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Abstract
Organisms on the earth have evolved into increasingly larger and more complex organ-

isations, reflecting a series of major evolutionary transitions. Here, I focus on the major

evolutionary transition from unicellular ancestors to multicellular organisms. Organisms

can have different life cycles in terms of cell numbers and composition during devel-

opment. The selection outcome is different when an organism undergoes different life

cycles. The rule of “survival of the fittest” from Darwin determines which life cycle sur-

vives. Organism competition relies on individuals’ fitness, which depends on the traits

of life cycles they undergo. Organisms mostly experience cell differentiation and include

different cell types. The transformation from phenotypically homogeneous organisms

into heterogeneous ones leads to the change in individuals’ fitness. Considering cellular

interactions among different cell types in an organism, the question then arises: what are

the effects of phenotypical heterogeneity for an organism?

In experiments, it is hard to investigate the way that cells interact and the effects

that cellular interactions yield in phenotypically heterogeneous organisms. Essentially,

these biological problems can be transformed into mathematical ones. We can address

these problems by mathematically modelling the interactive effects of individual cells on

the competitiveness of organisms. This idea leads to the thesis proposal of mathematical

models of life cycle competition in heterogeneous organisms. Here, I specifically pay

attention to phenotypically heterogeneous organisms, because they could include diverse

cellular interaction forms. The mathematical models adopted in this thesis can depict the

underlying cell interacting forms and describe their effects quantitatively. Specifically,

I demonstrate the work in three chapters including the emergence of multicellular life

cycles, irreversible somatic differentiation and the evolution of reproductive strategies.

Firstly, since cellular interactions could be beneficial or adverse for organisms, we

ask which interaction form promotes the evolution of multicellularity? To answer this

question, I present a mathematical model considering stage-structured populations. Pop-

ulations have different but unique reproductive strategies. I capture the effects of cellular
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interactions via evolutionary game theory by a payoff matrix. This payoff matrix de-

termines population growth rates, which further determine the performance of popula-

tions. By comparing the growth rates between populations with unicellular organisms

and populations with multicellular organisms, I found the three most important char-

acteristics determining the emergence of multicellularity: the average performance of

phenotypically homogeneous groups, heterogeneous groups, and solitary cells.

Secondly, cellular interactions can lead to cell differentiation, resulting in multiple

cell phenotypes in organisms. Essentially, there are only two types in terms of reproduc-

tion: germ cells (for fertility) and somatic cells (for viability). Here, somatic cells perform

extreme altruistic behaviour in terms of viability and lose their fertility entirely. I refer to

this extreme altruistic behaviour as irreversible somatic differentiation (ISD). To under-

stand the evolution of ISD, I simulate the stochastic development of organisms, which

includes the one for ISD. Considering different conditions in organism development, I

seek stochastic development that has evolutionary growth advantages for ISD. Our res-

ults show that ISD emerges under the conditions of both somatic cells’ benefits and cell

differentiation costs in larger multicellular organisms.

The forms of frequency-dependent cellular interactions are used in the first two

models. However, cellular interactions are frequently observed in a threshold form in

nature. These threshold effects depend on the minimum number of a certain cell type in

an organism. Thus, I extend the cellular interaction form from frequency-dependent to

threshold-dependent. An organism grows faster if the cells of a cell type meet a given

threshold. Meanwhile, the organism size effects have also been incorporated, which are

assumed as being neutral in the first model. Our results show that distinct reproductive

strategies could perform uniquely or equally best for populations under the effects of

sizes and thresholds. Among the unique optimal reproductive strategies, only binary-

splitting ones can be optimal.

In summary, I build mathematical models to address the biological problems of cel-

lular interaction effects on multicellular organisms. The problems include the emergence
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of multicellular life cycles, irreversible somatic differentiation and the evolution of re-

productive strategies. The cellular interactions and organism size both determine the

growth rate of a population. The population growth rates are calculated by the character-

istic equations of different structured-population models. Besides, to build the stochastic

trajectories for the development of multicellularity, stochastic sampling (Monte Carlo)

methods are used to capture the potential cellular interaction forms.
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Kurzfassung
Organismen auf der Erde haben sich zu immer größeren und komplexeren Organisa-

tionen entwickelt, die eine Reihe wichtiger evolutionärer Übergänge widerspiegeln. Hier

konzentrieren wir uns auf den großen evolutionären Übergang von einzelligen Vorfahren

zu mehrzelligen Organismen. Organismen können während der Entwicklung unter-

schiedliche Lebenszyklen in Bezug auf Zellzahl und Zusammensetzung haben. Das

Selektionsergebnis ist unterschiedlich, wenn ein Organismus unterschiedliche Lebenszy-

klen durchläuft. Die Regel des ”Überlebens der Stärksten” von Darwin bestimmt, welcher

Lebenszyklus überlebt. Der Organismenwettbewerb hängt von der Fitness des Einzelnen

ab, die von den Merkmalen der Lebenszyklen abhängt, die er durchläuft. Organis-

men erfahren meist eine Zelldifferenzierung und umfassen verschiedene Zelltypen. Die

Umwandlung von phänotypisch homogenen in heterogene Organismen führt zu einer

Veränderung der Fitness des Einzelnen. Unter Berücksichtigung der zellulären Wechsel-

wirkungen zwischen verschiedenen Zelltypen in einem Organismus stellt sich dann die

Frage: Welche Auswirkungen hat eine phänotypische Heterogenität auf einen Organis-

mus?

In Experimenten ist es schwierig zu untersuchen, wie Zellen interagieren und welche

Auswirkungen zelluläre Interaktionen auf phänotypisch heterogene Organismen haben.

Im Wesentlichen können diese biologischen Probleme in mathematische umgewandelt

werden, womit die Auswirkung zellulärer Effekte auf die Konkurrenzfähigkeit von Or-

ganismen modelliert werden kann. Diese Idee führt zu dieser Arbeit zu mathematischen

Modellen des Lebenszykluswettbewerbs in heterogenen Organismen. Hier betrachte ich

speziell phänotypisch heterogene Organismen, da diese verschiedene zelluläre Interak-

tionsformen aufzeigen können. Die in dieser Arbeit verwendeten mathematischen Mod-

elle können die zugrunde liegenden zellwechselwirkenden Formen darstellen und ihre

Auswirkungen quantitativ beschreiben. Im Folgenden demonstriere ich in drei Kapiteln

die Entstehung mehrzelliger Lebenszyklen, der irreversiblen somatischen Differenzier-

ung und die Entwicklung von Fortpflanzungsstrategien.
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Da zelluläre Interaktionen für Organismen vorteilhaft oder nachteilig sein könnten,

fragen wir uns zuerst, welche Interaktionsform die Entwicklung der Mehrzelligkeit fördert.

Um diese Frage zu beantworten, stelle ich ein mathematisches Modell vor, das stadien-

strukturierte Populationen berücksichtigt. Populationen haben unterschiedliche, aber

einzigartige Fortpflanzungsstrategien. Ich betrachte die Auswirkungen zellulärer In-

teraktionen im Rahmen der evolutionären Spieltheorie mit einer Auszahlungsmatrix.

Diese Auszahlungsmatrix bestimmt die Populationswachstumsraten, die die Leistung

der Population weiter bestimmen. Durch Vergleich der Wachstumsraten zwischen Pop-

ulationen mit einzelligen Organismen und Populationen mit mehrzelligen Organismen

fand ich die drei wichtigsten Merkmale, die das Auftreten von Mehrzelligkeit bestim-

men: die durchschnittliche Leistung von phänotypisch homogenen Gruppen, hetero-

genen Gruppen und Einzelzellen.

Weiterhin können zelluläre Wechselwirkungen zur Zelldifferenzierung führen, was

zu mehreren Zellphänotypen in Organismen führt. Im Wesentlichen gibt es nur zwei

Arten der Reproduktion: Keimzellen (für die Fruchtbarkeit) und somatische Zellen (für

die Lebensfähigkeit). Hier zeigen somatische Zellen ein extrem altruistisches Verhal-

ten in Bezug auf die Lebensfähigkeit und verlieren ihre Fruchtbarkeit vollständig. Ich

bezeichne dieses extrem altruistische Verhalten als irreversible somatische Differenzier-

ung (ISD). Um die Entwicklung der ISD zu verstehen, simuliere ich im dritten Kapitel die

stochastische Entwicklung von Organismen, einschließlich der für ISD. In Anbetracht der

unterschiedlichen Bedingungen in der Organismusentwicklung streben wir eine stochas-

tische Entwicklung an, die evolutionäre Wachstumsvorteile für ISD bietet. Unsere Ergeb-

nisse zeigen, dass ISD unter den Bedingungen sowohl des Nutzens somatischer Zellen

als auch der Kosten für die Zelldifferenzierung in größeren mehrzelligen Organismen

auftritt.

In den ersten beiden Modellen verwenden wir frequenzabhängige zelluläre Interak-

tionen. Zellinteraktionen werden jedoch häufig in einer Schwellenform in der Natur beo-

bachtet. Diese Schwelleneffekte hängen von der Mindestanzahl eines bestimmten Zell-
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typs in einem Organismus ab. Daher erweitern wir die zelluläre Interaktionsform von

frequenzabhängig zu schwellenwertabhängig. Ein Organismus wächst schneller, wenn

die Zahl der Zellen eines Zelltyps einen bestimmten Schwellenwert erreichen. Weiter-

hin, werden hier auch die Größeneffekte des Organismus berücksichtigt, die im ersten

Modell als neutral angenommen wurden. Unsere Ergebnisse zeigen, dass bestimmte

Fortpflanzungsstrategien für Populationen unter den Auswirkungen von Größen und

Schwellenwerten alleinig oder gleich gut abschneiden können. Unter den alleinig opti-

malen Reproduktionsstrategien können nur die binär aufteilenden optimal sein.

Zusammenfassend bauen wir mathematische Modelle auf, um die biologischen Prob-

leme zellulärer Interaktionseffekte auf mehrzellige Organismen zu beschreiben. Zu diesen

Problemen gehören die Entstehung mehrzelliger Lebenszyklen, die irreversible somat-

ische Differenzierung und die Entwicklung von Fortpflanzungsstrategien. Die zellulären

Wechselwirkungen und die Größe des Organismus bestimmen beide die Wachstums-

rate einer Population. Die Bevölkerungswachstumsraten werden durch die charakter-

istischen Gleichungen verschiedener strukturierter Bevölkerungsmodelle berechnet. Um

die stochastischen Trajektorien für die Entwicklung der Mehrzelligkeit zu erstellen, wer-

den außerdem stochastische Probenahmemethoden (Monte Carlo) verwendet, um die

möglichen zellulären Interaktionsformen zu erfassen.
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Chapter 1

Introduction

1.1 Motivation

Organisms on earth have evolved into increasingly larger and more complex organ-

isations, reflecting on a series of major evolutionary transitions [Maynard Smith and

Szathmáry, 1995, Szathmáry and Smith, 1995]. The major evolutionary transitions have

been recorded in the development of living organisms from the emergence of the first

cells to the evolution of multicellular organisms to the establishment of social groups

[Bonner, 1998, Grosberg and Strathmann, 2007, Claessen et al., 2014, Sebe-Pedros et al.,

2017, Brunet and King, 2017]. Following these transitions, selection usually favours the

hierarchically increased level of biological complexity [Carroll, 2001], rather than the fit-

ness interests of the lower replicating units in biological organisms. Cells in organisms

are referred to as cooperators or defectors depending on whether they increase the fit-

ness of organisms or not. Cooperation implies cells follow developmental control of

higher levels of organisms under natural selection, which may decrease the fitness of

individual cells. Since the higher levels of organisms arise from the lower level replicat-

ing units, then how do organisms moderate the conflicts between the higher levels and

lower levels of biological replication by developmental control? In other words, under

which conditions can the cooperation of cells in organisms emerge on the higher level,

even in the presence of defectors on the lower level? Moreover, do different modes of

internal developmental control on the lower level shape different characteristics of or-

ganisms on a higher level? For example, modes can rely on the frequency of cooperators

or can rely on the number of cooperators in organisms. If so, which characteristics on the

higher level can be shaped under different developmental control?

The developmental control of organisms depends on natural selection acting on the
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Chapter 1. Introduction

fitness of the higher level. But the fitness of the higher level is impacted by the lower level

of an organism. In practice, it is hard to measure and estimate the interactions between

units at the lower level and their effects at the higher level in an organism. Thus, math-

ematical models provide a useful tool to address this question. Suppose a hierarchical

organism contains cell types of cooperator and defector, and natural selection favours

cooperators on the higher level but defectors on the lower level. If we treat the fraction

or number of cooperators as a trait, a more general mathematical method to describe

the cooperator dynamics is the Price’s equation [Price, 1972, Gardner, 2008]. For a given

organism, z is the value of a trait of interest, such as the frequency or the number of co-

operating cells forming that organism, and w is the number of offspring of this organism.

∆z shows the discrepancy between the trait values of the organism itself and its offspring.

Price’s equation shows how the average of z in the population changes from one genera-

tion to next,

∆z =Cov
(w

w
,z
)
+E

(w
w

∆z
)
, (1.1)

where bars are average values over the population. Cov is the covariance and E is the

expected value. Price’s covariance approach provides a method for representing selec-

tion in hierarchically structured population [Michod and Roze, 1999, Okasha, 2006]. The

first item of equation (1.1) represents the selection on the organism (higher) level, and the

second item represents the selection on the cell (lower) level. Price’s equation provides

a general mathematical description of trait dynamics in populations, while the detailed

population structures and cell interactions in hierarchical organisms need to be estab-

lished further. However, it has been argued that it is not a good tool to build concrete

models [van Veelen, 2005].

Evolutionary game theory has been used to estimate the effect of multilevel selec-

tion on the evolution of cooperation [Nowak, 2006a, Traulsen and Nowak, 2006]. In the

model of Traulsen and Nowak [2006], organisms consist of cells of cooperators and de-

fectors. The fitness of an organism is determined by the fitness of its consisting cells,
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1.1. Motivation

which further is determined by a payoff matrix. Moran process is applied both on the

lower level (cell level) and the higher level (organism level). Defectors grow faster than

cooperators within an organism, while an organism containing more cooperators grows

faster than one containing fewer cooperators. Therefore, selection favours defectors on

the population of cell level (lower level), but cooperators on the organism level (higher

level). On the higher level, selection acts on the fecundity of organisms. Traulsen and

Nowak [2006] identified the conditions favouring cooperation by comparing the fixation

probabilities of cooperators ρC and defectors ρD. ρC is the probability that cooperators

takes over a population by introducing a single cooperator in a population consisting of

defectors and similarly for ρD. Selection at different levels in multicellularity has also

been considered in infinite populations [Roze et al., 2001]. Here the generations are non-

overlapping and a large number of offspring are produced at the same time and then

die. Selection on the higher level acts on the average fitness of populations. The average

fitness of a population is measured by its growth rate via matrix projection models, see

section (1.2.1).

Many questions related to hierarchical entities have been solved, such as the co-

operation problem [Nowak et al., 2004, Nowak, 2006a] and the single-cell reproduction

problem [Roze et al., 2001], but there remain many open questions related to multicel-

lular organisms. In multicellular organisms, the organism and the cells represent the

higher and the lower replicating units, respectively. The interactions between cells in an

organism affect the characteristics of the organism. The first intriguing question would

be the formation of multicellular organisms in the face of selfish cells (defectors). An

ensuing question is the reproduction problem after the formation of multicellular or-

ganisms. Roze et al. [2001] has compared vegetative reproduction and single-cell repro-

duction in multicellularity. Vegetative reproduction is an asexual reproduction, which

produces smaller organisms as offspring for an organism. Pichugin et al. [2017, 2019] in-

vestigated reproductive strategies in phenotypically homogeneous organisms. Then how

do cell interactions in heterogeneous organisms affect reproductive strategies? Further-

more, organisms evolve toward the direction possessing increased cell number, thus the

3



Chapter 1. Introduction

reproductive ability for each cell is challenging. Cell differentiation is inevitable for larger

organisms. The question then arises: to what extent can cell differentiation be maintained

by an organism? Moreover, under which conditions can extreme altruistic behaviour of

somatic cell differentiation emerge? The extreme altruistic behaviour of somatic cell dif-

ferentiation is the situation that the somatic cells only invest in the special task viability

and leave other tasks to other cells. As increases in complexity and diversity always

accompany increased organism sizes in evolution, how large can organisms be to main-

tain their internal developmental control? All the above questions lead us to think about

the competition between the lower replicating units and the higher replicating units in

phenotypically heterogeneous organisms.

1.2 Approaches

To investigate the questions mentioned above, I adopt three approaches, namely, the ex-

ponential growth of stage-structured populations, evolutionary game theory and stochastic

sampling. Here, I briefly introduce the conceptual frameworks and development of

these three approaches. Since organism (high entity) growth is considered in a density-

independent and rich environment, organisms follow exponential growth. Therefore, in

structured populations, I mainly focus on the exponential growth of populations. Under

this setting, a population’s performance can be quantitatively evaluated by its growth

rate, an approach I will present in the first subsection. To capture individual interac-

tions, I follow game-theoretical approaches developed in previous work, for example,

the work of Traulsen and Nowak [2006]. Evolutionary game theory has been frequently

used to investigate problems related to the emergence of cooperation, and the problems

of the robustness and the stability of a strategy. In this thesis, I am interested in the payoff

matrix which estimates the effects of individuals’ interactions. Thus, the game-theoretic

approach is conceptually used in this thesis and I will introduce it in the second subsec-

tion. Finally, in the stochastic sampling section, I focus on the Monte Carlo method to
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1.2. Approaches

obtain samples in high dimensional spaces.

