 ≤ i < j ≤ n, i 6= 0

and Step 3. These parts can be processed identical to the ISW transformation and
cost 2n(n − 1)|n2 gates, while the required number of random bits is n(n − 1)/2.
Observe that the cost of these parts are exactly the cost of an ISW-AND gadget
with n shares.

To sum up, we express the cost of And[n, d] gadget as (n(2n+d−1)+Vx)|(n2+d+1+Va)
gates, and the required randomness as n(n+ 2d+ 1)/2.

We analyze the performance of the RefreshMask gadget using a similar methodology.
The total amount of required randomness and the number of required bitwise Xor
operations can be calculated as (n(n−1)/2)+d+1 and n(n−1)+d+1 respectively. As in
the previous gadgets, the calculations ofW andR add more calculations to the structure.
The numbers for RefreshMask[n, 1] and RefreshMask[n, 2] are given in Table 4.1.

Using the performance analysis, we show the exact overhead of our scheme. The numbers
in the overhead section of Table 4.1 can be calculated by comparing the cost of the nth-
order ISW transformation with an (n, d)-masking scheme. As seen in the table, the
cost principally depends on the calculation of the values U , V, W, and R, while the
randomness is affected by the masking degrees n and d.

4.3 Security Against Computational and Algebraic Attacks

In this section, we prove that our proposed [n, d] masking scheme resists both computational
and algebraic attacks, up to (n − 1)th order and dth order, respectively. We use the
definition of non-interference as defined in [BBD+16], which guarantees security against
t probes for t ≤ n as proposed by Ishai et al. [ISW03], and the definition of security
against algebraic attacks of order d as proposed in [BU18]. First, we recall briefly both
security notions and then we prove that our (n, d) construction is secure against probing
up to order n − 1 and against algebraic attacks for d = 1 and d = 2. Remark that
probing security implies security against computational attacks of the same order, since
computational attacks correspond to side-channel attacks of the same order [BRVW19].
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4.3.1 Security Notions

We first cover the security notions that we used to prove our security properties, starting
with probing security as described in Section 2.1.
Note that security in the probing model is a necessary but not a sufficient condition
for a secure white-box implementation, as probing secure implementations may still be
vulnerable to algebraic attacks. To prevent algebraic attacks, prediction security is also
necessary.

Definition 4.1 (Prediction Security (d-PS), [BU18]). Let C : FN ′
2 × FRC

2 → FM
2

be a Boolean circuit that takes N ′-bit inputs, uses RC random bits, and produces an
M -bit output. Let E : FN

2 × FRE
2 → FN ′

2 be an arbitrary function that takes N -bit
input, uses RE random bits, and produces an N ′-bit output. Consider the following
security experiment with an adversary A, an integer d ≥ 1, and a predetermined variable
b ∈ {0, 1}:

Algorithm 10 PSC,E,d(A, b)

1: (f̃ , x[0], x[1], ỹ, b)← A(C,E, d) where
f̃ ∈ F (d)(C), (x[l] = (x

[l]
1 , . . . , x

[l]
Q))l∈{0,1}, x

[l]
i ∈ FN

2 , ỹ ∈ FQ
2 and l ∈ {0, 1}

2: (r1, . . . , rQ) ∈R (FRE
2 )Q

3: (r̃1, . . . , r̃Q) ∈R (FRC
2 )Q

4: for f ∈ F (d)(C)

5: y(f) = (f(E(x
[b]
1 , r1), r̃1), . . . , f(E(x

[b]
Q , rQ), r̃Q))

6: F ← {f ∈ F (d)(C) | y(f) = ỹ}
7: if F = {f̃} then return 1 else return 0

Finally, we define the advantage of an adversary A as

AdvPS
C,E,d[A] =

∣∣∣Pr[PSC,E,d(A, 0) = 1]− Pr[PSC,E,d(A, 1) = 1]
∣∣∣ .

The pair (C,E) is said to be dth order prediction-secure (d-PS) if for any adversary A
the advantage is negligible.

In summary, prediction security analyzes the behavior of functions from F (d)(C)

composed with an encoding function E. Consider two elements x, x′ ∈ FN
2 , if an

adversary is able to find a function f ∈ F (d)(C)\{0, 1} such that f(E(x, ·), ·) is constant
(or high-bias) but f(E(x′, ·), ·) is non-constant (or low-bias) then the adversary can
distinguish these inputs and therefore the pair (C,E) is considered insecure. Thus,
prediction security requires every function from the set F (d)(C) to have low-bias.
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The outline of the security analysis can be summarized as follows. First our gadgets and
encoding function have been proven to satisfy ε-1-AS, i.e. Definition 4.4 and Definition 4.5
(resp. ε-2-AS Definition 4.6 and Definition 4.7). To show that a gadget (or an encoding
function) satisfies the corresponding definition, we analyze the bias of functions f ∈
F (d)(C)\{0, 1} where d = 1 or 2. The ε-1-AS definition implies that f is either an affine
function of inputs or f has low bias when the input is fixed, i.e. when f is a function
of random values with a constant input. Similarly, ε-2-AS implies that f is either a
second-order combination of affine functions of input and circuit nodes or f has low bias
when the input is fixed, i.e. when f is a function of random values with a constant input.
The proofs of individual gadgets and encoding functions are followed by the composability
results. The composability of 1-AS gadgets is proven as in [BU18]. On the other hand the
composability of 2-AS gadgets are extended in a non-trivial way and the composability
of 2-AS gadgets are given in two fold; an arbitrary combination of two gadgets operated
in parallel order (Proposition 4.10) and in sequential order (Proposition 4.11). Since the
former analysis includes the linear combination of the nodes, a straightforward approach
is enough to prove the composability. In our approach, we need to check the non-linear
combinations of circuit nodes within the different gadgets.
Using the above steps, an arbitrary circuit, generated by And[n, d], Xor[n, d] and
RefreshMask[n, d] gadgets for d = 1 and d = 2 are shown to satisfy algebraic security
definitions respectively.
Next we prove the composability of an arbitrary circuit C with an encoding function E in
Proposition 4.7 and Proposition 4.12 and show that C(E(·)) satisfies algebraic security
definitions respectively. This implies that every function from the set Fd(C(E(·))) has
bias ≤ ε.
However to achieve prediction security we need a better security bound than ε. To prove
that a circuit is prediction secure we need to show that AdvPS

C,E,d[A] ≤ 2−κ depending
on a security parameter κ and this can be achieved by adding dummy random nodes to
the circuit. Using the maximum bias bound ε, the required number dummy random bits
to achieve a security bound κ is restated in Proposition 4.1.
In [BU18], it is shown that a circuit C achieves d-PS, if there are enough random bits used
in the circuit depending on the bias bound. Before giving the relation between random
bits and d-PS, we first remark the set of functions that is needed for the analysis.

Definition 4.2 ( [BU18]). Let C(x′, rc) : FN ′
2 × FRC

2 → FM
2 be a Boolean circuit,

E(x, re) : FN
2 × FRE

2 → FN ′
2 an arbitrary function and d ≥ 1 an integer. For any

function f ∈ F (d)(C) \ {0, 1} and for any x ∈ FN
2 define fx : FRE

2 × FRC
2 → F2 given by
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fx(re, rc) = f(E(x, ·), ·) and denote the set of all such functions as Rd:

Rd = {fx(re, rc) | f ∈ F (d)(C) \ {0, 1}, x ∈ FN
2 }.

Using the above definition, a bound for the d-PS is given as in the following proposition
which indicates the required number of random bits.

Proposition 4.1 (Corollary 1 in [BU18]). Let ε be the maximum bias among all
functions from Rd, i.e., ε = maxfx∈Rd

E(fx). Let e = − log2(1/2 + ε) and κ be a
security parameter. Then for any adversary A choosing vector size of Q:

AdvPS
C,E,d[A] ≤ 2−κ

if e > 0 and RC ≥ κ · (1 + 1/e).

Although it may seem that prediction security covers probing security (or vice versa),
both notions are in fact incomparable. Therefore, both notions are needed to analyze a
secure white-box implementation. To illustrate the incomparability of the two notions,
let us consider two examples; a white-box implementation protected with an nth-order
Boolean masking and minimalist quadratic masking defined in [BU18].

Example 4.1 (Probing Secure Masking Vulnerable to Algebraic Attacks).
Applying an ISW transformation to the circuit and the data results in an nth-order
probing secure implementation. However, a first-order algebraic attack can exploit a
first-order (linear) combination of intermediate values which is equal to a predictable
value. Therefore, an nth-order Boolean masking is secure in the probing model, but not
secure in prediction security, as shown in [BU18].

Example 4.2 (Algebraically secure masking vulnerable to probing). As the
second example, we use the encoding function Encode(x, x0, x1) = (x0, x1, x0x1 ⊕ x). As
given in [BU18], the masking scheme satisfies first-order algebraic security. However,
it is not probing secure, not even first-order probing secure. A leakage is caused by the
unbalanced sharing where the third share x0x1 ⊕ x statistically depends on the sensitive
variable x. For any value x we have Prx0,x1∈RF2 [(x0x1 ⊕ x) = x] = 3/4. Thus, there
exists no first-order function that is equal to a predictable vector, but there exists one
node (the last share) that is highly correlated with a predictable vector.
To practically verify this leakage, we implement a basic bitwise AES-128 circuit using the
Sbox designed by Boyar and Peralta [BP09] and implement a basic leakage detection test
using 500 traces with 45000 nodes (N = 500 and M = 45000). As seen in Fig. 4.1, the
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Figure 4.1: A first-order leakage detection on a circuit that simulates AES-128 with the
masking defined in [BU18]. Clearly, the t-test value exceeds the threshold values shown
by red lines.

test shows intense leakage. The details of the experimental setup regarding the leakage
detection, trace collection and the variable selection can be found Section 4.4.1.

As illustrated in Example 4.1, prediction security is based on finding a degree-d function
whose output equals to a predictable value. However, in probing we only need to find a
set of variables which depends on a predictable value, as shown in Example 4.2. Thus,
we need to prove the security of our scheme in two steps:

1. Prove probing security using Definition 2.1 for an arbitrary (n, d) scheme,

2. Prove prediction security using Definition 4.1 for (n, 1) and (n, 2) schemes.

4.3.2 Security Against Computational Attacks in the Probing Model

We first provide some auxiliary definitions that form the basis of our security proofs.

Definition 4.3 ((n, d)-family of shares). A vector x = (x̃0, . . . , x̃d, x1, . . . , xn) of n+
d+1 intermediate variables is called an (n, d)-family of shares if every tuple of the form
((x̃i)i∈Ĩ , (xi)i∈I) such that |Ĩ| ≤ d+1 and |I| ≤ n−1 of x̃0, . . . , x̃d, x1, . . . , xn is uniformly
distributed and independent of any sensitive variable where x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi is a

sensitive variable.

We can extend the definition as: two (n, d)-families of shares x = (x̃0 . . . , x̃d, x1, . . . , xn)

and y = (ỹ0 . . . , ỹd, y1, . . . , yn) are called to be (n − 1)-independent of one another if
every tuple composed of ((x̃i)i∈Ĩ , (xi)i∈I) and ((ỹj)j∈J̃ , (yj)j∈J) with |Ĩ|, |J̃ | ≤ d+1 and
|I|, |J | ≤ n− 1 is uniformly distributed and independent of any sensitive variable. Two
(n, d)-families are (n− 1)-dependent of one another if they are not (n− 1)-independent.
To prove security of our scheme in the t-SNI notion, we decompose C into basic
components, which we call randomized elementary transformations (or gadgets). Such

94



4.3 Security Against Computational and Algebraic Attacks

a component gets as input two (n − 1)-independent (n, d)-families of shares, resp. one
(n, d)-family of shares, and it returns a (n, d)-family of shares.
In this section, we first prove that the randomized elementary transformations specified
as in Algorithm 7, Algorithm 8, and Algorithm 9 satisfy non-interference notions. One
challenge for proving t-SNI security results from the fact that in the proposed sharing
only a subset of shares is uniformly distributed. The product of non-linear shares x0 (as
expressed by x0 =

∏d
j=0 x̃j) is non-uniformly distributed or biased. Hence, x0 can be

predicted correctly by an adversary with high probability. Thus, the non-linear shares
do not contribute to probing security. To address this fact, we consider the non-linear
shares as public values accessible by the adversary or as free probes, due to the bias of
their product. We use the following fact in our proofs.

Fact 4.1. Let G be a masked operation that operates on an (n, d)-family of shares x =

(x̃0, . . . , x̃d, x1, . . . , xn) (or two (n, d)-families of shares x = (x̃0, . . . , x̃d, x1, . . . , xn) and
y = (ỹ0, . . . , ỹd, y1, . . . , yn)) as defined in Definition 4.3. A simulator can access non-
linear shares (x̃0, . . . , x̃d) (or (x̃0, . . . , x̃d) and (ỹ0, . . . , ỹd)) as free probes or public inputs
to the gadgets.

Now we are ready to prove the security of our basic constructions. We start with the
t-SNI property of the RefreshMask and And gadgets. Then, we continue with the t-NI
property of the Xor gadget.

Proposition 4.2. (t-SNI of RefreshMask) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) be an (n, d)-
family of shares, with n ≥ 2, as input of Algorithm 9 to refresh masking. Then every tuple
of t1 intermediate variables and t2 output variables in Algorithm 9 such that t1 + t2 ≤ t

can be simulated by at most t1 linear shares taken from x .

Proof. In order to prove the proposition, we first assume that the simulator can access
the values (x̃i)i∈[0,d] by Fact 4.1 and we show that every set of intermediate variables
with t1 elements and every set of output variables with t2 such that t1 + t2 ≤ t can be
simulated from a set of input shares U = ((x̃i)i∈[0,d], (xi)i∈I) such that |I| ≤ t1.
Let us first classify the variables. The intermediate variables are xi, ri,j , x̃i, r̃j , ai,j , bj,i
(where ai,j , bj,i as defined in Algorithm 9) and the intermediate variables within W, R
and the outputs are x̃′i, x′i.
Next, we can define I as follows:

• For each selected variable xi, ri,j and ai,j add i to I and bj,i add j to I.

• For each selected r̃j , x̃j and x̃j ⊕ r̃j , we don’t need to add any value since x̃j is
accessible by the simulator.
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• Line 11, W and R: If one of the variables of form
∏

i∈J(x̃i ⊕ r0)
∏

i/∈J r̃i where
J ( {0, . . . , d} is selected, no values need to be added due to Fact 4.1. If one of the
variables inside R is selected, no values need to be added since in the expression
only shares x̃i and random variables are used.

It is clear that I contains at most t1 elements since each selected value adds at most one
index to I.
Now we can define the simulator. For all i ∈ I the simulator can sample all ri,j for
j ∈ [i+ 1, n] and compute all partials sums ai,j and bj,i and thus the output x′i. For all
i ∈ [0, d] the simulator can sample r̃i and compute the output x̃′i. Moreover the simulator
can compute W and R by sampling random variables and computing (x̃i)i∈[0,d].
Finally, we need to consider the simulation of the output shares x′i such that i /∈ I.
Observe that i /∈ I means that any random value in the partial sum of x′i is not probed
and is not involved in a partial sum of it. Hence we can simulate x′i by an uniformly
random value. Also, by Fact 4.1 any output variable x̃′i can be simulated. As a result any
set of t1 selected intermediate variables and any set of t2 output variables can simulated
by U = ((x̃i)i∈[0,d], (xi)i∈I) such that |I| ≤ t1. �

Proposition 4.3. (t-SNI of And) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd, y1, . . . , yn)

be two (n − 1)-independent (n, d)-families of shares, with n ≥ 2, inputs of Algorithm 8
for And. Then every tuple of t1 intermediate variables and t2 output variables such that
t1 + t2 ≤ t can be simulated by at most t1 linear shares taken from x and y.

Proof. In order to prove the proposition, we first assume that the simulator can access
the values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] by Fact 4.1. Then we show that every set of t1

intermediate variables and every set of t2 output variables such that t1 + t2 ≤ t can
be simulated by two sets of input shares (x̃i)i∈[0,d] and (xi)i∈I such that |I| ≤ t1, resp.
(ỹj)j∈[0,d] and (yj)j∈J such that |J | ≤ t1.
We first need to construct the sets of indices I and J corresponding to the shares of x
and y. The following two cases cover every variable in Step 2(b) and Step 3:

Group 1: For all xi, yi, xiyi, add i to I and J .

Group 2: For all ri,j or zi,j add, i to I and J where zi,j denotes the jth partial sum of
zi.

Note that after thees steps, we have I = J and we denote this common set as U .

Group 3: For all xiyj ⊕ ri,j , if i ∈ U or j ∈ U , add both i, j to I and J .
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Group 4: For all xiyj add, i to I and j to J .

To cover Step 1 and Step 2(a) we need to use the following classification:

Group 5: : For all x̃i, ỹi, ri,j and combination of these, no values are needed to be added
due to Fact 4.1.

Group 6: For all x̃iyj (resp. ỹjxi), add j to J (resp. i to I).

Group 7: For all values of the form
∏

i∈K x̃i
∏

j∈L ỹj where K,L ( {0, . . . , d}, no values
are needed to be added due to Fact 4.1.

Clearly, I and J have at most one index per selected variable, and therefore |I| ≤ t1 and
|J | ≤ t1.
We now define the simulator for the intermediate variables. The simulation of the
variables in Group 1 and Group 4 can be performed easily.

Group 1: To simulate xi, yi, or xiyi, we can simply use the input variables, as both xi

and yi are known from I and J .

Group 4: To simulate xiyj we can simply use the input variables, as both xi and yj are
known from I and J .

For the remaining groups Group 1 and Group 4 (i. e. probed variables rj,i, zi,j or
xiyj ⊕ ri,j), we use the following claim.

Claim 4.1. If i /∈ U , then ri,j is not selected and does not enter in the computation of
any probed zi,k. Similarly, if j /∈ U , then rj,i is not selected and does not enter in the
computation of any selected cj,k.

Proof. For i < j, the variable ri,j is used in all partial sums ci,k for k > j. Also ri,j is
used in ri,j ⊕ xiyj , which is a part of rj,i. Note that rj,i is used in all partial sums ci,k

for k > i. �

For 1 < i < j let us consider the following cases:

Case 1: {i, j} ∈ U means that all the variables ri,j , xiyj , xiyj ⊕ ri,j , xjyi and rj,i can
be perfectly simulated while simulating ri,j by a uniformly random value.

Case 2: i ∈ U and j /∈ U implies that we can simulate ri,j as a uniformly random value
and if xiyj ⊕ ri,j is also selected we can perfectly simulate it since i ∈ U and j ∈ J

by Claim 4.1.

97



4 A White-Box Masking Scheme Resisting Computational and Algebraic Attacks

Case 3: i /∈ U and j ∈ U indicates that any variable of the form ri,j and zi,j is not
selected by Claim 4.1. More importantly ri,j is not used in any other selected
value. Thus, we can simulate rj,i with a uniformly random value. Also we can
simulate xiyj ⊕ ri,j (observe that xiyj ⊕ ri,j = xjyi ⊕ rj,i) since j ∈ U and i ∈ J .

Case 4: i /∈ U and j /∈ U means that if xiyj ⊕ ri,j is selected we can simply simulate it
with a uniformly random value, since ri,j is not selected and does not enter any
calculation.

From the above analysis we can see that any variable ri,j can be simulated if i ∈ U

including all partial sums zi,k and zi. Now, we need to consider the variables from Step
1 and Step 2(a).

• Every variable x̃i, ỹi, x̃iỹi′ , x̃iyj , ỹjxi ri,j or xor of these values can be simulated
according to Fact 4.1.

• Every variable in Step 2(a) can be simulated since the simulator accesses x̃i∈[0,d]

and ỹj∈[0,d].

Hence, we show that any set of intermediate variables, with t1 elements can be simulated
by the sets ((x̃i)i∈[0,d], (xi)i∈I) and ((ỹj)j∈[0,d], (yj)j∈J) which are uniformly random and
independent of any sensitive variable.
In the last part of the proof, we focus on the simulation of an arbitrary set of output
variables ((z̃i)i∈Õ, (zi)i∈O) where Õ ⊂ [0, d] and O ⊂ [1, n] with t2 elements such that
t1 + t2 ≤ t. Let us first analyze the non-linear output shares (z̃i)i∈Õ. Observe that we
can simulate ri,j as uniformly random values and perfectly simulate z̃i by Fact 4.1.
Next, we focus on the output shares (zi)i∈O. From the discussion above, we can see that
we can simulate outputs zi with i ∈ U perfectly. Now, consider zi with i 6∈ U . A set of
indices V is constructed as follows: For each variable xiyj ⊕ ri,j in Group 3 with i 6∈ U

and j 6∈ U (corresponding to Case 4 described above), we add j to V if i ∈ O or i to V if
i 6∈ O. Note that we only considered variables in Group 3, where we increased I and J by
two elements. As V was only increased by one element, we have |U |+ |V | ≤ t1 and thus
|U |+ |V |+ |Õ|+ |O| < n. Hence, there is an index j∗ ∈ [0, n] such that j∗ 6∈ (U ∪V ∪O).
By definition, we have

zi = xiyi ⊕
n⊕

j=0;j 6=i

ri,j = ri,j∗ ⊕

xiyi ⊕
n⊕

j=0;j 6=i;j 6=j∗

ri,j

 .
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We will now show that ri,j∗ and rj∗,i are not processed in the computation of any selected
intermediate variable or another output variable zi′ with i′ ∈ O. Observe that, if i 6∈ U

(resp. j∗ 6∈ U) neither ri,j∗ (resp. rj∗,i) nor any partial sum zi,k (resp. zj∗,k) was selected.
Therefore, j∗ 6∈ O and zj∗ were also not selected. Hence, ri,j∗ and rj∗,i are not used in
the computation of a selected intermediate variable.
In the last part of the proof, we need to show that ri,j∗ and rj∗,i are not needed for other
output variables zi′ .
If i < j∗, then xiyj′ ⊕ ri,j∗ was not selected (since j∗ 6∈ V and i ∈ O). If j∗ < i, then
xj∗yi ⊕ rj∗,i was not selected (since j∗ 6∈ (V ∪ O). Hence, ri,j∗ and rj∗,i are not used in
the computation of any output variable zi′ and we simulate zi by sampling a random
value. �

Proposition 4.4. (t-NI of Xor) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd, y1, . . . , yn)

be two (n− 1)-independent (n, d)-families of shares, with n ≥ 2, as input of Algorithm 7
to compute Xor. Then every tuple of t1 intermediate variables and t2 output variables
such that t1 + t2 ≤ t can be simulated by at most t1 + t2 linear shares taken from x and
y.

Proof. In order to prove the proposition, we first assume that the simulator can access
the values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] and show that every set of intermediate variables
including the output shares with ≤ t elements can be simulated by two sets of input
shares (x̃i)i∈[0,d] and (xi)i∈I such that |I| ≤ t (resp. (ỹj)j∈[0,d] and (yj)j∈J such that
|J | ≤ t). We denote the concatenations of these tuples by U = ((x̃i)i∈[0,d], (xi)i∈I) and
V = ((ỹj)j∈[0,d], (yj)j∈J).
We can define I and J as follows: for each selected xi, yi, xi ⊕ yi add i to I and J .
Due to Fact 4.1, all selected variables x̃i, ỹi, x̃i ⊕ ỹi, x̃iỹj and

∏
i∈K x̃i

∏
j /∈K ỹj , doe not

increase the size of the sets I and J .
It is clear that I and J contains at most t elements since each selected variable adds
at most one index to I and/or J . Remark that the above classification also covers the
output shares.
Now we can define the simulator. Every variable of the form xi, yi, xi ⊕ yi (resp. x̃i,
ỹi, x̃i ⊕ ỹi) can be simulated by the sets U and V . Moreover every variable of the form∏

i∈K x̃i
∏

j /∈K ỹj where K ( {0, . . . , d} can be simulated by Fact 4.1. �

In conclusion, we prove the security against t probes of our individual gadgets such that
t < n. Next, we analyze an arbitrary circuit C as a combination of our gadgets. As
stated in [BBD+16], an algorithm is said to be t-NI if all gadgets are t-NI and every
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non-linear usage of a secret state is guarded by t-SNI refreshing gadgets. Moreover, it
is sufficient to make the algorithm t-SNI, if every input or the output of a t-NI gadget
is processed by a t-SNI gadget. Since the RefreshMask operation is proven to be secure
in the t-SNI notion, we can use the operation defined in Section 4.2.1 to generate an
arbitrary circuit that is secure against (n − 1)th-order probing attacks and therefore
secure against (n− 1)th-order computational attacks.

Experimental Verification. To support the results, we provide an experimental
verification of the gadgets And[n, d], Xor[n, d] and RefreshMask[n, d] for d = 1 and
2 and for n = 1, 2, 3, 4 and 5 using maskVerif [BBC+19]. We implement our masking
scheme (with the given orders n and d) inside the tool and experimentally verify the
security features of our gadgets. The implementation of our scheme that can be used
with maskVerif is available as open source 1. The experiments are run on an Intel Core
i5-6400 CPU@ 2.70GHz. A summary of the experimental results is given in Table 4.2.

1https://github.com/UzL-ITS/white-box-masking
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Table 4.2: A summary of SNI/NI/Probing security verification of our gadgets. The inputs of an
(n, d) gadget are two (n−1)-independent families of shares x̄ and ȳ (resp. one (n−1)-independent
families of shares x̄ for RefreshMask or RefM in short). The number of observations (#Obs.)
represents the total number of (intermediate and output) variables within the specified gadget.
The timing corresponds to the verification.

Free Probes # Obs. SNI NI Probing
RefM[2, 1] [x̃0, x̃1] 23 0.01s 0.01s 0.01s
Xor[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 16 - 0.01s 0.05s
And[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 52 0.01s 0.01s <0.01s
RefM[3, 1] [x̃0, x̃1] 30 0.01s 0.01s 0.01s
Xor[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 19 - 0.01s 0.01s
And[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 86 0.02s 0.02s 0.02s
RefM[4, 1] [x̃0, x̃1] 40 0.02s 0.01s <0.01s
Xor[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 22 - 0.01s 0.01s
And[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 123 0.06s 0.05s 0.05s
RefM[5, 1] [x̃0, x̃1] 53 0.05s 0.01s 0.01s
Xor[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 48 - 0.01s 0.01s
And[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 170 2.25s 0.59s 0.45s
RefM[2, 2] [x̃0, x̃1, x̃2] 49 0.01s 0.01s 0.01s
Xor[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 24 - <0.01s 0.01s
And[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 98 0.02s 0.01s 0.01s
RefM[3, 2] [x̃0, x̃1, x̃2] 56 0.01s 0.01s 0.01s
Xor[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 27 - 0.01s 0.01s
And[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 154 0.03s 0.01s 0.02s
RefM[4, 2] [x̃0, x̃1, x̃2] 66 0.02s 0.01s 0.01s
Xor[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 30 - 0.01s 0.01s
And[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 215 0.61s 0.08s 0.07s
RefM[5, 2] [x̃0, x̃1, x̃2] 79 0.04s 0.01s 0.01s
Xor[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 33 - 0.01s 0.01s
And[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 284 10.47s 1.06s 1.11s

4.3.3 Algebraic Security of the (n, 1)Masking Scheme

In this section, we analyze the first order prediction security (Definition 4.1) of our
(n, 1)-masking scheme using the gadgets from Section 4.2.1. We proceed as follows.
For our encoding function E and any Boolean circuit C constructed from our gadgets,
we estimate ε = maxfx∈R1 E(fx) – the maximum bias over all functions in the set
R1 specified in Definition 4.2, with d = 1. We show that ε is small. The bound
on the prediction security of the (n, 1)-masking, we get combining this bias with the
upper bound on 1-PS shown in Proposition 4.1: AdvPS

C,E,d[A] ≤ 2−κ, assuming e =

− log2(1/2 + ε) > 0 and the number of random bits of the circuit C is ≥ κ · (1 + 1/e).
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To estimate the maximum bias ε we use two auxiliary notions: algebraic encoding security
which addresses the security of the encoding function E and algebraic circuit security
which addresses the security of any Boolean function C:

Definition 4.4 (Algebraic Encoding Security (ε-1-AS)). Let E(x, r) : FN
2 ×

FRE
2 → FN ′

2 be an arbitrary encoding function. Let Y be the set of functions given
by the output bits of E. The function E is called 1st-order algebraically ε-secure
(ε-1-AS) if for any f ∈ Y(1) \ {0, 1} and for any x ∈ FN

2 the bias of the function
f(x, ·) : FRE

2 → F2 is not greater than ε:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε

Definition 4.5 (Algebraic Circuit Security (ε-1-AS)). Let C(x, r) : FN ′
2 ×FRC

2 →
FM
2 be a Boolean circuit and let ε be a real number, with 0 ≤ ε < 1/2. Then C is

called first-order algebraically ε-secure (ε-1-AS) if for any f ∈ F (1)(C) \ {0, 1} one of the
following conditions holds:

(a) f is an affine function of x,

(b) for any x ∈ FN
2 , E(f(x, ·)) ≤ ε where f(x, ·) : FRC

2 → F2.

In the rest of this section we show that our basic gadgets are ε-1-AS, for some ε < 1/2

(Section 4.3.3.1). Using the fact that composition of two ε-1-AS circuits remains ε-1-
AS [BU18] we get that the whole circuit C is ε-1-AS. In Section 4.3.3.2 we show that
our encoding function E is ε-1-AS, for some ε < 1/2, and finally we conclude that
maxfx∈Rd

E(fx) ≤ ε.

4.3.3.1 ε-1-AS of the Gadgets

Using the above definitions, we employ the following methodology to prove the 1-PS
of our scheme. We first divide the circuit into smaller circuits (namely And, Xor and
RefreshMask gadgets as defined in Section 4.2.1) and show that the gadgets satisfy
Definition 4.4. This gives us a bias bound for the individual gadgets. Using the 1-AS
composability result in [BU18] we make sure that any composition of our gadgets (C) is
also 1-AS. Finally, we combine C with the encoding function E and complete the 1-PS
security proof of our scheme by using Proposition 4.1 .
While proving algebraic encoding security is quite straightforward, proving algebraic
circuit security needs significant attention. The methodology to prove algebraic circuit
security in [BU18] can be divided into two steps. The first step consists of showing
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E(f(x, r)) 6= 1/2 for all f ∈ F (1)(C) and for all x ∈ FN
2 except for constant functions

and affine functions of x. A verification algorithm is provided in [BU18]. The algorithm
generates a truth table by evaluating the circuit on all possible inputs and records each
node in the circuit. Another truth table is formed by selecting the values where the
input is fixed x = c. That is, the second truth table corresponds to the values of the
circuit nodes where the input x is fixed to a value c while r takes all possible values.
Observe that the latter truth table is a subset of the former one. Finally, the algorithm
compares the dimensions of the basis of the truth tables for each restriction, to check if
there is a constant function f when the input is fixed to a value c.
The second step is to find the maximum degree term (i.e. node in the circuit) and
calculate the corresponding bias bound. As proven in [MS77], the degree of any nonzero
Boolean function g : FN

2 → F2 gives us the following lower bound for the weight of
the function: wt(g) ≥ 2N−deg(g), where N is the number of inputs of the function g.
Symmetrically2, we get that for any function g 6= 1 it is true that wt(g) ≤ 2N−2N−deg(g).
Thus, for any non-constant function g we have:

2N−deg(g) ≤ wt(g) ≤ 2N − 2N−deg(g).

Using these inequalities we can analyze the bias bound of any non-constant function
f ∈ F (1)(C) as follows. First, we bound ε as:

ε =

∣∣∣∣12 − wt(f)
2N

∣∣∣∣ ≤ 1

2
− 2N−deg(f)

2N
=

1

2
− 1

2deg(f) . (4.4)

Next, observe that the maximum degree of f is equal to the maximum degree node in
C, since f contains only linear combinations of the nodes. That is, for all f ∈ F (1)(C),
deg(f) ≤ max(deg(ci)ci∈C). Thus, the linear-bias bound of the gadget can be estimated
as:

ε ≤ 1

2
− 1/2max(deg(ci)ci∈C).

Due to the first part of the proof, we know that there are no constant functions and
therefore the bias cannot grow. Using the discussion above, we will prove the security
of our gadgets by showing that there exists no constant function f(x, ·) ∈ F (1)(C) for
all x ∈ FN

2 and by calculating the corresponding bias bound of the gadgets. We start
with the first-order algebraic security proof for a RefreshMask[n, 1] gadget that uses the
construction given in Section 4.2.1.

2Consider the function g′ = g⊕1 which implies wt(g′) = 2N −wt(g). The lower bound for wt(g) implies
the upper bound for wt(g′).
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Proposition 4.5. Let C(x, r) : Fn+2
2 × FRC

2 → Fn+2
2 be the circuit representation of

the RefreshMask gadget using a masking scheme with an arbitrary order n and a fixed
degree d = 1. C takes as input n+ 2 shares (x̃0, x̃1, (xi)1≤i≤n) and outputs n+ 2 shares
(x̃0, x̃1, (xi)1≤i≤n). The gadget RefreshMask[n, 1] is ε-1-AS with ε := 1/4.

Proof. In the first part of the proof, we show that, except of affine functions of inputs,
there exists no function f ∈ F (1)(C)\{0, 1} such that f is constant when inputs are fixed.
Assume (x̃0, x̃1, (xi)1≤i≤n) are some fixed but arbitrary inputs and let f ∈ F (1)(C)\{0, 1}
be a function of random bits for the fixed input. As seen in Algorithm 9, all nodes used
in RefreshMask gadget, behind the nodes for computing the valuesW and R in Line 11,
are xor-gates. Thus, if f involves only those nodes it is either an affine function of inputs
or it is non-constant.
Next, by the definition of W each input bit x̃0 and x̃1 in W is accompanied additively
by a random value. And R contains only random values. To compute the expressions,
behind xor-gates, there are used three and-gates which output the values:

• r̃0x̃1 ⊕ r̃0r0,

• r̃1x̃0 ⊕ r̃1r0, resp.

• r̃0r̃1 ⊕ r̃0r0 ⊕ r0r̃1 ⊕ r0r̃0.

Thus, the only way to obtain a constant function f which involves the nodes used to
compute the expression in Line 11, is to xor the first or the second value above with r̃0r0,
resp. with r̃1r0. But, as one can easily check, no node used in Algorithm 9, computes
the corresponding values. Hence we can conclude that there exists no constant function
f ∈ F (1)(C) such that inputs are fixed expect of affine functions of inputs.
In the second part, we examine the highest degree term in the gadget. The maximum
degree term can be found in R with degree 2. Therefore the corresponding bias and the
bias bound of the gadget can be calculated as ε ≤ 1/2− 1/22 = 1/4.
Thus the RefreshMask gadget is ε-1-AS with ε := 1/4. �

We proceed with the first-order algebraic security proof for an And[n, 1] gadget that uses
the construction given in Section 4.2.1.