1.2.1 Exponential growth rate in stage-structured population

In a stage-structured population, individuals are classified into different stages (for ex-

ample by age or size). The dynamic of individuals, i.e. the number and distribution of

individuals at the different stages is studied over time. Many individual-based models

have been introduced to describe the dynamics of a population in terms of its individual’s

behaviour. Among them, the matrix projection model is a commonly used tool to estim-

ate the asymptotical growth rate in a structured population [Caswell, 2001, Tuljapurkar

and Caswell, 1997]. It is conceptually the simplest method to describe population struc-

ture in discrete time and stages. Essentially, the matrix projection model records the

individual’s change at different stages over a fixed time (projection interval). The stages

can describe a life cycle by containing the transitions that an individual can make. For ex-

ample, in a population with three stages, the transitions between individuals at different

stages can be expressed in a life-cycle graph, see Fig. 1.1.

1 2 3
P1 P2

F2

F3

Figure 1.1: Life-cycle graph of a N-structured model with three age stages. The variable Pi are

the survival probabilities for individuals growing from state i to i+1, where i∈ {1,2}.
The variable Fi are the fertilities for individuals in state i, where i ∈ {2,3}.

The variable Pi are the survival probabilities to the next age class and the variable Fj

are the fertilities producing offspring in class 1. The transitions in a population with the
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Chapter 1. Introduction

life cycle in Fig. 1.1 can be described by the following equations

n1(t +1) = F2n2(t)+F3n3(t)

n2(t +1) = P1n1(t)

n3(t +1) = P2n2(t),

(1.2)

where ni(t) is the number of individuals being at state i at time t, and the unit of time is

the projection interval.

These difference equations can be written in a matrix form

n(t +1) = An(t), (1.3)

where

A =


0 F2 F3

P1 0 0

0 P2 0


and

n(t) =


n1(t)

n2(t)

n3(t)

 .
A is a population-projection matrix and n(t) is a stage-distribution vector. In matrix A,

ai j is the transition probability from the stage j to stage i, where i, j ∈ [1,3]. Depending on

the population itself, ai j could depend on size or time, which further classifies the matrix

model into three types: linear (constant-coefficient models A), nonlinear models (An) and

time-varying models (At).

To get the growth rate of a population, one needs to solve equation (1.3). In the long

run, the population grows exponentially. The population growth rate can be solved by
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1.2. Approaches

equation (1.4) with the ansatz,

n(t) = λ
tw. (1.4)

Together with equation (1.3), it leads to

λ
t+1w = λ

tAw, (1.5)

that is

(A−λ I)w = 0. (1.6)

To satisfy the existence of a nonzero solution for w, the following characteristic equation

must be satisfied

det(A−λ I) = 0. (1.7)

Thus, λ and w are the eigenvalues and eigenvectors of A, respectively. Eventually, the

leading eigenvalue describes the population growth rate. The corresponding eigenvector

of the leading eigenvalue gives the stable stage distribution of the population in the long

term run [Tuljapurkar and Caswell, 1997]. If the stage is equal to age, then the eigen-

vector of the largest eigenvalue represents a population pyramid, a graphical illustration

commonly used in demography.

Matrix projection models study population structures using a discrete set of stages.

Thus, one has to artificially choose stages when applying matrix projection models to

populations with continuous stage variables, such as mass or length. This artificial sub-

division in a population inevitably yields discretisation errors. To extend the trait variable

from a discrete one to a continuous one, Easterling et al. [2000] introduced the integral

projection model. In doing so, they use the continuous function for stage variables. In

the model, n(y, t) is the number of stage-y individual at time t, which is a continuous

function with respect to y. p(x,y) is the survival probability that an individual in stage x
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at time t is alive and in the stage interval (y,y+ dy) at time t + 1. f (x,y)dy is the number

of newborns at time t + 1 in the stage interval (y,y+ dy) per stage x individual alive at

time t. Instead of a matrix, they use a continuous function describing a surface to repres-

ent the survivorship (p(x,y)) and fecundities ( f (x,y)) in a kernel, which is denoted in the

following equation

n(y, t +1) =
∫

Ω

[p(x,y)+ f (x,y)]n(x, t)dx

=
∫

Ω

k(y,x)n(x, t)dx,
(1.8)

where the k(y,x) = p(x,y)+ f (x,y) is called kernel. Ellner and Rees [2006] extended the

integral projection model by incorporating complex demographic attributes (including

dormant and active life stages), where the population structure depends on several stages

(e.g., size and age). The demographic attributes and stages impact the function of p(x,y)

and f (x,y). Thus, equation (1.8) can be written in a more general form

ni(y, t +1) =
N

∑
j=1

∫
Ω j

ki j(y,x)n j(x, t)dx, (1.9)

where N is the total number of stage sets, possibly including discrete points and continu-

ous domains, and Ω j is the j-th of the N sets. The integral projection model is similar to

the matrix projection model in terms of calculating the growth rate and the stable stage

distribution of a population. The estimation of population growth rates of these two

models is similar, though they are different in evaluating the reproductive values and the

sensitivities of a population, see the details in [Easterling et al., 2000].

Finally, physiologically structured population models (PSP models) treat both states

and time as continuous variables. PSP models depict the changes of continuous popu-

lation distribution on a continuous-time basis using partial differential equations [Tul-

japurkar and Caswell, 1997, Chapter 6]. Next, I will introduce the basic ideas of PSP

models by partial differential equations. I will especially mention the following exten-

sion: allowing a population with multiple newborn stages, as it will be the case in our

8



1.2. Approaches

Table 1.1: The notations of equation (1.10)

Parameter Description

x Stage of individuals in a population

xb or xm The stage of an individual at birth or maturation

τ(Ec,x,xb) Growth time of an individual from xb to x

g(Ec,x) Growth rate with respect to the stage x in environment Ec

b(Ec,x) Reproduction rate with respect to the stage x in environment Ec

d(Ec,x) Death rate with respect to the stage x in environment Ec

Ec The environmental parameter, here is a constant vector

models.

In a constant environment and density-independent interactions among individuals,

a population either grows or declines exponentially. The population growth rate r is

captured by the following characteristic equation by using ansatz:

Π(Ec,r) =
∫ xm

xb

e−rτ(Ec,x,xb)
b(Ec,x)
g(Ec,x)

exp(−
∫ x

xb

d(Ec,ξ )

g(Ec,ξ )
dξ )dx = 1, (1.10)

where parameters are explained in Table (1.1), and only one newborn stage xb in this

model, see the detailed proof in [Tuljapurkar and Caswell, 1997, Chapter 6].

In age-structured models, since age a is both growth time τ(Ec,x,xb) and stage x,

therefore xb = 0, xm = ∞, g(Ec,x) = 1 and τ(Ec,x,xb) = a. Equation (1.10) can be simplified

into

∫
∞

0
e−rab(Ec,a)S(Ec,a)da = 1, (1.11)

which is the Lotka-Euler equation, where S(Ec,a) = exp(−∫ a
0 d(Ec,ζ )dζ ) is the survival

function. De Roos [2008] provided a similar computational approach as PSP models
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Chapter 1. Introduction

to calculate population growth rates. He extended the approach to allow individuals

having multiple newborn sizes, where the population can be calculated in the following

equation:

det(L(Am,r)− I) = 1, (1.12)

where

L(Am,r) =


L11(Am,r) L12(Am,r) · · · L1N(Am,r)

L21(Am,r) L22(Am,r) · · · L2,N(Am,r)
...

...
. . .

...

LN1(Am,r) LN2(Am,r) · · · LNN(Am,r),


and Li j(Am,r) =

∫ Am
0 erαb(α)S(α)dα is the cumulative number of offspring with size i at

birth produced by an individual that was born with size j. Here Am is the maximum age

of individuals and b(α) and S(α) are the birth rate and the survival probability at age α ,

respectively.

1.2.2 Evolutionary game theory

Evolutionary game theory is a mathematical approach, which uses game theory to solve

population problems in biology. It was originally introduced from the field of economy

and society [von Neumann and Morgenstern, 1944]. Evolutionary game theory was first

formally introduced by Maynard Smith and Price [1973] to measure the outcomes of con-

flicts between animals via different behavioural strategies in biology. Evolutionary games

use a matrix to estimate the outcome of interactions. The variable ai j of the matrix de-

termines the interaction outcome between the player i and the player j. The variable ai j

is referred to as a payoff. Initially, evolutionary games were confined to a pairwise game

with two players and two pure strategies. In a population, two individuals meet each

other at random and the consequences of their interaction are captured by their payoffs.

10
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Their payoffs determine their later reproductive success, called fitness. Individuals can

only take one strategy at a time, but they could have many rounds of interactions. The

outcome of each interaction is evaluated by a 2×2 payoff matrix. In a 2×2 payoff matrix,

the rows represent the different strategies of a focal player and the columns represent

the different strategies of a competitive player. The elements of the matrix represent the

payoffs of the focal player in different situations. For example, in a population with two

pure strategies; S1 and S2, each player’s payoff is captured by the matrix


S1 S2

S1 a b

S2 c d

,

where a player with strategy S1 gets a payoff a or b when interacting with another player

with strategy S1 and S2, respectively. Likewise, a player with strategy S2 gets a payoff c

or d when interacting with another player with strategy S1 and S2, respectively.

Many biological interactions can be incorporated in payoff matrices [Nowak and

Sigmund, 2004]. For example, when b < d < a < c and a > b+c
2 , the above payoff matrix

describes the prisoner’s dilemma game. In this scenario, the strategies are referred to as

cooperator (C) and defector (D). The payoff matrix is commonly written by the matrix


C D

C R S

D T P

.

If the pairs of interacting individuals are random and the same pair is not repeated, then

the defection is always the best strategy for an individual. But at the level of the pop-

ulation, cooperation is the optimal strategy, which leads to higher payoffs. Under this

situation, a population will end up with defectors [Axelrod and Hamilton, 1981]. But

in the iterated prisoner’s dilemma game, the outcome could be different depending on

model assumptions. Another example is the snowdrift game, where each player can get

a benefit b′ after digging out of a snowdrift. The digger will bear a cost c′. Digging snow

11
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is referred to as cooperative behaviour. The corresponding payoff matrix of the snowdrift

game is


C D

C b′− c′
2 b′− c′

D b′ 0

.

With the development of the evolutionary game theory, multiple players and strategies

have been considered [Diekmann, 1985] [Gokhale and Traulsen, 2014], such as the vo-

lunteer’s dilemma game and the “rock-scissors-paper” game. In a volunteer’s dilemma

game, each player chooses between cooperation (C) and defection (D). Cooperators can

voluntarily benefit all other players by paying a cost. Defectors wait for benefits from

other players. All players get a 0 payoff if they all defect or “free ride”. Here, I use b and

c to show the benefit and the cost, respectively. In a N-player volunteer’s dilemma game,

the payoff matrix is


0 1 2 . . . N−1

C b− c b− c b− c . . . b− c

D 0 b b . . . b

,

where b− c > 0 and N ≥ 2. The rows represent the strategies of a focal player and the

columns represent the number of volunteers among the rest of the players. The elements

of the matrix describe the payoffs of the focal player. If each cooperator gets the same

payoff, the game is referred to as a symmetric volunteer’s dilemma game. Later the situ-

ation of asymmetries in benefits or costs has also been considered in volunteer’s dilemma

games [Weesie, 1993]. There, cooperators have different payoffs depending on different

situations, such as the waiting time of cooperation.

Initially, evolutionary game theory focused on “unbeatable strategies” or “evolution-

arily stable strategies” [Hamilton, 1967] [Maynard Smith, 1982]. Unbeatable strategies are

the strategies, which will dominate all other invading strategies. Evolutionarily stable

strategies are the strategies that cannot be invaded or replaced by other strategies by
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natural selection in a population. ESS provides a useful method to evaluate biological in-

teractions. To seek the ESS at equilibrium states and examine their stabilities, Taylor and

Jonker [1978] have introduced dynamics to evolutionary game theory by applying differ-

ential equations. Subsequently, there was a growing number of research on the dynamics

of evolutionary game theory [Zeeman, 1980] [Hofbauer and Sigmund, 1998]. The replic-

ator dynamics describes the changes in strategy frequencies over time in a population.

Suppose that a population has n strategies. The interaction outcomes between players

with different strategies are depicted in a n×n matrix A = [ai j], where the ai j is the payoff

of the focal player when he plays i strategy and meets a player playing j strategy. If xi is

the frequency of the players playing strategy i in the population, then the expected pay-

off for the strategy i is fi = ∑
n
i=1 x jai j. The average payoff of all strategies is φ = ∑

n
i=1 xi fi.

Then the replicator equation is

ẋi = xi( fi−φ). (1.13)

We should notice that ∑
n
i=1 xi = 1, where i ∈ [1,n]. The replicator dynamics describes de-

terministic but frequency-dependent selection dynamics in infinite populations [Nowak

and Sigmund, 2004]. The evolution game has also been investigated in finite populations

[Thomas and Pohley, 1981] [Ficici and Pollack, 2000] [Nowak et al., 2004]. In this scenario,

people are interested in the fixation probability and fixation time of a mutant strategy in

a population of players with a resident strategy.

1.2.3 Stochastic sampling

When handling realistic problems, several variables implying a parameter space of high

dimensions often arise in complex mathematical models. An analytical analysis often be-

comes less realistic in presence of high-dimensional models. Thus, obtaining a numerical

solution becomes a central issue. Here the Monte Carlo method is introduced, and it is

used in this thesis to sample possible functional forms of models in high dimensional

spaces.
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Monte Carlo methods are computational algorithms that allow obtaining numerical

results by repeated random sampling. In a random process, the exact outcome cannot

be determined due to the intervention of random variables. Monte Carlo methods ap-

proximate the expected value of random variables by the sample mean based on the law

of large numbers. It is largely used in three main problems: sampling, estimation and

optimisation [Kroese et al., 2014].

To illustrate the usage of Monte Carlo methods, I show an example for approximat-

ing the constant π , which is defined as the ratio of a circle’s circumference to its diameter.

This example is related to Buffon’s Needle Problem. Buffon’s Needle Problem was first

introduced by Georges-Louis Leclerc, Comte de Buffon: “Suppose we have a floor made of

parallel strips of wood, each the same width, and we drop a needle onto the floor. What

is the probability that the needle will lie across a line between two strips?”

l

d

Figure 1.2: Schematic of Buffon’s Needle Problem. l is the length of a needle. d is the width of

strips, which are evenly spaced.

The probability is calculated in equation (1.14)

p =
∫

π

0

lsinθdθ

πd
= (

l
πd

)
∫

π

0
sinθdθ =

2l
πd

, (1.14)

where l is the length of the needle and d is the width of the strips [Ramaley, 1969], see

Fig. 1.2. The probability p can be obtained by the Monte Carlo method, by dropping a
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needle on the floor many times. Then we count the number of the needles crossing a

strip and compare with the total number of trials. Suppose n′ out of total n needles are

crossing lines, then P≈ n′
n . Then π ≈ 2ln

dn′ according to equation (1.14) .

1.3 Structure of this thesis

In Chapter 2, to investigate the effects of cellular interactions on multicellular organisms,

I consider organisms growing in stage-structured and infinite populations. The organ-

isms of each population contain two cell types. The cellular interactions between cell

types determine the growth rate of an organism. I apply evolutionary game theory to

describe the outcomes of cellular interactions. The two cell types are corresponding to

two strategies. Each daughter cells can switch to another cell type after cell divisions.

The cellular interactions are captured by a pairwise game. A payoff matrix describes

the outcomes of cellular interactions, which further determines the growth rate of organ-

isms. Our model is general enough to capture cellular interactions under a wide scope

of games. I consider that the payoff of a cell type depends linearly on its frequency in an

organism. I further assume that selection is weak. The weak selection assumption allows

us to linearise the characteristic equation of the transition matrix of a population. Fur-

thermore, it allows us to obtain analytical results of population growth rates. Populations

differ in the life cycles of their organisms. Each life cycle of organisms corresponds to a

reproductive strategy. I seek the optimal population, which has the largest growth rate.

The life cycle of organisms in the optimal population is the optimal life cycle. Our results

show that the formation of multicellular life cycles depends on the payoff of phenotyp-

ically homogeneous groups, the payoff of the phenotypically heterogeneous groups and

the payoff of the solitary cells (loners).

In chapter 3, I investigate the conditions favouring extreme altruism in multicellu-

larity. This extreme altruism shows that somatic cells only invest in viability. Two cell

types are considered: germ cells (defectors) and somatic cells (cooperators). The somatic
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cells are viewed as cooperators as they contribute to organism growth but lost their re-

productive abilities compared with germ cells. I build a stochastic model to capture the

development of a multicellular organism. The cell types can switch to each other ran-

domly after cell divisions. Each development trajectory is a development under a se-

quence of fixed probabilities. The probabilities describe the cell-type switching probabil-

ities between germ cells and somatic cells. Populations are different in their development

trajectories. Populations compete for growth, which is determined by the frequency of

somatic cells and the cell switching probabilities. The somatic cells provide benefits for

organism growth, which is proportional to its frequency. The cell switching probabilities

determine the differentiation costs indirectly. I assume that a general and flexible somatic

cells’ contribution from, which is embedded in a non-increasing function of growth time

depending on the frequency of somatic cells. To obtain the potential forms of somatic

cells’ contribution, I use Monte Carlo methods to sample many possible non-increasing

functions. Selection acts on population growth rates, that is the growth rate of a ran-

dom development trajectory. I calculate the numerical results by the expected growth

rate of a population with a unique trajectory, which is based on a large number of single

simulation runs. Our results show that irreversible somatic differentiation emerges un-

der the conditions of both somatic cells’ benefits and cell differentiation costs in larger

multicellular organisms.

In chapter 4, I investigate the evolution of reproductive strategies in multicellular

organisms. I take the same modelling framework as in Chapter 2, but extend the model

in terms of organism sizes and cellular interaction forms. I investigate the cellular in-

teractions in a non-linear and threshold-dependent form depending on cooperators in

an organism. I choose the functional forms of size effects in a general way. Similar to

the work in chapter 3, I use the Monte Carlo methods to sample all possible function

forms. For cellular interactions, organism growth depends on the minimum threshold

of the cooperator cell type. When the number of cooperators meets a given threshold,

an organism grows fast. I choose a volunteer dilemma game to demonstrate threshold

effects. Compared with the first work, I remove the weak selection constraint but explore
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a small cell-type switching rate. I extend multicellular life cycles to a larger set (with

maturity size 8 and totally 58 life cycles) compared with the first work (37 life cycles in

Chapter 2). The populations with different reproductive strategies compete for growth.

The reproductive strategy is optimal if its population has the largest growth rate. Our

results show that reproductive strategies can co-exist or dominate others under differ-

ent size and threshold conditions. Among the dominated reproductive strategies, only

the binary-splitting reproductive strategy can be the optimal and unique reproductive

strategy under either condition.

In chapter 5, I summarize the problems that are addressed in this thesis based on

Chapter 2, 3 and 4. I briefly reintroduce the models and methods that are used in this

thesis. And then, I discuss the significant results in each chapter and compare them with

previous work. For Chapter 2, I discuss the relationship between games and the life

cycles with a single-cell bottleneck. For Chapter 3, I highlight the connection between

the small percentage in the emergence of irreversible somatic differentiation (ISD) and

the observed cell differentiation of different species in reality. For Chapter 4, I discuss

the binary-splitting reproductive strategies and the cell-type switching probability. Fur-

thermore, alternative scenarios in terms of building models are considered, such as the

poor environment for organism growth, density-dependent growth, spatial structures

and special fragmentation preference. I give an outlook on how other methods and

models can be considered under different model assumptions to answer the questions

addressed in this thesis, which may inspire future research directions or studies.
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Chapter 2

Interacting cells driving the

evolution of multicellular life cycles

This the work in this chapter has undergone peer-review and has been published in the

journal of PLOS Computational Biology as: Gao, Traulsen, and Pichugin [2019]. Interacting

cells driving the evolution of multicellular life cycles. https://doi.org/10.1371/

journal.pcbi.1006987.

Abstract

Evolution of complex multicellular life began from the emergence of a life cycle involving

the formation of cell clusters. The opportunity for cells to interact within clusters provided

them with an advantage over unicellular life forms. However, what kind of interactions

may lead to the evolution of multicellular life cycles? Here, we combine evolutionary

game theory with a model for the emergence of multicellular groups to investigate how

cell interactions can influence reproduction modes during the early stages of the evolu-

tion of multicellularity. In our model, the presence of both cell types is maintained by

stochastic phenotype switching during cell division. We identify evolutionary optimal

life cycles as those which maximize the population growth rate. Among all interactions

captured by two-player games, the vast majority promotes two classes of life cycles: (i)

splitting into unicellular propagules or (ii) fragmentation into two offspring clusters of

equal (or almost equal) size. Our findings indicate that the three most important charac-

teristics, determining whether multicellular life cycles will evolve, are the average per-

formance of homogeneous groups, heterogeneous groups, and solitary cells.
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Author summary

Multicellular organisms are ubiquitous. But how did the first multicellular organisms

arise? It is typically argued that this occurred due to benefits coming from interactions

between cells. One example of such interactions is the division of labour. For instance,

colonial cyanobacteria delegate photosynthesis and nitrogen fixation to different cells

within the colony. In this way, the colony gains a growth advantage over unicellular

cyanobacteria. However, not all cell interactions favour multicellular life. Cheater cells

residing in a colony without any contribution will outgrow other cells. Then, the grow-

ing burden of cheaters may eventually destroy the colony. Here, we ask what kinds of

interactions promote the evolution of multicellularity? We investigated all interactions

captured by pairwise games and for each of them, we look for the evolutionarily optimal

life cycle: How big should the colony grow and how should it split into offspring cells

or colonies? We found that multicellularity can evolve with interactions far beyond co-

operation or division of labour scenarios. More surprisingly, most of the life cycles found

fall into either of two categories: A parent colony splits into two multicellular parts, or it

splits into multiple independent cells.

2.1 Introduction

The evolution of multicellular life cycles is one of the most challenging questions of

modern evolutionary biology. In the history of life, multicellular organisms have inde-

pendently originated at least 25 times from unicellular ancestors [Grosberg and Strath-

mann, 2007]. From the very beginning, multicellular life has been shaped by interac-

tions between different cells within heterogeneous groups [Okasha, 2006, Godfrey-Smith,

2009]. The role of these interactions in the emergence (or prevention) of multicellular-

ity is an open question. Recently, there has been a rising interest in the evolution of

life cycles including multicellular stages from both experimentalists [Rossetti et al., 2011,
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Ratcliff et al., 2012, 2013b,a, Hammerschmidt et al., 2014] and theoreticians [Rainey and

Kerr, 2010, Tarnita et al., 2013, Libby et al., 2014, De Monte and Rainey, 2014, Rashidi

et al., 2015, van Gestel and Tarnita, 2017, Pichugin et al., 2017]. Multicellular clusters can

emerge either as the result of clonal development (staying together in terms of [Tarnita

et al., 2013]) or by aggregation of cells and smaller clusters (coming together). In the

present study, we focus on competition between various “staying together” life cycles.

The life cycle that leads to the fastest population growth would eventually dominate the

population. We address how interactions between different cells within heterogeneous

groups affect the growth competition between unicellular and multicellular life cycles.

When interactions between different types of individuals within one group accelerate

growth, more complex forms of multicellularity are expected to evolve in the long run.

We design our study with two specific scenarios of interacting cells in mind: the

threat of free-riders in groups relying on cooperation and division of labour between

cells. The very first multicellular organisms are commonly suggested to be composed of

similar cells as suggested by fossils [Knoll, 1992, Tomitani et al., 2006] and experimental

studies [Ratcliff et al., 2012, 2013b,a]. Cooperation between cells in these early organisms

provided them benefits unavailable to solitary cells. However, free-riders gaining the

cooperation benefits without paying any costs have an evolutionary advantage over co-

operators, which in turn may violate the integrity of an organism [Hardin, 1968, Bonner,

1959, Rainey and Rainey, 2003a]. One of the most efficient ways of policing free-riders is

reproduction via single cell bottleneck, where an organism grows from a single cell. This

suggests that interactions between cooperators and free-riders promote group reproduc-

tion with unicellular propagules.

The second scenario where cell interactions might play a significant role emerges

once undifferentiated multicellularity has been established and cells begin to specialize

on various tasks. For example, consider filamentous cyanobacteria. During nitrogen de-

pletion, cells in the filaments occasionally differentiate into nitrogen-fixating heterocysts

that obtain sugars from neighbouring photosynthetic cells and, in turn, provide these
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cells with nitrogen. These heterocysts suffer a significant penalty to their own fitness,

but are essential to the survival of the colony as a whole [Flores and Herrero, 2010]. A

group reproduction mode preserving the necessary association between photosynthetic

and rare nitrogen fixating cells would contribute a lot to the sustainable growth of this

species. Naturally, the reproduction of cyanobacteria occurs by fragmenting the par-

ental filament into shorter multicellular chains through programmed cell death [Claessen

et al., 2014], so newly emerged multicellular colonies likely contain heterocysts and be-

nefit from the division of labour from the very beginning. This suggests that the division

of labour promotes group reproduction modes with multicellular offspring groups.

While there is no clear experimental evidence that the evolution of reproduction

modes can be influenced by the interaction between cells of different types, such a hy-

pothesis deserves close attention. There is a range of previous models investigating the

evolution of the division of labour [Gavrilets, 2010, Ispolatov et al., 2012, Rodrigues et al.,

2012, Cooper and West, 2018]. However, these models incorporate a single predeter-

mined reproduction mode, or a small hand-picked set of these. The evolution of cooper-

ation in early multicellularity gained more attention [Michod, 1997, Nowak, 2006a, van

Veelen, 2009]. Given that reproduction via single cell bottlenecks is a natural policing

mechanism, some aspects of the evolution of reproduction modes have been considered

before. Examples are the evolution of propagule size [Roze et al., 2001, Michod and Roze,

2001], as well as the comparison between the formation of cell clusters and unicellular life

[Kaveh et al., 2016]. However, the spectrum of possible interactions between cells goes

way beyond specific scenarios of cooperation and the division of labour, so this topic

remains largely unexplored.

In our study, we utilize the framework developed in [Pichugin et al., 2017], in which

a reproduction mode is considered as a way to partition the cells comprising the parent

group into two or more offspring groups. Since there is always a finite number of cells

in a reproducing group, there is a finite number of possibilities for group fragmenta-

tion. However, our previous study assumed homogeneous groups composed of a single
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cell type. Here, we investigate heterogeneous groups consisting of cells of two differ-

ent types. Groups grow in size by means of cell division (clonal development). Upon

each cell division, the cell type of newborn cells can stochastically change, so no pheno-

type can go completely extinct. To represent the wide spectrum of possible interactions

between two types, we use a game theory approach and focus on 2×2 games, i.e. games

in which two players with two strategies interact. The result of cell interactions are given

by payoff values derived from the payoff matrix of a given game. The payoff values af-

fect both the growth rate of the whole group as well as the different growth rates of cells

within the group. The combination of the game played in a group and the fragmentation

mode determines the population growth rate. By screening a wide range of fragment-

ation modes, we find the one providing the largest growth rate, which we consider to

be the evolutionarily optimal reproductive strategy for the given game, as it leads to the

fastest growth of biomass. Interestingly, when group growth is independent of the group

size, our model suggests that only eight life cycles can be evolutionarily optimal among

all possible 2×2 games.

2.2 Methods

We consider a group-structured population, where individuals of two phenotypes A and

B are nested into groups. These groups incrementally grow by one cell at a time and frag-

ment into smaller offspring groups upon reaching a critical size of M cells. For a given

group, the time between cell divisions depends only on the size of this group and its cell

composition. Thus, the growth of the group is independent of other groups and therefore

at the level of groups, the population growth is density independent. Therefore, in the

long run, the population converges to a stationary regime, characterized by exponential

growth at a rate we call λ . As populations employing different life cycles (different crit-

ical size and/or fragmentation mode) have different growth rates, the life cycle with the

largest growth rate λ will eventually take over the population.

22



2.2. Methods

Cell payoff and cell division

Interactions among cells in a group are captured by a pairwise game. The game is de-

termined by a 2×2 payoff matrix


A B

A a b

B c d

,

where A gets payoff a or b from interacting with A or B respectively, whereas B gets c or d

from A or B, respectively. The average payoffs are given by

α[i, j] =
(i−1)a+ jb

i+ j−1
,

β[i, j] =
ic+( j−1)d

i+ j−1
, (2.1)

where α[i, j] and β[i, j] are the average payoff of A type cells and B type cells in a group of

i A-cells and j B-cells, respectively (the −1 arises from the exclusion of self-interactions,

but such self interactions have only a minor influence on our results, see S6 Appendix).

Solitary cells do not play the game and their payoff is zero, so α[1,0] = β[0,1] = 0.

Once a cell division occurs, the probability of a cell to be chosen to divide increases

linearly with its fitness, P ∼ 1+wα if the cell is of type A, and P ∼ 1+wβ if the cell is of

type B, where w� 1 is the selection strength and the 1 measures the background fitness

identical for all cells. Therefore, the probabilities that the dividing cell will be of type A

or B under weak selection, w� 1, are

PA
[i, j] =

i(1+wα[i, j])

i(1+wα[i, j])+ j(1+wβ[i, j])
≈ i

i+ j
+w

i j
(i+ j)2 (α[i, j]−β[i, j]),

PB
[i, j] =

j(1+wβ[i, j])

i(1+wα[i, j])+ j(1+wβ[i, j])
≈ j

i+ j
−w

i j
(i+ j)2 (α[i, j]−β[i, j]), (2.2)

where PA
[i, j] is the probability that some cell of type A will be chosen to divide in a group

of i A-cells and j B-cells, and PB
[i, j] is the same for type B, so PA

[i, j]+PB
[i, j] = 1.
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Similarly, the time between two consecutive cell divisions depends linearly on the

average payoff in a group

t[i, j] = Ti+ j

(
1−w

iα[i, j]+ jβ[i, j]

i+ j

)
, (2.3)

where Ti+ j is the size dependent component of growth, and iα[i, j]+ jβ[i, j]
i+ j is an average payoff

of cells in a group.

In our model, both PA
[i, j], PB

[i, j] and t[i, j] are dependent on cell’s payoff. Cells with

larger payoff have a higher chance (P[i, j]) to reproduce, when the group grows incre-

mentally. Thus, also groups with larger average payoff grow faster. Otherwise, under

payoff-independent growth times (t[i, j] = Ti+ j), the group composition would have no ef-

fect on the group growth. Consequently, in such a case the evolution of life cycles is

driven by group size alone, a scenario which we investigated in previous work [Pichugin

et al., 2017]. In other words, selection acts on the cell level via Pi j and selection acts on the

group level via t[i, j].

When a cell divides, each of the two daughter cells may independently change their

type with probability m. Thus, the daughter cells of an A cell are either two A-cells with

probability (1−m)2, or one A and one B cell with probability 2m(1−m), or two B-cells

with probability m2.

Once the group reaches the critical group size M, it immediately fragments into smal-

ler pieces and all cells are randomly assigned to offspring groups. The life cycle is determ-

ined by the critical size M and the sizes of offspring groups. For instance, at M = 3, there

are two possible life cycles: either split into three solitary cells (life cycle 1+1+1), or into

a solitary cell and bi-cellular group (life cycle 2+1). For M = 4, there are four possible

life cycles: 3+1, 2+2, 2+1+1 and 1+1+1+1. Below, we refer to different life cycles using

partitions of integer numbers.
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Population growth rate

We assume that the population can grow without any bounds. For our model, the density

of groups follows a linear differential equation and growth is exponential [Pichugin et al.,

2017]. Our goal here is to find the overall population growth rate λ .

To do so, we need to take into account the stochastic nature of group development

in our model. There are three sources of stochasticity: (i) the choice of the cell to divide,

(ii) the phenotype of daughter cells after cell division, and (iii) the assignment of cells to

offspring groups at group fragmentation. As a consequence, groups are born different:

a newborn bi-cellular group may consist of two A-cells, one A cell and one B cell, or two

B-cells. Also, due to the randomness in outcomes of individual cell divisions, initially

identical groups may follow different developmental trajectories during their growth,

where by “developmental trajectory”, we mean the record of all choices made among

possible alternatives during the group growth.

Fortunately, the number of newborn states and the cell composition after each divi-

sion is finite, see Fig 2.1. Therefore, for any life cycle, we take all possible developmental

trajectories into account. For an arbitrary life cycle, each group is born as one of S initial

types, which we enumerate as (1,2, · · · ,S). For each available developmental trajectory τ ,

we designate the initial state of the trajectory as i(τ), the probability that a group born at

initial state k will follow the trajectory as pk(τ) (such that pk(τ) = 0, if k 6= i(τ)), the time

necessary to complete the trajectory as T (τ), and the vector of numbers of each offspring

type produced at the end of the trajectory as N(τ) = (N1,N2, · · · ,NS).

The growth rate of population λ is given by the solution of the equation (Appendix 2.4.1)

det(Q− I) = 0, (2.4)

where I is the identity matrix and Q is a matrix in which

Qi, j(λ ) = ∑
τ

pi(τ)N j(τ)e−λT (τ) (2.5)
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is the contribution of groups born as type i to the production of newborn groups of type

j, see also [De Roos, 2008].
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Figure 2.1: The number of developmental trajectories is finite. Here we show the full set

of all 20 developmental trajectories (τ) in the life cycle 1+1+1, where groups

are born unicellular, then grow up to size three and immediately split into

independent cells. This life cycle features only two initial states S: solitary

A-cell (open circles) and solitary B-cell (black circles). Stochastic phenotype

switching creates 10 possible developmental trajectories for each initial state.

To shorten the notation, we use n = 1−m for the probability of a daughter cell

to have the same phenotype as the mother cell.
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2.3 Results

Our model allows us to calculate the growth rate of any given life cycle provided the

elements of the payoff matrix (a,b,c,d), the phenotype switching probability m, and the

profile of the size-dependent component of development time (Ti+ j). Here, we focus

on life cycles having the largest λ , as these will be the winners of evolutionary growth

competition.

In our study, we assume that in the absence of interactions (w = 0), all life cycles

share the same population growth rate i.e. all cells divide independently at the same rate.