Proposition 4.6. Let C((x, y), r) : Fn+2
2 × FRC

2 → Fn+2
2 be the circuit representation

of the And gadget using a masking scheme with an arbitrary order n and a fixed degree
d = 1. C takes as input n+2 shares (x̃0, x̃1, (xi)1≤i≤n) and (ỹ0, ỹ1, (yi)1≤i≤n) and outputs
n+ 2 shares (z̃0, z̃1, (zi)1≤i≤n). The gadget And[n, 1] is ε-1-AS with ε := 7/16.
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Proof. In the first part of the proof we show that, except of affine functions of the
inputs, there exists no function f ∈ F (1)(C) which is constant when inputs are fixed.
From Proposition 4.5 and the fact that the refreshing and the main phase use different
random bits, it follows that we need to consider functions involving only the nodes of
the main part of the And gadget, i.e., the RefreshMask phase can be excluded.
First, let us reformulate the circuit C as follows:

C : ((Fn+2
2 × Fn+2

2 ),FRC
2 )→ Fn+2

2

((x̃0, x̃1, (xi)1≤i≤n), (ỹ0, ỹ1, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, (zi)1≤i≤n).

where r̄ denotes the set of randomness that is used in the circuit. Next, we define three
classes of edges within the circuit:

• R: The set of random bits,

• B: The set of linear shares, i.e. xi and yj for all 1 ≤ i, j ≤ n,

• M: The set of non-linear shares, i.e. x̃0, x̃1, ỹ0 and ỹ1.

Using the above classification we can analyze the nodes ci ∈ C with respect to their
input edges in the main part of the And gadget (i.e. starting in line 3 in Algorithm 8).
We define the nodes as ci : (u

1
i , u

2
i ) 7→ vi where u1i , u2i ∈ F2 represent the input bits of

the node and vi ∈ F2 represents the output bit of the node. Depending on the edges of
the nodes we classify them as follows

1. u1i ∈ R or u2i ∈ R,

2. u1i ∈ B or u2i ∈ B,

3. u1i ∈ M and u2i ∈ M.

Each ci ∈ C is either one of the forms above or a combination of them e.g. ci : (vj , vk) 7→
vi or ci : (u1j , vk) 7→ vi where u1i ∈ (R∪B∪M) and vj , vk are the output bits of the nodes
cj , ck.
Assume that there exists a function f ∈ F (1)(C) such that f is constant when the
inputs x and y are fixed. Remark that for a fixed c1, c2 ∈ Fn+2

2 , the gadget calculates
And((RefreshMask(c1), RefreshMask(c2)), r), which equals to And((c′1, c

′
2)), r) where c′1

and c′2 are the non-fixed outputs of RefreshMask(c1) and RefreshMask(c2), where by
And we mean here the main phase of the gadget. Due to Proposition 4.5 we know
that there exist no constant linear combinations of nodes inside RefreshMask with fixed
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input. Thus, it is not possible to calculate a single bit input of the whole And gadget,
since there exists no common node or no common random node between main part of
the And gadget and the RefreshMask phase. Therefore, the only way of generating a
constant function is to have a node that calculates x̃0x̃1 ⊕ x1 ⊕ · · · ⊕ xn = x (resp.
ỹ0ỹ1 ⊕ y1 ⊕ · · · ⊕ yn).
Any linear combination of the nodes of 1 and 2 cannot be constant due to the
RefreshMask gadgets, since either a node is random (non-fixed by definition) or the
node corresponds to linear masking (randomized by RefreshMask). Therefore, f should
include at least one node from the 3rd class or a combination of nodes that include
multiplicative shares (M) to form the reconstructed multiplicative representation: x0

or y0. Clearly, such a combination can be found in Step 1 and Step 2(a) where the
following computations are processed:

• z̃0 and z̃1,

• x̃1(x̃0yj ⊕ r0,j ỹ0) = x̃1x̃0yj ⊕ r0,j x̃1ỹ0 for 1 ≤ j ≤ n,

• ỹ1(ỹ0xj ⊕ r1,j x̃0) = ỹ1ỹ0xj ⊕ r1,j ỹ1x̃0 for 1 ≤ j ≤ n.

The use of parentheses indicates the order in which the nodes are used in the above
equations. The resulting order eliminates the generation of an affine function of x0 or y0
(the shares represented by x̃0, x̃1 and ỹ0, ỹ1 respectively), although these nodes calculate
the correct function (rj,0 as seen in Equation (4.2)). Any linear combination of these
nodes cannot be constant and thus there exists no constant function f ∈ F (1)(C) when
the inputs are fixed, besides the affine functions of input nodes.
In the second part, we examine the highest degree term in the gadget and find the
corresponding bias. For And[n, 1] the maximum degree term can be found in Line 16
of Algorithm 8. Specifically, xnyn which contains a node of the form r̃x0 r̃

x
1 r̃

y
0 r̃

y
1 where

r̃x0 , r̃
x
1 (resp. r̃y0 , r̃

y
1) are the randomness used in RefreshMask(x) (resp. RefreshMask(y)).

Clearly the corresponding bias and the bias bound of the gadget can be calculated as 2−4

and ε ≤ 1/2−1/24 = 7/16 respectively. Thus the And gadget is ε-1-AS with ε := 7/16.�

Although we are not giving a proof for the Xor gadget, the same discussion can be carried
out and it can be shown that the Xor[n, 1] gadget is ε-1-AS with ε := 1/4. We provide
experimental verification of the first-order gadgets, including the Xor gadget next.

Experimental Verification. To support the results, we provide experimental verification
of the first-order gadgets And[n, 1] and Xor[n, 1] (and inherently RefreshMask[n, 1]) for
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n = 1, 2 and 3 using the tool given in [BU18]3. First we adapt our scheme to work with
the tool, i.e. we implement our masking scheme (with the given orders n and d ) as a
class inside the tool. We then run the verification algorithm as explained above. The
updated version of the tool including our scheme is available as open source 4.
We confirm the first-order algebraic security of our scheme for different orders of probing
security. Details are shown in Table 4.3. The algorithm is run on an Intel Xeon Silver
4114 CPU@2.20GHz and, as shown in the table, the time that algorithm takes increases
exponentially with the increasing number of nodes within the gadgets. The bias bound
does not depend on the linear degree n, since the maximum degree term is found within
the terms that depend on the non-linear degree d.

Table 4.3: First-order algebraic security verification of individual gadgets. Input
corresponds to the number of shares for both inputs (i.e. 2(n+ 2)). Random states the
number of random values (RC) within the circuit and it is calculated by the randomness
requirement of two RefreshMask gadgets and additional randomness in the gadget. The
number of intermediate variables represents the number of nodes in the gadget.

Max degree Bias Bound Input Random Intermediate Time
Xor[1, 1] 2 1/4 6 6 8 3.5s
And[1, 1] 4 7/16 6 6 12 4s.
Xor[2, 1] 2 1/4 8 8 8 45.7s
And[2, 1] 4 7/16 8 13 24 ≈ 114min
Xor[3, 1] 2 1/4 10 10 8 ≈ 17min
And[3, 1] 4 7/16 10 19 36 ≈ 5 days

4.3.3.2 Encoding-Circuit Composability

In the last part of the security analysis, we use the composability result of ε-1-AS
given in [BU18]. Since the gadgets (Xor[n, 1], And[n, 1], RefreshMask[n, 1], as defined in
Section 4.2.1) are ε-1-AS, an arbitrary combination of these gadgets is also ε-1-AS by
Proposition 4 in [BU18]. Moreover, we observe that Encode[n, 1] is ε-1-AS with ε := 1/22

according to Definition 4.4. Recall that for an (n, 1) scheme, the highest degree term is
found in the last share: xn = x ⊕ x̃0x̃1 ⊕

⊕n−1
i=1 xi and clearly no linear combination of

(x̃0, x̃1, x1, . . . , xn) is constant. Thus, for Encode[n, 1] ∀f ∈ Y(1) \ {0, 1} and ∀x ∈ FN
2

the bias of f(x, ·) : FRE
2 → F2 is not greater than ε:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 1/4.

3https://github.com/cryptolu/whitebox
4https://github.com/UzL-ITS/white-box-masking
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Finally, we can combine our construction with the encoding-circuit linear-composability
result from [BU18].

Proposition 4.7. Let C(x′, rc) : FN ′
2 ×F

RC
2 → FM

2 be a Boolean circuit, and let E(x, re) :

FN
2 × FRE

2 → FN ′
2 be a function. If E is encoding ε-1-AS and C is circuit ε-1-AS then,

for d = 1, it is true:
max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.2.

4.3.4 Algebraic Security of the (n, 2)Masking Scheme

To prove the second-order prediction security (2-PS) of the (n, 2)-masking scheme we
proceed, similarly as in Section 4.3.3, as follows. For our encoding function E and any
Boolean circuit C constructed from gadgets as defined in Section 4.2.1 we will analyze
ε = maxfx∈R2 E(fx) – the maximum bias over all functions in the set R2 defined in
Definition 4.2, for d = 2. The main result of this section is that the maximum bias over
all such functions is small. To obtain a bound on the prediction security of the (n, 2)-
masking, we combine this bias with the upper bound on 2-PS from Proposition 4.1:
AdvPS

C,E,d[A] ≤ 2−κ, assuming e = − log2(1/2+ ε) > 0 and the number of random bits of
the circuit C is ≥ κ · (1 + 1/e). To prove that for all fx in R2 the bias E(fx) is small,
we use auxiliary definitions which extend the notion of the first-order algebraic security
defined in [BU18] in a non-trivial way.

Definition 4.6 (Algebraic Encoding Security (ε-2-AS)). Let E(x, r) : FN
2 ×

FRE
2 → FN ′

2 be an arbitrary encoding function. Let Y be the set of functions given
by the output bits of E and let ε be a real number, with 1/4 ≤ ε < 1/2. The function
E is called second-order algebraically ε-secure (ε-2-AS) if, for ε′ = 1

2 −
√

1
2 − ε, it is true

that:

1. ∀f ∈ Y(1) \ {0, 1} and ∀x ∈ FN
2 the bias of f(x, ·) : FRE

2 → F2 is not greater than
ε′:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε′.

2. ∀f ∈ Y(2) \ {0, 1} and ∀x ∈ FN
2 the bias of f(x, ·) : FRE

2 → F2 is not greater than ε:

max
f∈Y(2)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε.
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Definition 4.7 (Algebraic Circuit Security (ε-2-AS)). Let C(x, r) : FN ′
2 ×FRC

2 →
FM
2 be a Boolean circuit and let ε be a real number, with 1/4 ≤ ε < 1/2. Then C is

called second-order algebraically ε-secure (ε-2-AS) if

1. C is ε′-1-AS, with ε′ = 1
2 −

√
1
2 − ε, and

2. for any function f ∈ F (2)(C) \ {0, 1} one of the following conditions holds:

(a) f has a form f = g0 ⊕
∑t

i=1 gihi, where g0, g1, . . . gt are affine functions of x
and h1, . . . , ht ∈ F (1)(C) \ {0, 1},

(b) for all x ∈ FN
2 it holds: E(f(x, ·)) ≤ ε, where f(x, ·) : FRC

2 → F2.

The idea behind Definition 4.6 is quite intuitive: similarly as in Definition 4.4 we require
that the bias for all functions of degree 2 over the output nodes of the encoding E, is
bounded by ε. However, since a function fx in R2 can be, e.g., a product of two functions
g and h of degree one, such that g is over the output nodes of E and h is over the nodes
of the circuit C, we need to require additionally that the bias of the 1st order functions
is much smaller than ε to guarantee that the bias E(gh) ≤ ε. As we will see, the value ε′

as defined above, is chosen appropriately. Similarly, to guarantee that a composition of
two ε-2-AS circuits remains ε-2-AS, we require in condition 1 in Definition 4.7 that the
circuits are ε′-1-AS since, e.g., f can be a product of a function over the nodes of the
first circuit and a function over the second circuits, both functions of degree one. From
similar composability reasons, the condition 2.(a) in Definition 4.7 is needed.
The rest of this section is organised as follows. First, we estimate the values ε for
ε-2-AS of the basic gadgets RefreshMask, And, and Xor (Section 4.3.4.1). Then we
prove the composability result, i.e., that combining ε-2-AS circuits leads to the ε-2-AS
composed circuit (Section 4.3.4.2). Finally, we show that our encoding scheme E is
ε-2-AS, with ε := 31/64, and that from the ε-2-AS property of C we get an estimation
on maxfx∈Rd

E(fx), for d = 2 (Section 4.3.4.3).

4.3.4.1 ε-2-AS of the Gadgets

Using the new definition we will prove the second-order prediction security of our (n, 2)

basic gadgets. We first show that there exists no constant function f(c, ·) ∈ F (2)(C) for
all c ∈ FN

2 . In the second step, we calculate the corresponding first-order and second-
order bias bounds. We start with the ε-2-AS of the RefreshMask[n, 2] gadget.

Proposition 4.8. Let C(x, r) : Fn+3
2 × FRC

2 → Fn+3
2 be the circuit representation of the

RefreshMask gadget using a masking scheme with an arbitrary order n and a fixed degree
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d = 2. C takes as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) and outputs n + 3 shares
(x̃0, x̃1, x̃2, (xi)1≤i≤n). The gadget RefreshMask[n, 2] is ε-2-AS with ε := 31/64.

Proof. First let us consider a function f ∈ F (2)(C) \ {0, 1}. As before we denote the
function f with a constant input c ∈ Fn+3

2 as fc(r1). If fc can be written of the form fc =

g0⊕
∑t

i=1 gihi, where g0, g1, . . . , gt are affine functions of c and h1, . . . ht ∈ F (1)(C)\{0, 1}
then there exists c ∈ Fn+3

2 such that fc is constant. However, in this case fc satisfies
condition 2.(a).
Assume fc does not reside in condition 2.(a). As seen in Algorithm 9, all nodes, except
of those used to compute the values W and R in Line 11, are xor-gates and all of them
contain as input a random variable (i.e. not fixed). Next, due to the computational
structure of W and R given in RefreshMask[n, 2], the input nodes x̃0, x̃1, and x̃2 used
in the expressions are accompanied by a random value. Note that over the nodes used
to compute the expression xn⊕W⊕R in Line 11, one can construct a constant function
f of degree 2, but this yields a function satisfying condition 2.(a). In particular, to
compute the term [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] in W we use five nodes:

• u1 = x̃0 ⊕ r0,

• u2 = u1r̃2 = r̃2x̃0 ⊕ r̃2r0,

• u3 = x̃1 ⊕ r0,

• u4 = u3 ⊕ r̃1 = (x̃1 ⊕ r0 ⊕ r̃1),

• u5 = u4u2 = x̃0r̃2r0 ⊕ x̃1r̃2r0 ⊕ x̃0x̃1r̃2 ⊕ x̃0r̃1r̃2 ⊕ r̃2r̃0 ⊕ r̃1r̃2r0.

Then, the function f over the nodes u1, . . . , u5 is either non-constant, an affine function
of inputs, or has the form as in condition 2.(a). For example, f = u2 ⊕ r̃2r0 = r̃2x̃0 ⊕
r̃2r0 ⊕ r̃2r0 = r̃2x̃0 is constant, if x̃0 = 0, but it satisfies the condition 2.(a). Moreover,
observe that one cannot obtain a constant function using u5 due to the term r̃1r̃2r0 which
cannot be removed by a third-order combination of the nodes. The same arguments can
be used for functions over the nodes for computing the remaining terms of W, i.e.,
[r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)] and [r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)].
Finally, each node contains only one non-linear share, thus any first or second-order
combination cannot contain all three non-linear shares such that the variable x̃0x̃1x̃2

is formed without a random value accompanying it. For example, a second order
combination of the nodes u5 = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] and u′5 = [r̃1(x̃2 ⊕ r0)][r̃0 ⊕
(x̃0 ⊕ r0)] equals to: u5u

′
5 = · · · ⊕ r̃0r̃1r̃2r0 and we cannot remove r̃0r̃1r̃2r0, thus the

combination cannot be constant. Hence fc cannot be a constant for all c ∈ Fn+3
2 .
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In the second part of the proof we analyze value m such that m = max(deg(ci)ci∈C).
Observe that the highest degree term in the gadget can be found in R with degree 3.
Thus the linear bias bound of the gadget can be seen as follows:

ε′ = E(f ′) ≤ 1

2
− 1

23
where f ′ ∈ F (1)(C) \ {0, 1}.

This result implies that RefreshMask[n, 2] is ε′-1-AS gadget. Moreover, the highest
degree term of f ∈ F (2)(C) is less than or equal to 6 which implies:

ε = E(f) ≤ 1

2
− 1

26
where f ∈ F (2)(C) \ {0, 1}.

Observe that, in the first part of the proof we showed that there exists no function
f ∈ F (2)(C) such that f(c, ·) is constant (expect of functions of the form condition 2.(a)),
which implies both linear and second-order biases cannot grow. Thus the RefreshMask
gadget is ε-2-AS with ε := 31/64. �

Next, we prove the second-order algebraic security of the And[n, 2] gadget.

Proposition 4.9. Let C((x, y), r) : Fn+3
2 ×FRC

2 → Fn+3
2 be the circuit representation of

the And gadget using a masking scheme with an arbitrary order n and a fixed degree d = 2.
C takes as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) , (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n) and outputs
n+3 shares (z̃0, z̃1, z̃2, (zi)1≤i≤n). The gadget And[n, 2] is ε-2-AS with ε := (1/2−1/212).

Proof. Similar to the proof of Proposition 4.6, we reformulate the circuit C as follows:

C : ((Fn+3
2 × Fn+3

2 ),FRC
2 )→ Fn+3

2

((x̃0, x̃1, x̃2, (xi)1≤i≤n), (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, z̃2, (zi)1≤i≤n).

Next we use the classification of the nodes that we used in the proof of Proposition 4.6:

• R: The set of random bits,

• B: The set of linear shares, i.e. xi and yj for all 1 ≤ i, j ≤ n,

• M: The set of non-linear shares, i.e. x̃0, x̃1, x̃2, ỹ0, ỹ1, and ỹ2.

Using the above classification we can analyze the nodes ci ∈ C with respect to its input
edges. We define the nodes as ci : (u

1
i , u

2
i ) 7→ vi where u1i , u2i ∈ F2 represent the input

bits of the node and vi ∈ F2 represents the output bit of the node. The base classification
of the depending nodes is as follows, (1) u1i ∈ R or u2i ∈ R, (2) u1i ∈ B or u2i ∈ B, (3)
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u1i ∈ M and u2i ∈ M. Each ci ∈ C is either one of the forms above or a combination of
them, e.g., ci : (vj , vk) 7→ vi or ci : (u

1
j , vk) 7→ vi where u1i ∈ (R ∪ B ∪M) and vj , vk are

the output bits of the nodes cj , ck.
First let us consider a function f ∈ F (2)(C) \ {0, 1}. As before we denote the function
f with a constant inputs c1, c2 ∈ Fn+3

2 as fc1,c2(r1). If fc1,c2 can be written of the form
fc1,c2 = g0 ⊕

∑t
i=1 gihi, where g0, g1, . . . gt are affine functions of c1, c2 and h1, . . . ht ∈

F (1)(C) \ {0, 1}, then there exists c1, c2 ∈ Fn+3
2 such that fc1,c2 is constant and fc1,c2 lies

in condition 2.(a) of Definition 4.7.
Assume fc1,c2 does not reside in condition 2.(a) of Definition 4.7. As in the proof
of Proposition 4.6 we can state that for a fixed c1, c2 ∈ Fn+3

2 , the gadget calculates
And((RefreshMask(c1), RefreshMask(c2)), r), which equals to And((c′1, c

′
2)), r) where c′1

and c′2 are the non-fixed outputs of RefreshMask(c1) and RefreshMask(c2); Here, by
And we mean the main phase of the gadget. Due to Proposition 4.8 we know that there
exists no constant second-order combinations of nodes inside RefreshMask with fixed
input. Thus it is not possible to calculate a single bit input of the whole And gadget,
since there exists no common node or no common random node between the main part
of the And gadget and the RefreshMask phase. Therefore, the only way of generating
a constant function is to have a node that calculates x̃0x̃1x̃2 ⊕ x1 ⊕ · · · ⊕ xn = x (resp.
ỹ0ỹ1ỹ2 ⊕ y1 ⊕ · · · ⊕ yn).
This observation indicates that f should include nodes from the third class or a
combination of nodes that include multiplicative shares (M) which can be found in
Step 1 and Step 2(a). However, the nodes ci ∈ C contain at most one value from
each multiplicative representation, i.e., each node contains only one non-linear share.
Thus, any first or second-order combination cannot contain all three non-linear shares
and f(x, y, ·) cannot be fixed for all x, y ∈ Fn+3

2 .
In the second part of the proof we examine the highest degree term in the circuit. The
maximum degree term can be found in Line 16 of Algorithm 8 for And[n, 2]. We can see
that the maximum degree term for this case is 6. The linear bias bound of the gadget
is:

E(f ′) < ε′ :=
1

2
− 1

26
, where f ′ ∈ F (1)(C) \ {0, 1}

Thus, And[n, 2] is ε′-1-AS. Using the same argument, we can see that the maximum
degree term f ∈ F (2)(C) is less than or equal to 12. This result is followed by:

E(f) ≤ ε :=
1

2
− 1

212
, where f ∈ F (2)(C) \ {0, 1}.
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Observe that in the first part of the proof we showed that there exists no function
f ∈ F (2)(C) such that fc1,c2 is constant, which implies both linear and second-order
biases cannot grow. Thus, the And[n, 2] gadget is ε-2-AS circuit where ε := 1/2−1/212.�

Using the same idea we can prove that the Xor[n, 2] gadget is a ε-2-AS circuit with
ε := 1/2− 1/26.

4.3.4.2 Circuit Composability

In the previous subsection, we have shown that our basic gadgets RefreshMask, And, and
Xor are ε-2-AS, for some specific values ε. Now, we prove that any circuit obtained by the
composition of such gadgets remains ε-2-AS. To cover all cases, we consider separately
the parallel (Proposition 4.10) and the sequential (Proposition 4.11) composability of two
circuits. In particular, from Proposition 4.10 we can deduce, that if one applies, e.g.,
And(x, y) for inputs x = And(x1, y1) and y = Xor(x2, y2) then, from Proposition 4.10,
the parallel composition:

And(x1, y1); Xor(x2, y2)

with input x1, y1, x2, y2 and output x, y is an ε-2-AS circuit. Moreover, due to
Proposition 4.11, we get that

And(And(x1, y1), Xor(x2, y2))

remains ε-2-AS.

Proposition 4.10 (ε-2-AS-Circuit-Parallel-Composability). Assume C1(x1, r1)

and C2(x2, r2) are two (disjoint 5 ) ε-2-AS circuits. Let C be the circuit obtained by
parallel composition of C1 and C2, i.e. by considering the input of C1 and the input of
C2 as the input of C and, analogously, the output of C1 and the output of C2 as the
output of C. Moreover let r1 and r2 be the extra random input of C:

C(x1, x2, (r1, r2)) = (C1(x1, r1), C(x2, r2)).

Then C(x1, x2, (r1, r2)) is also an ε-2-AS circuit.

Proof. Assume C1 and C2 are ε-2-AS and let ε′ = 1
2 −

√
1
2 − ε. From [BU18] we know

that the composition C is ε′-1-AS. Thus, C satisfies the condition 1 in Definition 4.7.
5Remark that, the two disjoint circuits implies that the random nodes of the circuits C1 and C2 are

disjoint. Particularly, C1 and C2 can have the same input.
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To see that the condition 2 is true as well, let us consider a function f(x1, x2, (r1, r2)) ∈
F (2)(C) \ {0, 1}. If f has a form as defined in condition 2.(a), i.e., f = g0 ⊕

∑t
i=1 gihi,

where g0, g1, . . . gt are affine functions of x1 and x2 and h1, . . . ht ∈ F (1)(C) \ {0, 1}, then
we are done. So, let as assume this is not the case. We will show that for any x1, x2, the
bias is bounded as follows

E(f(x1, x2, ·, ·)) ≤ ε.

Assume x1 and x2 are arbitrary, but fixed inputs. To simplify the notation, let f̃ denote
the function f̃(r1, r2) = f(x1, x2, (r1, r2)).

For example, if x denotes the first element of the input vector x1, x′ – the first element
of x2, bits r, r′ – the first two elements of random vector r1, and w is an internal node
in C2 then, for f̃(r1, r2) = xr ⊕ x′fw ⊕ rr′ we have f̃(r1, r2) = rr′, if x = x′ = 0,
f̃(r1, r2) = fw ⊕ rr′, if x = 0 and x′ = 1, etc.

In the most general case, f̃ has the form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(r2) ⊕
τ∑

i=1

ui1(r1) v
i
1(r2), (4.5)

where c ∈ {0, 1} is a constant and u2, v2, u
i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1) \ {0, 1}, v2 ∈ F (2)(C2) \ {0, 1}, and

ui1 ∈ F (1)(C1) \ {0, 1}, vi1 ∈ F (1)(C2) \ {0, 1} for i = 1, . . . τ .

To prove that the bias of f̃ is bounded by ε, we consider two cases.

Case 1: Function u2 or v2 in Eq. (4.5) is non-trivial, i.e., that u2 or v2 contains
at least one term. Let, w.l.o.g., v2 be non-trivial. For every fixed (but arbitrary) r1,
function (4.5) can be represented as a function in F (2)(C2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(r2) ⊕
τ∑

i=1

ci v
i
1(r2),

where c0 = v2(r1) and, in case τ ≥ 1, ci = vi1(r1), for i = 1, . . . , τ . By assumption that
C2 is ε-2-AS, from condition 2.(b) of Definition 4.7, we get that E(f̃r1(r2)) ≤ ε and since
this bound is true for every r1, we can conclude that the function f̃ , as defined in (4.5),
has the bias bounded by ε, too.

Case 2: Function f̃ in Eq. (4.5) has the form f̃(r1, r2) = c ⊕
∑τ

i=1 u
i
1(r1) v

i
1(r2),

with τ ≥ 1. Now, for every fixed r1, function (4.5) can be represented as a function in
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F (1)(C2) as follows:

f̃r1(r2) = c ⊕
τ∑

i=1

ci v
i
1(r2),

where ci = ui1(r1), for i = 1, . . . , τ . If for every r1 it would be true that some ci 6= 0, then
we could deduce immediately that the bias of f̃ is bounded by ε′ ≤ ε. Unfortunately, it
can happen that for some vectors r1, all coefficients ci vanish implying that f̃r1(·) has
bias 1/2. Below, we argue that there are sufficiently many values for r1 such that at
least one coefficient ci is nonzero. In consequence we will be able to bound the bias of f̃
in this case.

Consider the coefficient c1. Recall that it is defined as a function c1 = u11(r1) in F (1)(C1).
From the assumption, the bias of u11(·) is bounded as follows

E(u11(r1)) = |1/2− wt(u11)/2|r1|| ≤ ε′.

From this inequality, one can deduce that the number wt(u11) of values for r1, for which
c1 = u11(r1) = 1, is at least wt(u11) ≥ 2|r1| (1/2− ε′) . Let, for short, R1 := {r1 | c1 =

u11(r1) = 1} denote the set of all such vectors r1. Its cardinality is

|R1| ≥ 2|r1|
(
1/2− ε′

)
.

Now, we consider the functions f̃r1(·) restricting r1 to random strings from R1, i.e. we
consider

f̃r1(r2) = c ⊕
τ∑

i=1

ci v
i
1(r2), with r1 ∈ R1.

From the assumptions we know that every such f̃r1 has bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that for every r1 ∈ R1 it is true:

2|r2|
(
1/2− ε′

)
≤ wt(f̃r1) ≤ 2|r2|

(
1/2 + ε′

)
.

Combining this inequality with the bound on |R1|, one can conclude that

2|r1|+|r2| (1/2− ε′
)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′

)
.

Now, using our definition for ε′ = 1
2 −

√
1
2 − ε, the left-hand side can be written as
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2|r1|+|r2| (1/2− ε) and (1/2 + ε′) on the right-hand side can be bounded by (1/2 + ε).
Thus we get

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias bound E(f̃) ≤ ε holds. �

Proposition 4.11 (ε-2-AS-Circuit-Sequential-Composability). Consider ε-2-AS
circuits C1(x1, r1) and C2(x2, r2). Let C be the circuit obtained by connecting the output
of C1 to the input x2 of C2 and letting the input r2 of C2 be the extra input of C:

C(x1, (r1, r2)) = C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also an ε-2-AS circuit.

Proof. We will proceed analogously to the proof of Proposition 4.10. Assume C1 and C2

are ε-2-AS and let ε′ = 1
2 −

√
1
2 − ε. Due to [BU18] the composition C is ε′-1-AS and

thus, the first condition in Definition 4.7 is satisfied.

To see that also the second condition is true, let us consider a function f(x1, r1, r2) ∈
F (2)(C) \ {0, 1}. If f has a form as defined in condition 2.(a), i.e., f = g0 ⊕

∑t
i=1 gihi,

where g0, g1, . . . gt are affine functions of x1 and h1, . . . ht ∈ F (1)(C) \ {0, 1}, then we are
done. If this is not the case, we need to show that for any x1 the bias

E(f(x1, ·, ·)) ≤ ε.

Before we start our analysis, note that in our construction, the input nodes of C2 coincide
with the output nodes of C1. Now assume x1 is an arbitrary, but fixed input vector and
let f̃ denote the function f̃(r1, r2) = f(x1, r1, r2). In the most general case it has the
form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(y(r1), r2) ⊕
τ∑

i=1

ui1(r1) v
i
1(y(r1), r2), (4.6)

where c ∈ {0, 1} is a constant, y(r1) = C1(x1, r1) denotes the output of C1 on (x1, r1),
and u2, v2, u

i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1) \ {0, 1}, v2 ∈ F (2)(C2) \ {0, 1}, and

ui1 ∈ F (1)(C1) \ {0, 1}, vi1 ∈ F (1)(C2) \ {0, 1}, for i = 1, . . . τ .
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To prove that the bias of f̃ is bounded by ε, we consider three cases.

Case 1: Function v2 in Eq. (4.6) is non-trivial, i.e., assume that v2 has at least one
term. For every fixed (but arbitrary) r1, function f̃ can be expressed as a function in
F (2)(C2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(ŷ, r2) ⊕
τ∑

i=1

ci v
i
1(ŷ, r2),

where ŷ := y(r1) = C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i = 1, . . . , τ (note,
that in this case τ can be 0 or for τ ≥ 1, all coefficient values ci can be 0). We may
assume that f̃ does not involve input nodes x2 of C2; Indeed if the input nodes are used
then we represent them as the corresponding output nodes of C1. This means that, in
particular, we may assume that v2 is not of the form g0 ⊕

∑t
i=1 gihi, where g0, g1, . . . gt

are affine functions of x2 = ŷ and h1, . . . ht ∈ F (1)(C2) \ {0, 1}; If v2 has such a form,
then one can consider g0 as a function in F (2)(C1) \ {0, 1} and g1, . . . , gt as functions in
F (1)(C1) \ {0, 1} and, as a consequence, v2 would vanish.

Thus, by the assumption that C2 is ε-2-AS, we get that E(f̃r1(r2)) ≤ ε and since this
bound is true for every r1, we can conclude that the function f̃ , as defined in (4.6), has
the bias bounded by ε, too.

Case 2: f̃ in Eq. (4.6) has the form f̃(r1, r2) = c ⊕ u2(r1) ⊕
∑τ

i=1 u
i
1(r1) v

i
1(y(r1), r2),

with τ ≥ 1. In this case, for every fixed r1, we can represent f̃ a function in F (1)(C2)

as follows:

f̃r1(r2) = c ⊕ c0 ⊕
τ∑

i=1

ci v
i
1(ŷ, r2),

where, as in Case 1, ŷ := C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i = 1, . . . , τ ≥ 1.
Note, that for some strings r1 it can happen that all coefficients ci = 0, what means that
for such r1 function f̃r1 has bias 1/2. Below, we argue that there are sufficiently many
r1 such that at least one coefficient ci is non-zero. This will suffice to bound the bias of
f̃ .

We consider the coefficient c1 that, recall, is defined as c1 := u11(r1) for the function u11(·)
in F (1)(C1). From the assumption, its bias is bounded as follows

E(u11(r1)) = |1/2− wt(u11)/2|r1|| ≤ ε′.

It follows that wt(u11) ≥ 2|r1| (1/2− ε′) . Let R1 := {r1 | c1 = u11(r1) = 1} denote the set
of all such vectors r1. Its cardinality is at least 2|r1| (1/2− ε′) . Consider f̃r1(·) restricting
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r1 to vectors from R1 only:

f̃r1(r2) = c ⊕
τ∑

i=1

ci v
i
1(r2), with r1 ∈ R1.

From the assumptions, we know that every such f̃r1 has its bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that: 2|r2| (1/2− ε′) ≤ wt(f̃r1) ≤ 2|r2| (1/2 + ε′), for all r1 ∈ R1, and
combining this with the bound on |R1|, we get

2|r1|+|r2| (1/2− ε′
)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′

)
.

Using our definition for ε′ = 1
2 −

√
1
2 − ε we can conclude that

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias E(f̃) ≤ ε, too.

Case 3: Function f̃ in Eq. (4.6) has the form f̃(r1, r2) = c ⊕ u2(r1). In this case
the bound on the bias of f̃ follows directly from the assumption that C1 is ε-2-AS. �

4.3.4.3 Encoding-Circuit Composability

Finally, we prove that a composition of an ε-2-AS encoding function E with an ε-2-AS
circuit C leads to a construction for which the second-order closure of F(C(E)) contains
functions of bias ≤ ε. Similarly to the security analysis of Encode[n, 1], the highest
degree term of Encode[n, 2] is found in the last share : xn = x⊕ x̃0x̃1x̃2 ⊕

⊕n−1
i=1 xi and

clearly no first or second-order combination of (x̃0, x̃1, x̃2, x1, . . . , xn) is constant. Thus,
the following holds for Encode[n, 2]:

1. ∀f ∈ Y(1) \ {0, 1} and ∀x ∈ FN
2 the bias of f(x, ·) : FRE

2 → F2 is not greater than
ε′:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 3/8.

2. ∀f ∈ Y(2) \ {0, 1} and ∀x ∈ FN
2 the bias of f(x, ·) : FRE

2 → F2 is not greater than ε:

max
f∈Y(2)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 31/64.
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4.3 Security Against Computational and Algebraic Attacks

The composability of our ε-2-AS encoding function E with the ε-2-AS circuit C is
formulated in the proposition below, which can be proven analogously to Proposition 4.11.

Proposition 4.12. Let C(x′, rc) : FN ′
2 × FRC

2 → FM
2 be a Boolean circuit, and let

E(x, re) : FN
2 × FRE

2 → FN ′
2 be a function. If E is encoding ε-2-AS and C is circuit

ε-2-AS then, for d = 2, it is true:

max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.2.

4.3.5 Prediction Security – a Summary

Table 4.4: Summary of the ε-1-AS and ε-2-AS bounds for the And, Xor and RefreshMask
gadgets and encoding function. The variable e = − log2(1/2 + ε) where ε =
maxfx∈Rd

E(fx) as in Proposition 4.1 and Rc denotes the minimum number of
randomness to achieve 128-bit security.

And Xor RefreshMask Encode e ≈ Rc ≥
ε-1-AS 7/16 1/4 1/4 1/4 9.3× 10−2 1.503
ε-2-AS 2047/4096 31/64 31/64 31 /64 3.5× 10−4 3.6× 105

In the previous sections, we have shown the algebraic circuit security of our gadgets
and algebraic encoding security of our encoding functions. In this section, we give the
quantitative bounds on prediction security. We work with a security bound κ = 128

which implies AdvPS
C,E,1 ≤ 2−128 as defined in Definition 4.1.