This assumption ensures that growth rates are exclusively determined by cell interactions

alone. For this, the time of doubling of the group size must be the same for groups of any

size, i.e. we need to satisfy Ti = ln
( i+1

i

)
. Only then, the time to grow from size k to 2k is

independent of k: ∑
2k−1
i=k Ti = ln

(
(k+1)·...·(2k)
k·...·(2k−1)

)
= ln(2). As we show in Appendix 2.4.2, at w =

0 this leads to the same population growth rate λ = 1 for all life cycles. We also considered

other developmental time profiles at w = 0 and the results of our model are similar to our

previous investigation of life cycles of homogeneous groups [Pichugin et al., 2017], see

Appendix 2.4.3.

Under weak selection, the growth rate of the population with an arbitrary life cycle

κ can be approximated by λ ≈ 1+wλ ′κ . The expression for λ ′κ can be obtained from a

linearisation of Eq. (2.4) with respect to w. Since the payoffs a,b,c,d always come into

play with a factor w (see Eqs. (2.2), (2.3)), λ ′κ is also linear in these payoffs. The dynamics

of the population as a whole does not change if we exchange the two cell types A ↔ B

and the corresponding payoff values a↔ d, b↔ c. Thus, a and d contribute to λ ′κ with

the same weight and the same is true for b and c. Therefore, λ ′κ can be presented as a

function of only three parameters: m, ψ = a+ d and φ = b+c
|a+d| . The parameter ψ can be

interpreted as whether the formation of a homogeneous group is beneficial to the cell

(ψ > 0) or not (ψ < 0), compared to a solitary cell. The value of φ is the benefit of in-

teractions between cells of different types compared to interactions between cells of the
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same type. The parameter φ can also be interpreted as the benefit from the formation of

a heterogeneous group compared to the formation of a homogeneous group. In a broad

sense, φ captures how well groups of mixed composition perform against pure groups.

The details of the calculation of λ ′κ can be found in Appendix 2.4.4.

M=4

1+1+1+1
2+1+1
3+1
2+2

1+1+1+1+1
2+1+1+1
2+2+1
3+1+1
4+1
3+2

1+1+1+1+1+1
2+1+1+1+1
2+2+1+1
3+1+1+1
3+2+1
4+1+1
2+2+2
5+1
3+3
4+2

1+1+1+1+1+1+1
2+1+1+1+1+1
2+2+1+1+1
3+1+1+1+1
2+2+2+1
3+2+1+1
4+1+1+1
3+2+2
4+2+1
5+1+1
3+3+1
6+1
5+2
4+3

M=5 M=6 M=7M=3

1+1+1
2+1

M=2

1+1

Figure 2.2: The list of all life cycles with critical sizes M ≤ 7. The coloured life cycles are

those found to be evolutionarily optimal for some combination of the con-

trol parameters m, ψ and φ . Most life cycles were never found to be optimal.

Among 24 life cycles corresponding to the two largest critical sizes M = 6 and

M = 7, only one is found to be evolutionary optimal – 4+3.

We numerically investigated the optimality of life cycles with fragmentation size M

up to 7. In total, there are 37 such life cycles, see Fig 2.2. To illustrate the results of our

approach, we begin from presentation of evolutionary optimal life cycles for the specific

case of a Prisoner’s dilemma. Consider a game with payoff matrix


A B

A 1 −3

B c 0

.
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For c between 1 and 5, this game is a Prisoner’s dilemma. For this payoff matrix, ψ =

1 and φ = c− 3. Additionally, we set the phenotype switching probability to m = 0.5.

Among 37 considered life cycles, only three life cycles 1+1, 2+2, and 4+3 are found to be

optimal in this case, see Fig 2.3. When the temptation to defect c is low, the best life cycle

is unicellular, as the main outcome of the emergence of defectors is merely the harm to

cooperators. With an increase of the temptation to defect c, the payoff of a heterogeneous

group increases. Then, the benefits of occurring in a homogeneous group compensate

the risks of occurring in a heterogeneous one. Consequently, the life cycle 2+2 becomes

optimal starting from c = 2 (φ = −1). Finally, at large c, heterogeneous groups gain a

larger average payoff than homogeneous groups, so the life cycle 4+3 becomes optimal

at c > 4 (φ > 1).

1+1 2+2 4+3

+

+

+

 
1 �3

c 0

!

Figure 2.3: Life cycles driven by a Prisoner’s Dilemma game. For c < 2, unicellular

life cycles are optimal, as they avoid the fitness costs of heterogenous groups.

For 2 < c < 4, the benefits of occurring in a homogeneous group compensate

the risks of occurring in a heterogeneous one and the life cycle 2+2 becomes

optimal. Finally, for c > 4, heterogeneous groups gain a larger average payoff

than homogeneous groups, so the life cycle 4+3 becomes optimal. Note that

the sketches of life cycles are only examples, as any distribution into black and

white cells is possible (parameter values m = 0.5, a = 1, b =−3, d = 0, such that

ψ > 0 and φ = c−3).
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Next, we proceed to the general game with arbitrary choice of each of the three

control parameters ψ , φ and m. We now search for the optimal life cycle among all 37

life cycles with M ≤ 7. Only eight of these life cycles were found to be evolutionarily

optimal for any combination of control parameters, see Fig 2.4. These life cycles fall into

one of three categories: fission into multiple unicellular offspring (1+1, 1+1+1, 1+1+1+1,

and 1+1+1+1+1); binary fragmentation with group propagules (2+2 and 4+3); and the

rarely observed transition between the previous two classes (2+1 and 2+1+1).

The observed set of life cycles is affected by the limit of the maximal group size,

which is only 7 cells. However, among these eight, only the life cycle 4+3 reflects this

limit. While for our methods it remains a challenge to investigate life cycles of larger

groups, a clear pattern appears when we decrease the group size limit. If the group size

is limited to M ≤ 5, the life cycle 4+3 is unavailable but the life cycle 3+2 is evolutionary

optimal, instead. Extending the size limit to M ≤ 6, that life cycle is replaced by 3+3,

and finally at M ≤ 7, the life cycle 4+3 takes this place. These life cycles are likely the

manifestation of the more general rule “grow as large as possible and divide into two

equal or almost equal parts”. Thus, for any maximal group size, we suspect that there

will be only eight evolutionary optimal life cycles, seven of which fragment at sizes five

or smaller, and the eighth life cycle is the equal split at the maximal size.

We break the remaining analysis of our results into two parts. First, we consider

specific life cycles and outline the conditions which promote their evolution. Then, we

take the opposite direction and focus on specific games to investigate which life cycles

are promoted by them.

2.3.1 Games promoting a given life cycle

First, we examine the optimal life cycles for negative a+ d (ψ < 0), in which homogen-

eous groups are in adverse conditions in the first place, see Fig 2.4D. Consequently, one

of two life cycles found here is 1+1 – unicellularity, at which groups are not formed at

all. Still, if φ is sufficiently large, the highest growth rate is obtained by heterogeneous
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groups. Then, evolutionary growth competition favours life cycles minimizing the frac-

tion of homogeneous groups in the population. Due to the random partitioning of cells

into offspring groups, smaller offspring have larger chances to accumulate cells of only

one type during fragmentation. Thus, growth competition would likely promote larger

offspring size to avoid such outcomes. If so, the optimal life cycle must be the frag-

mentation into two equal-sized (or nearly equal-sized) offspring groups at the maximal

available size (4+3 in our case). Next, we focus on the more complex case of ψ > 0, see

Fig 2.4A.

When φ > 1, the life cycle 4+3 is evolutionarily optimal. At these values of φ , all

groups have an advantage over solitary cells, but heterogeneous groups profit more than

homogeneous ones. Therefore, growth competition favours life cycles avoiding produc-

tion of independent cells and minimizing the fraction of homogeneous groups in the

population, i.e. an equal binary split at the maximal size. Note that at φ = 1, where

a+d = b+c (equal gains from switching), there are no benefit differences between homo-

geneous and heterogeneous groups. As a consequence, all life cycles with multicellular

offspring have the same growth rate there, see Fig 2.4B. The popular case of constant se-

lection, where one type is always better off than or at least equally good as the other one,

can be modelled by a = b and c = d. This implies φ = 1, and leads to the same life cycles

as the more general case of equal gains from switching.

For 0 < φ < 1, 2+2 is the optimal life cycle. Here, all groups have an advantage over

solitary cells, but homogeneous groups benefit more than heterogeneous ones. Therefore,

growth competition would likely promote life cycles maximising the fraction of homo-

geneous groups in a population. First, this means producing the smallest multicellular

offspring (bicellular groups) to eliminate parental heterogeneity in offspring. Second, the

fragmentation has to be performed at the smallest size to minimize the risk of gaining

heterogeneity in groups due to a spontaneous phenotype switch during growth. For the

bi-cellular offspring, the smallest fragmentation size is four cells, therefore, the best life

cycle must be 2+2. Interestingly, if m is small enough, the 2+2 life cycle can be optimal un-

31



Chapter 2. Interacting cells driving the evolution of multicellular life cycles

der arbitrary large negative φ , see Fig 2.4A, C. There, while heterogeneous groups have a

strong disadvantage, chances of the phenotype switch to occur are low and homogeneity

of groups is generally preserved.

At φ < 0, the emergence of another cell type in homogeneous groups incurs a penalty

on the group growth. To avoid the production of heterogeneous groups, growth compet-

ition is likely to promote life cycles involving dispersal into independent cells, such that

each newborn group starts in a homogeneous state.

When φ < 0 and m is high enough, heterogeneous groups are likely to form after

the very first cell division. In this case, 1+1 is favoured as it does not involve any group

formation at all. However, once m approaches zero, the first few cell divisions performed

by initially solitary cell will likely produce a homogeneous group. Thus, multicellular life

cycles with fission into independent cells are favoured: 1+1+1, 1+1+1+1, and 1+1+1+1+1,

see Fig 2.4C and Fig 2.7 in Appendix 2.4.5. Larger fragmentation sizes, first 3, 4, and

then 5, become optimal with decreasing m. However, fission at size 6 was never found

to be optimal, because at this stage, the production of multicellular offspring becomes

beneficial, despite the risk of transferring parent heterogeneity into the next generation.

Transitional life cycles 2+1 and 2+1+1 are found to be optimal between areas of op-

timality of multiple fission life cycles (1+...+1) and multicellular offspring life cycles (2+2

and 4+3), see Fig 2.4C. These two life cycles mix unicellular and multicellular offspring.

This may be a result of a compromise between producing multicellular offspring to fully

utilize benefits of interactions in homogeneous groups, and the necessity to fragment into

independent cells to purge emerging heterogeneous groups.
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Figure 2.4: Only eight life cycles are evolutionarily optimal under weak selection for all

2× 2 games. Panel A: Optimal life cycles for ψ > 0. Dashed lines are φ = −1

and φ = 1. Panel B: Enlargement of the area of large phenotype switching

rate m > 0.5 and φ ≈ 1. In a small region within this area, the life cycle 2+1

emerges. Panel C: Enlargement of the area of small phenotype switching rate

m� 1, where a large diversity of life cycles is observed, including the rare life

cycle 2+1+1. Panel D: For ψ < 0, only two life cycles are optimal. The dashed

line is φ = 1. 33
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2.3.2 Life cycles promoted by prominent games

The most prominent game in the context of evolutionary game theory is the Prisoner’s

dilemma [Weibull, 1995, Nowak, 2006a, Pacheco et al., 2009, Hilbe et al., 2013]. In the

simplest form of the Prisoner’s dilemma, the donation game, each player may pay some

cost c̃, so that the opposing player will receive a benefit b̃ (larger than the cost). The co-

operating strategy is to pay the cost, while the defecting strategy is to abstain from paying

this cost (but still receive incoming benefits). The largest combined payoff is achieved by

both players cooperating, while the individual’s payoff resulting from defecting beha-

viour is always larger than payoff from mutual cooperation. The conflict between an

individual’s and group’s interests makes this game a social dilemma.

The payoff matrix of the simplest Prisoner’s dilemma is given by

a b

c d

=

b̃− c̃ −c̃

b̃ 0

 .

With these payoffs, ψ = b̃− c̃ > 0 and φ = b̃−c̃
b̃−c̃

= 1. Surprisingly, this game exhibits a

special behaviour in our model: any life cycle which does not pass through the unicellu-

lar stage (e.g. 3+2+2) is evolutionarily optimal, independently of the phenotype switch

probability m (i.e. risk of defector emergence). Contrary to our intuition, cooperative cell

interactions described by the Prisoner’s dilemma promote everything except reproduc-

tion via the single cell bottleneck. This is due to the fact that in a group with at least one

cooperator, some benefit is already produced and shared across the group. Thus, pre-

serving group living is more advantageous for the population than producing single cell

propagules.

Other notable social dilemmas are the snowdrift game and the stag hunt game. In

the snowdrift game, a combined cost c̃ must be paid for the benefit b̃ to be received by

each player. Cooperators readily pay their share of the costs, while defectors abstain from

paying it. The payoff matrix of the snowdrift game is
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a b

c d

=

b̃− c̃/2 b̃− c̃

b̃ 0

 . (2.6)

This results in ψ = b̃− c̃/2 > 0 and φ = 2b̃−c̃
b̃−c̃/2

= 2. According to our findings, these para-

meters promote the life cycle 4+3, or, more generally, equal binary fragmentation at the

maximal possible size, which ensure heterogeneous groups that maximize the combined

payoff.

In the stag hunt game, players may pursue a hare – small prey providing payoff h,

or a stag – large prey giving payoff s > h. A hare hunt is always successful, but only both

hunters together can hunt down a stag. The payoff matrix of the stag hunt game isa b

c d

=

s 0

h h

 . (2.7)

This results in ψ = s+ h > 0 and φ = h
s+h < 1

2 . These parameters promote the life cycle

2+2. In contrast to the Prisoner’s dilemma and snowdrift games, in the stag hunt game a

group of mixed composition has the smallest combined payoff (which is still larger than

zero payoff for solitary cells for our choice of parameters). Therefore, the stag hunt game

strongly favours a life cycle preserving homogeneity of groups, i.e. 2+2.

Many other evolutionary games have been studied and applied in a wide variety of

biological situations [Maynard Smith, 1982, Hofbauer and Sigmund, 1998, Nowak and

Sigmund, 2004, Broom and Rychtář, 2013]. For the case of 2× 2 games, in a large well-

mixed population of players, three classes of evolutionary dynamics are possible: dom-

inance of one strategy (a > c, b > d or a < c, b < d), bistability (a > c, b < d) or coexistence

(a < c, b > d) [Weibull, 1995, Nowak, 2006b].

All games experiencing a bistability (such as the stag hunt game) have φ < sign(ψ).

According to our results, for positive ψ , bistability games can promote 7 out of 8 found

life cycles: equal binary split at the maximal size (4+3) never leads to the fastest growth
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rate. For negative ψ , bistability games only lead to a unicellular life cycle (1+1). Games

featuring coexistence dynamics (such as the snowdrift game) satisfy φ > sign(ψ), which

restricts the optimal life cycle to 4+3 under ψ > 0 but allows both 1+1 and 4+3 under

ψ < 0. Dominance games (such as the Prisoner’s dilemma) may have any value φ , so

they can promote any of the 8 found life cycles.

Discussion

In our study we performed an extensive investigation of the competition of life cycles

driven by interactions between cells within in a group. Key to this study is the consider-

ation of all possible reproduction modes and all possible interactions captured by game

theoretic 2× 2 payoff matrices. Among the huge variety of reproduction modes, only

eight were found to be evolutionarily optimal, see Fig 2.2 and Fig 2.4. Moreover, the

vast majority of games promotes either of two very specific classes of life cycles: frag-

mentation into strictly unicellular offspring (1+...+1) or production of exactly two strictly

multicellular daughter groups of identical (or almost identical) size. Intuitively, life cycles

with unicellular offspring should be promoted when the cells grow fastest in a homogen-

eous group, as the single cell bottleneck eliminates heterogeneity in the most effective

way. Similarly, when the cells grow fastest in a heterogeneous group, life cycles with

multicellular offspring should be promoted as they are best at preserving heterogeneity.

Our results, in general, support this intuition. However, the current work reveals a much

broader picture and we observed a number of less intuitive features of life cycle evolution

driven by cell interactions. First, we observed the transition between these two major life

cycles classes. This occurs via transitional life cycles mixing unicellular and multicellular

offspring (such as 2+1 and 2+1+1), see Fig 2.4C. Second, we found that if being in a het-

erogeneous groups incurs a moderate penalty onto the cell, growth competition may still

promote the life cycle with only multicellular offspring (2+2), even at high rates of phen-

otype switching (m), see Fig 2.4A. Third, an arbitrary strong penalty to heterogeneous
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groups (φ < 0), may still lead to the evolution of life cycles with multicellular offspring

(2+2) given small enough m, see Fig 2.4A, C. Altogether, even with only eight life cycles

observed, our model exhibits a rich behaviour and gives insights into factors shaping the

evolution of life cycles.

We found that social dilemma games may not promote the evolution of single cell

bottlenecks. A naive intuition suggest life cycles with unicellular offspring to be favoured

by all social dilemmas, as a single cell bottleneck is an effective way to police defectors.

However, social dilemmas may lead to the evolution of any of the eight life cycles. What

would be the reason for such a counter-intuitive outcome?

A key difference between our approach and the most of studies utilizing evolution-

ary game theory is that while we allow the competition between different cell types (by

means of different division probabilities PA and PB), winning in such a competition is

not in the focus of our attention. We consider both cell types as essential components of

group development. This is in line with the previous idea of [Rainey and Kerr, 2010] that

cheaters may play a significant role in the evolution of life cycles in early multicellularity.

Embracing this approach, we acknowledge that life cycles showing the largest popula-

tion growth rates are not necessarily the best in keeping cheaters out. Our results show

that for evolution to favour single cell bottlenecks, a group mixing cooperators and de-

fectors should have lower average fitness than an equivalent pack of independent cells.

Otherwise, life cycles with multicellular offspring will be promoted.

This leads to a second key feature of our model: the role of solitary cells. Inde-

pendent cells stand out as they have no other cell to interact with and, thus, do not

play a game. As such, they serve as a benchmark of the cell behaviour, against which

all other group compositions are compared. Our results indicate that optimality of life

cycles strongly depends on whether a (homogeneous) group formation is beneficial or

deleterious compared to a solitary cell, see Fig 2.4 A and D, respectively. For the Pris-

oner’s dilemma game, a combination of a single cooperator and single defector, indeed

harm the cooperator the most. However, the overall payoff to the group (b̃− c̃ > 0) is still
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larger than the zero cumulative payoff these cells would obtain if separated. Thus, the

Prisoner’s dilemma promotes the production of the multicellular offspring in our model.

The opportunity to abstain from the game (loner strategy)[Hauert et al., 2002, Fowler,

2005, Brandt et al., 2006, Hauert et al., 2007, Traulsen et al., 2009, Garcı́a and Traulsen,

2012] is often viewed as a component of the secondary importance in evolutionary game

theory models, despite its potential impact on microbial dynamics [Garcia et al., 2014,

2015]. For the evolution of life cycles, such an opportunity plays a central role. For any

life cycle producing unicellular offspring, each member of the population passes through

a developmental stage without any interaction. Also, an ultimate loner strategy, where

no game is ever played, is implemented by the unicellular life cycle, which is the most

basic and one of the most important reproduction modes. If we allow self-interactions,

the optimality of life cycles changes insignificantly (see Appendix 2.4.6) and even fewer

life cycles, only five, can be optimal in this case.

The interplay between cell interactions and life cycles has been considered in pre-

vious studies. [Roze et al., 2001] compared the growth rate of two reproductive modes:

a spore reproducer (multiple fission life cycles in our terms) and the fragmentation into

same sized offspring groups. Based on the fitness effects from the colony size, they in-

vestigated the question which life cycle is good at eliminating mutations deleterious at

the colony level.

An explicit connection between fragmentation modes and games played within the

group was first made by [Kaveh et al., 2016]. There, authors focused on fragmentation

modes in a form x + 1, and explicitly considered the 2+1 life cycle. Being focused on

cooperation rather than evolution of life cycles, they discussed conditions promoting the

evolution of cooperation.

The results of our model can be directly compared with our previous findings in

[Pichugin et al., 2017] and [Pichugin and Traulsen, 2020], which considered the evolution

of life cycles in homogeneous groups. There, for costless fragmentation (as in the present

study), only binary fragmentation modes (i.e. in a form x+ y) can be evolutionarily op-

38



2.3. Results

timal. Once reproduction incurs a cost, fragmentation into multiple parts may evolve, but

still some fragmentation modes remain “forbidden”, i.e. they cannot evolve under any

fitness landscape (Ti in our terms). The set of evolutionarily optimal life cycles found in

the current study is significantly different from the sets described above. Fragmentation

in our model is costless, and yet we found that fragmentation into multiple parts may

evolve due to the impact of cell interactions. Also, the life cycle 2+1+1, which may evolve

in our model, belongs to the class of “forbidden” life cycles under costly reproduction,

so it cannot evolve among homogeneous groups at all. Thus, the introduction of het-

erogeneity and interactions between different cell types make it possible for previously

unattainable life cycles to evolve.

In our work, we adopted the minimal setup of the heterogeneous groups - colon-

ies with two cell types. The model can be extended by considering a larger number of

cell types to model more developed organisms. In such a hypothetical model, the payoff

matrix is larger than 2 by 2. Consequently, the set of control parameters is larger than just

(φ ,ψ) as in the current study, so the complete analysis will be significantly more com-

plex. Additionally, more types will require more sophisticated methods of phenotype

switching than the single phenotype switching probability m. Naturally, in complex mul-

ticellular organisms, the phenotypes of cells are determined by developmental programs

of the organism, which might be very complex.

In our model, we consider groups as a well mixed collection of cells, where an inter-

action between any two cells are equally likely. However, natural and experimental mul-

ticellular clusters generally have a specific geometry. For example, the multicellularity

formed by Saccharomyces cerevisiae after selection has a roughly spherical snowflake-like

shape, in which the central cells have a 76% frequency of death compared to random cell

death with a probability of 6% [Ratcliff et al., 2012]. In this snowflake-like group, central

cells have more neighbours and they may have a stronger influence on cell interactions

than other cells within a group. As we have shown that the interactions between cells

have an impact on life cycle evolution, so must have the geometry of the group as well.
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However, these geometric considerations will lead to models far more complex than ours.

It is a challenging question how the interactions between different cells within an or-

ganism shape its reproduction mode. The present study demonstrates that this topic can

be addressed systematically. To do so, we combine evolutionary game theory with the

theory of life cycles in simple multicellular organisms. Game theory is able to capture ar-

bitrary pairwise interactions by a payoff matrix. At the same time, the theory of life cycles

represents an arbitrary reproduction mode by the partition of an integer number. These

two general frameworks naturally complement each other and allow holistic investiga-

tion of life cycles of organisms with heterogeneous composition, where it is impossible

to evaluate the evolution of one factor neglecting another.
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2.4 Supporting information

2.4.1 Population growth rate in the case of stochastic developmental

programs

Consider a population in which each group emerges as one of S initial types. These types

could be the newborn groups of different size and/or composition. With time passing,

a group grows from its initial size to maturity and subsequent fragmentation. The set of

growth events (cells divisions, mutations, etc) may vary from group to group. We call

such an event chain “developmental trajectory” and designate it as τ . Any two groups of

the same initial type may adopt different developmental trajectories for a number of reas-

ons, such as mutations, stochastic developmental programs, or different environmental

conditions. We use the following parameters of the developmental trajectory: i(τ) – the

initial state of the group leading to the given developmental trajectory, pk(τ) – the probab-

ility that a group that emerged as initial type k will follow the trajectory τ , so pk(τ) = 0, if

k 6= i(τ), T (τ) – the time necessary to the newborn group to complete the trajectory τ and

N(τ) = (N1,N2, · · · ,NS) – the vector of numbers of each offspring type produced during

the fragmentation at the end of the trajectory τ .

The population features an explicit maturation component: a newborn group does

not reproduce until time T (τ) has passed. Thus, to describe the population dynamics and

find the population growth rate λ , it is necessary to consider the population demography.

To do so, we characterize each group at each moment of time by the age parameter η . We

define the age in a way that the newborn group has η = 0, while the group that reached

the end of the developmental trajectory and is about to fragment has η = 1. Along the

trajectory, the age increases at a constant rate equal to 1
T (τ) , i.e. the rate of ageing differs

between different trajectories.

From the perspective of the population dynamics, any two groups sharing the same

developmental trajectory τ and age η are identical. Thus, the state of the whole popula-
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tion can be described by the density function ζ (τ,η , t), which shows how many groups

on the developmental trajectory τ have age η at the given time t. In the stationary regime,

where the fraction of groups of each type stays constant, the density function grows ex-

ponentially,

ζ (τ,η , t) = ρ(τ,η)eλ t , (2.8)

where ρ(τ,η) is the stationary density distribution of groups in a population.

Within a given developmental trajectory, ageing occurs at the same rate for all groups.

Therefore, the dynamics of the density function at a given age η is determined by the bal-

ance between influx of maturing younger groups and the outflux of groups becoming too

old. Both processes occur with the same rate 1
T (τ) , thus the density function must satisfy

the transport equation

∂ζ

∂ t
=− 1

T (τ)
∂ζ

∂η
. (2.9)

Combining Eqs. (2.8) and (2.9) we get

λρ =− 1
T (τ)

∂ρ

∂η

The solution of this equation is

ρ(τ,η) = ρ0(τ)e−λT (τ)η , (2.10)

where ρ0(τ) is the stationary density distribution of newborn groups with η = 0.

To find ρ0(τ), we use the fact that each newborn organism is produced as a result

of the fragmentation of some mature organism. Thus, the rate of emergence of newborn

organisms in the population ( j0) is the same as the rate of production of offspring in the

course of reproduction of mature organisms ( j1).

For any developmental trajectory τ , the rate of entering into the newborn state per
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time unit is equal to

j0(τ) =
ζ (τ,0, t)

T (τ)
, (2.11)

where the right hand side of the equation is the product of the number of newborn groups

and the rate of ageing. The number of offspring with developmental trajectory τ is equal

to the product of the total number of offspring of type i(τ) produced by all mature organ-

isms and the probability of the offspring to adopt this developmental trajectory (pi(τ)(τ))

j1(τ) = pi(τ)(τ)∑
τ ′

Ni(τ)(τ
′)

T (τ ′)
ζ (τ ′,1, t), (2.12)

where summation is performed over all possible developmental trajectories of parent

groups.

Since each produced propagule is a newborn organism, j0(τ) = j1(τ). Therefore,

ρ0(τ)

T (τ)
= pi(τ)(τ)∑

τ ′

Ni(τ)(τ
′)

T (τ ′)
ρ0(τ

′)e−λT (τ ′). (2.13)

To obtain the expression connecting the population growth rate λ with parameters of

developmental trajectories τ , we multiply both parts by N j(τ)e−λT (τ) (note that in general

j 6= i(τ)) and sum over all possible developmental trajectories

∑
τ

N j(τ)

T (τ)
ρ0(τ)e−λT (τ) = ∑

τ

pi(τ)(τ)N j(τ)e−λT (τ)

(
∑
τ ′

Ni(τ)(τ
′)

T (τ ′)
ρ0(τ

′)e−λT (τ ′)

)
. (2.14)

We define

Xi = ∑
τ

Ni(τ)

T (τ)
ρ0(τ)e−λT (τ) (2.15)

Qi, j = ∑
τ

pi(τ)N j(τ)e−λT (τ), (2.16)

Note that p j(τ) = 0 if j 6= i(τ).
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Taking into account that p j(τ) = 0 if j 6= i(τ), Eq (2.14) becomes

X j = ∑
i

Qi, jXi. (2.17)

Also in the definition of Qi, j, the result of summation over all trajectories τ is the same as

over only developmental trajectories starting from the initial state of type j, since p j(τ) =

0, if j 6= i(τ), because an organism emerged as one type has no access to developmental

trajectories originated from other types.

Eq (2.17) can be satisfied only if

det(Q− I) = 0, (2.18)

where elements of matrix Q are defined by Eq (2.16) and I is identity matrix. This equa-

tion allows to infer the population growth rate λ if the parameters of each trajectory are

known (i(τ), pi(τ), N(τ) and T (τ)). In most interesting cases, this has to be done numer-

ically.

2.4.2 Existence of the neutral fitness landscape in the case of

homogeneous groups

Consider the situation, where w = 0 and, therefore, the group properties depend only on

the group size. A group of size i grows in size to i+1 within time Ti. Here we show that if

Ti = ln
( i+1

i

)
, all life cycles have the same growth rate λ = 1. We prove this by induction:

• The base of induction is given by Eq (4), which states that if T1 = ln
(2

1

)
and T2 =

ln
(3

2

)
, then λ = 1 for any life cycles fragmenting at size 3 or smaller.

• The step of induction must show that if the assumption of induction holds true for

maximal size M, then under adding TM = ln
(M+1

M

)
, the assumption also holds true

for maximal size M + 1. To prove the step of induction, we only need to consider

life cycles fragmenting exactly at the size M + 1 because life cycles fragmenting at

sizes smaller than M+1 have λ = 1 according to the assumption of induction.
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To construct the matrix Q and find the growth rate of considered life cycles, we need

to characterize the set of offspring and developmental trajectories. In an arbitrary life

cycle, the fragmentation of a homogeneous group of size M results in production of off-

spring groups of sizes ranging from 1 to M. In total, M different types of offspring can

be produced, so the size of the matrix Q is M by M. Each of the offspring will grow up

to size M+1 and then fragment, thus there is only one developmental trajectory for each

type of offspring with pi(τ) = 1. The developmental time of the trajectory T̃ (τ) is given

as the sum of incremental growth time

T̃k(τ) =
M

∑
j=k

Tj = ln
(

M+1
k

)
, (2.19)

where k denotes the size of the newborn offspring.

An arbitrary life cycle can be characterized by the distribution of offspring sizes pro-

duced upon fragmentation Ni, where i denotes the size of offspring. By the conservation

of cell number during reproduction ∑
M
i=1 iNi = M + 1. Therefore, according to Eq (2.16),

for an arbitrary life cycle, the elements of matrix Qi j are given by

Qi j = Nie
−λ ln(M+1

j ) (2.20)

To prove the step of induction, we verify whether λ = 1 is the solution of Eq (2.18), with

matrix Q given by Eq (2.20). Plugging λ = 1 into Eq (2.20), we have Qi j = Ni
j

M+1 , so the

Eq (2.18) becomes ∣∣∣∣∣∣∣∣∣∣∣∣

N1
1

M+1 −1 N1
2

M+1 · · · N1
M

M+1

N2
1

M+1 N2
2

M+1 −1 · · · N2
M

M+1
...

...
. . .

...

NM
1

M+1 NM
2

M+1 · · · NM
M

M+1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.21)

Based on the properties of determinant, we can take out the coefficients of each row and
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each column, then the left hand side of Eq (2.21) becomes

∏
M
i=1 iNi

(M+1)M ·

∣∣∣∣∣∣∣∣∣∣∣∣

1− M+1
1N1

1 · · · 1

1 1− M+1
2N2

· · · 1
...

...
. . .

...

1 1 · · · 1− M+1
MNM

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.22)

For convenience, we neglect the coefficient and denote M+1
iNi

as Ki. Thus, the determinant

is ∣∣∣∣∣∣∣∣∣∣∣∣

1−K1 1 · · · 1

1 1−K2 · · · 1
...

...
. . .

...

1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.23)

Next we calculate the determinant by splitting the first row,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−K1 1 1 · · · 1

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−K1 0 0 · · · 0

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.24)
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For the second part, splitting the second row, we can get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −K2 0 · · · 0

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 1 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.25)

The second term in Eq (2.25) is zero because the determinant has two identical columns,

therefore only the first term remains. Continuing splitting the remaining rows of the first

term of Eq (2.25), we finally obtain

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −K2 0 · · · 0

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −K2 0 · · · 0

0 0 −K3 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · ·

(2.26)
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lastequation =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −K2 0 · · · 0

0 0 −K3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)K−1

M

∏
i 6=1

Ki.

Now, we look back at the first term in Eq (2.24), we split the second row

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−K1 0 0 · · · 0

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−K1 0 0 · · · 0

0 −K2 0 · · · 0

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−K1 1 1 · · · 1

1 1 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.27)

For the second term at the right hand side of Eq (2.27), similar to Eq (2.25) in the last step,

we can work out that it equals (−1)M−1
∏

M
i 6=2 Ki. That means we can get (−1)M−1

∏
M
i 6= j Ki

when split the j-th row. So we keep the same procedure to split the remaining rows of
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the first term in Eq (2.27). After that, the initial determinant changes to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−K1 1 1 · · · 1

1 1−K2 1 · · · 1

1 1 1−K3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1−KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−K1 0 0 · · · 0

0 −K2 0 · · · 0

0 0 −K3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −KM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+(−1)M−1

M

∑
j=1

M

∏
i6= j

Ki

= (−1)M
M

∏
i=1

Ki +(−1)M−1
M

∑
j=1

M

∏
i6= j

Ki

= (−1)M

(
M

∏
i=1

Ki−
M

∑
j=1

M

∏
i 6= j

Ki

)

= (−1)M
(
(M+1)M

∏
M
i=1 iNi

− (M+1)M−1
∑

M
i=1 iNi

∏
M
i=1 iNi

)
= 0,

(2.28)

where we used Ki =
M+1
iNi

and ∑
M
i=1 iNi = M+1 in the last two steps.

This proves that an arbitrary life cycle fragmenting at size M + 1 has the growth

rate λ = 1, if Ti = ln
( i+1

i

)
for any i ≤M. This means that Ti = ln

( i+1
i

)
is a neutral fitness

landscape for the scenario of homogeneous groups.

2.4.3 Life cycles of homogeneous groups

In the absence of cells’ interactions, all cells are identical i.e. the cell type has no influence

on groups. Essentially, all groups can be treated as homogeneous groups, in which only

group sizes affect growth rate. In this case, groups have fixed developmental trajectories.

For instance, the life cycle 1+1+1 has to go through the unique developmental trajectory:

two successive divisions and then producing three single cells (see Fig 2.5). In this unique

developmental trajectory, only one initial type exist – independent cell, so p(τ) = 1 and

N(τ) = 3.
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p(⌧) T (⌧)⌧LC

1 + 1

2 + 1

1 + 1 + 1

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

+

+

+

+ +

+

+

+

+ +

+ +

+ + +

N(⌧)

(2, 0, 0)

(1, 1, 0)

(3, 0, 0)

(1, 0, 1)

(0, 2, 0)

(2, 1, 0)

(4, 0, 0)

1

1

1

1

1

1

1

t[1,0]

t[1,0] + t[2,0]

t[2,0]

t[1,0] + t[2,0]

t[1,0] + t[2,0] + t[3,0]

t[3,0]

t[2,0] + t[3,0]

t[1,0] + t[2,0] + t[3,0]

t[2,0] + t[3,0]

t[1,0] + t[2,0] + t[3,0]

(1, 1, 0) 1

1

1

(1, 0, 1)

(2, 1, 0)

Figure 2.5: Homogeneous groups have deterministic developmental trajectories for each

type offspring group, i.e. p(τ) = 1.