We first consider the first-order prediction security bound of an (n, 1) scheme. According
to Proposition 4.1, e = − log2(1/2 + ε) = − log2(1/2 + 7/16) ≈ 0.093. The number of
required random bits to achieve 128-bit security can be calculated as: Rc ≥ κ·(1+1/e) =

128 · (1 + 1/0.093) ≈ 1503. In conclusion, a circuit C composed with (n, 1) gadgets and
Encode[n, 1] is 1-PS (AdvPS

C,E,1 ≤ 2−128) if the circuit contains Rc ≥ 1503 random bits.
Next, we compute the second-order prediction bound for an (n, 2) scheme. According to
Proposition 4.1, e = − log2(1/2+ ε) = − log2(1/2+2047/4096) ≈ 3.5×10−4. As a result
the number of required random bits to achieve 128-bit security is drastically increased
to: Rc ≥ κ · (1 + 1/e) = 128 · (1 + 1/3.5 × 10−4) ≈ 3.6 × 105. A summary of first and
second-order algebraic security properties is given in Table 4.4.

Comparison with other masking scheme. An (n, d) scheme as defined in Section 4.2
is a combination of linear and multiplicative components. The allocation of these
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4 A White-Box Masking Scheme Resisting Computational and Algebraic Attacks

components results in different orders of protections and thus the scheme has two corner
cases: (1) d = 0 with n ≥ 1 and (2) d ≥ 1 with n = 0. The first case (1) acts as
an additive masking. Such schemes are widely used in the literature, e.g. for Boolean
masking [RP10], Threshold Implementations [NRS09], polynomial masking [RP12] and
domain oriented masking [GMK16]. The common point of these schemes is that the
degree of their encoding function is one, thus they are vulnerable to algebraic attacks,
i.e. not prediction secure. On the other hand, the latter case (2) corresponds to a
multiplicative masking scheme. A straightforward implementation of multiplicative
masking is vulnerable to side-channel attacks [GT03,FMPR11], i.e. is not probing secure.
However, the scheme can become secure if it is implemented with a solution that deals
with the zero value, as given in [MQ18]. Although the scheme in [MQ18] is secure
against side-channel attacks, the additive masking phase of the scheme is still vulnerable
to algebraic attacks. Therefore, previously proposed masking schemes in the literature
need to be combined with other masking schemes to accomplish both prediction and
probing security notions.

A straightforward approach is to employ both linear and multiplicative components,
as done in the affine masking by Fumaroli et al. [FMPR11]. The scheme processes
a sensitive value x in the form of r1x ⊕ r0 such that r1, r0 ∈R Fn

2 and fixed for each
execution of the algorithm. As stated by the authors, affine masking is not perfectly
secure against higher-order SCA but provides practical security. Indeed, some pairs
of intermediate variables of the scheme depend on sensitive variables. A second-order
side-channel attack can break the affine masking. Also, it is not clear how to generalize
the scheme to higher orders. Another approach to combine linear and multiplicative
components is given in [BU18]. However, the scheme alone does not provide security
against computation attacks as described in Example 4.2. As a result, our scheme can
be seen as a generalization of affine masking and the scheme by [BU18] in the sense of
employing both linear and multiplicative components while providing provable security
in both prediction and probing security notions. A summary of the security properties
of the our scheme with different security orders is presented in Table 4.5.
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4.4 A Proof-of-Concept AES Implementation

Table 4.5: The security properties of masking schemes. The mark # (resp.  ) means
the scheme is vulnerable (resp. resistant against) both to computational and algebraic
attacks. Mark H# (resp. G# ) stands for vulnerability to computational but resistant
against algebraic attacks (resp. resistant against computational but vulnerability
to algebraic attacks). Remark that a masking scheme with (n, 0) is the ISW
transformation [ISW03] while a masking scheme with (1, 1) is the scheme in [BU18].
The example structures for the masking schemes with (2, 1) and (3, 1) can be found in
Chapter A.

d
n 0 1 2 n

0 # G# [ISW03] G# [ISW03] G# [ISW03]
1 H# H# [BU18]  Example A.1  [n, 1]
2 H# H#  Example A.2  [n, 2]
d H# H#   Section 4.2.1

4.4 A Proof-of-Concept AES Implementation

Table 4.6: The number of gadgets in one round of AES.
SubBytes MixColumns AddRoundKey ShiftRows

And 16 × 32 - - -
Xor 16 × 83 27 128 -

In this section we introduce a white-box AES design based on the masking scheme
defined in Section 4.2. The AES block cipher consists of multiple rounds of operations
on its state. The operations include three linear layers: MixColumns, ShiftRows, and
AddRoundKey, as well as the non-linear SubBytes layer. The bitwise implementation
for the linear operations are straightforward. For the AES-Sbox we use the bitwise
AES-Sbox design by Boyar and Peralta [BP09]. The resulting exact number of And
and Xor gadgets within one round of AES-128 is given in Table 4.6. The resulting
total number of bitwise operations6 can be derived by combining the basic circuit size
Table 4.6 and the performance analysis of the protected gadgets from Table 4.1. A visual
representation of the AES-128 implementations with (n, 0) (i.e. ISW-transformation),
(n, 1)-masking scheme and (n, 2)-masking scheme is shown in Fig. 4.2. As a base line, we
also provide numbers for the reference masking proposed in [BU18], where algebraically

6The bitwise SubBytes design by Boyar and Peralta [BP09] also requires Not gates. Although we
didn’t give the explicit description of a Not gadget in our masking scheme, it can be easily defined
as identical to the Not gadget in the ISW transformation i.e. by flipping the nth (linear) share.
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Figure 4.2: Total number of bitwise operations and required randomness for one round
of AES-128 with different (n, 0), (n, 1) and (n, 2) masking schemes with and without
initial RefreshMask gadgets

secure gadgets and a probing secure masking were combined (each input is associated
with a RefreshMask gadget, and the proposed minimalist quadratic Masking is combined
with a second order Boolean masking).

As shown in Fig. 4.2, our hybrid construction outperforms the idea of using a first-
order linear masking on top of a non-linear masking. As stated in [BU18], using a
combination of two masking schemes even with the first-order protections requires
roughly 200.000 gates per AES round. Since the foundation of our scheme is the
ISW transformation, we can increase the probing security property of our scheme
efficiently. However, increasing the non-linear order is the bottleneck of our scheme.
When we compare the smallest possible implementations, we see that one round of
AES-128 with (2, 0), (2, 1) and (2, 2)-masking schemes requires 15201, 30808(82678) and
74875(258415)gates respectively. The values in parentheses correspond to the gadgets
where the inputs are first processed by RefreshMask gadgets. Clearly, RefreshMask
gadgets impose a heavy overhead on our scheme. Therefore, a significant performance
advantage can be achieved by further optimizing the RefreshMask gadget. While
the first-order algebraically secure implementation requires a small overhead over an
unprotected implementation, the second-order algebraically secure implementation
comes at substantial cost. One round of AES-128 with (2, 1), (3, 1) and (4, 1)-masking
schemes requires 30808(82678), 46115(113945) and 64494(156264) gates, respectively.
Hence, the security against computational attacks can be increased with comparably
moderate overhead when compared with the overhead of increasing the security against
algebraic attacks. Furthermore, the randomness requirements of our scheme increases
similarly to the ISW-transformation, as seen in Fig. 4.2.
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Figure 4.3: A first-order leakage test on a circuit that simulates the AES-128 with (2, 1)-
masking defined in Section 4.2.1. Clearly, t-test value lie in threshold values as drawn
by red lines ([−4.5, 4.5]).

4.4.1 Experimental Evaluation

To experimentally verify the security properties of our scheme we used the proof-of-
concept AES-128 implementation. The implementations using (n, 0), (n, 1) and (n, 2)

masking schemes including the analysis are available as open source 7.
Software traces are simulated by encrypting N random plaintext and collecting the
output of each node. We denote the ith trace (corresponding to the encryption of ith

plaintext) by ti = {vi1, . . . , viM} where vij denotes the output of jth node and M denotes
the number of the nodes in the circuit. Using the software traces we demonstrate a
simple leakage detection test by the test vector leakage assessment (TVLA) as proposed
by Goodwill et al. [GGJR+11] and as described in Section 2.1.4. Using the experimental
setup we implement a first-order leakage detection test using 10000 traces (i.e. nf+nr =

10000) and M = 80000 (corresponds to the two round of AES-128). As expected the
test shows no observable leakage. The illustration of the test can be seen in Fig. 4.3.

4.5 Conclusion

White-box cryptography has become a popular method to protect cryptographic keys
in an insecure software realm potentially controlled by the adversary. All white-
box cryptosystems in the literature have been practically broken due to differential
computation analysis. Algebraic attacks have shown the inefficacy of classic side-
channel countermeasures when they are applied in the white-box setting. Therefore,
the need for a secure and reliable method to protect white-box implementations against
both attacks has become evident.
We have proposed the first masking scheme that combines linear and non-linear

7https://github.com/UzL-ITS/white-box-masking
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components to achieve resistance against both computational and algebraic attacks.
The new scheme extends the ISW transformation to resist algebraic attacks by increasing
the order of the decoding function. We have analyzed the two prevalent security notions
in the white-box model, probing security and prediction security, and underlined the
incompatibility of the notions, which reveals that a scheme should satisfy both notions.
We have used the well-known SNI setting to prove (n − 1)th order probing security of
an (n, d)-masking scheme and thus we showed that our scheme can resist (n − 1)th-
order computation attacks. We proved first and second-order prediction security for the
concrete construction of the (n, 1) and (n, 2) masking scheme, respectively. We have
defined the scheme generically such that it be extended to any orders of n and d, as long
as the computational structure satisfies the algebraic properties. We have examined the
implementation cost of our scheme for arbitrary orders of protection and compare it with
the ISW transformation. We have extended the algebraic verification tool to support our
scheme and to validate our results. The updated code has been made publicly available.
Finally, a proof-of-concept bit-wise AES-128 implementation was provided to perform
leakage detection and extensive performance analysis. The analysis showed that the
new combined masking scheme outperforms the previous approaches which require to
combine two different masking schemes to resist both attacks.
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5.1 Motivation

In Part I we investigate the concepts belonging to modern computer science and modern
cryptography. In the next we deep dive into future of cryptography. Today, we are
witnessing the next level of computing machines, quantum computers, which requires
new definitions, constructions and concepts for secure communication. Quantum
computers don’t just result in an increase in computation power which is answered
by small (but effective) revisions such as increasing the key size or updated parameter
sets. To counter new insights that may impact the security properties of cryptographic
algorithms, new horizons for the families of algorithms are essential. When we consider
the asymmetric encryption schemes, most are based on security primitives such as
discrete logarithm problem (DLP) and factoring problem (FP). These problems are
defined as cryptographic assumptions and they are always under the threat of the
probability of breakthroughs in these. Therefore there is always a need for schemes that
do not rely on number-theoretical assumptions as, quantum machines provide practical
solutions to FP or DLP [Sho99].
Quantum computers have huge impact on asymmetric schemes while, symmetric schemes
are saved by a slight update. As stated by the National Institute for Standards and
Technology (NIST), larger key sizes for the symmetric schemes such as AES are needed
to mitigate the security concerns and achieve the same security level as today [Gro96].
Therefore the current search for secure construction focuses on public-key schemes.
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5.2 Post-Quantum Cryptography Standardization

It is not certain that we will be able to built a quantum computer or produce a
commercialized quantum computer in a foreseeable future, nevertheless we need to be
prepared for this situation. To coordinate the massive international research efforts
in this area the NIST has been conducting the Post-Quantum Cryptography (PQC)
Standardization Process, in which 3rd-round finalists and alternate candidates have been
recently announced [AASA+20] and there is 4th-round on the horizon.
The project, that started in 2017 with 69 candidates, aims to select one or more signature
schemes, and Key-encapsulation Algorithms (KEM). The first round evaluated the
candidates with respect to their security, performance, and other characteristics and 26
algorithms were selected to proceed to the next round. The second round started early
2020 is based on the public feedback and internal reviews, candidates and finalists for the
third round were established. The selected public-key encryption and key-encapsulation
algorithms are Classic McEliece [CCU+20], CRYSTALS-KYBER [BDK+18], NTRU [CDH+17],
and SABER [DKRV18] while the selected digital signatures are CRYSTALS-DILITHIUM [DKL+18],
FALCON [FHK+18], and Rainbow [DS05]. Moreover, eight alternate candidate
algorithms were also selected for further improvements by the cryptographic community.
The alternate candidates are listed as: BIKE [ABB+17], FrodoKEM [ABD+19],
HQC [MAB+18], NTRU Prime [BCLVV16], SIKE [ACC+17], GeMSS [CFMR+17],
Picnic [Pic20], and SPHINCS+ [BHK+19].

5.2.1 Physical Attacks on Post-quantum Schemes

Side-channel resistance of cryptographic schemes is becoming more and more relevant as
they are deployed in real-life condition. These attacks have been successfully performed
for over 25 years and many countermeasures have been devised against them. As the
countermeasures often come at the cost of running time or memory consumption of the
protocol, many implementations are still vulnerable to them. Side-channel resistance is
also one of the important evaluation criteria of the NIST PQC standardization process. A
summary of attacks and countermeasures for signatures and KEM candidates submitted
in the third round is given in Table 5.1.

5.2.1.1 Public-key Encryption and Key-encapsulation Schemes

The Classic McEliece [CCU+20] cryptosystem is build on the idea to use a random binary
Goppa code as the public key. There are multiple DPA attacks [CEvMS15,HMP10] on
this system, that allow the extraction of the secret key. Moreover, Chen et al. [CEvMS16]
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Table 5.1: A summary of attacks and countermeasures on PKE and KEM Summary
Digital Signature Algorithms

Schemes Power Analysis Countermeasures
Classic McEliece [CEvMS15,HMP10] [CEvMS16]
CRYSTALS-KYBER [SKL+20] [OSPG16]
NTRU [SKL+20,AKJ+18,ABGV,WZW13]
SABER [SKL+20,Ver19] [VBDK+20,Ver19]
BIKE [SKC+19] -
FrodoKEM [SKL+20] -
HQC [SRSWZ20] -
NTRU Prime [SKL+20,HCY19] -
SIKE [ZYD+20] [ZYD+20]
CRYSTALS-DILITHIUM [RJH+18,FDK20] [MGTF19]
FALCON [KA21] -
Rainbow [YL17,PSKH18] [Yi18]
GeMSS [YL17,PSKH18] -
Picnic [GSE21] [SBWE20]
SPHINCS+ [KGB+18] -

explain how to apply masking to the McEliece cryptosystem and present a masked FPGA
implementation resistant to DPA.
The CRYSTALS-KYBER [BDK+18] cryptosystem is based on the learning-with-errors
(LWE) problem over module lattices. The designers provide an overview of potential
attacks and emphasized that without dedicated protection, the scheme will be vulnerable
to Side-channel attacks like DPA. A recent work by Bos et al. [BGR+21] provides a
masked implementations.
NTRU [CDH+17] is an cryptosystem that relies on lattice-based cryptography to
securely encrypt and decrypt information. The work by An et al. [AKJ+18] breaks the
implementation using only a single power trace and proposing countermeasures to their
attack. Lee et al. [LSCH10] also discuss NTRU’s vulnerability to power analysis attacks
and propose countermeasures against these with very little overhead.
The SABER [DKRV18] Key Encapsulation Mechanism (KEM) relies on the hardness
of the Module Learning With Rounding problem (MLWR), which is believed to remain
secure even against quantum computers and is said to be IND-CCA2 secure. Beirendonck
et al. [VBDK+20] discuss masking the scheme to prevent Side-channel attacks with a
2.5 overhead factor. Verhulst [Ver19] implements SCA using the key generation and
encryption as these operations only operate on ephemeral secrets. Moreover, it has
been shown that the decryption mechanism of SABER is susceptible to DPA. Finally,
Ngo et al. [NDGJ21] show a successful side-channel attack on a first-order masked
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implementation of secure Saber
BIKE [ABB+17] is a code-based Key Encapsulation Mechanism (KEM) relying on Quasi-
Cyclic Moderate Density Parity-Check codes for its security. At CHES 2016, a constant-
time multiplication was introduced by Chou at al. [Cho16], aiming to protect the scheme
against timing attacks. However, this countermeasure is shown to be vulnerable against
DPA [RHHM17,SKC+19].
FrodoKEM [ABD+19] relies on the learning with errors problem. Sim et al. [SKL+20]
proposed a single-trace Side-Channel attack making use of power traces targeting the
scheme.
HQC [MAB+18] stands for Hamming Quasi-Cyclic and is a code-based public key
encryption scheme. Schamberger et al. [SRSWZ20] were able to use a power Side-
Channel attack against an HQC-128 implementation on an ARM Cortex-M4 microcontroller
to extract 93.2% of the possible keys with less than 10000 measurement traces.
NTRU Prime [BCLVV16] is a lattice-based cryptosystem that uses the large Galois
group instead of cyclotomics for increased security. Huang et al. [HCY19] performed a
correlation power analysis attack on NTRU Prime and were able to reveal all coefficients
of each private-key polynomial very easily. They propose three countermeasures against
their attack, with performance being a necessary tradeoff.
SIKE [ACC+17] stands for supersingular isogeny key encapsulation and is based on
pseudo-random walks in supersingular isogeny graphs. Recently Zhang et al. [ZYD+20]
analyzed SIKE and proposed a DPA attack on the scheme. They also proposed a
countermeasure to eliminate the leakage with very little cost in terms of time and
memory.

5.2.1.2 Digital Signature Schemes

CRYSTALS-DILITHIUM [DKL+18] is a digital signature scheme based on the hardness
of lattice problems over module lattices, particularly the Learning with Error (LWE)
problem. Ravi et al. [RJH+18] investigate the security of DILITHIUM against Side-
Channel attacks focusing on the LWE instance. Fournaris et al. [FDK20] also make
use of correlation power Analysis to attack DILITHIUM’s polynomial multiplication
operation. Migliore et al. [MGTF19] explore how to securely mask the scheme and
verify that their masked implementation no longer presents any leakage. Their masking
scheme, using a slightly tweaked version of Dilithium, makes it possible to apply masking
with an overhead of 7.3 to 9 factor.
Falcon [FHK+18] is a cryptographic signature scheme based on NTRU lattices using fast
Fourier sampling as a trapdoor function. Karabulut et al. [KA21] show a Side-Channel
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attack targeting unique floating-point multiplications within FALCON’s Fast Fourier
Transform.
Rainbow [FHK+18] belongs to the family of multivariate public key cryptosystems and
is based on the Oil-Vinegar signature scheme by Patarin [Pat97]. Park et al. [PSKH18]
managed to extract the full secret key from a Rainbow implementation on an 8-bit AVR
microcontroller using correlation power analysis.
GeMSS [CFMR+17] stands for ”a Great Multivariate Short Signature” and is a
multivariate based signature scheme with a fast verification process and a medium
to large public-key.
SPHINCS+ [BHK+19] is a stateless hash-based signature scheme, based on the idea of
the Lamport signature scheme. Kannwischer et al. [KGB+18] were able to compromise
a SPHINCS-256 implementation using a DPA attack and extracted a 32-bit chunk of
the secret key.
Next, we introduce the details of the Picnic signature family, which will be our focus in
the following chapters.

5.3 Picnic Signature Scheme

The Picnic signature scheme [ZCD+20] was selected as an alternate candidate and follows
Ishai et al.’s MPC-in-the-head (or MPCitH, short for multi-party computation in-the-
head) paradigm for constructing Zero-knowledge (ZK) proof systems [IKOS07]. One
of the attractive features of MPCitH-style signatures is that they require no number-
theoretic hardness assumptions, since the typical construction of such schemes only
relies on symmetric key primitives. Concretely, following the standard Fiat–Shamir
paradigm [FS87], signatures in the MPCitH paradigm can be proven secure in the
random oracle model, as long as the underlying hash function and block cipher are secure.
Quoting [Nat20], “NIST also sees Picnic’s reliance on only assumptions about symmetric
primitives as an advantage in case the need arises for an extremely conservative signature
standard in the future”. In the following we give the building blocks of the Picnic
signature scheme.

5.3.1 Zero-knowledge Proofs

A zero-knowledge proof between a prover P and a verifier V is a two-player game.
The goal of the the prover P is to convince the verifier V that they know a certain
secret x without revealing any information about this secret. Zero-knowledge proofs
are extremely useful for different cryptographic applications such as signature schemes
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or multi-party computations. In this work, we only need a certain kind of well-
structured protocol, called a Σ-protocol. In the following, let R ⊆ {0, 1}∗ × {0, 1}∗

be an nondeterministic Polynomial-time (NP )-relation, i. e. for all x,w ∈ {0, 1}∗,
the value R(x,w) can be computed in polynomial time and if R(x,w) = 1, we have
|x| ≤ |w|O(1). Here, we identify the relation R with its binary characteristic function
R : {0, 1}∗×{0, 1}∗ → {0, 1} with R(x,w) = 1 iff (x,w) ∈ R. The value x is a witness to
w. By LR, we denote the language associated with R, i. e. LR = {w | ∃x s.t. R(x,w) =

1}. In some parts of this work, we make the relation R explicit using a function
φ : {0, 1}∗ → {0, 1}∗ with the natural interpretation of Lφ = {w | ∃x s.t. φ(x) = w}.

Definition 5.1 (Σ-protocol [HL10]). The goal of the protocol ΠR(y) between two
players P and V is to convince V that y ∈ LR, where y ∈ {0, 1}∗ is known to both
players. Such a protocol is called a Σ-protocol for the relation R if it satisfies the
following conditions:

• ΠR has the following communication pattern:

1. Commit: P sends a first message a to V,

2. Challenge: V sends a random element e to P,

3. Prove: P replies with a second message z.

• Completeness: If both players P and V are honest and y ∈ LR, then Pr[(P,V)(y) =
accept] = 1.

• s-Special Soundness: For any y and any set of s ≥ 2 of accepting conversations
{(a, ei, zi)}i∈[s] with ei 6= ej if i 6= j, a witness x for y can be efficiently computed.

• Special honest-verifier ZK: There exists a PPT simulator S that on input
y ∈ LR and e outputs a triple (a′, e, z′) with the same probability distribution as
real conversations (a, e, z) of the protocol.

Furthermore, a Σ-protocol is a public-coin protocol, if the verifier V only sends random
messages. Hence, the Fiat-Shamir transformation [FS86] or the Unruh transformation [Unr15]
can be used to make them non-interactive in the random oracle model. Note that the
Unruh transformation always gives security against quantum adversaries, while the Fiat-
Shamir transformation does not do this in general [ARU14]. Nevertheless, recently it was
shown that the Fiat-Shamir transformation is still secure against quantum adversaries
for a large class of protocols [LZ19,DFMS19].
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5.3.2 MPC-in-the-head Paradigm

Next, we describe the basic approach to construct a Zero-knowledge Proof of Knowledge
system for an arbitrary NP language L, following Ishai et al. [IKOS07] and its
generalization due to Giacomelli et al. [GMO16]. Given L, we can define an NP
relation R(x,w) which returns 1 if its input consists of a valid pair of statement x ∈ L

and corresponding witness w, and outputs 0 otherwise. An MPCitH proof system (P,V)
is built upon some N -party MPC protocol that jointly computes a function f , where f

takes x and w as public and private input, respectively, and outputs fx(w) = R(x,w). For
example, for a given encryption algorithm Enc of a block cipher like LowMc [ARS+15],
one can define fx(w) := Enc(sk, p) ?

= c, where the statement x = (p, c) is a plaintext-
ciphertext pair, and witness w = sk is a private encryption key, respectively. In this
case, the prover P proves knowledge of a private key that produces a certain public
ciphertext from the corresponding public plaintext.
At a high level, an MPCitH prover P attempts to convince the verifier V that they
hold a valid witness w, by letting V check that the MPC protocol has been correctly
carried out “in P’s head” on input w. We now consider an MPC protocol ΠC for the
corresponding arithmetic circuit C defined over a finite field F, where the statement
information x (e.g., the plaintext-ciphertext pair) is hard-coded such that C(·) = fx(·).
We assume that the witness is expressed by an n-dimensional vector and C takes a set
of n input wires denoted by IN. We write w = (w)w∈IN ∈ Fn for the complete input.1

To initialize the protocol, the prover P first additively secret shares each input w wire
such that w = w1 + . . . + wN in F, and considers each share wi as a private input to
a party Pi. Then P internally runs ΠC to obtain view1, . . . , viewN , where each viewi

consists of Pi’s private input wi, the random tape of Pi and all incoming messages that
Pi observes during the execution of ΠC . The proof system now proceeds by following the
typical “commit–challenge–response” flow. Using a secure commitment scheme, P sends
Commit(viewi) for all i ∈ [N ] as the first message. Upon receiving distinct challenges
i1, . . . , it ∈ [N ] from the verifier V, the prover P sends back the corresponding t views
viewi1 , . . . , viewit as well as the commitment opening information as a response. Finally,
the verifier V accepts the proof iff the opened views are consistent with each other and
they produce 1 as output of the protocol ΠC . The (honest verifier) zero knowledge is
guaranteed as long as the underlying MPC ΠC has t-privacy in the semi-honest model
(i.e., the distribution of any ≤ t views during an honest execution of the protocol is

1Note that we’re slightly abusing the notation here. Throughout, we use the same notations (typically
w, x, y and z) for both wires and wire values, but it should be clear from the context which they
indicate.
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polynomial-time simulatable, given the output from ΠC and corresponding ≤ t parties’
private input).

5.3.2.1 ZKBoo: Zero-knowledge for Boolean Circuits

An important Σ-protocol based on the MPC-in-the-head paradigm is called ZKBoo [GMO16].
The goal of the protocol is to convince the verifier that the prover has an input x to an
arithmetic circuit φ such that φ(x) = y, where φ and y are publicly known. The general
idea behind ZKBoo is the partition of φ into a (2, 3)-decomposition, i. e. the computation
of this circuit is split into three branches φ0, φ1, φ2. The input x to φ is furthermore split
into three shares x0, x1, x2 such that the computation of φi only depends on the shares
xi and xi+1. After this computation by the prover, the verifier chooses a random index
e ∈R {0, 1, 2} and is given the computations of φe and φe+1 along with the inputs xe

and xe+1. This information can be used to verify the computations on these branches
without revealing the complete input x to the verifier. Due to the small size of the
communication — roughly dominated by the number of multiplication gates in φ — the
ZKBoo-protocol has seen wide use. We provide a detailed description of the protocol in
Fig. 5.1 and the details can be found below.

Definition 5.2 ((2,3) circuit decomposition [GMO16]). A(2,3)-decomposition for
the function φ is a set of functions,

D = {Share,Output1,Output2,Output3,Rec} ∪ F ,

where Share, Rec and Outputi are defined as in Section 7.3. Let Π∗
φ be the algorithm

described in Fig. 7.2 with n = 2, we have the following definitions.

• Correctness: We say that D is correct if Pr[φ(x) = Π∗
φ(x)] = 1 for all x ∈ X.

The probability is over the choice of the random tapes Ri.

• Privacy: We say that D has 2-privacy if it is correct and for all e ∈ [0, 2] there
exists a PPT simulator Se such that ((Ri, wi)i∈{e,e+1}, ye+2) and Se(φ, y) have the
same probability distribution for all x ∈ X.

Most famously, an optimized version of ZKBoo called ZKB++ is the basis of the post-
quantum secure Picnic signature scheme — an alternate candidate in round three of the
NIST standardization process [CDG+17]. Note that Picnic2 (resp. Picnic3) also use the
MPC-in-the-head paradigm, but are based on the KKW protocol [KKW18] which allows
for a preprocessing phase and better parameter tuning [KZ20].
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A (2,3)-decomposition of a function φ is given as Πφ. The verifier and the prover have
input y ∈ Lφ. The prover knows x such that y = φ(x).

Commit: The prover does the following:
1. Generate random tapes R0, R1, R2.
2. Run Πφ(x) with randomness R0, R1, and R2 to obtain views w0, w1, w2 and

outputs y0, y1, y2.
3. Commit to ci = Comm(wi, Ri) for i ∈ [0, 2].
4. Send a = (y0, y1, y2, c0, c1, c2).

Prove: The verifier chooses an index e ∈ [0, 2] and sends it to the prover. The prover
answers to the verifier’s challenge sending opening ce, and ce+1 thus revealing
z = (Rj , wj)j∈{e,e+1}.

Verify: The verifier runs the following checks:
1. If Rec(y0, y1, y2) 6= y, output reject.
2. If ∃ i ∈ {e, e + 1} such that yi 6= Outputi(wi), output reject.

3. If ∃ j such that the j-th output is not equal to w
(j)
e 6=

φ
(j)
e (we, Re, we+1, Re+1), output reject.

4. Output accept.

Figure 5.1: ZKBoo protocol as defined by Giacomelli et al. [GMO16].

5.3.3 MPC in the preprocessing model.

In work following [GMO16, CDG+17], Katz, Kolesnikov, and Wang [KKW18] showed
that a particular communication-efficient MPC protocol in the preprocessing model
is well suited to MPCitH proofs, and variants of their protocol appear in subsequent
work [dDOS19,BN20,KZ20]. The core idea of MPC in the preprocessing model is to split
the protocol ΠC into an offline phase Πoff

C and an online phase Πon
C . Importantly, the

offline phase Πoff
C can be computed independently of the witness. By precomputing

correlated randomness in advance during Πoff
C , one can reduce communication in

Πon
C drastically. In the traditional MPC setting, this was already used, e.g., in

SPDZ [DPSZ12], MiniMAC [DZ13], and TinyOT [NNOB12]. While the original KKW
proof system is focused on the protocol for Boolean circuits, it also works with arithmetic
circuits in a straightforward manner as observed in [dDOS19, BN20], so we present the
latter case here for the sake of generality.

(Offline Phase) The offline phase Πoff
C of KKW works as follows: for each input
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wire w ∈ IN to the circuit C, and for each output wire z from all the multiplication
gates, each party Pi locally generates random shares λw

i , λ
z
i ∈ F using its own

random tape. Then the parties compute random shares for all internal wires, by
running the circuit:

• for each addition gate that takes wires x and y as input, party Pi locally
computes a new share λz

i = λx
i + λy

i for the output wire z;

• for each multiplication gate that takes wires x and y as input, party Pi obtains
shares of the multiplication triples (sometimes called Beaver triples [Bea92])
(λx

i , λ
y
i , λ

xy
i ), such that λxy = λxλy.

(Multiplication Triples) To generate multiplication triples in the MPCitH setting,
the parties choose λx and λy implicitly by reading their shares from their random
tapes. Then to obtain shares of λxy, the first N−1 parties read random shares from
their random tapes. As the prover P knows all the shares, P can simply solve for
the N -th party’s share so that the shares reconstruct λxy, as required. We call the
sequence of values λxy

N for all multiplication gates auxiliary information, denoted
aux ∈ F|C|. Note that the complete information needed for the first N − 1 parties
can be derived from their respective seeds seedi used to generate Pi’s tape. The
information needed for party PN can be derived from seedN and from aux. Hence,
we define each party Pi’s state information as follows: for all i = 1, . . . N − 1, let
statei := seedi, and for PN we have stateN := seedN ||aux.

(Online Phase) Given the preprocessed state information, the online phase Πon
C

proceeds by computing the masked witness ŵ = w+
∑

i∈[N ] λ
w
i for each input wire.

Now, each gate takes (masked) inputs x̂ = x +
∑

i∈[N ] λ
x
i and ŷ = y +

∑
i∈[N ] λ

y
i

and can be computed as follows, where all computations on shares are carried out
in F:

• Addition: each Pi locally computes x̂+ ŷ.

• Addition by constant c: each Pi locally computes x̂+ c.

• Multiplication by constant c: each Pi locally computes c · x̂.

• Multiplication: this computation consumes a single triple ((λx
i )i∈[N ], (λ

y
i )i∈[N ],

(λxy
i )i∈[N ]). Each party Pi first locally computes si = λz

i − x̂ ·λy
i − ŷ ·λx

i −λxy
i

and broadcasts si. Then the masked output ẑ = xy +
∑

i∈[N ] λ
z
i can be

obtained as ẑ =
∑

i∈[N ] si + x̂ŷ by each party.

Notice that Πon
C only broadcasts once for each multiplication gate, thanks to the
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correlated randomness computed during the offline phase. All other operations are
computed locally by the parties.

Protocol. Below we present a basic framework for three-round MPCitH-PP proof
systems. Here, we describe the protocol for one MPC instance (with non-negligible
soundness error) and in Fig. C.1 we include a complete description of the KKW proof
system that uses many instances in parallel (to achieve negligible soundness error). As
the offline protocol proceeds independently of the secret witness, an MPCitH-PP prover
can safely open the states of all N parties for the verification of the preprocessing phase
(i.e., triple generation).

(Commit) The prover P first samples a random seed for each Pi and executes Πoff
C

to obtain the states of all N parties after the offline phase. Then, using these states
and the masked witness (ŵ)w∈IN as input, P executes Πon

C to obtain all broadcast
messages observed during the online phase. Finally, P sends commitments to the
states and broadcast messages to the verifier V.

(Challenge) V asks P to open either the offline or the online phase. For the latter
case, V also randomly picks a party index i?, whose view is to remain hidden.

(Response) To open the offline phase, P sends all random seeds used during Πoff
C .

To open the online phase, P sends broadcast messages coming from the party Pi?

during Πon
C , as well as all the state information of the remaining N − 1 parties.

(Verification) To check the offline phase, V simply uses random seeds to execute
Πoff

C as P would do, to obtain the resulting states of all N parties. Then V checks
that these states form a correct opening to the commitment of the offline phase. To
check the online phase, V simulates Πon

C with the broadcast messages from Pi? and
the states of the remaining N − 1 parties as input, so as to obtain the broadcast
messages of the other N−1 parties. Then, V checks that these broadcast messages
form a correct opening to the commitments of the online phase.

5.3.4 Summary of Picnic Signature Scheme

The signature scheme Picnic is an instance of the MPCitH paradigm described above.
The function f is the LowMc block cipher2, the signer’s secret key is the witness w,
and the public key is (x, c). A signature consists of a proof of knowledge of w such

2The details of the LowMc cipher can be found in Section C.5
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that fx(w) = c. In the block cipher notation, if the secret key is denoted sk, then the
public key is a plaintext-ciphertext pair (x,LowMCsk(x)) where x is a randomly chosen
plaintext block, and the signature proves knowledge of a key relating the plaintext x
and the ciphertext LowMCsk(x). The proof is made non-interactive by the Fiat-Shamir
transform, and the message to be signed is bound to the proof by hashing it into the
challenge.
The parameter sets for the algorithms submitted to the NIST project must meet one
of five security levels. Picnic defines parameters for security levels L1, L3 and L5,
corresponding to the security of AES 128, 192 and 256, respectively. For instance,
parameters at level L1 aim to provide 128-bit security against classical attacks.

138



6

Side-channel Analysis of Picnic Signatures

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Probing Attacks on MPC-in-the-head Paradigm . . . . . . . . . . . . . . . 140
6.3 Probing Attacks on Picnic3 . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1 Motivation

In this chapter, we explore probing attacks on the MPC-in-the-head paradigm using
the Picnic signature scheme and MPC-in-the-head paradigm with preprocessing using
Picnic3 signature scheme. We first remark the attack surface as illustrated in Fig. 6.1.
Our Goal is to show that the MPCitH phase using Picnic (or as in short MPC-LowMC
phase) is indeed vulnerable to to Side-Channel attacks, which then can be used to recover
the sensitive values.
As our target, we focus on the reference implementation given by the authors [Ste] which
uses the Unruh transformation with security parameters L1. However, our analysis is
independent of the actual transformation (Fiat-Shamir or Unruh Transformation) and
can be adapted to the different security parameters. The first attack targets the initial
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Figure 6.1: An overview of the Picnic signature scheme where m is constant plaintext
that is used in LowMC such that LowMC(m, ks) = y, sk = ((y,m), ks) is the secret key
and pk = (y,m) is the public key. The figure is adapted from [AOTZ20].
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sharing of the secret key before its use in the MPC-LowMC implementation while the
second attack targets an intermediate state in the shared Sbox implementation of MPC-
LowMC.