First, we investigate the simplest scenario, where the maximal size of the group was

limited to two cells. There are three life cycles in total in this case: 1+1, 2+1 and 1+1+1.

The matrices Q corresponding to these life cycles are

Q1+1 =
(

2e−λT1

)
,

Q2+1 =

e−λ (T1+T2) e−λ (T1+T2)

e−λT2 e−λT2

 , (2.29)

Q1+1+1 =
(

3e−λ (T1+T2)
)
.

According to Eq (2.4), the growth rate of each life cycle are given by the solutions of

2e−λ1+1T1−1 = 0, (2.30)

e−λ2+1(T1+T2)+ e−λ2+1T2−1 = 0, (2.31)
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Figure 2.6: Growth rates and optimal life cycles in homogeneous groups on the condition

of n ≤ 3 and n ≤ 4, respectively. A) describes the growth rates of life cycles

when n≤ 3 i.e. 1+1, 1+1+1 and 2+1. B) shows the optimal life cycle when n≤ 4

with respect to T2 and T3. In both situations, Ti is the size increment time and

we set T1 = ln(2) for convenience.

3e−λ1+1+1(T1+T2)−1 = 0, (2.32)

where λ1+1, λ2+1 and λ1+1+1 are the growth rate of 1+1, 2+1 and 1+1+1, respectively, see

Fig 2.6A. For small T2, the largest growth rate is achieved by 2+1 life cycle. In this case,

bi-cellular groups produce offspring cells faster than independent cells. Consequently,

the life cycle 2+1, which allows production of bi-cellular groups (unlike unicellular life

cycle 1+1) and preserving one offspring group in the most productive bi-cellular state

(unlike 1+1+1) is most successful in growth competition. In the opposite limit of large T2,

the life cycle 1+1 leads to the largest population growth rate. In this case, independent

cells are better off than bi-cellular groups. Thus, the best reproductive strategy is to avoid

the growth to bi-cellular state, which can only be achieved with a single life cycle 1+1. In

both situations of T2, the growth rate of 1+1+1 is always between that of 1+1 and 2+1.

For the next scenario, we increase the maximal size of the group to three cells. This

allows four new life cycles: 3+1, 2+2, 2+1+1 and 1+1+1+1. Their growth rates are given
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by the solutions of

e−λ3+1(T1+T2+T3)+ e−λ3+1T3−1 = 0 (2.33)

2e−λ2+2(T2+T3)−1 = 0 (2.34)

2e−λ2+1+1(T1+T2+T3)+ e−λ2+1+1(T2+T3)−1 = 0 (2.35)

4e−λ1+1+1+1(T1+T2+T3)−1 = 0, (2.36)

For large T3, the life cycles which do not produce slow-growing three-cellular groups

have the highest growth rates. Therefore, for large T3, the optimal life cycles are the same

as ones presented in the previous paragraph. For small T3, the life cycles capable of pro-

ducing three-cellular groups gain an evolutionary advantage. Specifically, 2+2 achieves

the maximum growth rate when both T2 and T3 are comparatively small. In this case, an

independent cell is the least productive state, whereas 2+2 is the only life cycle not pro-

ducing independent cells. Life cycle 3+1 leads to the largest growth rate if T3 is small but

T2 is large. There, the three-cellular group stands out as the most productive state, and

3+1 is the only life cycle keeping it as one of its offspring groups. Similarly to the previ-

ous scenario, life cycles with more than two offspring: 1+1+1, 2+1+1, 1+1+1+1, are never

optimal. An important exception to this is the point T1 = ln(2), T2 = ln(3
2) and T3 = ln(4

3),

where all seven life cycles lead to the same growth rate (λ = 1).

Previously, we considered another model of life cycles evolution [Pichugin et al.,

2017]. There, the growth of groups from size i to size i+1 occurs spontaneously with rate

ibi. Therefore, in that model, the time between cell divisions varies between groups of

the same size, in contrast to the scenario considered here, where this time is always equal

to Ti. Despite the differences between two models, they both share a number of findings:

existence of the neutral point, only binary fragmentation is evolutionarily optimal, same

optimal life cycles in the limit cases. Therefore, these features, are independent from the

model design.
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2.4.4 Calculation of growth rates λ for life cycles of heterogeneous groups

To show how our approach can can be used in the case of heterogeneous groups, con-

sider the simplest unicellular life cycle 1+1. There are two types of offspring possible:

independent A and B cells, so the matrix Q has dimensions 2 by 2. When a cell divides

into two, three outcomes are possible: no cell, one cell, or both daughter cells change the

phenotype. Since the developmental trajectory ends after the first division, there are only

six developmental trajectories possible for this life cycle, see Fig 2.7.
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(2, 0)

(1, 1)

S

Figure 2.7: The full set of developmental trajectories in the life cycle 1+1. Here, the white

and black circles denote A type cell and B type cell respectively.

To construct the matrix Q, we need to obtain the distribution of offspring (Ni), the

probability of realization (p) and total developmental time (T ) for each trajectory. Off-

spring distributions are apparent from Fig 2.7. The probability of each trajectory can be

directly computed from the phenotype switch probability m. The developmental time is

T = T1 = ln(2) for each trajectory here. Therefore, the elements of Q are given by

Q11 =2(1−m)2e−λ ln2 ←− τ1
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+2m(1−m)e−λ ln2 ←− τ2,

Q12 =2m(1−m)2e−λ ln2 ←− τ2

+2me−λ ln2 ←− τ3,

Q21 =2(1−m)e−λ ln2 ←− τ5

+2m2e−λ ln2 ←− τ6,

Q22 =2(1−m)2e−λ ln2 ←− τ4

+2m(1−m)e−λ ln2 ←− τ5,

where arrows indicate the index of the developmental trajectory contributing a given

term. Solution of the Eq (18) leads to λ1+1 = 1 in the life cycle 1+1.

Next, consider the life cycle 1+1+1. There are still two types of offspring possible:

independent A and B cells, such that the matrix Q has dimensions 2 by 2. However, the

life cycle requires two divisions to complete, so the number of possible developmental

trajectories is increased to 20. Also, interactions play a role during the second division,

so the probabilities p and developmental times T are more complicated, see Fig 2.8.

The elements of matrix Q are given by

Q11 =3n4e−λ (t[1,0]+t[2,0]) ←− τ1

+4mn3e−λ (t[1,0]+t[2,0]) ←− τ2

+m2n2e−λ (t[1,0]+t[2,0]) ←− τ3

+6m3nPB
1+1e−λ (t[1,0]+t[1,1]) ←− τ4

+4mn2(nPA
1+1 +2mPB

1+1)e
−λ (t[1,0]+t[1,1]) ←− τ5

+2mn2(2mPA
1+1 +nPB

1+1)e
−λ (t[1,0]+t[1,1]) ←− τ6

+2m4e−λ (t[1,0]+t[0,2]) ←− τ8

+2m3ne−λ (t[1,0]+t[0,2]) ←− τ9

Q12 =2mn3e−λ (t[1,0]+t[2,0]) ←− τ2
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Figure 2.8: The full set of developmental trajectories in the life cycle 1+1+1. White circles

represent A type cells and black circles represent B type cells. For simplicity

of notation, we use n = 1−m, t[i, j] is the time before the next cell division for

a complex with i A type cells and j B type cells to divide; and PA
[1,1] =

1
2 +w b−c

4

and PB
[1,1] =

1
2 −w b−c

4 , see details in the model section of the main text.

+2m2n2e−λ (t[1,0]+t[2,0]) ←− τ3

+2mn2(nPA
1+1 +2mPB

1+1)e
−λ (t[1,0]+t[1,1]) ←− τ5

+4mn2(2mPA
1+1 +nPB

1+1)e
−λ (t[1,0]+t[1,1]) ←− τ6

+6m3nPA
1+1e−λ (t[1,0]+t[1,1]) ←− τ7
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+m4e−λ (t[1,0]+t[0,2]) ←− τ8

+4m3ne−λ (t[1,0]+t[0,2]) ←− τ9

+3m2n2e−λ (t[1,0]+t[0,2]) ←− τ10

Q21 =2mn3e−λ (t[0,1]+t[0,2]) ←− τ12

+2m2n2e−λ (t[0,1]+t[0,2]) ←− τ13

+2mn2(2mPA
1+1 +nPB

1+1)e
−λ (t[0,1]+t[1,1]) ←− τ15

+4mn2(nPA
1+1 +2mPB

1+1)e
−λ (t[0,1]+t[1,1]) ←− τ16

+6m3nPB
1+1e−λ (t[0,1]+t[1,1])←− τ17

+m4e−λ (t[0,1]+t[2,0]) ←− τ18

+4m3ne−λ (t[0,1]+t[2,0]) ←− τ19

+3m2n2e−λ (t[0,1]+t[2,0]) ←− τ20

Q22 =3n4e−λ (t[0,1]+t[0,2]) ←− τ11

+4mn3e−λ (t[0,1]+t[0,2]) ←− τ12

+m2n2e−λ (t[0,1]+t[0,2]) ←− τ13

+6m3nPA
1+1e−λ (t[0,1]+t[1,1])←− τ14

+4mn2(2mPA
1+1 +nPB

1+1)e
−λ (t[0,1]+t[1,1])←− τ15

+2mn2(nPA
1+1 +2mPB

1+1)e
−λ (t[0,1]+t[1,1]) ←− τ16

+2m4e−λ (t[0,1]+t[2,0]) ←− τ18

+2m3ne−λ (t[0,1]+t[2,0]) ←− τ19

Here, PA
1+1 =

1
2 +w b−c

4 , PB
1+1 =

1
2 −w b−c

4 , t[1,0] = t[1,0] = ln2, t[2,0] = ln 3
2(1−wa), t[1,1] = ln2+

ln 3
2(1−w b+c

2 ) and t[2,0] = ln 3
2(1−wd). Arrows indicate the contributions of each develop-

mental trajectory to Qi j.
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Figure 2.9: The developmental trajectories of the single A-cell and B-cell in the life cycle

2+1. White circles represent A type cells and black circles represent B type

cells. For simplicity of notation, we use: n = 1−m; t[i, j] is the time before the

next cell division for a complex with i A type cells and j B type cells to divide;

and PA
[1,1] =

1
2 +w b−c

4 and PB
[1,1] =

1
2 −w b−c

4 , see details in the model section of

the main text.
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The solution of Eq (2.18) for life cycle 1+1+1 yields

λ1+1+1 = 1+w
ln(3/2)

ln(9)
(a+d)

(
(1−2m+2m2)+2m(1−m)

b+ c
a+d

)
. (2.37)

Our final example is the life cycle 2+1, where groups grow to three cells and frag-

ment into a bi-cellular group and an independent cell. Here, five offspring types are

possible: independent cells could be either A or B type and the bi-cellular group could

have composition AA, AB, or BB, see Figs. 2.9, 2.10. Therefore, Q is 5×5 matrix. There are

48 developmental programs possible and we refrain from showing here how elements of

matrix Q are constructed in this case. The solution of the Eq (2.18) for life cycle 2+1 yields

λ2+1 = 1+w
3ln(3/2)

2(5+8m) ln(27/4)
(a+d)

(
(5−6m+10m2)+2m(7−5m)

b+ c
a+d

)
. (2.38)

For the life cycles 1+1+1+1 and 2+2, we just list the growth rate λ

λ1+1+1+1 =1+w
1

12ln(2)
(a+d)

(
3ln(2)+(1− b+ c

a+d
)(

−2m(5ln(2)− ln(3))+2m2(11ln(2)−4ln(3))−8m3(2ln(2)− ln(3))
))

, (2.39)

λ2+2 =1+w
1

4(8m2−9m−2) ln(2)
(a+d)

(
−4ln(2)+m(ln(3)− ln(2))−4m2 ln(3)

+4m3 ln(3)+
b+ c
a+d

(−m(17ln(2)+ ln(3))+4m2(4ln(2)− ln(3))−4m3 ln(3))
)
.

(2.40)

For more complex life cycles, the analytical expressions are too large to be meaningful

by naked eye analysis. Therefore, we used a combination of analytical and numerical

approaches. After the linearisation with respect to w, the growth rate for any life cycle

has the form

λx1+...+xn = 1+w
1

P1(m)
(a+d)

(
P2(m)+

b+ c
a+d

P3(m)

)
, (2.41)

where P1(m),P2(m),P3(m) are some polynomials of m of the finite power. We obtained ex-
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Figure 2.10: The developmental programs of bicellular newborn groups cells in the life

cycle 2+1. White circles represent A type cells and black circles represent B

type cells. For simplicity of notation, we use: n = 1−m; t[i, j] is the time before

the next cell division for a complex with i A type cells and j B type cells to

divide; and PA
[1,1] =

1
2 +w b−c

4 and PB
[1,1] =

1
2 −w b−c

4 , see details in the model

section of the main text.

act expressions for these polynomials using the symbolic algebra software. However, the

tracking of all developmental programs means that the computation load grows expo-

nentially with the maximal group size M. For life cycles, such as 3+2+1+1, computation

of the polynomials required an extraordinary amount of RAM (> 70 Gb) and the outcome

is neither human-tractable nor even printable. This memory constraints is the factor, lim-

iting the maximal group size considered to M = 7. Therefore, in our study, we only stored

the numerical values of the coefficients of m in P1(m),P2(m),P3(m) and used them to com-

pute λ . With this approach, we are able to compute numerical values of λ with very high
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accuracy, even if traditional closed form solutions are unavailable.

2.4.5 Profiles of growth rates of the life cycles
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Figure 2.11: The growth rates of the considered life cycles as a function of φ for ψ > 0.

Panel A: according to the weak selection approximation, growth rates λ are

linear functions of φ . For all life cycles, the slope of the line is non-negative,

thus, life cycles with smaller slope dominate at φ �−1 (1+1 has slope zero)

and life cycles with larger slope dominate at φ � 1 (4+3 has the largest slope

for M ≤ 7). Panel B: all life cycles with multicellular offspring share the same

growth rate at φ = 1 (φ = −1 under ψ < 0). Panel C: a sequence of multiple

fission life cycles is optimal at the negative φ . At all panels m = 0.06. In

all panels, multiple fission includes 1+1+1+1+1+1, 1+1+1+1+1+1+1; group

fission includes 3+2, 3+3, 2+2+2, 4+2, 5+2.

In this appendix, we present profiles of growth rates at different conditions. The growth

rate is determined by three parameters: ψ , φ and m. The greatest diversity of evolution-

arily optimal life cycles is observed at ψ > 0 and small m, see Fig 2.11. In this case, we

observed two clusters of life cycles, where life cycles behave quite similar. One cluster

contain the multiple fission life cycles such as 1+1, 1+1+1. The second cluster is the

group propagules life cycles such as 3+2, 4+3. The slope of multiple fission life cycles

are increasing with colony size, see Fig 2.11C. More similar growth rate patterns are ob-

60



2.4. Supporting information

served for the group propagules life cycles, which have identical growth rates at φ = 1,

see Fig 2.11B. Most other life cycles are between the area of multiple fission life cycles

and group propagules life cycles, which can never be optimal. For ψ > 0 and large m,

only one multiple fission life cycle, 1+1+1, is evolutionary optimal, see Fig 2.12A. Its area

of optimality is located between unicellularity (1+1) at large negative φ and binary frag-

mentation with multicellular propagules (2+2 and 4+3) at large positive φ . Considering

the dependence of growth rate from the phenotype switching probability m, we found

that at φ � 1, growth rate profiles are concave functions of m, see Fig 2.12B. Growth

rates of most life cycles are generally bound between binary fragmentation with multi-

cellular propagules (such as 2+2 and 4+3) and multiple fragmentation with unicellular

propagules (such as 1+1+1 and 1+1+1+1). For φ �−1, the pattern is very similar, with

an exception, that growth rate profiles are convex, instead of concave, and the hierarchy

of life cycles is reversed, see Fig 2.12C. This leads to the great diversity of evolutionary

optimal life cycles at φ < 0 and small m (including also transitional life cycles 2+1 and

2+1+1, as well as binary fragmentation 2+2), see Fig 2.12D.

−10 −5 0 5 10

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

 φ

 λ

A

1+1
1+1+1
1+1+1+1
1+1+1+1+1
muptiple fission
2+1
2+1+1

2+2
group propagules
4+3
other

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

m

 λ

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

m

 λ

C

0.02 0.04 0.06 0.08 0.10

1.
00

1.
01

1.
02

1.
03

1.
04

m

 λ

D

61



Chapter 2. Interacting cells driving the evolution of multicellular life cycles

Figure 2.12: Multiple life cycles are optimal for ψ > 0. A Growth rates of all considered

life cycles as function of φ at m = 0.9 (cf. Fig 4A for m = 0.06). B Growth

rates of all considered life cycles as function of m at φ = 8. C Growth rates of

all considered life cycles as function of m at φ = −4. D Detailed view of the

panel C in the range of small m showing that large number of evolutionary

optimal life cycles at different m.
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Figure 2.13: Only two life cycles are optimal for ψ < 0. A Growth rates of all considered

life cycles as function of φ at m = 0.06. B Growth rates of all considered life

cycles as function of φ at m = 0.9. C Growth rates of all considered life cycles

as function of m at φ = 8. D Growth rates of all considered life cycles as

function of m at φ =−4.
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At the negative ψ , only two life cycles were found to be optimal, see Fig 2.13. The

shape of individual growth rate profiles remain similar to the case of positive φ but the

relative position changes significantly. Thus, the spectrum of observed life cycles is much

less diverse.