6.2 Probing Attacks on MPC-in-the-head Paradigm

In general, the goal of a probing attack is to reconstruct the secret input x given to
some algorithm A by obtaining values used in the computation of A(x). We say that
an algorithm A is k-secure, if at least k probes are needed to reconstruct the secret x.
Combining the masking technique with masking order n and modifying the circuits used
in A by using n-SNI gadgets results in an algorithm A′ that is n · k-secure [BBD+16].
Now, consider the case that A′ is an implementation of the (n + 1)-party MPC-in-the-
head zero knowledge protocol as given in Section 5.3.2.1. As the protocol gives out t

shares to the verifier, the security of A′ drops down by t to n ·k− t, as t input shares are
now known to the attacker. Motivated by this, we now introduce our adversarial model
and experimental results.
We assume an adversary who can access the physical device that can run the Picnic
signatures. They can measure side-channel traces, such as power or electromagnetic
emanation, of the device while signing chosen messages. Moreover, they obtain the
signatures as output, and can verify (and thus see the revealed values) or use them
arbitrarily in an attack. Observe, that according to noisy leakage model the side-
channel trace contains each intermediate value perturbed with a noisy leakage function.
Depending on the signature the revealed values vary and the adversary can employ these
variables, to recover the secret. Remark, that depending on the scenario the secret is
changing (the details is given in Section 6.3). Therefore, our countermeasures introduced
in Chapter 8 are to thwart these two scenarios.

6.2.1 Experimental Results

In order to illustrate that this is not only a theoretical weakness, we study the ZKBoo
protocol using the (2, 3)-circuit decomposition as defined in Section 5.3.2.1. We first
show that an attack using the opened views is indeed possible by using a single probed
value using the experimetal setup given in Chapter B.
For ZKBoo, we assume the scenario where two of three shares (x0, x1) are revealed by
the protocol. The MPC-in-the-head measurements have a weak and noisy dependence
on x2, which can be exploited due the revealed shares a′0 and a′1. In order to validate
the straightforward exploitability, we use a simple RvR t-test setup. We collect traces
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Figure 6.2: A t-test based leakage detection of a single output bit (a′) in Picnic using the
classification based on i = a′0⊕a′1. The details of the experimental setup and formulation
can found in Chapter B.

of Picnic signature generation using our practical setup as described in Chapter B. The
analysis uses the side-channel information of the unopened view and the two opened
shares of a multiplication gadget. We target a single bit (e.g. a′ = a′0 ⊕ a′1 ⊕ a′2) inside
the SboxLayer and classify the traces into two groups depending on the value of a′0⊕a′1.
The result of the t-test in Fig. 6.2 shows the clear dependence between the unrevealed
share a′2 and the observable measurement traces, as the t-value clearly exceeds 4.5.

6.3 Probing Attacks on Picnic3

We describe two probing side-channel attacks against Picnic3 and experimentally
confirm them against our M4 port of the optimized Picnic3 implementation described
in Chapter B. The values revealed by the prover, allowing the verifier to check the
consistency of the MPC protocol, can be employed by an adversary in a side-channel
attack. We assume the same scenario. Furthermore, we assume a leakage model where
an implementation leaks weak and noisy information about each intermediate variable,
therefore measurements of the MPC-in-the-head simulation leak a weak and noisy
dependence on secret values due to the revealed values. We make use of the RvR tests
to show the clear presence of leakage.

6.3.1 Probing the Masked Secret of Unopened Online Phase

This attack is specific to MPCitH with preprocessing, and only occurs when 5 protocol
rounds are compressed to 3. Hence, the attack below works in principle for any direct
implementation of signatures derived from three-round KKW-based protocols. We
also remark, that this attack cannot be mitigated by the SNIitH approach [SBWE20]
(Chapter 7); in particular, the attack below works independently of the number of
unopened parties’ views since it targets an input to the MPC (i.e., ŵ), not a share of the

141



6 Side-channel Analysis of Picnic Signatures

secret. We are thus motivated to design an alternative solution to thwart this attack in
the next section.
We first note the three-round KKW scheme executes both the offline and online phase of
each MPC instance, in contrast to the five-round case. We denote by C the executions
chosen for the online phase, i. e., the executions where the offline phase is not public.
The attack exploits the following: if the k-th execution of the offline phase is selected
to be part of the signature (i.e., if k /∈ C), the preprocessed masks and state of all N
parties is made public for the verifier, therefore the corresponding online phase must
remain hidden. Concretely, since the secret witness wire value w is masked by random
bits in Item 1c of the prover in Fig. C.1, the attacker’s goal is to learn the masked
witness wire values ŵ(k) in execution k for the unopened online executions k /∈ C. Since
ŵ(k) = λ

w,(k)
1 + . . . + λ

w,(k)
N + w and λ

w,(k)
i is made public (for all i), by probing ŵ(k)

the attacker can solve for the secret key bit w. Here, λw,(k)
i denotes the value of λw

i in
execution k.
In order to validate the attack, we use our experimental setup (as described in
Section 8.4) and the RvR approach. The experiment shows that there is an exploitable
leakage, i.e., an amount of leakage sufficient, despite measurement noise, to allow
recovery of intermediate values that depend on the secret key. For this experiment,
we reduce the Picnic3 parameters (as in Fig. C.1) M and τ to 4 and 2 respectively, in
order to collect traces more quickly, however we keep the number of parties N as 16
and collected traces corresponding to execution of the first MPC instance. During the
collection phase, we run the Picnic3 signing function with random messages and a fixed
secret key. More specifically, we measure the execution of the first line of Algorithm 35,
and collect 22,056 side-channel traces. Note, that the root seed is also random due to
the choice of a random message to be signed. We first separate the traces belonging
to signatures that reveal the first preprocessing phase, since our measurement covers
the whole first MPC instance. The reduced number of MPC instances is only to reduce
the number of possible challenges and to increase the number of traces per challenge.
Then we classify the remaining traces into two sets according to the revealed values
λ
w,(k)
1 + · · · + λ

w,(k)
16 . The result of the analysis in Fig. 6.3 (left side) shows a clear

dependence between the unrevealed value ŵ(k) and the observable trace, as the |t|-value
clearly exceeds 5.7 which shows an exploitable leakage. As seen in the right hand side
of the Fig. 6.3, the leakage becomes clear after 2,725 traces.
The code we measure (the first line of Algorithm 35) corresponds to the calculation
of roundkey0 thus the leakage corresponds to the bits of roundkey0 which is equal to
matMul(ŝk,K0). Solving the equation for the sk = ŝk − (λsk

1 + · · · + λsk
16)K0 where (λsk

i
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Figure 6.3: A first-order RvR test on the unprotected Picnic3 implementation using
revealed values from the offline phase. The traces are classified based on the bit λw

1 +
· · · + λw

16. Values above the 5.7 threshold (red line) indicate there are strong leakages
(left). Moreover, the maximum |t|-value increases with respect to number of traces and
the leakage becomes clear after 2,725 traces (right).

is known for all i and K0 is a constant) leads to the secret value sk.

6.3.2 Probing the Unopened Party

The second attack uses the revealed values for the online phase i.e. ŵ(k) and λw
i for

i 6= ik. This attack is a straightforward variant of the one by Gellersen et al. [GSE21],
but adapted to work with Picnic3. In contrast to the attack described above, we now
target an MPC execution whose online phase is selected to be part of the signature (i.e.,
if k ∈ C). In that case there is a single party Pik whose internal state must remain
hidden for the privacy of the MPC protocol to hold. By design, the values ŵ(k) and λw

i

for i 6= ik are revealed during the verification. Thus the measurements have a weak and
noisy dependence to the value λw

ik
which can be exploitable due to the revealed values.

We validate the attack using the same experimental setup and parameters as in
Section 6.3.1. During the collection phase, we again process the Picnic3 with random
messages with a fix secret key and measure the execution of the preprocessing phase
(Algorithm 32), where the following is computed:

roundkey0 = λik +
∑
i 6=ik

λi and λsk = matMul(roundkey0,K−1
0 ). (6.1)

Since ŝk = sk + λsk , we have the following equation for λik ,

ŝk = sk + (λik +
∑
i 6=ik

λi)K
−1
0 , and λik = (ŝk − sk)K0 −

∑
i 6=ik

λi. (6.2)
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Figure 6.4: A first-order RvR test on the unprotected Picnic3 implementation using
revealed values from the online phase. The traces are classified based on a single bit of
ŝkK0. Values above the 5.7 threshold (red line) indicate there are strong leakages (left).
Also, the maximum |t|-value increases with respect to number of traces and the leakage
becomes absolute after 6,000 traces (right).

Finally, we substitute the secret value λik into Eq. (6.1),

roundkey0 = (ŝk − sk)K0 −
∑
i 6=ik

λi +
∑
i 6=ik

λi = (sk + ŝk)K0 (6.3)

From Eq. (6.3) we observe that roundkey0 can be probed (over multiple traces) since sk
is a constant value. Then λik can be calculated as roundkey0 −

∑
i 6=ik

λi, and used to
obtain the secret (as described above). The result of the analysis in Fig. 6.4 shows a
clear dependence between the unrevealed value roundkey0 and the observable trace, as
the |t|-value clearly exceeds 5.7 which shows an exploitable leakage.
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7.1 Motivation

In this chapter, we study the applicability of masking techniques to protocols relying
on the MPC-in-the-head paradigm and how one can prevent SCA attacks. To show
the versatility of our approach, we use the ZKBoo protocol [GMO16] as an example.
The main insight of our approach is that both the MPC-in-the-head approach and the
masking approach to protect against SCA are MPC protocols and can thus be viewed
in a unified way.
We first generalize the notion of (2, 3)-decompositions of functions introduced in [GMO16].
This allows us to apply MPC-based masking techniques—which are widely used
to counteract DPA attacks—in the setting of MPC-in-the-head protocols. To use
MPC-based DPA protection in MPC-in-the-head protocols, we need gadgets, where
a strict subset of the output variables does not reveal any information about the
input variables. Formally, this requirement is captured by the notion of strong non-
interference (SNI) [BBD+16]. While SNI gadgets are known in the literature, none
of them are compatible with the function decompositions needed for ZKBoo, as the
dependency between the partial functions is imbalanced. Hence, we design suitable
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7 SNI-in-the-head: Protecting MPC-in-the-head Protocols against SCA

balanced SNI gadgets to obtain a generalized version of ZKBoo, called (n + 1)-ZKBoo
that reveals dn/2e + 1 shares out of n + 1. Any attacker obtaining n − (dn/2e + 1)

additional variables thus only knows n out of n+1 shares and is still not able to recover
the complete input. To show the feasibility of our defense mechanisms, we implemented
this algorithm for n + 1 = 5 (thus revealing three shares). Our experiments show that
the extraction of a single additional variable is not sufficient to reconstruct the input.
To protect against n probes, the size of the communication of (n + 1)-ZKBoo is about
(n + 1)/4 times larger than those of the original ZKBoo, while the running time of
(n+ 1)-ZKBoo is about (n+ 1)(n+ 2)/9 times larger than ZKBoo.

Notation. First, we summarize the notation used in the rest of the chapter. In
the following, we fix some finite ring (K,⊕,⊗) with an addition operation ⊕ and a
multiplication operation⊗. As usual, we often omit the multiplication symbol⊗ and thus
write xy instead of x⊗y. For a, b ∈ Z with a < b, we define [a, b] := {a, a+1, . . . , b−1, b}.
The letters x, y, z, . . . represent the sensitive variables. Random variables are represented
by the letter r, with an index as ri. To denote a random selection of a variable r from
the field K, we use r ∈R K.
Typically, a variable x is split into n + 1 shares x0, . . . , xn such that x =

⊕n
i=0 xi.

The value n is called the masking order. This technique of masking was popularized
in [CJRR99b]. A vector of shares (x0, . . . , xn) is denoted by x, and the underlying
masked value is given by x =

⊕n
i=0 xi. For a subset I ⊆ [0, n] of indices, we denote

by x|I = (xi)i∈I the sub-vector of shares indexed by I. A gadget G for a function
f : Ka → Kb (with regard to a masking order) is an arithmetic circuit with a · (n + 1)

inputs and b·(n+1) outputs grouped into a vectors of shares x(1), . . . , x(a), resp. b vectors
of shares y(1), . . . , y(b). The arithmetic circuits have five kinds of gates: the unary ⊕α

gate with α ∈ K, which on input x outputs x⊕α; the unary ⊗α gate with α ∈ K, which on
input x outputs x⊗α; the binary ⊕ gate which on inputs x, x′ outputs x⊕x′; the binary
⊗ gate, which on inputs x, x′ outputs x ⊗ x′; and the random gate with fan-in 0 that
produce a uniformly chosen random element r ∈R K. Note that in the case of K = GF(2),
these gates directly correspond to AND, XOR, and NOT gates. The gadget needs to be
correct, i. e. G(x(1), . . . , x(a)) = (y(1), . . . , y(b)) iff f(x(1), . . . , x(a)) = (y(1), . . . , y(b)) for all
possible inputs and for all values generated by the random gates. The values assigned
to wires that are not output wires are called intermediate variables.
We also make use of a statistically binding commitment scheme and will denote the
commitment algorithm as Comm (see e. g. [Gol07] for a formal definition). We omit
the modulus operation mod (n+1) to improve readability. Logarithms are always taken
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with base 2, i. e. log(x) := log2(x).

7.2 Security Notion for MPC-in-the-head Protocol

We consider opened views as a part of probing values in Definition 2.1, Chapter 2. Thus
we show that an additional probe shatters the independence of the side-channel traces
and the sensitive variables.

Formally speaking, a single adversarial probe disables the simulators capability (which is
defined in Definition 2.1) to simulate variables using a set of independent and uniformly
chosen variables. Hence the multiplication gadget used in ZKBoo is not sufficient to
guarantee SCA-resistance. Using the discussion given above, we can formally restate
the simulation in Definition 2.1 as follows:

Definition 7.1 ((tA, tE)-SNI Security for MPC-in-the-head protocol). Let G

be a gadget which takes as input n + 1 shares (xi)0≤i≤n and outputs n + 1 shares
(yi)0≤i≤n. The gadget G is said to be (tA, tE)-SNI secure if for any set of tA probed
intermediate variables, tE opened variables and any subset O ⊂ [0, n] of output indices,
such that tA+ tE + |O| ≤ t, there exists a subset I ⊂ [0, n] of input indices with |I| ≤ tA,
such that the tA intermediate variables and the output variables y|O can be perfectly
simulated from x|I .

Definition 7.1 is equivalent to Definition 2.1 if tE = 0, i. e. if there exist no opened
values. More formally, t-SNI implies (t1, t2)-SNI for all t1 + t2 ≤ t. On the other hand,
this leaked data might be chosen carefully such that tE leaked output variables only give
information on tE/2 input variables. In such a case, using a t-SNI gadget might actually
give a (tA, tE) gadget with tA + tE/2 = t, giving a more fine-granular view.

The above definition captures the intuition that protocols following the MPC-in-the-
head paradigm leak information all by themselves due to the opening of some views.
Without the presence of side-channel attacks, this is not a problem, as the privacy of
the underlying MPC protocol guarantees that no information about the secret is leaked.
But in the presence of side-channel attacks, this leaked information can drastically help
the attacker. Using the (tA, tE)-SNI notion, we can design MPC-in-the-head protocols
that achieve t-SNI security even if a subset of the views are revealed. In the next section
we provide a circuit decomposition and define our protocol.
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7.3 Constructing SNI-secure Decompositions

In this section, we introduce a decomposition of an arithmetic circuit secure in the
SNI notion. We start with a generic decomposition definition that will be used for the
circuit decomposition in the following sections. In [GMO16], the notion of a (2, 3)-
decomposition was introduced. Informally, such a decomposition splits a function φ into
three branches such that the computations of two of those branches are not enough to
reconstruct the complete computation of the function. In ZKBoo, two of these branches
are revealed, while the third branch stays hidden. As shown in Chapter 6, this allows
DPA attacks against ZKBoo, as a single probed value from this third branch might
be sufficient to reconstruct the complete computation. In this section, we thus aim to
construct function decompositions that are SNI-secure and withstand such probes. We
first introduce a generalization of (2, 3)-decompositions, called (k, n+1)-decompositions,
consisting of n + 1 branches, where each branch depends only on k branches. Defining
balanced SNI-secure versions of the multiplication gadget and the refresh gadget allows
us to construct a (dn/2e+1, n+1)-decomposition for functions represented by arithmetic
circuits. Moreover, we show that this is n-SNI.

7.3.1 Decomposing a Function

Let φ : X → Y be an arbitrary function. The protocol is performed on an input value
x ∈ X that computes φ(x) = y. We assume that the computation of φ can be split
into d steps. For example, if φ is implemented via a circuit, d is the number of gates.
We use a transformation on the function φ to split the evaluation and the secret x into
n + 1 branches such that revealing n of them brings no information about the secret
value x. The first step is to apply a surjective (possibly randomized) algorithm Share
to x to split it into input shares x0, . . . , xn. The input shares and the intermediate
values for the i-th branch are stored in wi, which is called a view, and contains (d + 1)

elements w
(0)
i , . . . , w

(d)
i . The 0-th value w

(0)
i of a view wi is simply its input share

xi. The single steps of the computation are described by a set of (n + 1) · (d + 1)

functions F = {φ(j)
i | ∀ 0 ≤ i ≤ n and 0 ≤ j ≤ d}. In order to guarantee that k views

are sufficient to recompute a single branch, the functions φ
(j)
i take input from the k

branches i, i + 1, . . . , i + (k − 1). The remaining values w
(j)
i can be computed in the

following iterative way:

w
(j)
i = φ

(j)
i ((w[0,j−1]

m ;Rm)i≤m≤i+(k−1)) for 0 ≤ i ≤ n,
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Figure 7.1: The representation of the branches for the j-th gadget φj of the (k = 3, n = 4)
decomposition for the function φ. Observe that each branch requires at most k = 3 views.

where w
[0,j−1]
m = (w

(0)
m , . . . , w

(j−1)
m ). Here, Ri denotes the source of randomness within

the i-th branch. As an example we can see the visual representation of φ(j) for n+1 = 5

in Fig. 7.1.
After evaluating the d functions, the output value yi is computed from wi by the
functions Outputi, i. e. yi = Outputi(wi). Finally, the output values yi are recombined
as Rec(y0, . . . , yn) = y = φ(x).
Now, we can introduce the complete (k, n+1)-decomposition definition generalizing the
definition given in [GMO16]. Note that the influence of the parameter k comes from the
arity of the functions φ(j)

i , which take input from at most k branches i, i+1, . . . , i+(k−1).

Definition 7.2. A (k, n + 1)-decomposition D of a function φ : X → Y is a set of
functions

D = {Share, (Outputi)0≤i≤n,Rec} ∪ F ,

such that Share, Outputi, Rec, and F are defined as above. Let Πφ be the evaluation
protocol defined in Fig. 7.2.
The decomposition must also have the following properties:

• Correctness: Pr[φ(x) = Πφ(x)] = 1 for all x ∈ X, where the probability is over
the random choices.

• n-Privacy: The protocol is correct and for all e ∈ [0, n] there exists a PPT
algorithm Se such that the two distributions Se(φ, y) and ({Ri, wi}i∈{e,e+1,...,e+(n−1)}, ye−1)

are statistically indistinguishable.

The goal of the next subsection is the construction of (k, n + 1)-decompositions for
functions φ : Kφin → Kφout implemented by an arithmetic circuit. Furthermore, we want
this decomposition to be n-SNI to prevent the attacks described in Chapter 6. Note
that the construction of a (n, n+1)-decomposition is just a simple generalization of the
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Let φ : X → Y be a function and D be a (k, n + 1)-decomposition of φ. For an input
x ∈ X, perform the following:

1. Generate the random tapes Ri for 0 ≤ i ≤ n.

2. Generate the secret shares: (x0, . . . , xn)← Share(x; r1, . . . , rn) where ri is sampled
from the random tape Ri.

• Initialise w
(0)
i ← xi for 0 ≤ i ≤ n.

• For 1 ≤ j ≤ d compute

w
(j)
i = φ

(j)
i ((w[0,j−1]

m ;Rm)i≤m≤i+(k−1)) for 0 ≤ i ≤ n

.

3. Compute yi = Outputi(wi, Ri) for 0 ≤ i ≤ n.

4. Output y = Rec(y0, . . . , yn).

Figure 7.2: A protocol Πφ using a decomposition D to evaluate φ(x). The figure is
adapted from [GMO16].

linear (2, 3)-decomposition of [GMO16] and still vulnerable to the same attacks. In the
next section, we will thus construct a (k, n + 1)-decomposition for all k ≥ dn/2e + 1.
These decomposition will allow to construct algorithms secure against n − k probes.
As k = dn/2e + 1 gives the best security against DPAs, we focus on this case. The
main technical problem to construct an (dn/2e + 1, n + 1)-decomposition is the fact
that each gate/function φ

(j)
i can have inputs only from branches i, i + 1, . . . , i + dn/2e.

Taking a closer look at the existing construction of gadgets against side-channel attacks
for multiplication (for example, the ISW gadget of [ISW03] or the more refined version
of [RP10]) shows that the computation of the i-th branch depends on i other branches.
These gadgets are thus not suited for our approach. To guarantee that each branch
depends only on dn/2e other branches, we construct balanced gadgets.

7.3.2 Constructing Balanced Gadgets

Next we focus on the gadgets. As gates such as unary addition, unary multiplication,
and binary addition are linear, there is no need for secure gadgets for these operations.
We thus only need to examine the two essential SNI-secure gadgets needed for the
multiplication operation. To obtain a secure multiplication operation, a refresh gadget
is also needed, whenever a variable is used in multiple multiplication gates. See
e. g. [BBC+19] for a more formal treatment.
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We need to analyze and adapt these gadgets because all known SNI-secure gadgets
have an unbalanced structure, which causes the need for more than dn/2e other views
to compute some output share. Therefore, the main goal is to generate gadgets such
that every branch needs at most dn/2e other input shares in order to compute the
corresponding output share.

7.3.2.1 Balancing the Multiplication Gadget

First, we shortly review the multiplication gadget defined in [RP10] and proven to be
n-SNI in [BBD+16]. Let (x0, . . . , xn) and (y0, . . . , yn) be the shares of the two sensitive
variables x and y. The multiplication gadget to calculate the output shares (z0, . . . , zn)

of z = xy can be summarized in three steps as follows:
1. For 0 ≤ i < j ≤ n, sample ri,j ∈R K.
2. Calculate rj,i = (ri,j ⊕ xiyj)⊕ xjyi for 0 ≤ i < j ≤ n.

3. Calculate zi = xiyi ⊕
n⊕

j=0;j 6=i

ri,j for 0 ≤ i ≤ n.

As seen in the description above, the calculation of zi requires n− i fresh random values
(ri,j such that i < j) and i intermediate products (ri,j such that i > j). In order
to generate a (dn/2e + 1, n)-decomposition, we need to have a balanced multiplication
gadget such that every index requires about the same number of random values and
intermediate products.
Informally, we can illustrate the intermediate values of the multiplication gadget as a
matrix A with Ai,j defined as (i) xiyi for i = j, (ii) ri,j ∈R K for i < j, and (iii)
(ri,j ⊕ xiyj)⊕ xjyi for i > j.
Hence we can represent the output shares as zi =

⊕n
j=0 Ai,j . Using this representation,

n(n+1)/2 random values (and intermediate products) can be reorganised in such a way
that each row contains at most bn/2c intermediate products. In order to do so, we define
for i ∈ [0, n] the interval Ji as follows:

• If n is even, we define Ji = {i+ 1, . . . , i+ bn/2c}.
• If n is odd and i < (n+ 1)/2, we also define Ji = {i+ 1, . . . , i+ bn/2c}.
• Finally, if n is odd and i ≥ (n + 1)/2, we define Ji = {i + 1, . . . , i + bn/2c, i +
bn/2c+ 1}.

As always, modular arithmetic is used here, i. e. |Ji| ∈ {bn/2c, bn/2c + 1} for all i. In
order to generate a balanced multiplication gadget, one can take a partial transpose of
the matrix A with Ai,j defined as (i) xiyi for i = j, (ii) ri,j ∈R K for i 6= j, j 6∈ Ji, and
(iii) (ri,j ⊕ xiyj)⊕ xjyi for j ∈ Ji.
As an example, consider the multiplication gadget and the balanced multiplication
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A =


x0y0 r0,1 r0,2 r0,3 r0,4
r1,0 x1y1 r1,2 r1,3 r1,4
r2,0 r2,1 x2y2 r2,3 r2,4
r3,0 r3,1 r3,2 x3y3 r3,4
r4,0 r4,1 r4,2 r4,3 x4y4

 A′ =


x0y0 r1,0 r2,0 r0,3 r0,4
r0,1 x1y1 r2,1 r3,1 r1,4
r0,2 r1,2 x2y2 r3,2 r4,2
r3,0 r1,3 r2,3 x3y3 r4,3
r4,0 r4,1 r2,4 r3,4 x4y4


Figure 7.3: Example of A and A′ for n+ 1 = 5.

gadget for n+1 = 5 shown in Fig. 7.3. The upper matrix A represents the multiplication
gadget defined in [RP10] and matrix A′ describes the equivalent, but balanced multiplication
gadget. The parts transposed are marked in grey. We can see that in both cases
zi =

⊕n
j=0 Ai,j and z′i =

⊕n
j=0 A′i,j . Although the shares are calculated differently

i. e. zi 6= z′i, the correctness of the gadgets holds i. e. z = xy =
⊕n

i=0 zi =
⊕n

i=0 z
′
i. Note

that row i of A′ has exactly two fresh random values and the remaining intermediate
products come from rows i+ 1 and i+ 2.
Finally, we formally introduce the balanced multiplication gadget to calculate the output
shares (z0, . . . , zn) of z = xy as follows:

1. For 0 ≤ i < j ≤ n, sample ri,j ∈R K.

2. Calculate rj,i = (ri,j ⊕ xiyj)⊕ xjyi for 0 ≤ i < j ≤ n.

3. Calculate zi = xiyi ⊕
n⊕

j=0;j 6=i

δi,j for 0 ≤ i ≤ n where δi,j is defined as (i) ri,j for

j ∈ Ji, i < j, (ii) ri,j for j 6∈ Ji, i < j, (iii) ri,j for j ∈ Ji, i > j, and (iv) rj,i for
j 6∈ Ji, i > j.

Remark that the balanced multiplication gadget defined above does not bring any
overhead to the scheme. The explicit description can be found in Algorithm 11.
Furthermore, it is easy to see that the balance is achieved.

Lemma 7.1. In the balanced multiplication gadget, in each row i, the intermediate
products ri,j with i > j only occur at positions δi,j with j ∈ Ji.

Proof. Consider any row i and any position j 6∈ Ji. Then, the second or fourth cases
in the construction of δi,j might occur and in both cases, a fresh random element is
chosen. �

In the final step, we show that the balanced multiplication gadget indeed satisfies the
SNI notion, as the gadget is secure against n attack probes.
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Algorithm 11 Balanced Multiplication Gadget
Input: The shares (x0, . . . , xn) and (y0, . . . , yn).
Output: The vector of shares of xy as (z0, . . . , zn).

1: for 0 ≤ i ≤ n
2: for i < j ≤ n
3: ri,j ← rand() // ri,j ∈R K
4: rj,i = (xiyj ⊕ ri,j)⊕ xjyi

5: for 0 ≤ i ≤ n
6: zi ← xiyi
7: for 0 ≤ j ≤ n and j 6= i
8: if (j ∈ Ji and i < j) or (j 6∈ Ji and i > j) then
9: zi ← zi ⊕ rj,i // Denoted by zi,j

10: else if (j ∈ Ji and i > j) or (j 6∈ Ji and j < j) then
11: zi ← zi ⊕ ri,j // Denoted by zi,j

12: return (z0, . . . , zn)

Theorem 7.2 (n-SNI Security for balanced multiplication gadget). Let G be
the balanced multiplication gadget which takes (xi)0≤i≤n and (yi)0≤i≤n as the input
shares, and outputs (zi)0≤i<n. For any set of t ≤ n intermediate variables and any
subset O ⊂ [z0, . . . , zn] of output shares such that t + |O| ≤ n, there exists a subset
I ⊂ [0, n] of input indices which satisfies |I| ≤ t, such that the t intermediate variables
and the output variables y|O can be perfectly simulated from x|I .

Proof. In order to prove the theorem, we use a similar structure as in [CGPZ16] and
show that every set of intermediate variables with t elements can be simulated by two
sets of input shares (xi)i∈I such that |I| ≤ t and (yj)j∈J such that |J | ≤ t. Let zi,j be
the j-th partial sum of zi, i. e. zi,j = xiyj ⊕

⊕j
j′=0,j′ 6=i δi,j′ . We divide the probes in four

groups:

A1: If xi, yi, or xiyi is probed, add i to I and J .

A2: If δi,j or zi,k is probed (for i 6= j), add i to I and J .

Note that after these first two groups, we have I = J and will denote this common set
as U .

A3: If xiyj ⊕ ri,j is probed, do the following: if i ∈ U or j ∈ U , add {i, j} to I and J .

A4: If xiyj is probed (for i 6= j), add i to I and j to J .
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Clearly, |I| and |J | have at most one index per probe, and therefore |I| ≤ t and |J | ≤ t.
We will now define the simulator, first for the intermediate variables.
We now go through the different groups:

A1: To simulate xi, yi, or xiyi, we can simply use the input variables, as both xi and yi

are known from I and J .

A4: To simulate xiyj we can simply use the input variables, as both xi and yj are known
from I and J .

For the remaining groups A2 and A3 (i. e. probed variables δi,j , zi,j or xiyj ⊕ ri,j), we
split the proof into smaller claims.

Claim 7.1. For any i, if i 6∈ U , then δi,j is not probed and does not enter in the
computation of any probed partial sum zi,k.

Proof. The variable δi,j is used in all partial sums zi,k for k ≥ j. As i 6∈ U , no partial
sum zi,k was probed (A2). �

Claim 7.2. If δi,j or xiyj⊕ri,j were probed, we can simulate them perfectly. Furthermore,
for all i ∈ U , we can simulate δi,j perfectly.

Proof. We consider a pair i < j and distinguish all four possibilities to simulate δi,j or
xiyj ⊕ ri,j .

• If {i, j} ⊆ U , we can sample ri,j uniformly and calculate xiyj , xiyj⊕ ri,j , xjyi, and
rj,i perfectly, as {i, j} ⊆ I ∩ J . Hence, we can simulate δi,j , δj,i and xiyj ⊕ ri,j .

• If i ∈ U and j 6∈ U , we know that δj,i was not probed and is not used in any probed
computation zj,k by Claim 7.1.

If δi,j is a fresh random value (i. e. δi,j = ri,j), we can just uniformly sample
δi,j = ri,′ . As δj,i was not probed, the only place where δi,j might occur in is
xiyj ⊕ ri,j . If xiyj ⊕ ri,j was probed, we have i ∈ I and j ∈ J by construction (A3)
and i ∈ U and can thus simulate xiyj ⊕ ri,j perfectly.

If δi,j is not a fresh random value (i. e. δi,j = (xiyj⊕ri,j)⊕xjyi), we can also sample
δi,j uniformly. As δj,i = ri,j was not probed, the only place where δj,i = ri,j might
occur in is xiyj ⊕ ri,j . If xiyj ⊕ ri,j is probed, we have {i, j} ∈ I ∩ J , as i ∈ U .
Hence, we know xjyi and can thus compute and output

xjyi ⊕ δi,j = xjyi ⊕ (xiyj ⊕ ri,j)⊕ xjyi = xiyj ⊕ ri,j .

154



7.3 Constructing SNI-secure Decompositions

• If i 6∈ U and j ∈ U , we know that δi,j was not probed and is not used in any probed
computation zi,k by Claim 7.1.

If δj,i is a fresh random value (i. e. δj,i = ri,j), we can just uniformly sample
δj,i = ri,j . As δi,j was not probed, the only place where δj,i might occur is in
xiyj ⊕ ri,j . If xiyj ⊕ ri,j was probed, we have j ∈ J and i ∈ I by construction (A3)
and j ∈ U and can thus simulate xiyj ⊕ ri,j perfectly.

If δj,i is not a fresh random value (i. e. δj,i = (xiyj⊕ri,j)⊕xjyi), we can also sample
δj,i uniformly. As δi,j = ri,j was not probed, the only place where δi,j = ri,j might
occur is in xiyj ⊕ ri,j . If xiyj ⊕ ri,j is probed, we have {i, j} ∈ I ∩ J , as j ∈ U .
Hence, we know xjyi and can thus compute and output

xjyi ⊕ δj,i = xjyi ⊕ (xiyj ⊕ ri,j)⊕ xjyi = xiyj ⊕ ri,j .

• If i 6∈ U and j 6∈ U , neither δi,j nor δj,i were probed or used in any probed
computation zi,k or zj,k. If xiyj ⊕ ri,j was probed, we thus know that ri,j is not
used anywhere else. Hence, we can sample a random value uniformly for xiyj⊕ri,j .
�

The only remaining internal variables to simulate are the partial sums zi,k. Whenever
such a partial sum zi,k was sampled, (A2) implies that i ∈ U . Now Claim 7.2 implies
that all δi,j can be simulated perfectly and thus all zi,k.
In the last part of the proof, we consider the simulation of the subset of output shares
z|O from x|I and y|J . Claim 7.2 already shows that for i ∈ U , all zi can be simulated.
Now, consider all indices i with i 6∈ U (including those not in O). We construct a subset
of indices V as follows: for any probed variable xiyj ⊕ ri,j corresponding to (A3) with
i 6∈ U and j 6∈ U , we add j to V if i ∈ O or i to V if i 6∈ O. Note that whenever we do
not add an index to v (either due to i ∈ U or j ∈ U), there is a probe corresponding to
(A1) or (A2) responsible for this. As we have at most t probes of intermediate variables,
we have |U | + |V | ≤ t and thus |U | + |V | + |O| ≤ n by assumption that t + |O| ≤ n.
Hence, there is at least one index j? ∈ {0, . . . , n} such that j? 6∈ U ∪ V ∪ O.
Now, fix any i ∈ O with i 6∈ U . We can write

zi = xiyi ⊕
n⊕

j=0;j 6=i

δi,j = δi,j? ⊕ (xiyi ⊕
n⊕

j=0;j 6=i;j 6=j?

δi,j).
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Claim 7.3. Neither δi,j? nor δj?,i enter in the computation of any probed variable or
another zi′ with i 6= i′ and i′ ∈ O.

Proof. As i 6∈ U , Claim 7.1 implies that neither δi,j? nor any zi,k were probed. As
j? 6∈ U , Claim 7.1 implies that neither δj?,i nor any zj?,k were probed. Now, δi,j? or δj?,i

can only occur either in zj? , xiyj? ⊕ ri,j? or in xj?yi ⊕ rj?,i. As j? 6∈ O, we do not need
to simulate zj? . If i < j?, then xiyj? ⊕ ri,j? was not probed (otherwise, we would have
j? ∈ V , as i ∈ O). Similarly, if i > j?, then xj?yi ⊕ rj?,i was not probed (otherwise, we
would have j? ∈ V , as j? 6∈ O). �

Hence, we can simply simulate zi by uniformly sampling a random value. �

Note that our proof does not actually make use of the definition of δi,j . Hence, we obtain
the following corollary.

Corollary 7.3. Any partial transposition of the secure multiplication gadget from [RP10]
is n-SNI.

7.3.2.2 Balancing the RefreshMask Gadget

Algorithm 12 RefreshMask Gadget [BBD+16]
Input: The vector of shares (x0, . . . , xn).
Output: The vector of shares of x as (x′0, . . . , x

′
n).

1: for 0 ≤ i ≤ n
2: x′i ← xi

3: for 0 ≤ i ≤ n
4: for i < j ≤ n
5: r ← rand() // r ∈R K
6: x′i ← x′i ⊕ r
7: x′j ← x′j ⊕ r

8: return (x′0, . . . , x
′
n)

In the next section we focus on balancing another important gadget for SNI notion: the
RefreshMask gadget. The foundation of our gadget is the gadget defined in [BBD+16]
and can be found in Algorithm 12. Remark that this gadget is an essential part of
the SNI notion, due to its role in composability. Informally speaking, refresh masking
gadgets are used to protect circuits where a set of inputs (x0, . . . , xn) is used in more
than one multiplication gadget. An example of such a circuit can be found in [RP10] for
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Algorithm 13 Balanced RefreshMask Gadget
Input: The vector of shares (x0, . . . , xn).
Output: The vector of shares of x as (x′0, . . . , x

′
n).

1: for 0 ≤ i ≤ n
2: x′i ← xi

3: for 0 ≤ i ≤ n
4: for 0 < j ≤ dn/2e
5: ri,i+j ← rand() // ri,i+j ∈R K
6: x′i ← x′i ⊕ ri,i+j // Denoted by ai,i+j

7: x′i+j ← x′i+j ⊕ ri,i+j // Denoted by bi+j,i

8: return (x′0, . . . , x
′
n)

the function φ(x) = x254. Thus, the usage of RefreshMask depends on the structure of
the underlying circuit.
Clearly, the total number of required randomness in Algorithm 12 is n(n+1)/2. Remark
that the indices follow modulus operation mod(n + 1) which we omit to improve the
readability. Moreover, row i also requires n− i random values. Using a similar strategy
as in Section 7.3.2.1, we can reformulate this gadget and generate a balanced gadget,
where each index requires the same number of randomness as given in Algorithm 13.

Theorem 7.4 (n-SNI Security for Balanced RefreshMask Gadget). Let G be the
balanced RefreshMask gadget which takes (xi)0≤i≤n and outputs (x′i)0≤i<n. For any set
of t ≤ n intermediate variables and any subset O ⊂ [0, n] of output shares such that
t+ |O| ≤ n, there exists a subset I ⊂ [0, n] of input indices which satisfies |I| ≤ t, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

Proof. In order to prove the theorem, we show that every set of intermediate variables
with t ≤ n elements can be simulated by a set of input shares (x)i∈I such that |I| ≤ t.
Let us first classify the variables. The intermediate variables are xi, ri,i+j , ai,i+j and
bi+j,i and the outputs are x′i (or x′i,i+dn/2e).
After this now we can define I as follows: for each probed variable xi, ri,i+j and ai,i+j

add i to I and bi+j,i add i+ j to I. It is clear that I contains at most t elements since
each probed value adds at most one index to I.
Now we can define the simulator. For all i ∈ I the simulator can sample all ri,i+j for for
j ∈ [0, dn/2e] and compute all partials sums ai,i+j and bi+j,i and thus the output x′i.
Last, we need to consider the simulation of the output shares x′i such that i /∈ I. Observe
that i /∈ I means that any random value in the partial sum of x′i is not probed and is
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not involved in a partial sum of it. Hence we can simulate x′i by a uniformly random
value. As a result any set of t probed intermediate variables and any subset O ⊂ [0, n]

can simulated by x|I such that |I| ≤ t. �

After introducing suitable gadgets, where each branch needs at most dn/2e values from
other branches, we can finally introduce the complete circuit decomposition.

7.3.3 A (dn/2e+ 1, n+ 1)-Decomposition for Arithmetic Circuits

Let φ : Kφin → Kφout be a function implementable by an arithmetic circuit with d gates.
The branches for n + 1 shares are initialised by the Share algorithm that on input
x ∈ Kφin and random values r1, . . . , rn produces the input shares x0, . . . , xn with xi = ri

for i = 1, . . . , n and x0 =
⊕n

i=1 xi 	 x. The reconstruction function Rec(y0, . . . , yn) is
defined as Rec(y0, . . . , yn) =

⊕n
i=0 yi.

Depending on the gates used in the arithmetic circuit, we can define the set of functions
F = {φ(j)

i | ∀ i ∈ [0, n] and j ∈ [0, d]} as follows:

• If the j-th gate corresponds to an affine function ax⊕ b, where a, b ∈ K,

φ
(j)
i =

axi ⊕ b, for i = 0

axi else .

• If the j-th gate corresponds to the addition of two sensitive variables x and y, we
set φ

(j)
i = xi ⊕ yi.

• If the j-th gate is a multiplication of two sensitive variables: x and y, we set
φ
(j)
i = xiyi ⊕

⊕n
i=0 δi,j for i 6= j and δi,j as above Note that the fresh random

values ri,j that are used in δi,j (i. e. ri,i+dn/2e+1, ri,i+dn/2e+2, . . .) are sampled from
Ri.

If a variable xi is not used for the first time in such a multiplication, we replace xi

by

xi ⊕
dn/2e⊕
j=1

ri,i+j ⊕
dn/2e⊕
j=1

ri−j,i

where ri,j is chosen as in Algorithm 13, i. e. we first apply the balanced Refresh
gadget.

Finally we can define the output as Output(wi, Ri) = w
(d)
i .
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Proposition 7.1. The decomposition

D = {Share, (Outputi)0≤i≤n,Rec} ∪ F

as defined above is an (dn/2e+ 1, n+ 1)-decomposition.

Proof. We closely follow the proof for the (2, 3)-decomposition presented in [GMO16]
and start with the correctness of our protocol.
The correctness of the decomposition follows from the masking structure. Remark that
the decomposition is based on well-known masking techniques and secure gadgets which
are known to be functionality preserving. Since all gadgets are correct, the complete
decomposition is correct, i. e. Pr[φ(x) = Πφ(x)] = 1 over all choices of randomness.
In the second part of the proof we define the simulator Se for an index e and on inputs
φ and y. For the sake of simplicity we define the set of indices [e, e + n − 1] as E and
denote the last remaining index as ẽ = e− 1.

• Sample the random tapes (R̃i)i∈E

• Initialise w̃
(0)
i by sampling a random value from R̃i for i ∈ E. Then for all linear

gadgets (addition and affine) calculate the values using the corresponding functions
φ
(j)
i for all i ∈ E. If the gadget is a multiplication gadget, we do the following:

– For all computations φ(j)
i that require the view wẽ, we randomly sample w

(j)
i .

– For all other views, we simply compute φ
(j)
i , since the simulation already has

the knowledge of the required views.

• Calculate ỹi = Output(w̃i, R̃i) for all i ∈ E.

• Calculate ỹẽ = y 	
⊕

i∈E ỹi

• Output O = ((w̃i, R̃i)i∈E , ỹẽ)

We can see that O that is outputted by Se has the same distribution as the real values
((wi, Ri)i∈E , yẽ) provided by Πφ. Observe that all the elements of Se are calculated
as the same functions in the protocol except for the multiplication gadget, when wẽ is
needed. In this case randomly sampling the required values w

(j)
i is a valid approach

since wẽ contains a random value sampled from Rẽ, which is uniformly random. We can
conclude that D has n-privacy. �

Proposition 7.2. Let D be the (dn/2e+ 1, n+ 1)-decomposition of φ : Kφin → Kφout as
described above. Let Πφ be the protocol described in Fig. 7.2. Then Πφ is n-SNI. The
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length of each view of Πφ is (φin + N⊗ + φout) log(|K|) + κ, where N⊗ is the number
of multiplication gates in the arithmetic circuit implementing φ, and κ is the security
parameter to produce the random tapes.

Proof. Again, we follow the proof of the corresponding Proposition 4.1 in [GMO16]. All
linear gadgets are n-NI by definition, Theorem 7.2 shows that our balanced multiplication
gadget is n-SNI, and Theorem 7.4 shows that our balanced refresh gadget is n-SNI. As
each input to a multiplication gadget is used at most once (due to the RefreshMask
gadget), Lemma 3 in [BBD+15a] implies that Π′

φ is n-SNI.
Finally, we need to analyze the ingredients of a view in order to reveal the size of it.
By definition, the function φ takes φin inputs and produces φout outputs where each
value can be represented by log(|K|) bits. Moreover the views need a security parameter
κ to generate random tapes. Note that the computation between two multiplication
gates can be compressed as in [GMO16]. Hence, the size of wi can be calculated as
(φin +N⊗ + φout) log(|K|) + κ. �

In the next Section we provide a version of ZKBoo that can be extended to arbitrary
orders and provide probing security despite of the opened views.

7.4 (n+ 1)-ZKBoo Protocol

In this section, we provide our zero knowledge proof based on the ZKBoo protocol [GMO16]
that satisfies the SNI-security notion. The main idea is using the same structure of
ZKBoo, but use our new (dn/2e+1, n+1) circuit decomposition. Thus, our scheme can
resist n− (dn/2e+ 1) probing attacks with dn/2e+ 1 opened views.
A brief summary of the zero-knowledge proof can be described as follows. Assume
that an (dn/2e + 1, n)-decomposition for the function φ is given. The prover uses the
private input x to run the protocol given in Fig. 7.2 that satisfies φ(x) = y, where y is
a public value. After running the protocol, the prover computes the commitment a to
views w0 . . . , wn. In the second step, the verifier challenges the prover using an index
e ∈ [0, n] and the prover opens views for all wi with i ∈ [e, e + dn/2e]. Remark that
each output share depends on at most dn/2e+1 consecutive views z = we, . . . , we+dn/2e.
Hence, opening dn/2e + 1 views is enough to calculate each output value w

(j)
e . Finally,

the verifier accepts if the opened views are consistent with the committed values. The
summary of the protocol can be found in Fig. 7.4.

Proposition 7.3. The (n+ 1)-ZKBoo protocol given in Fig. 7.4 with two parties P as
prover and V as verifier is a Σ-protocol for the relation φ(x) = y with n + 1-special
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Figure 7.4: The (n+ 1)-ZKBoo protocol
An (dn/2e+1, n+1) decomposition of function φ is given. The verifier and the prover
have input y ∈ Lφ. The prover knows x such that y = φ(x). Let Πφ be the protocol
given in Fig. 7.2.

Commit: The prover does the following:
1. Generate random tapes Ri for 0 ≤ i ≤ n.
2. Run Πφ(x) with randomness R0, . . . , Rn to obtain views wi and outputs yi

for 0 ≤ i ≤ n.
3. Commit to ci = Comm(wi, Ri) for 0 ≤ i ≤ n.
4. Send a = (yi, ci)0≤i≤n.

Prove: The verifier choose an index e ∈ [0, n] and sends it to the prover. The prover
answers by opening (ci)e≤i≤e+dn/2e thus revealing z = (Ri, wi)e≤i≤e+dn/2e.

Verify: The verifier runs the following checks:
1. If Rec(y0, y1, . . . , yn) 6= y, output reject.
2. If ∃ i ∈ [e, e + dn/2e] such that yi 6= Outputi(wi), output reject.

3. If ∃ j such that w
(j)
i 6= φ

(j)
i ((wk, Rk)e≤k≤e+dn/2e) for all e ≤ i ≤ e + dn/2e,

output reject.
4. Output accept.

soundness.

Proof. We follow the proof of Proposition 4.2 in [GMO16]. Clearly, the (n+ 1)-ZKBoo
protocol follows the communication pattern of a Σ-protocol. As the MPC-in-the-head
paradigm does not change the correctness of the protocol, if both parties are honest,
then Pr[(P,V)(y) = accept] = 1. Hence, the (n+ 1)-ZKBoo protocol is complete.
In order to prove the special soundness of the protocol, we need to analyze n+1 accepted
conversations {(a, e, ze)} with e = 0, . . . , n. Clearly, the accepted conversations reveal
(Ri, wi) for i = 0, . . . , n. Thanks to the binding property of the commitment scheme,
the views corresponding to the same index for different challenges are equal. That is,
for two different challenges ze and ze′ the views corresponding to the same index are
equal, i. e. wi ∈ ze and wi ∈ ze′ are equal. Similarly, Ri ∈ ze also equals Ri ∈ ze′ .
As all conversations are accepted, we have yi = Outputi(wi) for i ∈ [0, n]. Moreover,
we know that every entry w

(j)
i in wi was computed correctly by the corresponding

function φ
(j)
i , as all branches were checked by the verifier. Hence, we can traverse

the decomposition bottom-up to reconstruct all input shares xi = w
(0)
i . Finally, we can
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calculate Rec(x0, . . . , xn) = x correctly. Hence, we have φ(x) = y and the (n+1)-ZKBoo-
protocol thus has n+ 1-special soundness.
Note that to be able to correctly calculate the input x, all the branches must be checked.
Assume that the number of accepted conversations is less than n + 1. Although the
challenges might contain all views, not all branches were checked by the verifier. While
we are now able to check the branches ourself, if any branch contains an error, we are
not able reconstruct x.
For the special honest-verifier ZK, we will now construct a simulator S working on input e
and y ∈ Lφ. Its goal is to produce a triple (a′, e, z) with the same probability distribution
as the protocol. Due to the n-privacy property of the decomposition, there is a
simulator Se that on input φ and y produces an output ({wi, Ri}i∈{e,e+1,...,e+(n−1)}, ye−1)

distributed as in the protocol. The simulator S now sets we−1 and Re−1 as strings of
corresponding lengths that contain only zeroes. Now, S can produce commitments
ci = Comm(Ri, wi) for all i = 0, . . . , n and send a = (yi, ci)0≤i≤n. Clearly, the triple
(a, e, z) has the same distribution as in a real conversation, as ze can also be easily
computed. Hence, the (n + 1)-ZKBoo-protocol has the the special honest-verifier ZK
property. �

In the last part, we analyze the soundness error of the (n + 1)-ZKBoo protocol which
can be directly derived from special soundness. Briefly speaking, the soundness error
can be summarized as the probability of a cheating prover to trick a honest verifier to
accept the protocol on a value y 6∈ Lφ.
More formally, the soundness error δ is defined as the quantity maxy 6∈Lφ,P ′{Pr[(P ′,V)(y) =
accept]}, where P ′ is some cheating prover. As challenge e is chosen uniformly at
random from a set of cardinality n+ 1, the n+ 1-special soundness implies a soundness
error of at most δ ≤ (n + 1 − 1)/(n + 1) = 1 − 1

n+1 , as for y 6∈ L, there are at most
n+ 1− 1 accepting conversations for each a.
Let φ : Kφin → Kφout be a function that can be expressed by an (dn/2e + 1, n)-
decomposition with N strongly non-interfering gadgets such that N⊗ of them are
balanced multiplication gadgets as defined in Section 7.3. In order to attain soundness
error 2−κ we need to repeat the t-ZKBoo protocol kn times such that,

2−κ ≥ (1− 1

n+ 1
)kn ⇔ kn ≥ −κ · [log(1− 1

n+ 1
)]−1. (7.1)

Similar to [GMO16], the number of bits for the opened views is

−κ · [log(1− 1

n+ 1
)]−1 ·

(
dn
2
e+ 1

)
· [log(|K|)(φin + φout +N⊗) + κ] ,
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where κ is the desired security parameter.

Theorem 7.5. The (n+1)-ZKBoo protocol satisfies the (n−(dn/2e+1), dn/2e+1)-SNI
notion given in Definition 7.1.

Proof. As shown in Proposition 7.2, the evaluation protocol of the (dn/2e + 1, n + 1)-
decomposition is n-SNI. As we open exactly dn/2e + 1 computed shares, the (n + 1)-
ZKBoo protocol is still n− (dn/2e+ 1)-secure. �

7.4.1 Experimental Results

In this section, we analyze the (n + 1)-ZKBoo protocol as introduced in the previous
section and compare it to other instantiations from the literature that have not been
adjusted to achieve SNI security. The simulation of the traces is generated by evaluating
Πφ using a (3, 5)-decomposition (i. e., n + 1 = 5) for a set of random inputs x and
collecting the output shares of each node. Observe that the collected traces correspond
to w(j) for all gadgets 0 ≤ j ≤ d. We denote the `th trace (corresponding to the `th

evaluation of the protocol) by t` = {w(i)
j | for all i ∈ [0, n] and j ∈ [0, d]}. Moreover,

we assume that e = 0 and collect the views of the w0, . . . , wdn/2e to reflect the opened
views as free probes.

Using synthetically generated traces, we perform the test vector leakage assessment
(TVLA) leakage detection method proposed by Goodwill et al. [GGJR+11].

Our analysis applies the specific t-test, where the classification of the traces relies on the
opened views. As shown in Section 6.2, ZKBoo is vulnerable to side-channel attacks due
to these opened views.

We analyze the 5-ZKBoo protocol which uses a (3, 5)-circuit decomposition. As shown
in Section 7.3, the scheme is proven to be secure against first order attacks with three
opened shares. We adapt the t-test and perform the classification as Tb = {ti|w(α)

0 ⊕
w

(α)
1 ⊕ w

(α)
2 = b} for b ∈ {0, 1}, where w

(α)
0 , w(α)

1 and w
(α)
2 represent the opened shares

during the challenge phase that correspond to the targeted gadget. The clear leakage
diminishes as seen in Fig. 7.5a, where the t-value remains below 4, as expected. To
compare our approach with previous unprotected approaches, we apply the same test
while opening four views. Using classification Tb = {ti|wα

0 ⊕wα
1 ⊕wα

2 ⊕wα
3 = b} we can

see the resulting clear leakages in Fig. 7.5b, where the threshold value 4.5 is exceeded.
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(a) TVLA-based classification using Ti where i = wα
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(b) TVLA-based classification using Ti where i = wα
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Figure 7.5: First order leakage analysis of a multiplication gadget in (n + 1)-ZKBoo
reveals no leakage with three opened shares (a), but is vulnerable with four opened
shares (b). Please note the differing scales on the y-axis.

7.5 Zero-Knowledge for Post Quantum Signature Schemes

In this section, we describe the application of the (n + 1)-ZKBoo-protocol and its
performance analysis. The proposed circuit decomposition brings no overhead to the
previous approaches in the sense of the masking scheme, since we are using the same
gadgets with a different technique. Therefore, the number of gadgets in each branch are
the same as for the circuit decomposition defined in [IKOS09] or for the MPC-in-the-head
idea defined in [KKW18].

7.5.1 Picnic Scheme using (n+ 1)-ZKBoo

In this section we provide a variation of the Picnic signature scheme that can build
upon our (n + 1)-ZKBoo protocol. Picnic was introduced by Chase et al. [CDG+17].
The fundamental component of Picnic is an improved and optimized version of ZKBoo
called ZKB++. The scheme uses the LowMC [ARS+15] block cipher as its underlying
symmetric primitive (or φ in our notation). LowMC is a flexible block cipher with
low AND depth especially suited for Secure Multi-Party Computation, Zero-Knowledge
Proofs, or Fully Homomorphic Encryption. To make the interactive protocols ZKBoo/ZKB++
non-interactive, two methods are used: The Fiat-Shamir transformation (FS) [FS86] or
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the Unruh transformation (UR) [Unr15]. We do not focus on the transformations in
this work, since our idea is to modify only the underlying circuit decomposition.
Table 7.1 shows the number of parallel repetitions required for various decompositions,
and compares them to the Picnic parameter sets. To achieve probing security for L1, L3
and L5 we need to change the underlying circuit decomposition. The required number
of repetitions kn can be calculated using Equation (7.1) and the summary can be found
in Table 7.1. Due to the soundness error, the required number of repetitions to obtain
the appropriate security level increases with the decomposition order. Thus, a higher
number of shares implies increased soundness error at the cost of increased signature size.
For example, to achieve first order protection ZKBoo using a (2, 3) circuit decomposition
should be replaced with 5-ZKBoo using a (3, 5) circuit decomposition which results
in 82% more repetitions. Similarly the cost of second order protection is 45% more
repetitions compared to first order protection.
Secondly we can analyze the signature sizes and corresponding overhead. In this analysis
we focus on the signature size of ZKBoo in order to make a fair comparison since ZKB++
improvements can be applied independently of the circuit decomposition structure. First
we remark the signature size of ZKBoo. Let c denote the size of the commitments ci and
s denote the size of the randomness in bits used for each commitment (as in Fig. 7.4).

Table 7.1: The parameter set for the proposed circuit decomposition and the comparison
between the scheme that uses standard (2,3) circuit decomposition (highlighted) with
probing security order tA and the required number of repetitions k. The LowMC
parameters are key size Ln, number of s-boxes Ls, and number of rounds Lr. The
hash functions in L1 are based on SHAKE-128 while L3 and L5 are based on SHAKE-256
SHA-3 functions [Dwo15] and `h represents the output length of hash functions.

Parameter Set Decomp. tA κ Ln Ls Lr k Hash/KDF `h
Picnic-L1-FS/UR (2,3) 0 128 128 10 20 219 SHAKE128 256
Picnic-L1-FS/UR (3,5) 1 128 128 10 20 398 SHAKE128 256
Picnic-L1-FS/UR (4,7) 2 128 128 10 20 576 SHAKE128 256
Picnic-L1-FS/UR (5,9) 3 128 128 10 20 745 SHAKE128 256
Picnic-L3-FS/UR (2,3) 0 192 192 10 30 329 SHAKE256 384
Picnic-L3-FS/UR (3,5) 1 192 192 10 30 597 SHAKE256 384
Picnic-L3-FS/UR (4,7) 2 192 192 10 30 864 SHAKE256 384
Picnic-L3-FS/UR (5,9) 3 192 192 10 30 1130 SHAKE256 384
Picnic-L5-FS/UR (2,3) 0 256 256 10 38 438 SHAKE256 512
Picnic-L5-FS/UR (3,5) 1 256 256 10 38 796 SHAKE256 512
Picnic-L5-FS/UR (4,7) 2 256 256 10 38 1152 SHAKE256 512
Picnic-L5-FS/UR (5,9) 3 256 256 10 38 1507 SHAKE256 512
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The ZKBoo signature size for a function φ : Kφin → Kφout implemented as arithmetic
circuit with N⊗ multiplication gates is given by [CDG+17] as:

|pz| = kz[3(|yi|+ |ci|) + 2((log(|K|)(φin + φout +N⊗)) + κ+ s)

= kz[3(φout log(|K|) + c) + 2(log(|K|)(φin + φout +N⊗) + κ+ s)]

= kz[3c+ 2κ+ 2s+ log(|K|)(5φout + 2φin + 2N⊗)],

where kz is the required number of repetitions as defined in Section 7.4 to achieve the
desired security order κ for n + 1 = 3. Using the same idea, we can calculate the
signature size of (n+ 1)-ZKBoo as below. For the sake of readability, let u = n+ 1 and
v = dn/2e+ 1:

|p| = kn[u(|yi|+ |ci|) + v((log(|K|)(φin + φout +N⊗)) + κ+ s)

= kn[u(φout log(|K|) + c) + v(log(|K|)(φin + φout +N⊗) + κ+ s)]

= kn[uc+ vκ+ vs+ log(|K|)((u+ v)φout + vφin + vN⊗)],

where kn is the required number of repetitions as defined in Section 7.4. Clearly the
overhead of the higher decomposition is the number of opened views. Here, ZKBoo needs
2 views, while our decomposition requires dn/2e+1 views. Thus, replacing the underlying
(2,3)-ZKBoo decomposition with a (3,5)-circuit decomposition roughly doubles the size
of the signature.

In order to visualize this, we use the |p|-formula to compare various protocols. We assume
that 128-bit security is required, corresponding to L1 (κ = 128) and φ function is selected
as φ : GF(2)128 → GF(2)128. As given in Fig. 7.6, the size of the signature naturally
increases with the circuit decomposition order and the number of multiplication within
φ. However, the size is still smaller than the signature size of (n, n + 1) decomposition
as a result of opening only dn/2e+ 1 views instead of n views.
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Figure 7.6: The Signature size comparison with respect to number of multiplication
gadgets.
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In order to compare the running times of ZKBoo with (n + 1)-ZKBoo, we give an
approximate formula involving the running time Trand to generate a random tape, the
running time Tcomm to compute a single commitment, and the running time Tmult of
a single multiplication gate. In the original ZKBoo, the prover first creates 3 random
tapes and later computes the commitment to 3 shares. Within the evaluation of Πφ(x),
each multiplication gate of the original circuit for φ is replaced by 3 multiplication
gates in the (2, 3)-decomposion. As there are 3 branches, the total running time of
the prover is proportional to 3 · (Trand + Tcomm + 3N⊗Tmult), where N⊗ is the number
of multiplication gates in the circuit computing φ. The verifier in ZKBoo just needs
to verify the computation of 2 branches. Hence, its running time is proportional to
6N⊗Tmult.
In (n + 1)-ZKBoo, the prover creates n + 1 random tapes and computes n + 1

commitments. Furthermore, within each of the n + 1 branches, each multiplication
gate of the original circuit for φ is replaced by n + 2 multiplication gates on average
in the (dn/2e + 1, n + 1)-decomposition (see Section 7.3), as 2 · [(n + 1)(n + 2)/2]

multiplications are computed in total. Hence, the total running time of the prover is
proportional to (n + 1) · (Trand + Tcomm + (n + 2)N⊗Tmult), where N⊗ is the number of
multiplication gates in the circuit computing φ. The verifier in (n+1)-ZKBoo just needs
to verify the computation of dn/2e+1 branches. Hence, its running time is proportional
to (dn/2e+ 1) · (n+ 2)N⊗Tmult.
Assuming that N⊗Tmult dominates Trand and Tcomm, we have a multiplicative overhead
of (n+ 1)(n+ 2)/9 for the prover and (dn/2e+ 1)(n+ 2)/6 for the verifier. In the case
of n+ 1 = 5, this is an overhead of 30/9 ≈ 3.34 for the prover and 3 for the verifier.

The costs of a naive solution. In a more naive approach, to withstand n′ = n −
(dn/2e + 1) probes, the prover could simply split up each of its 3 branches into n′ + 1

branches each. Each branch j ∈ {0, 1, 2} creates the random tapes R(0)
j , . . . , R

(n′)
j used by

the individual branches. Now, the MPC protocol is performed on these 3(n′+1) parties
and the outputs y

(i)
j and the views w

(i)
j are computed for j = 0, 1, 2 and i = 0, 1, . . . , n′.

The signature now contains the 3(n′ + 1) commitments c
(i)
j = Comm(w

(i)
j , R

(i)
j ) and the

2(n′ + 1) opened views w
(i)
e and w

(i)
e+1.

Hence, the signature size of this solution would be

k3(n′+1)[3(n
′ + 1)c+ 2(n′ + 1)κ+ 2(n′ + 1)s+

log(|K|)(5(n′ + 1)φout + 2(n′ + 1)φin + 2(n′ + 1)N⊗)].
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Note that, compared with the signature size of our solution, every parameter c, κ, s, φou,
φin, and N⊗ has a coefficient that is at least an additive term of n/2 larger in the naive
solution, as 3(n′ + 1) ≈ (3/2)n. Furthermore, the soundness error of the naive solution
also relates to (3/2)n parties instead of n parties. The running time of the prover would
be proportional to 3(n′+1)·(Trand+Tcomm+3(n′+1)N⊗Tmult) and the running time of the
verifier would be proportional to 6(n′+1)2N⊗Tmult. As in the case of the signature size,
every coefficient is worse compared with our solution. Note that similar optimizations as
used in the construction of ZKB++ [CDG+17] can be made here as well and will shrink
the signature size, e. g. by recombining the opened views. Nevertheless, the number of
commitments in the signature will still be proportionate to n′, as the prover cannot
recombine the unopened views without introducing a leakage. We also remark that
an algorithm resistant against side-channel attacks without increased signature size is
always possible by doing the complete evaluation of the algorithm via an MPC protocol.
Clearly, the running time of such an approach is much larger compared to the SNI-in-
the-head approach or the naive approach.

7.5.2 Performance Results

In this section we give the experimental performance analysis of our scheme. We
adapted the Picnic source code of the reference implementation [Ste] to implement
the (n + 1)-ZKBoo scheme. We compare the results of our scheme with the Picnic
implementation with the parameters L1, L3 and L5 using both transformation i. e. UR
or FS. The benchmarking is done on AMD Ryzen Threadripper 1950X CPU@3.4 GHz.
The experiments covers the total clock cycle count while signing a message or verifying
a signature including the size of the signature. The results are computed by taking the
average over 500 signature generation and verification. The summary of the analysis can
be found in Fig. 7.7 and the exact numbers are given in Table 7.2.

As given in Table 7.2, we calculate the overhead of our scheme. The first order security
increases the average number of clock cycles by a factor of 3.28-3.78 and the average size
of the signature by 3.49-3.51 depending on the security parameter and transformation
method. This factor increases with the security order as expected. The optimized Picnic
implementation [Seb] achieves a speedup factor of 6 compared to [Ste], which we also
expect for our protocol.
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Figure 7.7: The benchmarking results of Picnic signature scheme using (3, 5), (4, 7), (5, 9)-
ZKBoo decomposition with UR or FS transformations. The values are calculated by
averaging the results of 500 signature generations/verifications.

7.6 Conclusion

As given in Chapter 6 the MPC-in-the-head protocols are indeed susceptible to SCA.
However, as popular side-channel countermeasures also build on MPC principles, we
show how to adapt MPC-in-the-head protocols to make them side-channel resistant by
simply adjusting the underlying MPC protocol.
More recently, the MPC-in-the-head approach has also been applied to protocols having
an offline or preprocessing phase [KKW18], which is for example used in the most recent
version of Picnic called Picnic3 [KZ20]. As the preprocessing phase is not an MPC
protocol, it must be secured independently. Classifying which kind of preprocessing
phases are allowed by the approach of [KKW18] and obtaining a similar generic SNI-
approach for this phase is a natural follow-up work and we focus this issue in the next
chapter.
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Table 7.2: The benchmarking results of Picnic signature scheme using (3, 5), (4, 7), (5, 9)-
ZKBoo decomposition with the transformations FS. The values are calculated by
averaging the results of 500 signature generations/verifications. The overhead is
calculated by comparing the respected values with the scheme using (2, 3) decomposition
which corresponds to Picnic signature scheme (highlighted). The execution times are
measured in millions of clock cycles and size calculated in kB.

Benchmarking Overhead
Parameter Decomp Sign (ts) Verify (tv) Size (s) ts/t

(2,3)
s tv/t

(2,3)
v s/s(2,3)

Picnic-L1-FS (2,3) 88 56 33 - - -
Picnic-L1-FS (3,5) 326 212 115 3.72 3.78 3.49
Picnic-L1-FS (4,7) 769 466 246 8.77 8.31 7.48
Picnic-L1-FS (5,9) 1400 804 421 15.9 14.3 12.8
Picnic-L3-FS (2,3) 268 176 74 - - -
Picnic-L3-FS (3,5) 964 614 258 3.60 3.49 3.49
Picnic-L3-FS (4,7) 2170 1300 554 8.11 7.37 7.47
Picnic-L3-FS (5,9) 4040 2300 960 15.1 13.1 13
Picnic-L5-FS (2,3) 610 402 128 - - -
Picnic-L5-FS (3,5) 2150 1350 447 3.52 3.36 3.49
Picnic-L5-FS (4,7) 4670 2770 958 7.65 6.88 7.48
Picnic-L5-FS (5,9) 8450 4810 1660 13.9 12 13
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8.1 Motivation

When applied to Picnic, the SNIitH approach changes the number parties and the number
of opened views, and the result is essentially a different parameter set. Accordingly,
the verification algorithm has to be modified, and now depends on the masking order.
For example, the signer would have to simulate a five-party MPC to achieve first order
protection (i.e., N = 5, t = 1). Hence, the verifier needs to check the consistency
of 3-out-of-5 views, instead of 2-out-of-3 as in the original Picnic/ZKB++ scheme.
This is a major drawback in practice, since the introduction of side-channel protection
would immediately break interoperability with existing verification algorithms. In
order to support signers with varying levels of side-channel protections, verifiers would
have to be prepared to accept multiple combinations of parameters (N, t). A more
flexible design would allow different signers to set their level of side-channel protection
independent of the verification software and costs. Moreover, the SNIitH approach
inevitably sacrifices the soundness of underlying ZK proof system, since a malicious
prover has a higher cheating probability when the number of views the verifier checks
is smaller than N − 1. Therefore to maintain the same security level as in the original
proof system, the SNI-in-the-head approach must simulate more MPC instances, leading
to larger signature sizes, and slower signing and verification times. In this chapter we
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8 Side-Channel Protections for Picnic Signatures

design countermeasures without these drawbacks (as has been done for some other PQ
signature schemes [BBE+18,MGTF19,BBE+19,GR19]).

In Section 8.2 we show how to mask the KKW proof system for any masking order. Our
first observation is that all building blocks in both the offline and online computations
can be masked with existing SNI-secure gadgets without changing the number of opened
parties. The main technical difficulty is that the prover opens a different subset of
sensitive information, depending on the challenge. Nevertheless, we are able to present
a solution achieving strong non-interference of the basic building blocks of the KKW
proof system. Then together with a known generic composition result [BBD+16], we
prove that our masked KKW prover algorithm for the commit and response phases
satisfies non-interference with public output (NIo) security [BBE+18] for all possible
public outputs. The CPU cost of masking follows the common pattern where nonlinear
operations have cost O(T 2), and all other operations are linear in T , where T denotes the
masking order. In addition to giving formal proofs of the (strong) non-interference of our
solution, we also use the maskVerif tool [BBD+15b,BBD+16] to verify our conclusions.
We stress that our variant outputs a proof identical to that of the unprotected KKW, so
it is interoperable with existing verification operations.

Following our generic masking technique from Section 8.2, we present an NIo-secure
masked implementation of Picnic3 for NIST security level L1 with first-order protection,
and we report concrete experimental results on the low-end ARM Cortex-M4 STM32F4
platform (see Section 8.4). The complete specification of NIo-secure Picnic3 is presented
in Section C.2.1. The figures were collected from a port of the optimized version of
the Picnic3 reference code, with the help of the pqm4 [KRSS] framework. However, the
overhead incurred by provably secure masking is expensive – signing time is increased by
5.5x. Using this provably secure implementation as a baseline, we performed a number
of optimizations described in Section 8.3, especially to improve hashing performance.
Since a large part of the signing time in Picnic3 is spent hashing (e.g., 71% on the
M4), we carefully analyzed which hashing operations must be masked, and found that
the majority may remain unmasked. We then show that since all calls have either a
non-sensitive input or output, a weaker form of masking is sufficient (under a mild
assumption), further reducing the cost. Taken together, these optimizations reduce the
cost of protected hashing significantly, and we observed overhead ranging from 1.8x
to 2.8x (depending on the type of protections applied to hash function invocations).
Since our hash function optimizations do void the provable side-channel-security of the
signature scheme implementation as a whole, we experimentally verified the absence of
leakage, to support our arguments that security is maintained in practice.