2.4.6 Optimal life cycles landscape under the self-interaction game

Figure 2.14: Similar optimal life cycles under the self-interaction game compared with

the no self-interaction game. While we have only 5 optimal life cycles in this

case, in general the results are very similar, with a large number of life cycles

emerging only for ψ > 0 and φ < −1. A Optimal life cycles for ψ > 0 under

the self-interaction game. Dashed lines are φ =−1 and φ = 1, respectively. B

Optimal life cycles for ψ < 0 under the self-interaction game. Dashed line is

φ = 1.

In our model setting, we set the payoff of single cells to zero based on the assumption

that no other cells can impact their strategies. While, theoretically single cells can also
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Chapter 2. Interacting cells driving the evolution of multicellular life cycles

play self-interaction games to get payoff based on their cell types. Intuitively, the self-

interaction game would produce the same results as the non self-interaction game, as in

which only the final synergistic or antagonistic effects can really impact the outcome. To

check this idea, we set the payoff of cells in a cluster to

α[i, j] =
ia+ jb
i+ j

,

β[i, j] =
ic+ jd
i+ j

, (2.42)

where α[i, j] and β[i, j] are the average payoff of A type cells and B type cells in a group of i

A-cells and j B-cells, respectively. This payoff definition allows the single cells also have

non zero payoff values i.e. payoff a for A cell type and d for B cell type. Meanwhile, all

other settings in the model are unchanged. Then, we investigate the optimal life cycles

for population with colony size M less than seven. The results are pretty similar between

the non self-interaction game (see Fig 4) and the self-interaction game (see Fig 2.14).
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Chapter 3

Evolution of irreversible somatic

differentiation

The work in this chapter has been submitted (March 2021) and is currently under review:

Yuanxiao Gao, Hye Jin Park, Arne Traulsen and Yuriy Pichugin, “Evolution of irreversible

somatic differentiation”. An updated version is available at biorxiv https://doi.org/

10.1101/2021.01.18.427219.

Abstract

A key innovation emerging in complex animals is irreversible somatic differentiation:

daughters of a vegetative cell perform a vegetative function as well, thus, forming a so-

matic lineage that can no longer be directly involved in reproduction. Primitive species

use a different strategy: vegetative and reproductive tasks are separated in time rather

than in space. Starting from such a strategy, how is it possible to evolve life forms which

use some of their cells exclusively for vegetative functions? Here, we developed an evol-

utionary model of development of a simple multicellular organism and found that three

components are necessary for the evolution of irreversible somatic differentiation: (i)

costly cell differentiation, (ii) vegetative cells that significantly improve the organism’s

performance even if present in small numbers, and (iii) large enough organism size. Our

findings demonstrate how an egalitarian development typical for loose cell colonies can

evolve into germ-soma differentiation dominating metazoans.
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Chapter 3. Evolution of irreversible somatic differentiation

3.1 Introduction

In complex multicellular organisms, different cells specialise to execute different func-

tions. These functions can be generally classified into two kinds: reproductive and ve-

getative. Cells performing reproductive functions contribute to the next generation of

organisms, while cells performing vegetative function contribute to sustaining the or-

ganism itself. In unicellular species and simple multicellular colonies, these two kinds of

functions are performed at different times by the same cells – specialization is temporal.

In more complex multicellular organisms, specialization transforms from temporal to

spatial [Mikhailov et al., 2009], where groups of cells focused on different tasks emerge

in the course of organism development.

Typically, cell functions are changed via differentiation, such that a daughter cell per-

forms a different function than the maternal cell. The vast majority of metazoans feature

a very specific and extreme pattern of cell differentiation: any cell performing vegetat-

ive functions forms a somatic line, i.e. producing cells performing the same vegetative

function – somatic differentiation is irreversible. Since such somatic cells cannot give

rise to reproductive cells, somatic cells do not have a chance to pass their offspring to

the next generation of organisms. Such a mode of organism development opened a way

for deeper specialization of somatic cells and consequently to the astonishing complexity

of multicellular metazoans. In Volvocales – a group of green algae, serving as a model

species for evolution of multicellularity, the emergence of irreversibly differentiated so-

matic cells is the hallmark innovation marking the transition from colonial life forms to

multicellular species [Kirk, 2005].

While the production of individual cells specialized in vegetative functions comes

with a number of benefits [Grosberg and Strathmann, 2007], the development of a ded-

icated vegetative cell lineage that is lost for organism reproduction is not obviously a

beneficial adaptation. From the perspective of a cell in an organism, the guaranteed ter-

mination of its lineage seems the worst possible evolutionary outcome itself. From the
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perspective of entire organism, the death of somatic cell at the end of the life cycle is

a waste of resources, as these cells could in principle become parts of the next genera-

tion of organisms. For example, exceptions from irreversible somatic differentiation are

widespread in plants [Lanfear, 2018] and are even known in simpler metazoans among

cnidarians [DuBuc et al., 2020] for which differentiation from vegetative to reproduct-

ive functions has been reported. Therefore, the irreversibility of somatic differentiation

cannot be taken for granted in the course of the evolution of complex multicellularity.

The majority of the theoretical models addressing the evolution of somatic cells fo-

cuses on the evolution of cell specialization, overlooking the developmental process how

germ (reproductive specialists) and soma are produced in the course of the organism

growth. For example, a huge amount of work focuses on the optimal distribution of re-

productive and vegetative functions in the adult organism [Michod, 2007, Willensdorfer,

2009, Rossetti et al., 2010, Rueffler et al., 2012, Ispolatov et al., 2012, Goldsby et al., 2012,

Solari et al., 2013, Goldsby et al., 2014, Amado et al., 2018, Tverskoi et al., 2018]. However,

these models do not consider the process of organism development. Other work takes

the development of an organism into account to some extent. In [Gavrilets, 2010], the or-

ganism development is considered, but the fraction of cells capable to become somatic is

fixed and does not evolve. In [Erten and Kokko, 2020], the strategy of germ-to-soma dif-

ferentiation is an evolvable trait, but the irreversibility of somatic differentiation is taken

for granted. In [Rodrigues et al., 2012], irreversible differentiation was found, but both

considered cell types pass to the next generation of organisms, such that the irreversible

specialists are not truly somatic cells in the sense of evolutionary dead ends. Finally,

in [Cooper and West, 2018] all model ingredients are present: the strategy of cell differ-

entiation is explicitly considered and it is an evolvable trait, also soma and germ cells

are considered. However, irreversible somatic differentiation was not observed in that

study. Hence, the theoretical understanding of the evolution of irreversibly differenti-

ated somatic cell lines is limited so far.

We developed a theoretical model to investigate conditions for evolution of irrevers-
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ible somatic differentiation, in which vegetative soma-role cells are, in principle, capable

to re-differentiate and produce reproductive germ-role cells. In our model, we incorpor-

ate factors including (i) costs of cell differentiation, (ii) benefits provided by presence of

soma-role cells, (iii) maturity size of the organism. We ask under which circumstances ir-

reversible somatic differentiation is a strategy that can maximize the population growth

rate compared to strategies in which differentiation does not occur or somatic differenti-

ation is reversible.

3.2 Model

We consider a large population of clonally developing organisms composed of two types

of cells: germ-role and soma-role. Each organism is initiated as a single germ-role cell. In

the course of the organism growth, germ-role cells may differentiate to give rise to soma-

role cells and vice versa, see Fig. 3.1A,B. We assume that somatic cells accelerate growth:

an organism containing more somatic cells grows faster. After n rounds of synchron-

ous cell divisions, the organism reaches its maturity size of 2n cells. Immediately upon

reaching maturity, the organism reproduces: germ-role cells disperse and each becomes

a newborn organism, while all soma-role cells die and are thus lost, see Fig. 3.1A.

To investigate the evolution of irreversible somatic differentiation, we consider or-

ganisms in which the functional role of the cell (germ-role or soma-role) is not necessarily

inherited. When a cell divides, the two daughter cells can change their role, leading to

three possible combinations: two germ-role cells, one germ-role cell plus one soma-role

cell, or two soma-role cells. We allow all these outcomes to occur with different probab-

ilities, which also depend on the parental type, see Fig 3.1B. If the parental cell had the

germ-role, the probabilities of each outcome are denoted by ggg, ggs, and gss respectively.

If the parental cell had the soma-role, these probabilities are sgg, sgs, and sss. Altogether,

six probabilities define a stochastic developmental strategy D = (ggg,ggs,gss;sgg,sgs,sss). In

our model, it is the stochastic developmental strategy that is inherited by offspring cells
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3.2. Model

Figure 3.1: Model overview. A. The life cycle of an organism starts with a single germ-role cell.

In each round, all cells divide and daughter cells can differentiate into a role differ-

ent from the maternal cell’s role. When the organism reaches maturity, it reproduces:

each germ-role cell becomes a newborn organism and each soma-role cell dies. B.

Change of cell roles is controlled by a stochastic developmental strategy defined by

probabilities of each possible outcomes of a cell division. C. Differentiation of cells re-

quires an investment of resources and, thus, slows down the organism growth. Each

cell differentiation event incurs a cost (cs or cg). The average cost of differentiation

contributes increases the cell doubling time in a multiplicative way. D. The growth

contribution of somatic cells is controlled by a function that decreases the doubling

time with the fraction of somatic cells. The form of this function is controlled by four

parameters, x0, x1, α , and b.
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rather than the functional role of the parental cell.

To feature irreversible somatic differentiation (ISD in the following), the develop-

mental strategy must allow germ-role cells to give rise to soma-role cells (ggg < 1) and

must forbid soma-role cells to give rise to germ-role cells (sss = 1). All other develop-

mental strategies can be broadly classified into two classes. Reversible somatic differ-

entiation (RSD) describes strategies where cells of both roles can give rise to each other:

ggg < 1 and sss < 1. In the strategy with no somatic differentiation (NSD), soma-role cells

are not produced in the first place: ggg = 1, see Table 3.1.

Table 3.1: Classification of developmental strategies

Class Label ggg sss

Irreversible somatic differentiation ISD < 1 = 1

Reversible somatic differentiation RSD < 1 < 1

No somatic differentiation NSD = 1 irrelevant

In our model, evolution is driven by the growth competition between populations

executing different developmental strategies. Growth competition will favour develop-

mental strategies that lead to faster growth [Pichugin et al., 2017, Gao et al., 2019]. The

rate of population growth is determined by the number of offspring produced by an

organism (equal to the number of germ-role cells at the end of life cycle) and the time

needed for an organism to develop from a single cell to maturity (improved with the

number of soma-role cells during the life cycle). The development consists of n rounds of

simultaneous cell divisions. Consequently, the total development time is a sum of n time

intervals between cell doubling events. Each cell doubling time (t) is determined by two

independent effects: the differentiation effect (Fdiff) representing costs of changing cell

roles [Gallon, 1992] and the organism composition effect (Fcomp) representing benefits

from having soma-role cells [Grosberg and Strathmann, 1998, 2007, Shelton et al., 2012,
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Matt and Umen, 2016],

t = Fdiff×Fcomp. (3.1)

The cell differentiation effect Fdiff represents the costs of cell differentiation. The

differentiation of a cell requires efforts to modify epigenetic marks in the genome, re-

calibration of regulatory networks, synthesis of additional and utilization of no longer

necessary proteins. This requires an investment of resources and therefore an additional

time to perform cell division. Hence, any cell, which is about to give rise to a cell of a

different role, incurs a differentiation costs cg for germ-to-soma and cs for soma-to-germ

transitions, see Fig. 3.1C. Here, we additionally assume that resource distribution among

cells is coordinated at the level of the organism: Cells which need more resources will get

more, such that cell division is synchronous. The resulting effect of differentiation costs is

determined as Fdiff = 1+ 〈c〉, where 〈c〉 is the average differentiation cost among all cells

in an organism.

The composition effect Fcomp captures how the cell division time depends on the

proportion of soma-role cells x present in an organism. In this study, we use a functional

form illustrated in Fig. 3.1D and given by

Fcomp(x) =


1 for 0≤ x≤ x0

1−b+b
(

x1−x
x1−x0

)α

for x0 < x < x1

1−b for x1 ≤ x≤ 1

. (3.2)

With the functional form Eq. (3.2), soma-role cells can benefit to the organism growth,

only if their proportion in the organism exceeds the contribution threshold x0. Interac-

tions between soma-role cells may lead to the synergistic (soma-role cells work better

together than alone), or discounting benefits (soma-role cells work better alone than to-

gether) to the organism growth, controlled by the contribution synergy parameter α . The

maximal achievable reduction in the cell division time is given by the maximal benefit b,

realized beyond the saturation threshold x1 of the soma-role cell proportion. A further in-
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crease in the proportion of soma-role cells does not provide any additional benefits. With

the right combination of parameters, Eq. (3.2) is able to recover various characters of

soma-role cells contribution to the organism growth: linear (x0 = 0,x1 = 1,α = 1), power-

law (x0 = 0,x1 = 1,α 6= 1), step-functions (x0 = x1), and a huge range of other scenarios.

For a given combination of differentiation costs (cg, cs) and a composition effect pro-

file (determined by four parameters: x0, x1, b, and α), we screen through a number of

stochastic developmental strategies D and identify the one providing the largest growth

rate to the population. In this study, we searched for those parameters under which ISD

strategies lead to the fastest growth and are thus evolutionary optimal, see model details

in Appendix 3.5.1.

3.3 Results

3.3.1 For irreversible somatic differentiation to evolve, cell differentiation

must be costly.

We found that irreversible somatic differentiation (ISD) does not evolve when cell differ-

entiation is not associated with any costs (cs = cg = 0), see Fig 3.2A. This finding comes

from the fact that when somatic differentiation is irreversible, the fraction of germ-role

cells can only decrease in the course of life cycle. As a result, ISD strategies deal with the

tradeoff between producing more soma-role cells at the beginning of the life cycle, and

having more germ-role cells by the end of it. On the one hand, ISD strategies which pro-

duce a lot of soma-role cells early on, complete the life cycle quickly but preserve only a

few germ-role cells by the time of reproduction. On the other hand, ISD strategies which

generate a lot of offspring, can deploy only a few soma-role cells at the beginning of it and

thus their developmental time is inevitably longer. By contrast, reversible somatic differ-

entiation strategies (RSD) do not experience a similar tradeoff, as germ-role cells can be

generated from soma-role cells. As a result, RSD allows higher differentiation rates and
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can develop a high soma-role cell fraction in the course of the organism growth and at the

same time have a large number of germ-role cells by the moment of reproduction. Under

costless cell differentiation, for any ISD strategy, we can find an RSD counterpart, which

leads to faster growth: the development proceeds faster, while the expected number of

produced offspring is the same, see Appendix 3.5.2 for details. As a result, costless cell

differentiation cannot lead to irreversible somatic differentiation.

To confirm the reasoning that RSD strategies gain an edge over ISD by having larger

differentiation rates, we asked which ISD and RSD strategies become optimal at various

cell differentiation costs (cs = cg). At each value of costs, we found evolutionarily optimal

developmental strategy for 3000 different randomly sampled composition effect profiles

Fcomp(x). We found that evolutionarily optimal RSD strategies feature much larger rates

of cell differentiation than evolutionarily optimal ISD strategies, see Fig. 3.2B. Even at

large costs, where frequent differentiation is heavily penalized, the distinction between

differentiation rates of ISD and RSD strategies remains apparent.

We screened through a spectrum of germ-to-soma (cg) and soma-to-germ (cs) dif-

ferentiation costs, see Fig 3.2A. Both differentiation costs punish RSD strategies severely

due to their high differentiation rates. By contrast, strategies with irreversible somatic dif-

ferentiation are insensitive to changes in soma-to-germ differentiation costs cs, because

soma-role cells never give rise to germ-role cells in ISD. Consequently, we observed that

ISD is most likely to evolve, when the transition from germ-role to soma-role is cheap

(cg is small) and the reverse transition is expensive (cs is large), see Fig 3.2A. In a similar

manner, an increase in germ-to-soma differentiation costs (cg) punishes both RSD and

ISD strategies. However, RSD strategies tend to have larger rates of germ-to-soma trans-

itions. Thus, they are punished more than ISD, which leads to the evolution of ISD at

small cs and large cg. Finally, the NSD strategy does not pay any costs at all, as no cell

differentiation occurs. Hence, at very large germ-to-soma differentiation costs (cg ≈ 10 at

Fig. 3.2A), the NSD strategy outcompetes both reversible and irreversible somatic differ-

entiation, see Appendix 3.5.3 for details. For simplicity, hereafter we focus on the case of
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Figure 3.2: Irreversible soma evolves when cell differentiation is costly. A. The fraction of composition

effect profiles, Eq. (3.2), promoting ISD as a function of the differentiation costs cg and cg. We

randomly draw the parameters in Eq. (3.2) to construct 200 random profiles (see Appendix

for details). The absence of costs (cg = cs = 0) as well as large costs of germ differentiation

(large cg) suppresses the evolution of ISD. Irreversible somatic differentiation is promoted the

most when the cell differentiation cost is large for soma-role cells (cs) and small for germ-role

cells (cg). The maturity size used in the calculation is 210 cells. Black dashed lines at panel

B indicates the line of equal costs cs = cg and squares indicate the costs shown in panels C-

F. B. Cumulative cell differentiation rate
(
gss +

1
2 ggs + sss +

1
2 sgs

)
in developmental strategies

evolutionarily optimal at various differentiation costs (cs = cg), separated by class (ISD, RSD,

or NSD). Thick lines represent median values within each class, shaded areas show 90% con-

fidence intervals. For each cost value, 3000 random profiles are used. Evolutionary optimal

RSD strategies (orange) have much higher rates of cell differentiation than ISD (green). Con-

sequently, RSD is penalized more under costly differentiation. C - F. Shapes of composition

effect profiles (compare Fig. 3.1D) promoting ISD (green lines), RSD (orange lines), and NSD

(black lines) developmental strategies at four parameter sets indicated in panel A.

the equal differentiation costs cs = cg = c (a black dashed line on Fig 3.2A).