172



8.1 Motivation

In this work, we use maskVerif to check SNI security of the basic components (namely,
multi-party computation of multiplication in both online and offline phases) of the KKW
proof system up to order 4. Although we further provide the verification scripts for
the orders 5, 6 and 7, we did not run these, due to higher combinatorial complexity
maskVerif. However, our manual security analysis in Section 8.2 indeed guarantees SNI
security of higher-order masking. Furthermore, NIo-security of our fully masked Picnic3
(see Section C.2.1 for the specification) was verified with maskVerif up to order 2.
We also implemented a masked version of SHA-3, optimized with M4 assembly, as none
was freely available. As SHA-3 is common to many PQ schemes and the M4 is a common
embedded target, we expect this will be of independent interest. The implementation
supports a range of options, from slower but provably SNI-secure, to our much faster
optimized options. We experimentally verified that there was an absence of leakage in
the optimized version.
Our first order masked Picnic3/SHA-3 implementations as well as formal verification
scripts are publicly available under crypto_sign/picnic3l1/masked/ of the Picnic-M4
GitHub repository.

https://github.com/dkales/picnic_m4

Notation. In the following, we fix some finite field (F, 0, 1,+,−, ·).1 As explained above,
we are working in the t-probing model which allows an attacker to obtain the value of
t variables per run of the primitive. The most common technique to mitigate side-
channel attacks is by encoding sensitive variables via an additive (or polynomial-based)
secret sharing into T > t parts. We say that a vector (vj)j∈[T ] ∈ FT is a T -encoding
of v :=

∑
j∈[T ] vj . For readability, we often write 〈v〉 instead of (vj)j∈[T ]. For a subset

I ⊆ [T ], let 〈x〉I = (xi)i∈I and furthermore I = [T ] \ I. Variables are shared both to
protect against side-channel attacks and as part of the MPC protocol. To distinguish
between these situations, we call a sharing between parties in the MPC protocol a sharing
and an encoding when the goal is to protect against side-channel attacks.
Without loss of generality, we only give the security definitions for circuits that receive
a single encoded input 〈x〉 and produce a single encoded output 〈y〉. In the following,
we use the terms circuit and gadget interchangeably. Consider a (possibly randomized)
gadget G, which on input x produces a value y according to some probability distribution
Gx. To ensure that the computation of G does not leak any information, we modify it into

1While ISW-style masking countermeasures are known to work in a ring setting, we focus on a field
case since previous KKW-style protocols [KKW18,dDOS19,BN20,KZ20] are defined for circuits over
a field.
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a gadget G′ that takes 〈x〉 as input and outputs 〈y〉 with Pr[G′
〈x〉 = 〈y〉] = Pr[Gx = y].

Informally, we want to argue that the t probes made by an attacker do not reveal any
information about the sensitive input x. Assume that the attacker probes the values
〈v(1)〉I1 , 〈v(2)〉I2 , …〈v(k)〉Ik with

∑k
j=1 |Ij | ≤ t. If 〈x〉 is a sufficiently random encoding

(e. g. uniformly sampled) of x, then 〈x〉I does not reveal any information about x for all
I ( [T ]. Now, if there exists a set I ( [T ] such that all 〈v(j)〉Ij can be simulated from
〈x〉I , this implies that the 〈v(j)Ij

〉 do not contain any information about x.

8.2 Masking Three-Round KKW

In this section we present our masked proof system following the three-round KKW
protocol. We first strive for a provably NI-secure algorithm without specifying any
particular circuit. In Section 8.3 we describe more concrete operations tailored to the
LowMc circuit of Picnic3, and optimize by partially unmasking several hash computations
(and discuss the security implications). The circuit in this presentation is a generic circuit
C such that C((w)w∈IN) = 1, where each w is seen as an input wire value to the circuit
and |C| represents the number of multiplication gates in a circuit C.

In the description below, we additively secret share some variables in two dimensions:
a share held by each party (indexed by i ∈ [N ])2, further shared T times within each
party (indexed by j ∈ [T ]). For example, λx

i denotes a share of of λx held by the i-
th party such that λx =

∑
i∈[N ] λ

x
i ; the value λx

i,j for j ∈ [T ] denote shares such that
λx
i =

∑
j∈[T ] λ

x
i,j . The shares λx

i are as in the KKW protocol, and the extra T -wise
encoding of this value is required for SNI security. Note that we only apply the notation
〈·〉 (see Chapter C) on the T -wise encoding required for the masking countermeasure and
never for the sharing of the KKW protocol. The functions requiring T -th order masked
computation are marked in orange (e.g., 〈y〉 ← H( 〈x〉 ) indicates that a hash function H
is masked). Most of the randomness used in the protocol is from the random tapes of
the parties; this randomness is derived from a seed, so that part of it may be efficiently
communicated to the verifier (by sending the seed). Some of the masked operations will
require additional randomness (e.g., to refresh a secret encoding), and this is sampled
from the platform random number generator (RNG), since it is only required by the
signer.

2We denote the set {1, . . . , N} by [N ].
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8.2 Masking Three-Round KKW

Algorithm Masked KKW Prover

Inputs The prover holds a circuit C as a statement and an encoded witness 〈w〉 = {〈w〉}w∈IN such
that C(w) = 1. Values M , N , τ are parameters of the protocol.

Commit For each k ∈ [M ], the prover does:

1. Choose uniform 〈seed(k)〉 and use to generate values 〈seed(k)1 〉, . . . , 〈seed(k)N 〉. Also the prover
computes 〈aux(k)〉 ∈ F|C| as in Algorithm 14. For all i = 1, . . . N − 1, let 〈state(k)i 〉 =
〈seed(k)i 〉 and let 〈state(k)N 〉 = 〈seed(k)N 〉||〈aux(k)〉.

2. Commit to the offline phase:

〈com(k)
i 〉 = H( 〈state(k)i 〉 ) and reconstruct com(k)

i for all i ∈ [N ]

com_off(k) = H(com(k)
1 , . . . , com(k)

N ).

3. Compute encodings of masked witness 〈ŵ(k)〉 = 〈λw
1 〉+ . . .+ 〈λw

N 〉+ 〈w〉 for each w ∈ IN,
where 〈λw

i 〉 is the randomness used to mask the witness and is read from the random tape
defined by 〈state(k)i 〉.

4. Simulate the online phase of the N -party protocol as in Algorithm 15 and produce
〈msgs(k)1 〉, . . . , 〈msgs(k)N 〉.

5. Commit to the online phase:

〈com_on(k)〉 = H( {〈ŵ(k)〉}w∈IN, 〈msgs(k)1 〉, . . . , 〈msgs(k)N 〉 )

and reconstruct com_on(k).
6. The prover refreshes the encoding of witness 〈w〉 = RefreshM( 〈w〉 ) for each w ∈ IN.

Compute hoff = H(com_off(1), . . . , com_off(M)) and hon = H(com_on(1), . . . , com_on(M)) and
send h∗ = H(hoff, hon) to the verifier.

Challenge The prover receives the following challenges from the verifier: a uniform τ -sized set C ⊂
[M ] and P = {ik}k∈C where each ik ∈ [N ] is uniform.

Response For each k ∈ [M ] \ C, the prover sends reconstructed seed(k) and com_on(k) for all to the
verifier. For each k ∈ C, the prover sends reconstructed values com(k)

ik
, {state(k)i }i 6=ik , {ŵ(k)}w∈IN

and msgs(k)ik
to the verifier.

Algorithm 14 masked_offline
Input: (〈seedi〉)i∈[N ].
Output: 〈aux〉.

1: for each input wire w of the circuit
2: read λw

i,j from seedi,j
3: for each gate in C with input wires x and y, and

output wire z:
4: if ADD then
5: compute 〈λz

i 〉 ← 〈λx
i 〉+ 〈λ

y
i 〉

6: if MUL then
7: compute 〈λx〉 ←

∑
i∈[N ]〈λx

i 〉
8: compute 〈λy〉 ←

∑
i∈[N ]〈λ

y
i 〉

9: compute 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 )
10: for each i ∈ [N − 1] and j ∈ [T ]
11: read λxy

i,j from seedi,j
12: compute 〈λxy

N 〉 ← 〈λxy〉 −
∑

i∈[N−1]〈λ
xy
i 〉

13: for j ∈ [T ]
14: update auxj with λxy

N,j

15: return 〈aux〉.

Algorithm 15 masked_online
Input: Circuit C, 〈ŵ〉 for each input wire w of the

circuit and (〈statei〉)i∈[N ].
Output: (〈msgsi〉)i∈[N ]

1: for each gate in C with input wires x and y, and
output wire z:

2: if ADD then
3: compute 〈ẑ〉 ← 〈x̂〉+ 〈ŷ〉
4: if MUL then
5: for each i ∈ [N ]
6: read λx

i,j , λ
y
i,j , λ

z
i,j , λ

xy
i,j from statei,j

7: compute 〈ai〉 ← SMul( 〈x̂〉, 〈λy
i 〉 )

8: compute 〈bi〉 ← SMul( 〈ŷ〉, 〈λx
i 〉 )

9: compute 〈si〉 ← 〈λz
i 〉−〈λ

xy
i 〉−〈ai〉−〈bi〉

10: update msgsi,j with si,j

11: compute 〈c〉 ← SMul( 〈x̂〉, 〈ŷ〉 )
12: compute 〈s〉 ←

∑
i∈[N ]〈si〉

13: compute 〈ẑ〉 ← 〈c〉+ 〈s〉
14: for each output wire z of the circuit :
15: update msgsi,j with λz

i,j

16: return (〈msgsi〉)i∈[N ].

Figure 8.1: Our masked version of 3-round KKW prover.
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8 Side-Channel Protections for Picnic Signatures

8.2.1 Masked Operations

We present our masked version of the KKW prover in Fig. 8.1. The function masked_offline
in Algorithm 14 computes the offline phase Πoff

C from Section 5.3.2 in a straightforward
way. The function masked_online in Algorithm 15 corresponds to a masked version
of Πon

C . The SNI-secure multiplier SMul( ) is defined in Algorithm 28. Note that
SMul( ) is t-SNI with uniform output-distribution, as evident from the proof that it
is t-SNI [BBD+16, Proposition 2]. For ADD gates, the only change is to work on T -
encodings 〈x̂〉, 〈ŷ〉, rather than on x̂, ŷ directly. Interestingly, the MUL gates can also
be computed with a straight-forward adaptation by also encoding the masks λx, λy, λz,
and λxy. Recall that x̂ = x+ λx, and λx is shared among the parties, where party i has
share λx

i (resp. λy
i , λz

i , and λxy
i ). Each party thus stores their share λx

i as a T -encoding
〈λx

i 〉 (resp. 〈λy
i 〉, 〈λz

i 〉, and 〈λxy
i 〉). Each party’s broadcast value si will now also consist

of the T -encoding 〈si〉 as follows:

〈si〉 = 〈λz
i 〉 − 〈λ

xy
i 〉 − SMul( 〈x̂〉, 〈λy

i 〉 )− SMul( 〈ŷ〉, 〈λx
i 〉 ).

8.2.2 Security Analysis

We employ the definition of non-interference by [BBD+16] which guarantees security
against t probes for t < T as proposed by Ishai et al. [ISW03]. We use a more polished
security notion known as t-non-interference (t-NI) and t-strong non-interference (t-SNI)
defined in Section 4.3.

Algorithm 16 Masked KKW_MUL (offline)
Input: The masks of x: 〈λx

i 〉 for i ∈ [N ],
The masks of y: 〈λy

i 〉 for i ∈ [N ],
The auxiliary shares of xy: 〈λxy

i 〉 for i ∈ [N − 1],
Output: The final auxiliary share of xy: 〈λxy

N 〉
1: compute 〈λx〉 ←

∑
i∈[N ]〈λx

i 〉
2: compute 〈λy〉 ←

∑
i∈[N ]〈λ

y
i 〉

3: compute 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 )
4: compute 〈λxy

N 〉 ← 〈λxy〉 −
∑

i∈[N−1]〈λ
xy
i 〉

5: return 〈λxy
N 〉.

Algorithm 17 Masked KKW_MUL (online)
Input: The input shares of x̂: 〈x̂〉

The masks of x: 〈λx
i 〉 for i ∈ [N ],

The input shares of ŷ: 〈ŷ〉,
The masks of y: 〈λy

i 〉 for i ∈ [N ],
The auxiliary shares of xy: 〈λxy

i 〉 for i ∈ [N ],
The output masks of z: 〈λz

i 〉 for i ∈ [N ],
Output: The output shares of ẑ: 〈ẑ〉

The output shares of si: 〈si〉 for i ∈ [N ]
1: for i ∈ [N ] // Players
2: 〈ai〉 ← SMul( 〈x̂〉, 〈λy

i 〉 )
3: 〈bi〉 ← SMul( 〈ŷ〉, 〈λx

i 〉 )
4: 〈si〉 ← 〈λz

i 〉 − 〈λ
xy
i 〉 − 〈ai〉 − 〈bi〉

5: 〈c〉 ← SMul( 〈x̂〉, 〈ŷ〉 )
6: 〈s〉 ←

∑
i∈[N ]〈si〉

7: 〈ẑ〉 ← 〈c〉+ 〈s〉
8: return 〈ẑ〉 and (〈si〉)i∈[N ]

In the security analysis we focus on a single MUL operation as extracted from Algorithms 14
and 15, denoted KKW_MUL, presented as Algorithm 16 and Algorithm 17, as the ADD
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8.2 Masking Three-Round KKW

operation is linear and thus trivially NI. The lemmas are followed by the proofs.

Lemma 8.1. Let G be the KKW_MUL gadget as described in Algorithm 16. Then, G is
t-SNI for all t < T , if SMul( ) is t-SNI with uniform output-distribution.

Proof. We thus need to show that for any set of t < T intermediate variables and any
subset O ⊂ [ẑ1, . . . , ẑT ] of output shares such that t + |O| < T , for each input variable
v, there is an input set Iv with |Iv| ≤ t such that the t intermediate variables and the
output variables 〈λxy

N 〉O can be perfectly simulated from these input sets.
Both the computation of 〈λx〉 and 〈λy〉 are straightforward and can be simply simulated,
as they are linear operations. Whenever one of the terms involved in the computation
of 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 ) is probed, we add the corresponding values from the proof
of the SNI-security (found e. g. in [BBD+16, Proposition 2]) of SMul( ) to the input sets
Iv. The result 〈λxy〉 can be simulated without any input as SMul( ) is SNI. To simulate
the output later on, we add all λxy

i,j to the inputs Iv.
Finally, the computation of 〈λxy

N 〉 is again linear.
For the output, suppose that λxy

N,j was probed. There are two cases to consider: If
λxy
j was probed, the inputs Iv already contains all λxy

i,j and we can thus simulate λxy
N,j

perfectly. If λxy
j was not probed, λxy

j looks like a uniformly random element from F that
is not used anywhere else, as it is produced by a t-SNI gadget with uniform output-
distribution. We can thus uniformly sample a random element r ∈ F and replace λxy

N,j

by r. This implies strong non-interference. �

Lemma 8.2. Let G be the KKW_MUL gadget as described in Algorithm 17. Then, G is
t-SNI for all t < T , if SMul( ) is t-SNI with uniform output-distribution.

Proof. We thus need to show that for any set of t < T intermediate variables and any
subset O of output shares such that t + |O| < T , for each input variable v, there is an
input set Iv with |Iv| ≤ t such that the t intermediate variables and the output variables
indexed by O can be perfectly simulated from these input sets. To show this, we go
through all variables of the algorithm and explain for all input variables v which indices
are added to Iv.
Whenever one of the terms involved in the SMul( )-computation for a term ai,j , bi,j , or cj
is probed, we add the corresponding values from the proof of the strong non-interference
of SMul( ) to the input sets Iv. Note that no inputs need to be added to Iv if ai,j , bi,j ,
or cj were probed, as they are the result of a t-SNI gadget.
Whenever si,j or a sub-term of si,j is probed, we add the variables corresponding to ai,j ,
bi,j , λz

i,j , and λxy
i,j to the input sets Iv. This clearly allows us to simulate all si?,j and all

sub-terms perfectly.
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8 Side-Channel Protections for Picnic Signatures

Whenever a sum
∑i′

i=1 si,j (including sj itself) is probed, we distinguish two cases. If
s1,j , s2,j , . . . , si′,j were all probed, we can simply simulate the complete sum. Otherwise,
there is a term si?,j with i? ∈ {1, . . . , i′} such that si?,j was not probed. As si?,j is
the only place where ai,j is used, we make use of the fact that ai,j is constructed by
an t-SNI gadget with uniform output-distribution. In other words, this means that ai,j

looks like a uniformly random element from F that is not used anywhere else. We can
thus uniformly sample a random element r ∈ F and replace the complete sum

∑i′

i=1 si,j

by r. Note that in the previous argument, we did not add anything to Iv.
Finally, whenever ẑj is probed, we simply simulate sj and cj . As cj is the result of a
t-SNI gadget, we can simulate it without needing to add anything to the input sets Iv.
As shown in the discussion about sj , we can also simulate it without needing to add
anything to the input sets Iv. This implies strong non-interference. �

To further support our security analysis, we utilized maskVerif [BBC+19] to confirm
that both KKW_MUL offline and online gadgets are SNI-secure.
As we have shown that all components of Algorithm 14 and Algorithm 15 are SNI,
the composability guaranteed by Lemma 2.1 as well as its generalization to multi-
input/output SNI gadgets [CS20] implies the following theorem by adding suitable
refresh gadgets (depending on the topology of circuit C that KKW is instantiated with).
Note that SNI security of the refresh gadget (recalled in Algorithm 29) is already proved
by Barthe et al. [BBD+16]

Theorem 8.3. Suppose H( ) and RefreshM( ) are t-SNI secure gadgets for all t < T .
The masked version of KKW presented in Fig. 8.1 is t-NIo for all t < T and for public
outputs {com(k)

i 6=ik
}k∈C, {com(k)

i }k∈[M ]\C,i∈[N ], {com_off(k)}k∈[M ] and {com_on(k)}k∈C.

The public outputs stated above are not part of unprotected KKW proof elements.
We thus have to validate the security of proof system in case these values are made
public, which, however, is straightforward since they are indeed non-sensitive information
that can be computed from response outputs (see the verification step of Fig. C.1).
Furthermore, note that masking the hash function H( ) is important. There are scenarios
where the inputs to H( ) are sensitive, but the outputs are not (such as Item 5 in Fig. 8.1).
The computation of an unmasked hash functions might thus leak information about these
sensitive inputs.

8.3 Masking Picnic

We start by analyzing the hashing operations in signature generation to determine which
ones must be masked, then discuss the options for masking SHA3/SHAKE, and introduce
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the half-masking technique, then estimate the overhead of masking the hash invocations.
Our masked implementation of the Picnic3 signature generation function is a rather direct
adaptation of the masked KKW proof protocol from Section 8.2. When compared to
Section 8.2, the circuit is LowMc, and operations are done on N -bit words packed with a
secret share from each of the N parties. Fig. C.2 (in Section C.2) gives an overview of the
protections for each hashing operation in signature generation. A complete specification
of our protected implementation, mirroring the official Picnic specification [Pic20], is
given in Section C.2.
8.3.1 Implementation Security

We implemented several versions of masked Picnic3, of which we highlight two: (1) a
provably NIo-secure implementation (as a direct consequence of Theorem 8.3) and
(2) a performance-oriented implementation with partially unmasked non-sensitive
intermediate values. For the former, we inserted the share refresh gadget (RefreshM)
according to the generic composition rule stated in Lemma 2.1, and we verified with
maskVerif that our complete specification of fully masked Picnic3 (see Section C.2.1) is
indeed NIo-secure. On the other hand, we do not claim that our second implementation
is NIo-secure, as there are some gaps between the analysis of Section 8.2 and this
implementation, that we consciously allowed, in order to improve performance. We
now explain these gaps and argue that they do not impact practical security, and in
Section 8.4 we confirm the absence of leakage experimentally.
First, according to Algorithm 21, all intermediate seeds must be T -encoded until they
are reconstructed at Line 29 and Line 32 and, as we argue in Section 8.3.2.1, reading t

bits of a seed reduces security by at most t bits. As we assume t to be small, we accepted
this risk to reduce the cost of masking SHAKE and memory required to store seeds.
By selectively masking the hash function calls (as described in Section 8.3.2) as opposed
to masking all hash function calls, up to t bits of a single-use seed may leak to a
side-channel attacker capable of accurately reading t bits from a single trace. (Since
the seed is only ever used once, and the signature is randomized, subsequent traces
have a fresh seed.) Against such an attack, the security of our L1 implementation
decreases from 128 to 112 bits. As shown in Sections 8.3.4 and 8.4 this optimization
gives significant performance gains, so we see this as a reasonable trade-off. Recent
work by Kannwischer et al. [KPP20] describes single-trace attacks on the unprotected
XKCP Keccak implementation. These attacks use a single trace recorded during the
computation of y = SHAKE(sk||x) and aim to recover all of a secret key sk, or part
of y. While single-trace attacks could threaten some of the unprotected hash calls in
our optimized implementation (e.g., when deriving the per-party or per-MPC instance
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8 Side-Channel Protections for Picnic Signatures

seeds), the results of [KPP20] do not extend to the M4, and the length constraints on
sk, x, and y in our application. Future work may improve single-trace attacks, and in
that case the conclusion of [KPP20] is that lightweight countermeasures will provide
effective mitigation.
Half-masking (discussed in Section 8.3.3) introduces that KangarooTwelve [VWA+21]
is a secure hash function. This assumption is only for security against the type of t-
probing side-channel attack we consider; and half-masking can be used by individual
implementations without changes to the Picnic specification. We provide benchmarks
in Section 8.4 showing the performance advantage of half-masking: based on this and
the fact that KangarooTwelve appears to be a relatively mild assumption, we enable
half-masking by default in our implementation.
Finally, our provable security analysis assumed an SNI-secure hash implementation.
Although one could use the fully SNI-secure masked Keccak as suggested by Barthe
et al. [BBD+16], other previous works [BDPA10,Dae17,GSM17] achieved more efficient
implementations with smaller amounts of random bits, albeit without a provable security
guarantee. We implement three instances of masked Keccak (named IND, DOM, and SNI)
with different security levels, which we explain in detail in Section 8.3.3. In Section 8.4,
we compare the concrete performance and perform practical leakage analysis. From
these experiments, we conclude that our implementation of IND – the fastest instance
among three – does not leak information, which provides some assurance.

8.3.2 Side-Channel Protections for Hashing in Picnic

In this section and Algorithm 18 we give a more detailed description of the parts relevant
to this paper.

Parameters. M is the number of MPC instances, N is the number of parties, τ is the
number of revealed online executions and κ is the security parameter (e.g., κ = 128 for
security level L1). The circuit C, defined over the binary field F = {0, 1}, is also part
of public parameters. Concretely, the circuit is Enc(w, p)

?
= c, where Enc is the LowMc

block cipher with κ-bit key and block size, w is an κ-bit input witness (a LowMc secret
key), p and c are the plaintext and ciphertext, both κ bits long. If the input to C is a
block cipher key that maps p to c, the circuit outputs 1.

Key Generation. In the presentation below, the key pair is (pk, sk) = ((c, p),w), where
both p and w are random κ-bit strings, and then c is computed as c = Enc(w, p).
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8.3.2.1 Hashing Operations for Signing

The concrete sign operations are described in Algorithm 18, following the Picnic
specification [Pic20, Section 7.1]. When compared to the stylized description of KKW
in Fig. C.1, here we include more details and list all hashing operations, since we will
analyze them with respect to the probing attacks below. Some of the functions related
to expanding seeds using a tree construction or creating a Merkle tree of commitments
(gen_seed, get_leaves, build_tree, and open_tree) are left to the specification for simplicity.

The hash function calls are denoted by H and we omit the byte used for domain
separation present in the specification. The KDF expands an arbitrary length input
to an arbitrary length output. Both H and KDF are instantiated with the SHAKE
XOF.

Algorithm 18 Description of Picnic signing highlighting hashing operations.
Input: signer’s key pair sk = w = (w)w∈IN, pk, message to be signed Msg.

1: // Derive root seed:
Sample random R ∈ {0, 1}2κ, (seed∗, salt)← KDF(sk||Msg||pk||κ||R)

2: iSeed_tree← gen_seed(seed∗, salt,M, 0) // Tree of initial seeds
3: // Initial seed for each MPC instance:

(iSeed(1), . . . , iSeed(M))← get_leaves(iSeed_tree)
4: for each k ∈ [M ]
5: seed_tree(k) ← gen_seed(iSeed(k), salt, N, j) // Seeds for MPC instance k
6: (seed1, . . . , seedN )← get_leaves(seed_tree(k)) // N per-party seeds
7: For each i ∈ [N ]: tapes(k)i ← KDF(seedi, salt, k, i)
8: (aux(k), tapes(k)N )← offline(tapes(k)1 , . . . , tapes(k)N )
9: For each i ∈ [N − 1]: comi ← H(seedi, salt, k, i)

10: comN ← H(seedN , aux(k), salt, k,N)

11: com_off(k) ← H(com(k)
1 , . . . , com(k)

N )
12: For each input wire w: ŵ(k) ← w ⊕

∑
i∈[N ] λ

w
i

13: (msgs(k)1 , . . . ,msgs(k)N )← online((ŵ(k))w∈IN, tapes(k)1 , . . . , tapes(k)N , pk)
14: com_on(k) ← H((ŵ(k))w∈IN, (msgs(k)1 , . . . ,msgs(k)N ))

15: com_on_tree← build_tree(com_on(1), . . . , com_on(M))
16: h← H(com_off(1), . . . , com_off(M), com_on_tree.root, salt, pk,Msg)
17: Parse h as (C,P) where C ⊂ [M ] and P = {ik}k∈C , ik ∈ [N ]
18: com_on_info← open_tree(com_on_tree,M, C)
19: iSeed_info← reveal_seed(iSeed_tree,M, C)
20: For each k ∈ C: seed_info(k) ← reveal_seed(seed_tree(k), N, ik)

21: Z ← (com_on_info, iSeed_info, (seed_info(k), aux(k), (ŵ(k))w∈IN, com(k)
ik

,msgs(k)ik
)k∈C).

Output: (h, salt, Z) as a signature
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8 Side-Channel Protections for Picnic Signatures

We now consider which hashing operations must be protected against side-channel
attacks, and to what degree. The Picnic specification supports randomized signatures
(and recommends this option, following [AOTZ20]) by appending a random value to the
KDF input when deriving the root seed. We assume this option is used throughout,
as otherwise the cost of side-channel protections would be significantly higher, since all
hash function calls would require masking (as opposed to only 35% shown below), and
all random seeds would need to be T -encoded. First, we note that all inputs to the
challenge computation are public, so this hash does not need to be masked. We now
analyze the other hash function calls in order. Fig. C.2 (in Section C.2) gives an overview
of the operations. When referring to individual hashing operations, we refer to the steps
in Algorithm 21.

Deriving the root seed. For Line 1, the SHAKE XOF is used as a KDF to derive a
root seed for signature generation. The input sk must be protected from side-channel
attacks. As a first option, one could choose the root seed at random, and avoid the KDF
altogether. However, deriving the root seed from the secret key and random data hedges
against failures in the RNG, see the analysis for Picnic in [AOTZ20]. If sk is stored
T -encoded, then we can hash all of the shares in place of sk, and append a random
value. Our implementation masks this hash function call since it is relatively cheap in
the context of a signature, and it makes testing easier because our implementation can
produce signatures that match known test vectors.

Deriving other seeds. When generating the seeds in Line 2, Line 3, Line 5, and Line 6,
protecting against the limited type of leakage we consider in this work is not necessary,
since seeds are unique per-signature and are always hashed before use. Suppose an
attacker A can read t bits of a leaf or intermediate seed s. With overwhelming probability
each seed is only ever used in one signature, so traces from multiple signing operations
will not give more information about s.
There are three possible uses of s to consider. When s is a seed from a leaf of the tree,
case 1 is that s is hidden and the attacker has a commitment to it (computed in Line 9
and Line 10), and case 2 is when s is used to seed KDF (in Line 7), and A has some of
the output bits. In case 3, s is a hidden intermediate seed, the attacker has one of the
two child seeds, derived by hashing s.
We can model all three cases as the attacker having C = H(s) along with t bits of s,
where H is a secure hash function. In practice H is the SHAKE XOF, which the existing
analysis of Picnic already assumes is a random oracle. Then if A makes q queries to
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H, they recover the missing κ − t bits of s with probability not more than q/2κ−t.
This considers only a single seed and digest, which we can do since each input to H is
unique, by construction (the Picnic spec uses a domain separation value, random salt,
and counters to prevent multi-target attacks [DN19]). In practice κ ≥ 128 and t will be
16 or less (see Section 2.1), therefore the security of our implementation is still at least
112 bits.

Computing random tapes. In Line 7 we expand the per-party seeds to random tapes.
The inputs do not need to be protected (as discussed in the previous paragraph), but
all output bits must be protected, since some of the random tape bits will correspond to
shares of the unopened party and must be kept secret as shown in Section 6.3. We mask
these calls, so the output is T -encoded (which increases the amount of memory required
to store the tapes by a factor of T ).

Computing commitments. In Line 9, a commitment of the form H(seed‖salt) is
computed. Here the private input is a seed, which is not sensitive to leakage of up to
t bits, as discussed above, and the output is public. Therefore, Line 9 does not require
masking.
In Line 10, the last party’s commitment has the additional input aux, which is sensitive
to leaking of individual bits. We must mask this call, but since the output is public, we
can use the half-masking technique of Section 8.3.3.
In Line 11, we hash only public values, and no masking is required. In Line 14, all inputs
are sensitive to leaking individual bits (e.g., ŵ is sensitive due to the attack described in
Section 6.3.1). Because the output is public, the half-masking technique is applicable.

8.3.3 Masking SHAKE

We implement multiple methods to protect the SHA3 family of function against DPA
attacks. In all of them, the Keccak-f state array A is secret shared into two arrays a, b,
such that A = a+b. In the basic method proposed in [BDPA10], the linear operations are
performed on the individual state arrays, then for the non-linear step (denoted χ) Ai ←
Ai + (Ai+1 +1)Ai+2 the shares (a, b) are updated as ai ← ai + (ai+1 +1)ai+2 + ai+1bi+2

and bi ← bi + (bi+1 + 1)bi+2 + bi+1ai+2, evaluated left-to-right. The cost of the linear
operations are doubled, addition of constants have the same cost, and the cost of χ is
doubled, plus two additional AND and XOR operations, so the computational cost of the
masked round function is roughly doubled. One must also consider the cost of generating
random values to create the secret shares. This method (herein called IND) only achieves
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independence from the native variables, and the same approach can be generalized to
three or more shares. In Domain-Oriented Masking (DOM) [GSM17], the AND operations
between shares a and b are further protected to satisfy SNI-security with a random mask
Z as (ai+1bi+2 +Z) and (bi+1ai+2 +Z), respectively. However, this is still not sufficient
for the masked Keccak as a whole to be SNI secure: due to the θ-layer, which applies a
linear transform to the state array A, both inputs to the AND gadget in χ depend on
the same previous state bit. This is a typical pattern of insecure composition observed
in [BBD+15a, §2.3]. Therefore, the third method (denoted by SNI) achieves SNI-security
by additionally refreshing shares of the state array A for every invocation of χ, as already
suggested by Barthe et al. [BBD+16, §8.2].

Half-Masked SHAKE. When expanding a seed to a random tape, we have shown that
security is maintained when leaking a small part of the seed (t bits of fewer), so the
input is not sensitive to this bounded leakage, but the output is sensitive. Conversely,
when creating a commitment, the individual input bits may be sensitive but the output
is public. An established assumption (for SHAKE128) is that security is preserved
using only half the number of rounds, and there is a proposal called KangarooTwelve
(K12) [VWA+21], that uses 12 instead of 24 rounds. Therefore, for short inputs and
outputs, one can view SHAKE as two calls to K12, and mask only one of the calls. In the
case of sensitive inputs, we mask the first 12 rounds: an attacker who learns the state at
the 13th round is effectively given a K12 digest of the input, which sufficiently hides the
input under the assumption that K12 is a secure hash function. Similarly, when only
the output bits are sensitive, we mask the last 12 rounds, any state bits observed by the
adversary in round 11 does not leak useful information about the output assuming that
K12 is secure.

8.3.4 Estimated Overhead of Hash Function Masking in Picnic

Here we provide a rough estimate of the overhead introduced by masking the SHAKE
calls in Picnic3, which will have a high impact on the cost of signing since hashing is
a large portion of the signing time (e.g., at L1 it is about 57% of the signing time on
x64 [KZ20], and for our ARM M4 implementation it is about 71%).

• For seed tree hashing, we have about M + log2M hashes to compute the round
seeds, and MN +M log2N hashes for the per-party seeds. None of these must be
masked.

• For random tape expansion, we have MN hashes, all of which must be masked.
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• For commitments, we have NM+2M+log2M hashes and must mask 2M of these.

The total number of hashes is thus 3MN + 3M + 2 log2M + log2N and MN + 2M of
these must be masked. At L1, all hash operations involve one call to Keccak-f , so all
calls have approximately the same cost. Again at L1, M = 250, N = 16 so we find that
about 35% of hashing must be masked. Since all masked hash operations have either
non-sensitive input or output they need only be half-masked (as explained below).
Now suppose we focus on first order protection (the case T = 2), and assume that masked
SHA-3 is about 2.73 times slower than unmasked SHA-3, and that a half-masked SHA-3
is about 1.95 times slower (these are the ratios from our implementation described in
Section 8.4). Then we expect a 1.61x increase in time spent hashing in masked Picnic3,
and 1.35x increase when half-masking is used.

8.4 Implementation and Experimental Evaluation

In this section we benchmark our implementation and discuss performance, then describe
our experiments to ensure that our implementation is side-channel resistant in practice.

8.4.1 Implementation and Benchmarks

We implemented our masked version of Picnic signing and benchmarked it on the
ARM Cortex M4, using the pqm4 [KRSS] suite and the STMicro developer board
STM32F407G-DISC1. This board has one MB of flash memory and 192KB of RAM
and comes equipped with a true random number generator implemented as a hardware
peripheral. The microcontroller clock frequency ranges from 24 to 168MHz, so following
standard practice our benchmarks were executed at the lowest frequency to avoid the
impact of memory wait states [FA17,HL19].
Our implementation is derived from the Picnic optimized implementation, which is
primarily optimized for x64 platforms, and is not well-optimized for the M4. As such,
our implementation results aim to bound the overhead of masking countermeasures. We
also focus only on first order protection, i.e., the case T = 2, and implement only the
L1 parameter set picnic3-L1. As most of our countermeasures are general, we expect
them to apply equally to more optimized M4 implementations of Picnic, and (with some
effort) to implementations of other MPCitH-based proof systems.
Since our masked implementation produces picnic3-L1 signatures compatible with the
specified version [Pic20], we do not repeat signature or key sizes in our benchmarks:
public keys are 34 bytes, secret keys are 17 bytes, signatures are 12.4KB. All other
parameters such as number of MPC parties, MPC instances, digest lengths, etc. are as
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Picnic
Masking

SHAKE
Masking

Signing
cycles

Hashing Masking
Overhead

Stack Code Random
bytes
(KB)No None 304 71% 1.00 32,460 121,349 0

Yes None 460 50% 1.51 32,500 131,326 2,025
Yes All-SNI 1663 86% 5.47 32,724 166,216 158,172
Yes All-DOM 1289 81% 4.24 32,724 158,776 80,378
Yes All-IND 856 72% 2.82 32,724 148.712 2,585
Yes Selective 613 62% 2.01 32,460 148,712 2,025
Yes Sel. Half 546 57% 1.80 32,460 148,712 2,025

Table 8.1: Benchmarks in millions of Cortex-M4 cycles showing the masking overhead
for types of side-channel protections. The options for Picnic are “No” masking and
T = 2 masking, as described in Section 8.3. For SHAKE, the “None” option indicates no
masking is used for hash computations, “All-” prefix means every call is masked in one of
three possible ways: SNI-secure [BBD+16], Domain-Oriented Masking (DOM) [GSM17] or
using independent values (IND) [BDPA10]. “Selective” means that only sensitive calls are
masked with independent values (as described in Section 8.3.2.1), and “Selective Half”
means that in addition to Selectively masking and IND, we use half-masked SHAKE.
The Hashing column provides the fraction of the signing time spent computing SHAKE.

specified in [Pic20]. For reference, the verification time in our implementation is 204M
cycles.

In order to experimentally verify the absence of leakage, we make use of the FvR tests.

Masked Keccak. We implemented three different flavors of masked Keccak described
in the last section: IND, DOM, and SNI. The implementation was built on top of the
in-place 32-bit ARMv7-M assembly code found in the official Keccak code package 3

(XKCP) to operate over a double-sized state storing the two shares. We implement the
same Keccak API used in Picnic by replicating functions over each share of the state,
and modifying the round function to implement the non-linear operations. Because of
the larger state, additional pressure was put on the registers and several intermediate
variables had to be spilled onto the stack. This caused some additional performance
overhead beyond the raw cost of masking. In order to prevent leakage, we took additional
care to rotate registers between rounds to prevent them from loading shares of the same
variable [BDPA10].

3https://github.com/gvanas/KeccakCodePackage
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Benchmarks. In Table 8.1 we give cycle counts for our masked implementation with
various options for how the hash function calls are masked. The masking cost for the non-
hashing operations is 156M cycles, which represents an overhead of 1.5x over baseline.
Since this is effectively doing the MPC simulation with 2-encoded values, we might expect
a factor two slowdown rather than 1.5, however, this is explained by the fact that many
of the operations to implement LowMc are ANDs and XORs with public constants, which
are more efficient than operations on 2-encoded values. Then the cost when masking
the hashing naively (by masking all operations), is given for the three Keccak masking
options (SNI, DOM and IND) and we see that the overhead is 1203M, 829M and 396M
cycles respectively. By using our analysis of Section 8.3.2.1, and selectively masking only
sensitive hash function calls, the overhead for IND drops to 153M cycles, and all the way
down to 86M cycles when we additionally use the half-masking optimization. In this
most performant case, we have roughly 2/3 of the overhead accruing to the Picnic and
MPC operations, and 1/3 to the hashing.

Stack usage was essentially constant for all configurations we benchmarked, since the
total amount of memory required is dominated by storing the signature, the commitment
and seed trees and not by the storage space for intermediate values that we must t-encode.
Code size increases by 1.2x in the most performant masked implementation (selective
half-masked), and by 1.4x in the fully SNI-secure version. Finally, the randomness
requirements range from the baseline of ≈ 2MB when Keccak is masked with the IND
method, to the much higher 80MB for the DOM method and 158MB for the SNI method,
as these methods require additional refreshing of nonlinear operations within Keccak.
Using the selective half-masking option reduces the randomness requirements of the DOM
and SNI options significantly, since the number of hash function calls is decreased and
some calls are only half-masked. By our estimate in Section 8.3.4 this would reduce
randomness usage by about 65% for the DOM and SNI options. In terms of the ≈
2MB of randomness used for the non-hashing operations, these are partly due to the
refresh operations within the LowMc implementation (Line 11), they are required for
SNI security and since they did not have a significant impact on run time, we did not
investigate the option of removing them. The other significant randomness consumer in
the masked LowMc implementation is the masked AND operation (Algorithm 28). Here,
future work could experiment with an implementation that masks ANDs as in the IND
method for Keccak, with the aim of reducing randomness and improving run time.
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Figure 8.2: A first-order leakage detection test based on 2,000 traces on the protected
Keccak implementation with fixed masking (left) and on 1,000,000 traces on the
protected Keccak implementation (right). The threshold of |t| ≥ 5.7 (as suggested
by [DZD+18]) is violated throughout the implementation with fixed masking, indicating
strong leakage. For the correctly masked implementation, the |t|-value remains below
5.7, even with 1,000,000 traces, indicating the absence of exploitable first-order leakages.
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Figure 8.3: A first-order leakage detection test based on 100,000 traces on the Picnic3.
The |t|-value remains below 6.1 (as suggested by [DZD+18]), indicating the absence of
exploitable first-order leakages for the 100,000 traces. Also, the maximum |t|-value is
bounded and becomes stable with the increased number of traces (right).

8.4.2 Experimental Leakage Analysis

To ensure our masked implementations of Keccak and Picnic are practically side-channel
resistant, we performed measurements of the implementation to confirm the absence of
leakage. The details of the experimental setup can be found on Chapter B.

Masked Keccak Leakage Evaluation. For Keccak we evaluate the IND method and
follow the FvR approach to detect all possible first-order leakages. During the trace
collection phase, a set of side-channel traces is collected by processing either a fixed input
or a random input under the same conditions. The fixed or random choice for the input
is made at random.After that, we calculate the means and standard deviations of the
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two side-channel trace sets separately. The t-test indicates whether the two distributions
have the same mean, i.e., they are indistinguishable for a first-order SCA. We apply the
customary threshold values for long traces 5.7 as suggested by [DZD+18].
To show the sensitivity of the measurement setup for first-order leakages, we apply the
test once to the correctly masked implementation and once to the same implementation
with fixed masks. When masks are not chosen at random, the test must detect the
resulting first-order leakage. The left hand side of the Fig. 8.2 shows the evaluation
results of the masked Keccak implementation with fixed masks based on 2,000 measurement
traces. As expected, the leakage test indicates strong leakage, with |t| clearly above
5.7. When masks are chosen uniformly at random, the t-value remains below 5.7 as
shown in the right hand side of the Fig. 8.2, even if the number of measurement traces
is increased to 1,000,000. We thus conclude that the masked Keccak implementation is
secure and provides the expected resistance to first-order attacks.

Masked Picnic Leakage Evaluation. In order to analyze the leakage for the whole first
order masked Picnic3 implementation, we follow a similar methodology as for Keccak and
employ the FvR approach. We collect the traces starting at the beginning of signature
generation until the end of the first MPC instance, i.e., including a single preprocessing
phase and simulation of an online phase(Line 1 to Line 22 in Algorithm 21). Note that
after this point, everything is public, and any leakage gives no additional information
beyond what is made public in the signature. To analyze our signature implementation,
we choose the FvR key scenario, under randomized messages, as proposed in [TG16] for
asymmetric cryptosystems. 4 In addition we needed to add artificial wait cycles before
accessing the board’s hardware TRNG to ensure that we will never need to varying
amounts of time for it to become ready,as this would destroy the constant time property
required for the TVLA. Note that this change is only necessary for the test setup and
not required in the production code.
The sets of side-channel traces are collected by signing a random message using either
a fixed key or a random key. As shown in Fig. 8.3, the t-value remains below 6.1 using
100,000 traces which indicates the absence of leakage. Moreover maximum |t|-value is

4The FvR-message scenario with a fixed key is not a good fit for randomized signature schemes like
Picnic3 where the entire internal state is randomized even for fixed messages. If the randomness is
fixed (by fixing R in Line 1 of Algorithm 21), the signature scheme becomes artificially deterministic.
Then several public parts of the signature generation process, including the signature itself, will be
picked up by the TVLA test. Similarly, in the deterministic case the root seed is fixed for fixed
messages (and random for random ones), also creating a leakage which does not exist for randomized
signatures. We still performed the analysis and verified that leakage only occurs in such expected
places.
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indeed bounded and have a stable pattern. Remark that an exploitable leakage as shown
in Fig. 6.3 or Fig. 6.4 exceeds the threshold value within as small as 2,725 traces and
has a clear increasing pattern. Thus we can conclude that the first-order masked Picnic3
implementation provides the expected SCA resistance.

Scaling to higher security levels and masking orders. Our implementation and
experimental evaluation is limited to security level L1 and masking order T = 2. Since
we expect the proportion of time spent on hashing vs. MPC simulation to be similar at
levels L1 and L5 (as was the case for x64, see [KZ20, Table 7]), we expect the overhead
of our masking techniques to be similar at L5 as well. When T increases, we can only
make rough predictions. We expect running time overhead to increase quadratically
and memory overhead to increase linearly, due to the asymptotic behavior of masking
nonlinear operations, and the additional storage required for T -encoded values.
The Picnic specification [Pic20] and NIST submission includes parameter sets using both
the ZKB++ proof system and the KKW system, as well as specific choices of parameters
for LowMc. Since the KKW-based parameters (referred to as Picnic3) are the most
efficient in terms of signature size, we choose to focus on those in this paper. In particular
our masked implementation is limited to the parameter set Picnic 3-L1. Fig. C.1
describes the KKW proof system at a high level, and Algorithm 31 describes Picnic3
signing in full detail.

Comparison with other NIST PQC candidates. To the best of our knowledge, most
other PQ signatures currently do not have publicly available masked implementations,
except for lattice-based Fiat–Shamir with aborts [Lyu09] signatures: GLP [BBE+18],
BLISS [BBE+19], Dilithium [MGTF19] (NIST PQC finalist) and qTESLA [GR19]
(Round 2 candidate). While these masked signing operations do output a signature
compliant with the existing verification algorithm, they rely on an additional non-
standard hardness assumption for provable side-channel-security (see [BBE+18,DOTT21]
for details). The issue could be circumvented by modifying the “commit” message of
the underlying Σ-protocol, but this in turn breaks the interoperability of the output
signature. By contrast, signatures directly derived from our generic approach to
masking KKW (Section 8.2) as well as NIo-secure Picnic3 implementation maintain
interoperability, and may optionally make additional assumptions for improved performance.
Performance-wise, the benchmarks on Cortex M4 given by Gérard and Rossi [GR19,
Table 6] show much less overhead than ours: their first-order protected qTESLA-I incurs
only 2.1x overhead in signing clock cycles and requires 343 KB of fresh randomness,
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while provably secure masked Picnic3 is 5.5x slower than unprotected and consumed 158

MB of randomness. However, by trading provable security guarantee as we describe in
Section 8.3, our empirically validated countermeasures achieve a lower overhead overall
of 1.8x, requiring 2 MB of randomness. Giving a meaningful performance comparison
with masked Dilithium [MGTF19] is hard, as they only provide benchmarks on Intel for
the whole signing operation. Although their overhead for first-order protection is about
5.6x, we expect that it can be made faster on the M4 by using the platform’s TRNG.

8.5 Conclusion and Future Work

In this chaper we study the side-channel security of MPCitH proof protocols and related
signature schemes. We then show that masking the signing operations is a practical
countermeasure for side-channel attacks, and prove our masked KKW and Picnic3 meet
the standard security notion (NIo), with a mix of both manual proofs and formal
verification with the maskVerif tool.
We implemented a masked version of the Picnic3 signature scheme for the ARM Cortex
M4 as a case study, and found that the cost of masking (in terms of runtime) is high when
we simply apply SNI-secure masking to all hashing operations. After careful analysis of
the hashing operations, we found that the masking overhead can be quite reasonable (as
low as 1.8x) under modest assumptions that we verified with practical leakage analysis
of our implementation. With hardware support for side-channel protected hashing, our
work shows that the overhead of masking the non-hashing parts of Picnic signing is about
1.5x, and our SNI analysis applies here.
Our flexible masked SHA-3 implementation is the first publicly available one, and will
be useful to other projects as SHA-3 becomes more common. We also expect our
half-masking optimization to find application in other implementations, as most hash
operations have a non-sensitive input or output.
Performance improvements (while maintaining resistance to side-channel attacks) are
an obvious direction for future work, both on the M4 and other embedded platforms.
Reducing the amount of randomness consumed by our mitigations is also an interesting
way to improve performance, together with generalizing to higher order protection
efficiently.
Finally, an implementation that combines SCA resistance and resistance to fault attacks
(perhaps leveraging the fault-resistance results for Picnic in [AOTZ20]) would also make
a good follow-up work.
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Conclusions

In this chapter, we give a summary of the thesis and underline the main contributions.
We look back to the main questions posed in Chapter 1 and conclude this work.

9.1 Summary

This work was motivated by the need for strong, reliable and flexible countermeasures
against advanced physical attacks. Although these attacks dominate the literature in the
last two decades, the importance of increased countermeasures has continued to grow
with the increasing number of smart devices. Moreover the increase in computation
power and advances in attacks require us to employ not ad hoc methods, but provable
secure countermeasures.
The thesis started with the adversarial models and their effect on the real world
cryptographic devices and gave our main research questions. In a nutshell, the thesis
is divided into two major parts. In Part I, we took an existing countermeasure and
enhanced it with novel techniques to resist more advanced or combined attacks while
preserving the provable security property. Then, in Part II we focused on a post-quantum
signature scheme family, Picnic, and provided countermeasures for each variant in the
family.

9.1.1 A Summary of Part I

Part I starts with a detailed introduction to side-channel, fault injection and combined
attacks. Each line of attacks is followed by countermeasures and ways of proving or
verifying the security against these attacks.
In Chapter 3, we focused on combined attacks in the in gray-box model and answered
our first question:

Can we provide a combined countermeasure built on secure multi-party
computation that can be efficiently implemented while preserving the information-
theoretic security?
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In this chapter, we focused on well-known techniques which is implemented to protect
against side-channel analysis: Secure Multi-party Computation and polynomial masking.
Briefly speaking in the scheme we share a secret using a degree d polynomial.
Our first goal was to observe the faulty behavior of the masking scheme. We investigated
the first challenge; what makes a fault detectable? The answer was hidden in the essence
of the scheme: the degree of the secret sharing polynomial. We observed that a fault
injection disturbs the degree of the polynomial such that the degree becomes larger
than d and we define the invalid secret sharing as a secret sharing whose polynomial’s
degree is greater than d. Although this effect was preserved with most of the operations,
secure multiplication by [RP12] could possibly eliminate this effect and result in output
shares corresponding to a valid secret sharing no matter the fault. Therefore we built
our scheme on this observation and used the degree as a fault detection mechanism. To
waive the fault-elimination property of multiplication, we proposed a new multiplication
engine that propagates faults with high probability. The fault propagation was achieved
by fault preserving SMC operations.
The proposed scheme, (n, d)-SMC, works on n = 2d+ ε+1 shares instead of n = 2d+1

shares. Therefore the redundancy was not added as form of additional gadgets but as a
form of increasing the number of shares but keeping the degree as the same. Moreover
the fault preserving property was added to the scheme with an extra operation within
the multiplication operation which makes this approach quite efficient.
Thus the foundation of the scheme can be summarized as, once a fault is injected
and becomes detectable, the fault propagates through the masked operations and stays
detectable. After becoming detectable, the degree of the faulty polynomial can decrease
by operations which result in a small probability of undetectable faults. However, a user
can perform fault detection regularly which increases the detection rates. Accordingly, we
proposed a secret-preserving fault detection mechanism. Moreover a novel recombination
operation is used for both fault detection and recombination. More importantly, this
gadget ensures infective computation i.e., randomizes the output if the fault is still
detectable. Thus an adversary cannot derive an attack from these randomized values.
The natural next step was to analyze the security of the scheme against SCA and FA.
In order to do so, we used the ISW probing model and non-interference notion. We
first adjusted the t-SNI notion to work with polynomial masking. Moreover, the fault
detection properties of our scheme are analyzed by the propagation notion introduced
by [SMG16]. We formally gave the probability of undetectable faults for each gadgets
in our scheme.
The fault detection capabilities of our scheme was given with a simulation written in
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SAGE. We supported our results with a practical AES-128 implementation on ARM
Cortex M0+ which was provided by a co-author. The performance analysis and an
extensive leakage analysis including the higher order moments were produced by the
implementation which is publicly available:

https://github.com/vernamlab/Robust-AES.

In Chapter 4, we delved into more complex adversarial model and focused on white-
box adversarial model. As the attacks on these model became lethal for WBC we
concentrated on the question:

Can we introduce a combined countermeasure based on basic masking in
such a way that it achieves information-theoretic security against Differential
Computation Analysis and Algebraic Differential Computation Analysis?

In this case, the foundation of our scheme relied on another well-known side-channel
countermeasure: Boolean masking. As our first step, we asked ourselves a similar
question as above and tried to find the cause of DCA and ADCA individually. We
observed that (as given in [BU18]) while we can counter DCA by increasing the masking
order, ADCA required increase in degree of the decoding function. Therefore we achieved
such a secure construction by combining linear shares with a non-linear component.
As our security notion, we used the two main notions in the literature: probing
security [ISW03] and prediction security [BU18]. First we showed that these notions
are incomparable i.e., we needed to prove the security using both notions. We employed
the t-SNI notion to prove the security against DCA like attacks. As the caveat of our
scheme, only a subset of shares is uniformly distributed, as the non-linear component is
biased and an adversary can predict non-linear shares with high probability. Therefore
we are losing one probing security order to obtain algebraic security.
The algebraic security of our scheme was proven using prediction security notion and
we proved the security of concrete constructions for (n, 1) and (n, 2) masking scheme.
Although the (n, 1) scheme can be seen as a natural extension of the scheme by [BU18],
the (n, 2) masking scheme and its security definitions are introduced by extending the
previous notion in a non-trivial way. Moreover we provided a novel composition proof
using two fold parallel composability and sequential composability. Therefore we proved
the composition of our construction for arbitrary circuits.
We supported our results with the verification tools by [BU18] (for prediction security)
and MaskVerif for probing security. We provided a proof-of-concept AES implementation
to analyze the overhead and leakage assessment. The implementation with its analysis
and verification codes is publicly available:
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https://github.com/UzL-ITS/white-box-masking.git.

9.1.2 Summary of Part II

In Part II, we concentrated on post-quantum cryptosystems. In Chapter 5, we gave a
gentle introduction to PQC and the NIST Post-quantum project and in Chapter 6 we
introduced our main motivation: the need for sound and secure designs for PQC and as
target we chose the Picnic signature family as our target.
Secure Multi-party Computation is one of the most widely studied cryptographic
primitives. For a long time, SMC protocols were believed to be of purely theoretic
interest, but recent developments have shown that they are usable for a wide range
of practically relevant applications. One well-studied version of these protocols, called
MPC-in-the-Head (MPCitH), is on the brink of seeing widespread use, e. g. as part
of NIST’s search for a Post-Quantum Signature Suite of algorithms in the form
of Picnic [CDG+17]. Due to the development of practical MPC protocols, efficient
implementations of such protocols were also developed. As shown in Chapter 6 lack of
protection can be abused by side-channel adversaries.Thus in Chapter 7 we aim at the
question:

Can we improve ZKBoo resp. the MPC-in-the-Head paradigm in general in
such a way that the unopened view is provably secure even if the opened views
are reachable by an adversary?

We showed, using the example of ZKBoo, that MPC-in-the-head protocols can be
adapted to fulfil SNI by adjusting parameter choices. Thus, changes at the protocol level
suffice to achieve strong non-interference and allow the protection of MPC-in-the-head
protocols right at the protocol level, without deeper changes to the implementations.
We showed that MPC-in-the-head protocols lend themselves to be easily protected
against side-channel attacks. The essence of the scheme again relies on Boolean masking.
This time we did not changed the masking but we changed the operations. The main
idea of MPCitH protocols is to prove the correctness of the operations using only a
subset of calculations. Our first challenge was to adapt the secure operations to the
MPCitH paradigm. To satisfy this we proposed balanced gadgets, that is, every branch
depends on the same number of other branches. Therefore, the new scheme reveals only
a subset of branches in such a way that the disclosed branches still provides security
against SCA. We verified this via a simulation and showed that the resulting overheads
are comparably low.
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In the last part of this thesis, in Chapter 8, we focused on another member of Picnic
signatures, Picnic3 which uses MPCitH paradigm with preprocessing. As shown in
Chapter 6, KKW protocol as implemented within Picnic signature schemes, is vulnerable
to side-channel attacks. Although the SNIitH approach protects the online phase of the
signature, the offline phase cannot be saved with the same approach. Therefore we asked
by the following equation:

Can we mask signature generation in signature schemes constructed with the
MPC-in-the-head-with-preprocessing paradigm in a provably secure manner,
without modifying the verification algorithm?

On a high-level, in our masking countermeasure, the prover essentially shares the shares.
Concretely, each party’s share is split again into some shares and every party internally
does their computation in a masked way. Accordingly, all the views are maintained in a
secret-shared form, until the prover learns challenge. Once prover obtained the challenge,
either prover can keep them in secret-shared form when offline phase is revealed, or
prover only needs to reconstruct views of opened parties when online phase is revealed.
This way, even if the adversary gets information of some share, there’s always at least
one share of the view that remains completely hidden. However this was not enough
to provide a secure signature scheme as %70 percent of Picnic3 is the hash function:
Keccak. Thus we also provided a masked Keccak implementation and designed our
masked Picnic3.
We showed that our masked Keccak and Picnic3 satisfies the formal security notion
(NIo) and provide a formal proof with a verification in MaskVerif. To ensure the
security of our design and perform a benchmarking we implemented the masked Picnic3
signature scheme on ARM CORTEX M4 as our practical setup. We carried our a
comprehensive leakage analysis to masked Picnic3 and Keccak to confirm the absence
of leakage. Furthermore, while analyzing the overhead of our design, we observed that
the cost of masking in range of 1.8-5.4 depending on the masking technique of the hash
function.
The first order masked Picnic3 and SHA-3 implementation and the formal verification
codes for MaskVerif are publicly available under crypto_sign/picnic3l1/masked/ of
the Picnic-M4 GitHub repository.

https://github.com/dkales/picnic_m4

In conclusion, this work tackles the problem of unification of side-channel countermeasures
with respect to various attacks and with respect to different adversarial models. We
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showed efficient ways of combining countermeasures. More importantly we proved the
security of our schemes using information theoretic notions instead of ad-hoc methods.
Therefore our solutions capture the essence of combined countermeasures and provide
an advanced way of providing countermeasures for modern cryptography. Moreover
we presented well-known attacks on post-quantum primitives which are assumed to be
secure. This way we marked that SCA is still a strong method for an adversary and
it cannot be ignored. Also we present the ways of protecting post-quantum primitives
against the well-known attacks that can be efficiently done by masking which brings
attention to SCA in the post-quantum world.
We would like to conclude this thesis as we started: there is always an adversary who
tries to crack shell and reach the golden treasure, therefore we need to improve our
understanding of countermeasures and harden our shell. We cannot rely on ad-hoc
methods to protect our sensitive data, as the capabilities of an adversary rapidly increase
and the attacks become cheaper which makes the attacks more accessible. We need to
be ready for more advanced attacks against modern cryptography. Moreover we need to
make sure that the algorithms that are going to be used in the near future are resistant
to attacks that have been in the literature for over a decade.
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Appendix A

Additional Proofs and Example Constructions for Combined
White-box Masking

Lemma 4.1: Correctness of Circuit Transformation T(n,d)

Proof. For simplicity, let us denote Encode as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = Encode(x).

Next we prove the functionality preserving property of each gadget.

• x = Decode(RefreshMask(Encode(x))

= Decode(RefreshMask((x̃0, . . . , x̃d, x1, . . . , xn))

= Decode((x̃0 ⊕ r̃0), . . . , (x̃d ⊕ r̃d), (x1 ⊕
⊕n

j=2 r1,j), (r1,2 ⊕ x2
⊕n

j=3 r2,j),

. . . , (
⊕n−1

i=1 ri,n ⊕ xn ⊕W ⊕R))

= (x̃0 ⊕ r̃0) · · · (x̃d ⊕ r̃d)⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R

= x̃0 · · · x̃d ⊕W ′ ⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R

= x̃0 · · · x̃d ⊕ x1 ⊕ · · · ⊕ xn

= x

• Decode(Xor(Encode(x), Encode(y)))

= Decode(x̃0 ⊕ ỹ0, . . . , x̃d ⊕ ỹd, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1, xn ⊕ yn ⊕ U)

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= [(x̃0 ⊕ ỹ0) · · · (x̃d ⊕ ỹd)]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= [x̃0 · · · x̃d ⊕ U ⊕ ỹ0 · · · ỹd]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)⊕ (ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= x⊕ y.
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• xy = Decode(And(Encode(x), Encode(y)))

= Decode(And((x̃0, . . . , x̃d, x1, . . . , xn), (ỹ0, . . . ỹd, y1, . . . , yn)))

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= Decode(z̃0, . . . , z̃d, z1, . . . , zn)

where the output shares can be listed as follows:

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d,

zi = xiyi ⊕
n⊕

j=1
j 6=i

ri,j for 1 ≤ i ≤ n.

Also, the values ri,j can be listed as:

r0,j = F(xj , yj) = [r0,j ⊕ (x̃0 . . . x̃d)yj ]⊕ xj(ỹ0 . . . ỹd) for 1 ≤ j ≤ n,

ri,j = (ri,j ⊕ xiyj)⊕ xjyi for 1 ≤ i < j ≤ n.

Therefore,

Decode(z̄) = z̃0 · · · z̃d ⊕ z1 ⊕ . . .⊕ zn

=

d∏
i=0

[
x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n

]
⊕

n⊕
i=1

xiyi ⊕ n⊕
j=0
j 6=i

ri,j



= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 n⊕
i=1

(xiyi ⊕
n⊕

j=1
j 6=i

ri,j)

⊕
 n⊕

j=1

((r0,j ⊕ (x̃0 . . . x̃d)yi)⊕ xi(ỹ0 . . . ỹd))


= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 ⊕
1≤i,j≤n

xiyj

⊕
[
V ⊕

n⊕
i=1

(x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd)

]
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= (x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕
⊕

1≤i,j≤n

xiyj ⊕
n⊕

i=1

((x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd))

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)(ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= xy.

Hence we showed that the gadgets introduced in Section 4.2 are functionally preserving
gadgets. Therefore, the transformation that generates an (n, d)-masked circuit is a
functionally preserving transformation. �

Example A.1. n = 2, d = 1

Here is an example construction for the (2, 1)-masking scheme:

• Encode(x, x1, x̃0, x̃1) = (x̃0, x̃1, x1, x2) where x2 = x̃0x̃1 ⊕ x1 ⊕ x.

• Decode(x) = x̃0x̃1 ⊕ x1 ⊕ x2.

• Xor(x, y) = (z̃0, z̃1, z1, z2) such that z = x⊕ y:

– z̃0 = x̃0 ⊕ ỹ0,

– z̃1 = x̃1 ⊕ ỹ1,

– z1 = x1 ⊕ y1,

– z2 = x2 ⊕ y2 ⊕ x̃1ỹ0 ⊕ x̃0ỹ1.

• And(x, y) = (z̃0, z̃1, z1, z2) such that z = xy;

Step 1: First, calculate the multiplicative representations of the output share z0:

– z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,

– z̃1 = x̃1ỹ0 ⊕ r1,1 ⊕ r1,2 where (r0,1, r0,2, r1,1, r1,2)← rand(0, 1)

Step 2(a): Calculate the intermediate values rj,0 which include the reconstruction
of the values x0 and y0:

– r1,0 = x̃1(x̃0y1 ⊕ r0,1ỹ0)⊕ ỹ1(ỹ0x1 ⊕ r1,1x̃0)⊕ r1,1(r0,1 ⊕ r0,2),

– r2,0 = x̃1(x̃0y2 ⊕ r0,2ỹ0)⊕ ỹ1(ỹ0x2 ⊕ r1,2x̃0)⊕ r1,2(r0,1 ⊕ r0,2).

Step 2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:

– r1,2 ← rand(0, 1),

– r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.
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Step 3: Finally, calculate the rest of the shares:

– z1 = x1y1 ⊕ r1,0 ⊕ r1,2,

– z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

• RefreshMask(x) = (x̃0, x̃1, x1, x2)

1. First, calculate the non-linear components of the output share x0:

– x̃0 = x̃0 ⊕ r̃0,

– x̃1 = x̃1 ⊕ r̃1 where (r̃0, r̃1)← rand(0, 1)

2. Calculate the rest the linear masks:

– x1 = x1 ⊕ r1,

– x2 = x2 ⊕ r1 where r1 ← rand(0, 1)

3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate variable
with W and R :

– W = r̃0(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0) and R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)⊕ r0 where

– x2 = x2 ⊕W ⊕R

Example A.2. Example: n = 2, d = 2

Here is an example construction for the (2, 2)-masking scheme:

• Encode(x, x1, x̃0, x̃1, x̃2) = (x̃0, x̃1, x̃2, x1, x2) where x2 = x̃0x̃1x̃2 ⊕ x1 ⊕ x.

• Decode(x) = x̃0x̃1x̃2 ⊕ x1 ⊕ x2.

• Xor(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = x⊕ y

– z̃i = x̃i ⊕ ỹi for i = {0, 1, 2}

– z1 = x1 ⊕ y1

– z2 = x2 ⊕ y2 ⊕ x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

• And(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = xy

Step 1: First, calculate the multiplicative representations of the output share z0:

– z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,

– z̃1 = x̃1ỹ2 ⊕ r1,1 ⊕ r1,2,

– z̃2 = x̃2ỹ0⊕r2,1⊕r2,2 where ri,j ← rand(0, 1) for i = {0, 1, 2} , j = {1, 2}.
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Step 2(a): Calculate the intermediate values rj,0 where the combination of random
nodes are defined as; u = (r1,1 ⊕ r1,2) and v = (r2,1 ⊕ r2,2).

– r1,0 = F(x1, y1) = x̃0
[
x̃2(x̃1y1 ⊕ r0,1ỹ0)⊕ r1,1vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x1 ⊕ r1,1x̃2)⊕ r0,1ux̃2

]
⊕

x̃0ỹ1(r
1,1x̃2ỹ0 ⊕ r2,1x̃1ỹ2)⊕ r0,1x̃1ỹ2(v ⊕ x̃2ỹ0)⊕

x̃2ỹ0(r
0,1x̃0 ⊕ r1,1ỹ1)⊕ uvr0,1.

– r2,0 = F(x2, y2) = x̃0
[
x̃2(x̃1y2 ⊕ r0,2ỹ0)⊕ r1,2vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x2 ⊕ r1,2x̃2)⊕ r0,2ux̃2

]
⊕

x̃0ỹ1(r
1,2x̃2ỹ0 ⊕ r2,2x̃1ỹ2)⊕ r0,2x̃1ỹ2(v ⊕ x̃2ỹ0)⊕

x̃2ỹ0(r
0,2x̃0 ⊕ r1,2ỹ1)⊕ uvr0,2.

Step 2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:

– r1,2 ← rand(0, 1),

– r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step 3: Finally, calculate the rest of the shares:

– z1 = x1y1 ⊕ r1,0 ⊕ r1,2,

– z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

• RefreshMask(x) = (x̃0, x̃1, x̃2, x1, x2)

1. First, calculate the multiplicative representations of the output share x0:

– x̃0 = x̃0 ⊕ r̃0,

– x̃1 = x̃1 ⊕ r̃1,

– x̃2 = x̃2 ⊕ r̃2, where (r̃0, r̃1, r̃2)← rand(0, 1)

2. Calculate the rest the linear shares:

– x1 = x1 ⊕ r1,

– x2 = x2 ⊕ r1 where r1 ← rand(0, 1)

3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate variable
with W and R :
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– W = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] ⊕ [r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)]⊕

[r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)]

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕

r0r̃2(x̃0 ⊕ r0)⊕ r0r̃1(x̃0 ⊕ r0)⊕ r0r̃0(x̃1 ⊕ r0)⊕

r0r̃2(x̃1 ⊕ r0)⊕ r0r̃1(x̃2 ⊕ r0)⊕ r0r̃0(x̃2 ⊕ r0).

– x2 = x2 ⊕W ⊕R
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Practical Setups

B.1 The experimental setup for SMC AES-128

Due to the rapid development environment and the omnipresence of ARM cores in
embedded applications, we employed the NUCLEO-L053R8 board from STMicroelectronics
to test our robust implementation as introduced in Chapter 3. It features a 32-bit ARM
Cortex-M0+ microcontroller labelled STM32L053R8T6. It can reach a clock frequency
of up to 32 MHz and it is equipped with a hardware random-number generator (RNG)
capable of generating one 32-bit random number every 40 cycles. The RNG must run
at 48MHz. Internal Phase-Locked Loop circuits (PLLs) can be used to match this
frequency.
A particular feature of this development board is that it provides two contact points
to measure the actual current consumption of the ARM chip. We took advantage of
it to place a low-value resistor between the pins to measure the voltage drop for our
side-channel analysis. The code was initially sketched in mbed and later migrated to
ARM MDK-Lite (KEIL uVision 5.21), however, the code is architecture-independent.

Field Multiplication. This is a heavily used operation across the implementation. Even
a small performance variation in this operation significantly affects the whole algorithm,
thus it is very important to optimize this operation and consider different trade-offs.
The following paragraphs briefly describe the four variations that are available in the
implementation code. The slowest version of the multiplication is based on instructions
only, with the minimum memory usage and in constant time. The result of the field
multiplication is returned after 8 iterations, as given in the Algorithm 19.
A second version of this operation is a trade-off function that combines a precomputed
256-byte look-up table (LUT) and instructions. The only difference from the previous
version is that the LUT contains all possible computations of v based on items 3, 4, and
5 from instruction only-multiplication Algorithm 19 as those three lines of code only
depend on operand v.
The best time-memory trade-off field multiplication [GR16], known as the Exp-Log
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Algorithm 19 GF(28) Multiplication (instructions only).
// z = h · v
for (i = 0 ; i < 8 ; i++)

mask = −((h >> i)&1); // (1)
z = z ̂(mask & v); // (2)
mask = −((v >> 7)&1);// (3)
v <<= 1;// (4)
v ̂= mask & 0x1b;// (5)

return z

Algorithm 20 GF(28) Multiplication (mixed).

// z = h · v
for (i = 0 ; i < 8 ; i++)

mask = −((h >> i)&1); // (1)
z = z ̂(mask & v); // (2)
v = secondOp[v];// (3, 4, 5)

return z

multiplication, is derived from the logarithm property vh = glogg(v)+logg(h). An
appropriate generator g must be selected to precompute the logarithm and exponentiation
tables so the multiplication is reduced to three table look-ups and logical and arithmetic
operations, especially required to check if any of the operands is zero.

Ultimately, the fastest instance of this operation is based on two pre-computed 4-kB
LUTs. To generate the tables, one of the operands is split into its most-significant nibble
and least-significant nibble v = vm24+vl, then every possible permutation of each nibble
is multiplied times all possible permutations of the other operand vh = vmh24 + vlh

but only the most-significant nibble multiplication is reduced modulo the irreducible
polynomial. To get the result of the field multiplication, only two look-ups and one
addition are required, however, this method is very expensive in terms of memory usage
and thus kept outside our performance analysis.

Field Squaring. The implementation code features two ways of performing field
squaring. The first one, as in the multiplication case, is based on instructions only;
the second one is simply a 256-byte LUT of all possible square values of the input.

The following pseudo-code describes in detail the algorithm of the code-only field
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squaring which can be conducted in a single line of C code.

y2 = (y&0x01)⊕ ((y&0x02) << 1)⊕ ((y&0x04) << 2)⊕ ((y&0x08) << 3)

⊕ (−((y&0x10) >> 4)&0x1b)⊕ (−((y&0x20) >> 5)&0x6c)

⊕ (−((y&0x40) >> 6)&0xab)⊕ (−((y&0x80) >> 7)&0x9a).

B.2 The experimental setup for Picnic

The reference implementation of Picnic is ported to the FRDM-K66F development
board [fre]. The board features an NXP MK66FN2M0VMD18 Cortex-M4F MCU with
2MB flash and 256 KB SRAM, which we clocked at to 120 MHz. To measure the
dynamic power consumption during Picnic, we collected 20,000 traces using a Langer
EM Probe [EmP] placed 1 mm above the C37 0.1µF blocking capacitor of the FRDM-
K66F board. Measurements were taken using a Tektronix MSO6 at 312.5 MHz sampling
rate. Since the relevant part of the signature generation are the calls to LowMC, we
placed a trigger before the start of the LowMC calls.

B.3 The experimental setup for Keccak and Picnic3

Our measurement setup comprises the STMicro developer board STM32F407G-DISC1
also used for the performance benchmarks, operated at 168MHz. We measure EM
emanations using a Langer LF-U 2.5 near field probe connected to a Langer PA 303
preamplifier [EmP]. The EM probe is placed over the C29 blocking cap at a distance
of approx. 1 mm. Measurements are recorded using a Tektronix MSO 6. For the
Keccak implementation, we sampled at 3.125 GS/s with a 12 bit resolution and 200Mhz
bandwidth. For the Picnic measurements, which are 2 orders of magnitude longer, we
reduced the sampling rate to 625 MS/s in order to obtain feasible measurement time
and storage sizes. Note that this still over-samples the board (168MHz) by a rate of 3.7
which is well above the minimal oversampling threshold of 2 from he Nyquist–Shannon
sampling theorem.
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(a) An overview of practical setup Picnic3. For
our capture device we have used the Tektronix
MSO6 and as our target device we have used the
STM32 discovery board with an ARM Cortex
M4 clocked at 168 MHz.

(b) A closer look to EM probe placement over
the C29 blocking capacitor.

Figure B.1: The practical setup used for the leakage analysis and benchmarking for
Picnic3
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Details of Picnic Signatures

C.1 Complete Description of the KKW Proof System

In Fig. C.1 we present a three-round KKW proof system. We remark that commitments
(i.e., generation of com(k)

i and com_on(k)) are de-randomized and replaced by a hash
function as suggested in [KKW18, §3] (which loses HVZK but is still sufficient for
provable security of signature), and the protocol is mildly generalized to work with
arithmetic circuits according to [dDOS19,BN20].

C.2 Our Protected Picnic3 Implementation

In this section we give a detailed description of our masked Picnic3 implementation.
Algorithm 21 has the top-level signature generation function, that calls the other
algorithms in this section. Fig. C.2 gives an overview of the optimized hashing operations
mentioned in Section 8.3.2.1, indicating which optimizations are applied to each one.

Notation. T is the number of shares used by our implementation, and masked values
will be T -encoded. For LowMc, n is the blocksize, and the precomputed constants Ki, Li

and Ri are as defined in Section C.5. The parameter N is the number of MPC parties,
and M is the number of MPC instances.

Data Types and Helper functions.

• T -encoding: an additive secret sharing in GF (2). For a bit b, the T -encoding is
a vector of T values b1, . . . , bT such that b =

∑T
i=1 bi. For a bitstring s, the T -

encoding is T bitstrings over GF (2)|s| that XOR to s. As in other parts of the
paper we use 〈b〉 to indicate that b is T -encoded.

– ⊕T : XOR operation of T -encoded values. For two T -encoded inputs 〈a〉 and
〈b〉, we define 〈c〉 = 〈a〉 ⊕T 〈b〉 as ci = ai ⊕ bi for i = 1, . . . , T ; for one T -
encoded input XOR’d by a non-encoded constant b, we define 〈c〉 = 〈a〉 ⊕T b

as c1 = a1 ⊕ b and ci = ai for i = 2, . . . , T .

211



Appendix C Details of Picnic Signatures

Protocol KKW

Inputs Both prover and verifier receive circuit C as a statement. The prover also holds a witness
w = (w)w∈IN such that C(w) = 1. Values M , N , τ are parameters of the protocol.

Commit 1. For each k ∈ [M ], the prover:

a) Choose a uniform seed(k) and use to generate values {seed(k)i }i∈[N ]. Also the
prover computes aux(k) ∈ F|C| by running the offline phase of MPC Πoff

C on input
{seed(k)i }i∈[N ]. For all i = 1, . . . N − 1, let state(k)i = seed(k)i and let state(k)N =

seed(k)N ||aux(k).
b) Commit to the offline phase:

com(k)
i = H(state(k)i ) for all i ∈ [N ]

com_off(k) = H(com(k)
1 , . . . , com(k)

N ).

c) Compute the masked witness ŵ(k) = λw
1 + . . . + λw

N + w for each w ∈ IN, where each
λw
i corresponds to party Pi’s random share to mask the witness, and is read out from

state(k)i .
d) Simulate the online phase of the N -party protocol by running the offline phase of MPC

Πon
C on input (ŵ(k))w∈IN and {state(k)i }i∈[N ], to produce {msgs(k)i }i∈[N ].

e) Commit to the online phase:

com_on(k) = H({ŵ(k)}w∈IN,msgs(k)1 , . . . ,msgs(k)N ).

2. Compute hoff = H(com_off(1), . . . , com_off(M)) and hon = H(com_on(1), . . . , com_on(M))
and send h∗ = H(hoff, hon) to the verifier.

Challenge The prover receives the following challenges from the verifier: a uniform τ -sized set C ⊂
[M ] and P = {ik}k∈C where each ik ∈ [N ] is uniform.

Response For each k ∈ [M ] \ C, the prover sends seed(k) and com_on(k) for all to the verifier. For
each k ∈ C, the prover sends com(k)

ik
, {state(k)i }i 6=ik , {ŵ(k)}w∈IN and msgs(k)ik

to the verifier.

Verification The verifier accepts if and only if all the following checks succeed:
1. Check the offline phase:

a) For every k ∈ C and i 6= ik, the verifier uses state(k)i to compute com(k)
i as the prover

would. Then produce com_off(k) = H(com(k)
1 , . . . , com(k)

N ) using the received value
com(k)

ik
.

b) For every k ∈ [M ] \ C the verifier uses seed(k) to compute com_off(k) as the prover
would.

c) Finally, the verifier computes hoff = H(com_off(1), . . . , com_off(M))

2. Check the online phase:

a) For k ∈ C the verifier simulates the online phase using {state(k)i }i 6=ik , masked witness
(ŵ(k))w∈IN and msgs(k)ik

to compute {msgsi}i 6=ik
. Then compute com_on(k) as if the

prover would do.
b) The verifier computes hon = H(com_on(1), . . . , com_on(M)) using the received

com_on(k) for k ∈ [M ] \ C.

3. The verifier checks that H(hoff, hon)
?
= h∗.

Figure C.1: 3-round KKW proof system for an arithmetic circuit C defined over F.212



C.2 Our Protected Picnic3 Implementation

Msg sk

KDF

gen_seed

seed∗

gen_seed

iSeed(1) iSeed(2) . . . iSeed(M) RefreshM

KDF KDF . . . KDF

seed1 seed2 seedN

masked_offline

tapes1 tapes2 tapesN

⊕λsk sk

masked_online
ŝk

tapes1 tapes2 tapesN

HH H

msgs1 msgs2 . . . msgsN

com_oncom1 comN

aux

Figure C.2: Summary of our masking protections and hashing optimizations from
Section 8.3.2. The figure is fully expanded for one of the M MPC instances, and
shows the signer’s operations for the commit phase of the protocol (i.e., before the
challenge is computed). Hash functions in green are half-masked hash with sensitive
inputs, hash functions in purple are half-masked with sensitive outputs, functions in
orange are NI/SNI-secure gadgets, and the white functions are unprotected. The secret
key (witness) is denoted sk and Msg is the message to be signed. In the figure, we omit
hashing of (com1, . . . , comN ) into com_off, since the inputs are public values that can
be reconstructed from the signature, and therefore the hash computation is unmasked
regardless of our optimization.
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– SMul: AND operation of two T -encoded values. We use Algorithm 28.

For example, with 2-encoded inputs 〈a〉 and 〈b〉, this algorithm outputs 〈c〉 =
SMul(〈a〉, 〈b〉) as

c1 = a1b1 + r

c2 = a2b2 + a1b2 + r + a2b1

where r is a fresh random bit. Note that c = c1+c2 = (a1+a0)(b1+ b0) = ab.

– Additional functions: Two additional helper functions from the literature are
described in Section C.3. These are for refreshing the randomness of a T -
encoded value and decoding (or unmasking) a T -encoded value.

• matMulT : This is a generalization of the matMul matrix multiplication function
in [Pic20, §6.4.4], modified to work on T -encoded input vectors. The matrix
remains unshared. The input is a T -encoded vector v of length n, a n× n matrix
M , and the output is the length-n vector vM . If T = 2, we have v = (v1, v2), the
output is (v1M, v2M) = (matMul(v1,M),matMul(v2,M))

• tapes: an object representing the N random tapes, one per party. In case we
need to be explicit about individual per-party tapes, it is parsed as tapes =

tape1|| . . . , ||tapeN . Each tape is expanded from a seed masked version of SHAKE
that produces T -encoded outputs, and we store the T -encoded outputs. We also
store a T -encoded representation of the the aux tape, the N -th party’s share.

• tapes_to_word(tapes, offset): Read one bit from each of the N tapes at the index
offset, and output an N -bit word. When the tapes are T -encoded, the output word
is also T -encoded.

• tapes_to_parityT (n, tapes, offset): Reads n bits from each tape at the index offset,
the strings s1, . . . , sN , returns a T -encoding of of

⊕N
i=1 si. Our implementation

computes and stores a T -encoding of the parity tape (i.e., the XOR of all N tapes)
and uses this to implement the tapes_to_parity function.

C.2.1 Specification of Fully Masked Picnic3

Algorithm 21 specifies the masked Picnic3 signing operations without the half-masked
hashing optimizations that we described in Section 8.3.2. The notation is as defined
elsewhere in the paper, and in the appendix on LowMc (Section C.5). All functions
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marked in orange modify T -encoded values during the computation. The Unmask
function takes a T -encoded value and returns the non-encoded value, by summing the
shares after refresh (see Algorithm 30). We verified that Algorithm 21 is indeed NI
secure with maskVerif for up to second order (implying it is also NIo for any public
outputs).

C.2.2 Simulation of the Offline Phase

Algorithms 22 to 24 describe the protected preprocessing phase. The description is very
similar to the preprocessing phase in the specification [Pic20, Section 7.4], however, the
data types and helper functions are different. Primarily, all variables are T -encoded.
Algorithm 23 describes our masked version of the LowMc S-box used for preprocessing
(called by Algorithm 22), which in turn calls Algorithm 24 the AND operation for the
preprocessing phase. Also, our presentation assumes that Algorithm 22 is used for
signature generation only, since verification can use an unprotected implementation.

C.2.3 Simulation of the Online Phase

We now describe how the online phase of the MPC simulation is masked. Algorithm 25
is the MPC simulation for the online phase, implementing the LowMc circuit. For each
AND gate, each party i broadcasts a bit and these are output to msgsi, these are also T -
encoded. In Algorithm 26 we describe the S-box implementation used in Algorithm 25.
Finally we have Algorithm 27 that describes the online simulation of an individual AND
gate. The broadcast values (written to msgsi) and output bit are also T -encoded. Recall
that SMul is implemented with the ISW multiplier (Algorithm 28).
Note that we need to refresh T -encoded st before each invocation of masked_sboxonline

( Line 6 of Algorithm 25). On one hand, since every round of LowMc involves a linear
transformation of st ( Line 1 and Line 7), every bit of st depends on all n bits of
the previous st, which corresponds to a problematic composition pattern mentioned in
[BBD+15a, Diagram 1]. On the other hand, all the other gadgets are in fact characterized
as an affine gadget, which can be security composed in an arbitrary fashion. Hence,
inserting RefreshM as we do is necessary and sufficient for the entire construction to be
provably NIo secure.

Storage of secret keys. We assume that the Picnic secret key (a bitstring of length n),
is stored in a T -encoded representation. Picnic key pair generation may be modified to
generate T -encoded secret keys, or an implementation may use regular key generation
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in a trusted environment (e.g., during device manufacture), and then encode the secret
key. As this is not important for performance, our implementation takes the regular
key and T -encodes it at the beginning of signing. Then the input to MPC simulation is
the T -encoded value 〈ŝk〉 = 〈λsk〉 ⊕T 〈sk〉, where 〈λsk〉 is the T -encoded random masks
output by preprocessing.

Algorithm 21 masked_Sign
Input: Msg, pk and 〈sk〉 for each input wire w to the circuit.
Output: (h, salt, Z)

1: Sample random R ∈ {0, 1}2κ
2: (〈seed∗〉, 〈salt〉)← KDF( 〈sk〉,Msg, pk, λ,R ) and salt ← Unmask(〈salt〉)
3: 〈iSeed_tree〉 ← gen_seed( 〈seed∗〉, salt,M, 0 )
4: (〈iSeed(1)〉, . . . , 〈iSeed(M)〉)← get_leaves(〈iSeed_tree〉)
5: for each k ∈ [M ]:
6: 〈seed_tree(k)〉 ← gen_seed( 〈iSeed(k)〉, salt, N, k )

7: (〈seed(k)1 〉, . . . , 〈seed(k)N 〉)← get_leaves(〈seed_tree(k)〉)
8: for each i ∈ [N ]:
9: 〈tape(k)i 〉 ← KDF( 〈seed(k)i 〉, salt, k, i )

10: 〈λsk〉 ← masked_offline( 〈tape(k)1 〉|| . . . ||〈tape(k)N 〉, pk ) (see Algorithm 22)
11: 〈aux(k)〉 ← get_aux(〈tape(k)N 〉)
12: for each i ∈ [N ]:
13: if i 6= N then
14: 〈com(k)

i 〉 ← H( 〈seed(k)i 〉, salt, k, i )
15: else
16: 〈com(k)

i 〉 ← H( 〈seed(k)i 〉, 〈aux(k)〉, salt, k, i )
17: com(k)

i ← Unmask(〈com(k)
i 〉)

18: com_off(k) ← H(com(k)
1 , . . . , com(k)

N )
19: 〈sk〉 ← RefreshM( 〈sk〉 )
20: 〈ŝk(k)〉 ← 〈sk〉 ⊕T 〈λsk〉
21: (〈msgs(k)1 〉, . . . , 〈msgs(k)N 〉)← masked_online( 〈ŝk(k)〉, 〈tape(k)1 〉|| . . . ||〈tape(k)N,j〉, pk ) (see Algorithm 25)

22: 〈com_on(k)〉 ← H( 〈ŝk(k)〉, 〈msgs(k)1 〉, . . . , 〈msgs(k)N 〉 )
23: com_on(k) ← Unmask(〈com_on(k)〉)
24: com_on_tree← build_tree(com_on(1), . . . , com_on(M))
25: h← H(com_off(1), . . . , com_off(M), com_on_tree.root, salt, pk,Msg)
26: Parse h as (C,P) where C ⊂ [M ] and P = {ik}k∈C , ik ∈ [N ]
27: com_on_info← open_tree(com_on_tree,M, C)
28: 〈iSeed_info〉 ← reveal_seed(〈iSeed_tree〉,M, C)
29: iSeed_info← Unmask(〈iSeed_info〉)
30: for each k ∈ C :
31: 〈seed_info(k)〉 ← reveal_seed(〈seed_tree(k)〉, N, ik)

32: seed_info(k) ← Unmask(〈seed_info(k)〉); ŝk(k) ← Unmask(〈ŝk(k)〉); msgs(k)ik
← Unmask(〈msgs(k)ik

〉)
33: if ik = N then aux(k) ← ⊥; otherwise aux(k) ← Unmask(〈aux(k)〉)
34: let Z = (com_on_info, iSeed_info, (seed_info(k), aux(k), ŝk(k), com(k)

ik
,msgs(k)ik

)k∈C).
35: output (h, salt, Z) as a signature
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Algorithm 22 masked_offline (corresponds to compute_aux in Section 7.4 of [Pic20])
Input: The tapes 〈tapes〉. The signer’s public key pk = (c, p).
Output: The n-bit key mask 〈λsk〉. The 〈tapes〉 is updated inside masked_sboxaux.

1: 〈roundkey0〉 ← tapes_to_parityT (n, 〈tapes〉, 0)
2: 〈λsk〉 ← matMulT (〈roundkey0〉,K−1

0 )
3: 〈st_in〉 ← 〈0n〉
4: for each LowMc round i from r down to 1
5: 〈roundkeyi〉 ← matMulT (〈λsk〉,Ki)
6: 〈st_out〉 ← 〈st_in〉 ⊕T 〈roundkeyi〉
7: 〈st_out〉 ← matMulT (〈st_out〉, L−1

i )
8: if i = 1 then
9: 〈st_in〉 ← 〈roundkey0〉

10: else
11: 〈st_in〉 ← tapes_to_parityT (n, 〈tapes〉, 2n(i− 1))
12: offset← 2n(i− 1) + n

13: masked_sboxaux(〈st_in〉, 〈st_out〉, 〈tapes〉, offset) (see Algorithm 23)
14: return 〈λsk〉

Algorithm 23 masked_sboxaux (corresponds to aux_sbox in Section 7.4.1 of [Pic20])
Input: The input and output states 〈st_in〉 and 〈st_out〉. The tapes 〈tapes〉. The tape offset offset.
Output: tapes is updated with the auxiliary bits..

1: for each i from 0 to 3s, in steps of 3
2: 〈λa〉 ← 〈st_in[i+ 2]〉 // T bits of st_in at position i+ 2, i.e., 〈λa〉 = (st_in1[i+ 2], . . . , st_inT [i+ 2])
3: 〈λb〉 ← 〈st_in[i+ 1]〉
4: 〈λc〉 ← 〈st_in[i]〉
5: 〈λd〉 ← 〈st_out[i+ 2]〉
6: 〈λe〉 ← 〈st_out[i+ 1]〉
7: 〈λf 〉 ← 〈st_out[i]〉
8: 〈λzbc〉 ← 〈λd〉 ⊕T 〈λa〉
9: 〈λzca〉 ← 〈λe〉 ⊕T 〈λa〉 ⊕T 〈λb〉

10: 〈λzab〉 ← 〈λf 〉 ⊕T 〈λa〉 ⊕T 〈λb〉 ⊕T 〈λc〉
11: masked_ANDaux(〈λb〉, 〈λc〉, 〈λzbc〉, 〈tapes〉, offset + i+ 2)
12: masked_ANDaux(〈λc〉, 〈λa〉, 〈λzca〉, 〈tapes〉, offset + i+ 1)
13: masked_ANDaux(〈λa〉, 〈λb〉, 〈λzab〉, 〈tapes〉, offset + i) (see Algorithm 24)

Algorithm 24 masked_ANDaux (corresponds to aux_AND in [Pic20, §7.4.2])
Input: The input mask bits 〈λx〉 and 〈λy〉. The fresh output mask bit 〈λz〉. The tapes 〈tapes〉. The tape

offset offset.
Output: The function updates 〈tapeN 〉.

1: 〈and_helper′〉 ← tapes_to_parityT (1, 〈tape1〉|| . . . ||〈tapeN−1〉, offset)
2: 〈λxy〉 ← SMul(〈λx〉, 〈λy〉)
3: 〈aux_bit〉 ← 〈λxy〉 ⊕T 〈and_helper′〉 ⊕T 〈λz〉
4: 〈tapeN [offset]〉 ← 〈aux_bit〉 // Ensuring λxy ⊕T λz = tape1[offset]⊕T . . .⊕T tapeN [offset]
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Algorithm 25 masked_online (corresponds to mpc_simulate in Section 7.5 of [Pic20])

Input: The masked input 〈ŝk〉. The tapes 〈tapes〉. The signer’s public key pk = (c, p).
Output: The broadcast messages 〈msgs1〉, . . . , 〈msgsN 〉

1: 〈roundkey0〉 ← matMulT (〈ŝk〉,K0)
2: 〈st〉 ← 〈roundkey0〉 ⊕T p
3: 〈st〉 ← RefreshM(〈st〉)
4: Initialize empty arrays 〈msgs1〉, . . . , 〈msgsN 〉
5: for each LowMc round i from 1 to r
6: masked_sboxonline(〈st〉, 〈tapes〉, 〈msgs1〉, . . . , 〈msgsN 〉, 2n(i− 1)) (see Algorithm 26)
7: 〈st〉 ← matMulT (〈st〉, Li)
8: 〈st〉 ← 〈st〉 ⊕T Ri

9: 〈roundkeyi〉 ← matMulT (〈ŝk〉,Ki)
10: 〈st〉 ← 〈st〉 ⊕T 〈roundkeyi〉
11: 〈st〉 ← RefreshM(〈st〉)
12: Compare st = Unmask(〈st〉) and c component of pk. If they differ, fail.
13: return (〈msgs1〉, . . . , 〈msgsN 〉)

Algorithm 26 masked_sboxonline (corresponds to mpc_sbox3 in Section 7.5.1 of [Pic20])
Input: A T -encoding of n-bit LowMc state 〈st〉. The tapes 〈tapes〉. The broadcast message holder
〈msgs1〉, . . . , 〈msgsN 〉. The tape offset offset.

Output: 〈msgsi〉 is updated with the broadcast messages of party i
1: for each i from 0 to 3s, in steps of 3
2: 〈â〉 ← 〈st[i+ 2]〉
3: 〈b̂〉 ← 〈st[i+ 1]〉
4: 〈ĉ〉 ← 〈st[i]〉
5: (〈λa

1〉, . . . , 〈λa
N 〉)← tapes_to_word(〈tapes〉, offset + i+ 2)

6: (〈λb
1〉, . . . , 〈λb

N 〉)← tapes_to_word(〈tapes〉, offset + i+ 1)
7: (〈λc

1〉, . . . , 〈λc
N 〉)← tapes_to_word(〈tapes〉, offset + i)

8: 〈b̂c〉 ← masked_ANDonline(〈b̂〉, 〈ĉ〉, (〈λb
i〉, 〈λc

i 〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i+ 2)
9: 〈ĉa〉 ← masked_ANDonline(〈ĉ〉, 〈â〉, (〈λc

i 〉, 〈λa
i 〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i+ 1)

10: 〈âb〉 ← masked_ANDonline(〈â〉, 〈b̂〉, (〈λa
i 〉, 〈λb

i〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i)

11: 〈st[i+ 2]〉 ← 〈â〉 ⊕T 〈b̂c〉
12: 〈st[i+ 1]〉 ← 〈â〉 ⊕T 〈b̂〉 ⊕T 〈ĉa〉
13: 〈st[i]〉 ← 〈â〉 ⊕T 〈b̂〉 ⊕T 〈ĉ〉 ⊕T 〈âb〉

Algorithm 27 masked_ANDonline (corresponds to mpc_and3 in Section 7.5.2 of [Pic20])
Input: A T -encoding of two masked input bits 〈x̂〉 and 〈ŷ〉. The masking bits words (〈λx

1〉, . . . , 〈λx
N 〉) and

(〈λy
1〉, . . . , 〈λ

y
N 〉). The tapes 〈tapes〉. The message holder 〈msgs1〉, . . . , 〈msgsN 〉. The tape offset offset.

Output: Masked AND output 〈x̂y〉 . The function updates msgs.
// and_helperi contains party i’s share of λxy ⊕T λz

1: (〈and_helper1〉, . . . , 〈and_helperN 〉)← tapes_to_word(〈tapes〉, offset)
2: for each i ∈ [N ]
3: 〈ai〉 ← SMul(〈x̂〉, 〈λy

i 〉)
4: 〈bi〉 ← SMul(〈ŷ〉, 〈λx

i 〉)
5: 〈si〉 ← 〈ai〉 ⊕T 〈bi〉 ⊕T 〈and_helperi〉
6: Append 〈si〉 to 〈msgsi〉
7: 〈c〉 ← SMul(〈x̂〉, 〈ŷ〉)
8: 〈s〉 ←

∑
i∈[N ]〈si〉

9: 〈x̂y〉 ← 〈c〉 ⊕T 〈s〉
10: return 〈x̂y〉
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C.3 Additional Gadgets

Algorithm 28 SMul [ISW03, Theorem 1]
Input: The encodings (x1, . . . , xT ) and (y1, . . . , yT ).
Output: The encoding of xy as (z1, . . . , zT ).

1: for 1 ≤ i ≤ T
2: zi ← xiyi

3: for 1 ≤ i ≤ T
4: for i < j ≤ T
5: ri,j ← rand() // Not from the random tapes
6: zi ← zi + ri,j // Denoted by zi,j
7: rj,i ← (xiyj − ri,j) + xjyi
8: zj ← zj + rj,i // Denoted by zj,i

9: return (z1, . . . , zT )

Algorithm 29 RefreshM [BBD+16]
Input: The encoding (x1, . . . , xT ).
Output: The encoding (y1, . . . , yT ) such that y1 + . . .+ yT = x1 + . . .+ xT

1: for 1 ≤ i ≤ T
2: yi ← xi

3: for 1 ≤ i ≤ T
4: for i < j ≤ T
5: ri,j ← rand() // Not from the random tapes
6: yi ← yi + ri,j
7: yj ← yj − ri,j

8: return (y1, . . . , yT )

Algorithm 30 Unmask [BBE+19]
Input: The encoding (x1, . . . , xT ).
Output: The shared value x such that x = x1 + . . .+ xT

1: (x′1, . . . , x
′
T )← RefreshM(x1, . . . , xT )

2: x← x′1
3: for 2 ≤ i ≤ T
4: x← x+ xi
5: return x
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C.4 Specification of Unprotected Picnic3

For completeness, we include the full specifications of Picnic3 signing adapted from [Pic20].
The notation is as defined elsewhere in the paper, and in the appendix on LowMc
(Section C.5).

Algorithm 31 Sign
Input: Msg, pk and sk for each input wire w to the circuit.
Output: (h, salt, Z)

1: Sample random R ∈ {0, 1}2κ // derive root and initial seeds
2: (seed∗, salt)← KDF(sk,Msg, pk, λ,R)
3: iSeed_tree← gen_seed(seed∗, salt,M, 0)
4: (iSeed(1), . . . , iSeed(M))← get_leaves(iSeed_tree)
5: for each k ∈ [M ]:
6: seed_tree(k) ← gen_seed(iSeed(k), salt, N, k) // Derive random tapes from the initial seed
7: (seed(k)1 , . . . , seed(k)N )← get_leaves(seed_tree(k))
8: for each i ∈ [N ]:
9: tape(k)i ← KDF(seed(k)i , salt, k, i)

10: λsk ← offline(tape(k)1 || . . . ||tape(k)N , pk) (see Algorithm 32)
11: aux(k) ← get_aux(tape(k)N )
12: for each i ∈ [N ]:
13: if i 6= N then
14: com(k)

i ← H(seed(k)i , salt, k, i)
15: else
16: com(k)

i ← H(seed(k)i , aux(k), salt, k, i)
17: com_off(k) ← H(com(k)

1 , . . . , com(k)
N ) // Commit to preprocessing phase

18: ŝk(k) ← sk ⊕ λsk// Mask input bits
19: msgs(k)1 , . . . ,msgs(k)N ← online(ŝk(k), tape(k)1 || . . . ||tape(k)N , pk) (see Algorithm 35)
20: com_on(k) ← H(ŝk(k),msgs(k)1 , . . . ,msgs(k)N ) // Commit to MPC online phase
21: com_on_tree← build_tree(com_on(1), . . . , com_on(M))
22: h← H(com_off(1), . . . , com_off(M), com_on_tree.root, salt, pk,Msg)
23: Parse h as (C,P) where C ⊂ [M ] and P = {ik}k∈C , ik ∈ [N ]

24: com_on_info← open_tree(com_on_tree,M, C) // Include only com_on(k) for k /∈ C
25: iSeed_info← reveal_seed(iSeed_tree,M, C) // Include only iSeed(k) for k /∈ C
26: for each k ∈ C : // Reveal online phases selected by challenge
27: seed_info(k) ← reveal_seed(seed_tree(k), N, ik) // Include only seed(k)i for i 6= ik
28: if ik = N then aux(k) ← ⊥
29: let Z = (com_on_info, iSeed_info, (seed_info(k), aux(k), ŝk(k), com(k)

ik
,msgs(k)ik

)k∈C).
30: output (h, salt, Z) as a signature
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Algorithm 32 offline
Input: The tapes (tapes). The signer’s public key pk = (c, p).
Output: The n-bit key mask λsk . The tapes is updated inside sboxaux.

1: roundkey0 ← tapes_to_parity(n, tapes, 0)
2: λsk ← matMul(roundkey0,K−1

0 )
3: st_in← 0n

4: for each LowMc round i from r down to 1
5: roundkeyi ← matMul(λsk ,Ki)
6: st_out← st_in⊕ roundkeyi
7: st_out← matMul(st_out, L−1

i )
8: if i = 1 then
9: st_in← roundkey0

10: else
11: st_in← tapes_to_parity(n, tapes, 2n(i− 1))
12: offset← 2n(i− 1) + n

13: sboxaux(st_in, st_out, tapes, offset) (see Algorithm 33)
14: return λsk

Algorithm 33 sboxaux

Input: The input and output states st_in and st_out. The tapes tapes. The tape offset offset.
Output: tapes is updated with the auxiliary bits.

1: for each i from 0 to 3s, in steps of 3
2: λa ← st_in[i+ 2]
3: λb ← st_in[i+ 1]
4: λc ← st_in[i]
5: λd ← st_out[i+ 2]
6: λe ← st_out[i+ 1]
7: λf ← st_out[i]
8: λzbc ← λd ⊕ λa

9: λzca ← λe ⊕ λa ⊕ λb

10: λzab ← λf ⊕ λa ⊕ λb ⊕ λc

11: ANDaux(λ
b, λc, λzbc , tape1, . . . , tapeN , offset + i+ 2)

12: ANDaux(λ
c, λa, λzca , tape1, . . . , tapeN , offset + i+ 1)

13: ANDaux(λ
a, λb, λzab , tape1, . . . , tapeN , offset + i) (see Algorithm 34)

Algorithm 34 ANDaux

Input: The input mask bits λx and λy. The fresh output mask bit λz. The tapes tapes. The tape offset
offset.

Output: The function updates tapeN .
1: and_helper′ ← tapes_to_parity(1, tape1|| . . . ||tapeN−1, offset)
2: λxy ← λx ∧ λy

3: aux_bit← λxy ⊕ and_helper′ ⊕ λz

4: tapeN [offset]← aux_bit // Ensuring λxy ⊕ λz = tape1[offset]⊕ . . .⊕ tapeN [offset]
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Appendix C Details of Picnic Signatures

Algorithm 35 online

Input: The masked input ŝk. The tapes tapes. The signer’s public key pk = (c, p).
Output: The broadcast messages msgs1, . . . ,msgsN

1: roundkey0 ← matMul(ŝk,K0)
2: st← roundkey0 ⊕ p
3: Initialize empty arrays msgs1, . . . ,msgsN
4: for each LowMc round i from 1 to r
5: sboxonline(st, tapes,msgs1, . . . ,msgsN , 2n(i− 1)) (see Algorithm 36)
6: st← matMul(st, Li)
7: st← st⊕Ri

8: roundkeyi ← matMul(ŝk,Ki)
9: st← st⊕ roundkeyi

10: Compare st and c component of pk. If they differ, fail.
11: return msgs1, . . . ,msgsN

Algorithm 36 sboxonline

Input: The masked state st. The tapes tapes. The message holder msgs1, . . . ,msgsN . The tape offset offset.
Output: The function updates msgs.

1: for each i from 0 to 3s, in steps of 3
2: â← st[i+ 2]
3: b̂← st[i+ 1]
4: ĉ← st[i]
5: (λa

1, . . . , λ
a
N )← tapes_to_word(tapes, offset + i+ 2)

6: (λb
1, . . . , λ

b
N )← tapes_to_word(tapes, offset + i+ 1)

7: (λc
1, . . . , λ

c
N )← tapes_to_word(tapes, offset + i)

8: b̂c← ANDonline(b̂, ĉ, (λ
b
i , λ

c
i , tapei,msgsi)i∈[N ], offset + n+ i+ 2)

9: ĉa← ANDonline(ĉ, â, (λ
c
i , λ

a
i , tapei,msgsi)i∈[N ], offset + n+ i+ 1)

10: âb← ANDonline(â, b̂, (λ
a
i , λ

b
i , tapei,msgsi)i∈[N ], offset + n+ i)

11: st[i+ 2]← â⊕ b̂c
12: st[i+ 1]← â⊕ b̂⊕ ĉa
13: st[i]← â⊕ b̂⊕ ĉ⊕ âb

Algorithm 37 ANDonline

Input: The masked input bits x̂ and ŷ. The masking bits words (λx
1 , . . . , λ

x
N ) and (λy

1, . . . , λ
y
N ). The tapes

tapes. The message holder msgs1, . . . ,msgsN . The tape offset offset.
Output: Masked AND output x̂y . The function updates msgs.

// and_helperi contains party i’s share of λxy ⊕ λz

1: (and_helper1, . . . , and_helperN )← tapes_to_word(tapes, offset)
2: for each i ∈ [N ]
3: si ← (x̂ ∧ λy

i )⊕ (ŷ ∧ λx
i )⊕ and_helperi

4: Append si to msgsi.
5: x̂y ← parity(s1, . . . , sN )⊕ (x̂ ∧ ŷ)
6: return x̂y
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C.5 LowMC

C.5 LowMC

LowMC [ARS+15] is a parameterizable block cipher designed to have a small number of
AND gates (low multiplicative complexity). In this work we assume the LowMc instances
are those from the Picnic3 design; however, our analysis and countermeasures generalize
easily to other choices of LowMc paramters.
Let n be the block size and key size, s be the number of S-boxes, and r the number of
rounds. For each LowMc instance, the spec defines random and independent

• round constants Ri ∈ Fn
2 ,

• linear layer matrices Li ∈ Fn×n
2 (of full rank), and

• key matrices Ki ∈ Fn×n
2 for the computation of round keys.

There are r round and linear layer constants Ri, Li, and r + 1 key matrices Ki. The
matrices are invertible, and the Picnic 3 implementation uses the inverses K0

−1 and
Li

−1. LowMC keys are sampled uniformly at random from Fn
2 .

LowMC encryption starts by adding the first round key to the plaintext, which is followed
by r rounds. Each round key is generated by multiplying the key with the key matrix
Ki. A single round of LowMc is composed of an S-box layer, a linear layer, addition with
constants, and addition of the round key as shown in Algorithm 38. The S-box layer
applies the same 3-bit S-box on the first 3 · s bits of the state. The S-box is defined as
S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab). The other layers only consist of F2-vector
space arithmetic, all local operations in our MPC setting.

Algorithm 38 LowMC encryption. Parameters Ki, Li and Ri are as described in the
text.
Input: Key matrices KMi∈[1,r] ∈ Fn×k

2 , Linear matrices LMi∈[1,r] ∈ Fn×n
2 , Round

constants RCi∈[1,r] ∈ Fn
2 , a plaintext p ∈ Fn

2 and a secret-key ks ∈ Fn
2

Output: Ciphertext s ∈ Fn
2 such that s = LowMC(p, ks).

1: s← (KM0 · ks)⊕ p // Initial Key Addition
2: for 1 ≤ i ≤ r
3: s← Sbox(s) // SboxLayer
4: s← LMi · s // LinearLayer
5: s← RCi ⊕ s // ConstantAddition
6: s← (KMi · ks)⊕ s // KeyAddition
7: return s
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