3.3.2 Evolution of irreversible somatic differentiation is promoted when

even a small number of somatic cells provide benefits to the

organism.

The composition effect profiles Fcomp(x) that promote the evolution of irreversible so-

matic differentiation have certain characteristic shapes, see 3.2C-F. We investigated what
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kind of composition effect profiles can make irreversible somatic differentiation become

an evolutionary optimum. We sampled a number of random composition effect pro-

files with independently drawn parameter values and found optimal developmental

strategies for each profile for a number of differentiation costs (c) and maturity size (2n)

values. We took a closer look at the instances of Fcomp(x) which resulted in irreversible

somatic differentiation being evolutionarily optimal.

We found that ISD is only able to evolve when the soma-role cells contribute to the

organism cell doubling time even if present in small proportions, see Fig. 3.3A,B. Ana-

lysing parameters of the composition factors promoting ISD, we found that this effect

manifests in two patterns. First, the contribution threshold value (x0) has to be small,

see Fig 3.3D – ISD is promoted when soma-role cells begin to contribute to the organism

growth even in low numbers. Second, the contribution synergy was found to be large

(α > 1) or, alternatively, the saturation threshold (x1) was small, see Fig 3.3C.

Both the contribution threshold x0 and the contribution synergy α control the shape

of the composition effect profile at intermediary abundances of soma-role cells. If the

contribution synergy α exceeds 1, the profile is convex, so the contribution of soma-

role cells quickly becomes close to maximum benefit (b). A small saturation threshold

(x1) means that the maximal benefit of soma is achieved already at low concentrations

of soma-role cells (and then the shape of composition effect profile between two close

thresholds has no significance). Together, these patterns give an evidence that the most

crucial factor promoting irreversible somatic differentiation is the effectiveness of soma-

role cells at small numbers, see Appendix 3.5.4 for more detailed data presentation.

The reason behind these patterns is a slower accumulation of soma-role cells un-

der irreversible somatic differentiation, comparing to RSD strategies, see Appendix 3.5.2.

Thus, with ISD, an organism spends a significant amount of time having only a few soma

role cells. Hence, ISD strategy can only be evolutionarily successful, if these few soma-

role cells have a notable contribution to the organism growth time.

We also found that profiles featuring ISD do not possess neither extremely large, nor
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extremely small maximal benefit values b, see Fig. 3.3D. When the maximal benefit is

too small, the cell differentiation just does not provide enough benefits to be selected for

and the evolutionarily optimal strategy is NSD. In the opposite case, when the maximal

benefit is very close to one, the cell doubling time approaches zero, see Eq. (3.2). Then,

the benefits of having many soma-role cells outweighs the costs of differentiation and the

optimal strategy is RSD, see Appendix 3.5.4.

3.3.3 For irreversible somatic differentiation to evolve, the organism size

must be large enough.

By screening through the maturity size (2n) and differentiation costs (c), we found that

the evolution of irreversible somatic differentiation is heavily suppressed at small matur-

ity sizes, Fig 3.4A. For cs = cg, the minimal maturity size allowing irreversible somatic

differentiation to evolve is 2n = 64 cells. At the same time, organisms performing just a

few more rounds of cell divisions are able to evolve ISD at a wide range of cell differ-

entiation costs, see also Appendix 3.5.5. This indicates that the evolution of irreversible

somatic differentiation is strongly tied to the size of the organism.

Evolution of ISD at sizes smaller than 64 cells is possible for cs > cg. For instance, at

cs = 2cg some ISD strategies were found to be optimal at the maturity size 25 = 32 cells,

Fig 3.4B. However, ISD strategies were found in a narrow range of cell differentiation

costs and the fraction of composition effect profiles that allow evolution of ISD there

was quite low – about 1%. The evolution of ISD at such small maturity sizes becomes

likely only at extremely unequal costs of transition between germ and some roles cs� cg,

see Fig 3.4C. Hence, for irreversible somatic differentiation to evolve, the organism size

should exceed a threshold of roughly 64 cells.
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DC

BA

Figure 3.3: Irreversible soma evolves when substantial benefits arise at small concentrations

of soma-role cells. In all panels, the data representing the entire set of composition

effect profiles is presented in grey, while the subset promoting ISD is coloured. A,

B. Median and 90% confidence intervals of composition effect profiles at different

differentiation costs (A, maturity size n = 10) and maturity sizes (B, differentiation

costs c = 5). C, D. The set of composition effect profiles in the parameter space. Each

point represents a single profile (c = 5 and n = 10). C. The co-distribution of the

saturation threshold (x1) and the contribution synergy (α) reveals that either x1 must

be small or α must be large. D. Co-distribution of the contribution threshold (x0) and

the maximal benefit (b) shows that x0 must be small, while b must be large to promote

ISD. 3000 profiles are used for panels A, C, D and 1000 profiles for panel B.
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Figure 3.4: Irreversible soma can evolve if organism grows to a large enough size in the course

of its life cycle. A. The fraction of composition effect profiles promoting ISD at vari-

ous cell differentiation costs (c = cs = cg) and maturity sizes (2n). ISD strategies were

only found for maturity size 26 = 64 cells and larger. B. The fraction of composition

effect profiles promoting ISD at unequal differentiation costs cs = 2cg. A rare occur-

rences of ISD (∼ 1%) was detected at the maturity size 25 = 32 cells in a narrow range

of cell differentiation costs but not at the smaller sizes. C. The range of cell differen-

tiation costs promoting ISD at at the maturity size 25 = 32 cells. For ISD strategies to

evolve at such a small size, the differentiation from soma-role to germ-role must be

much more costly than the opposite transition (cs� cg).

3.4 Discussion

The vast majority of cells in a body of any multicellular being contains enough genetic

information to build an entire new organism. However, in a typical metazoan species,

very few cells actually participate in the organism reproduction – only a limited number

of germ cells are capable to do it. The other cells, called somatic cells, perform veget-

ative functions but do not try to form an offspring organism – somatic differentiation is

irreversible. We asked for the reason for the success of such a specific mode of an or-

ganism development. We theoretically investigated the evolution of irreversible somatic

differentiation with a model of clonal developing organisms taking into account benefits

provided by soma-role cells, costs coming from cell differentiation, and the effect of the
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raw organism size.

One of the most significant assumptions we took is the synchronicity of cell divisions

even if division outcomes are different. This is only possible if cell actions are coordin-

ated at the level of organism – otherwise, cells that do not differentiate may complete

their divisions before differentiating cells. When in the history of multicellularity such a

coordination emerges is an open question. However, in a number of rather simple spe-

cies, a synchronicity of cell divisions paired with cell differentiation is observed. One

example is the green algae Eudorina illinoiensis – one of the simplest species demonstrat-

ing the first signs of reproductive division of labour, in which four out of thirty-two cells

are differentiated [Sambamurty, 2005]. Another example is 128-celled algae Pleodorina

californica, half of the cells are differentiated. And still, the cell divisions are synchronous

[Kikuchi, 1978]. Even the size of the mature organism being a power of two indicates

that cells do not divide independently, but their actions are controlled at the level of the

organism.

While our model can capture some key features of biological systems, it remains of

course an abstraction. We assumed that populations go into an exponential growth phase

– competition for space or nutrients could lead to selection of other strategies instead.

Additional features such as trade-offs in growth at different colony sizes lead to further

complications. Nevertheless, our model allows to start to look into the basic features of

nascent life cycles at the edge of the division of labour in multicellular colonies.

Our key findings are:

• The evolution of irreversible somatic differentiation is inseparable from cell differ-

entiation being costly.

• For irreversible somatic differentiation to evolve, somatic cells should be able to

contribute to the organism performance already when their numbers are small.

• Only large enough organisms tend to develop irreversible somatic differentiation.

According to our results, cell differentiation costs are essential for the emergence of
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irreversible somatic differentiation, see Fig. 3.2A. For cells in a multicellular organism,

differentiation costs arise from the material needs, energy, and time it takes to produce

components necessary for the performance of the differentiated cell, which were absent

in the parent cell. For instance, in filamentous cyanobacteria nitrogen-fixating heterocysts

develop much thicker cell wall than parent photosynthetic cells had. Also, reports indic-

ate between 23% [Ow et al., 2008] and 74% [Sandh et al., 2014] of the proteome changes its

abundance in heterocysts compared against photosynthetic cells. Similarly, the changes

in the protein composition in the course of cell differentiation was found during the de-

velopment of stalk and fruiting bodies of Dictyostelium discoideum [Bakthavatsalam and

Gomer, 2010, Czarna et al., 2010]

Our model demonstrates that irreversible somatic differentiation is more likely to

evolve when a few soma-role cells are able to provide a substantial benefit to the organ-

ism, see Fig. 3.3. Several patterns of how the benefit provided by somatic cells changes

with their numbers have been previously considered in the literature. However, the

range of studied examples was restricted to concave or convex shapes [Michod, 2007,

Willensdorfer, 2009, Rossetti et al., 2010, Cooper and West, 2018]. In this paper, we went

beyond these shapes and additionally considered lower (x0) and upper (x1) thresholds

for the somatic cells contribution (our model recover the previous approaches for x0 = 0

and x1 = 1). While our findings are in a qualitative agreement with past results – the

profiles promoting irreversible somatic differentiation look convex-like, see Fig. 3.3A,B,

our model indicates that the crucial component here is the large benefits provided by

small numbers of soma-role cells, rather than overall convexity of the profile. For ex-

ample, with sufficiently small x1, the non-constant section of the composition effect pro-

file (where the fraction of soma-role cells is between x0 and x1, see Fig. 3.1D) can easily

be concave (α < 1, see Fig. 3.3C) and still promote irreversible somatic differentiation.

Volvocales algae demonstrate that a significant contribution by small numbers of somatic

cells might indeed be found in a natural population: In E. illinoiensis, only four out of

thirty two cells are vegetative [Sambamurty, 2005] (soma-role in our terms). This species

has developed some reproductive division of labour and a fraction of only 1/8 of veget-
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ative cells is sufficient for colony success. Thus, it seems possible that highly-efficient

soma-role cells open the way to the evolution of irreversible somatic differentiation.

Our model shows that irreversible somatic differentiation can only emerge in re-

latively large organisms, see Fig 3.4A. The maturity size plays an important role in a

organism’s life cycle [Amado et al., 2018, Erten and Kokko, 2020]: Large organisms have

potential advantages on the optimisation of the organism in multiple ways, such as to im-

prove growth efficiency [Waters et al., 2010], to avoid predators [Fisher et al., 2016, Kapse-

taki and West, 2019], to increase problem-solving efficiency [Morand-Ferron and Quinn,

2011], and to exploit the division of labour in organisms [Carroll, 2001, Matt and Umen,

2016]. Moreover, the maximum size has been related to the organism reproduction from

the beginning of the evolution of multicellularity [Ratcliff et al., 2012]. Our results suggest

that the smallest organism able to evolve irreversible somatic differentiation should typ-

ically be about 32−64 cells (unless the cost of soma-to-germ differentiation is extremely

large and the cost of the reverse is low). This is in line with the pattern of development

observed in Volvocales green algae. In Volvocales, cells are unable to move (vegetative

function) and divide (reproductive function) simultaneously, as a unique set of centrioles

are involved in both tasks [Wynne and Bold, 1985, Koufopanou, 1994]. Chlamydomonas

reinhardtii (unicellular) and Gonium pectorale (small colonies up to 16 cells) perform these

tasks at different times. They move towards the top layers of water during the day to

get more sunlight. At night, however, these species perform cell division and/or colony

reproduction, slowly sinking down in the process. However, among larger Volvocales,

a division of labour begins to develop. In Eudorina elegans colonies, containing 16 - 32

cells, a few cells at the pole have their chances to give rise to an offspring colony reduced

[Marchant, 1977, Hallmann, 2011]. In P. californica, half of the 128-celled colony is formed

of smaller cells, which are totally dedicated to the colony movement and die at the end

of colony life cycle [Kikuchi, 1978, Hallmann, 2011]. In Volvox carteri, most of a 10000-

cell colony is formed by somatic cells, which die upon the release of offspring groups

[Hallmann, 2011].
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Our study originated from the curiosity: what did drive the evolution of irreversible

somatic differentiation? Why does green algae Volvox shed the most of its biomass in a

single act of reproduction? And why in totally unrelated to it kingdom of Metazoa, in

most of the species the majority of body cells is outright forbidden to contribute to the

next generation? Our results shown, which factors makes a difference between the evol-

ution of an irreversible somatic differentiation and other strategies of development. One

of these factors, the maturity size is known in the context of the evolution of reproduct-

ive division of labour [Kirk, 2005]. Another, the costs of cell differentiation, is, in general,

known in a greater biological scope but is hardly acknowledged as a factor contributing

to the evolution of organism development. Finally, the early contribution of soma-role

cells to the organism growth, even if they are in small numbers, is an unexpected outcome

of our investigation, overlooked in the body of literature as well. Despite the simplistic

nature of our model (we did not aim to model any specific organism), all our results find

a confirmation among the Volvocales clade. Hence, we expect that the findings of this

study reveal the general picture of the evolution of irreversible somatic differentiation,

independently on the clade where it evolves.
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3.5 Appendix

3.5.1 Search for the evolutionarily optimal developmental program

Finding the population growth rate for a given developmental program.

In [Gao et al., 2019] we have shown that a population of organisms, which begin their life

cycle from the same state but have a stochastic development, eventually grows exponen-

tially with the rate λ given by the solution of

∑
i

e−λTiGiPi = 1. (3.3)

Here, i is the developmental trajectory – in our case, the specific combination of all cell

division outcomes; Pi is the probability that an organism development will follow the

trajectory i; Ti is the time necessary to complete the trajectory i – from a single cell to the

maturity size of 2n cells; Gi is the number of offspring organisms produced at the end

of developmental trajectory i, equal to the number of germ-role cells at the moment of

maturity.

In order to find the population growth rate, we need to know Gi, Ti, and Pi (how

many offspring are produced, how long did it take to mature, and how likely is this

developmental trajectory, respectively). The complete set of developmental trajectories is

huge as it scales exponentially with the number of divisions n.

In our study, for each developmental strategy, we sampled M = 300 developmental

trajectories at random. To get each trajectory, we simulated the growth of the single

organism according to the rules of our model. For each trajectory, the developmental time

Ti was computed as a sum of cell doubling times at each of n cell divisions, the number

of offspring Gi was given by the count of germ-role cells at the end of development. The

resulting ensemble of trajectories (with Pi = 1/M) was plugged into Eq. (3.3) to compute

the population growth rate λ .
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Finding the developmental program with the largest population growth rate

We assume that evolution occurs by growth competition between populations executing

different developmental strategies. These strategies, which provide larger population

growth rate will outgrow others. To find evolutionarily optimal strategies under given

conditions, we screened through a large set of developmental strategies and identified the

one with the maximal population growth rate λ . Since the probabilities of cell division

outcomes sum into one (ggg+ggs+gss = 1 and sgg+sgs+sss = 1), these probabilities can be

represented as a point on one of two simplexes, one for the division of germ-role cells, and

one for the division of soma-role cells. Consequently, we choose the set of developmental

strategies as a Cartesian product of two triangular lattices - one for division probabilities

of germ-role cells (ggg,ggs,gss) and one for soma-role cells (sgg,sgs,sss). The lattice space

was set to 0.1, so each of two independent lattices contained 11× 12/2 = 66 nodes, and

the whole set of developmental strategies comprised 66× 66 = 4356 different strategies.

For each of these strategies, the population growth rate λ was calculated and the strategy

with the largest growth rate was identified as evolutionarily optimal.

In our investigation, parameters such as differentiation costs (cs, cg) and maturity

size (2n) were used as control parameters. In other words, we either fix them at the

specific values, or screened through a range of values to obtain a map (see Figs. 3.2, 3.3).

However, the parameters controlled the shape of composition effect profile (x0, x1, α , and

b) were treated differently. For each combination of control parameters, we randomly

sampled a number (between 200 and 3000) of combinations of these parameters. The

thresholds (0 ≤ x0 ≤ x1 ≤ 1) were sampled as a pair of independent distributed random

values from the uniform distribution U(0,1). The contribution threshold x0 was set to

the minimum of the pair, and the saturation threshold x1 was set to the maximum. The

contribution synergy (α > 0) corresponds to the concave shape of the profile at α < 1

and to the convex shape at α > 1. Therefore, log10(α) was sampled from the uniform

distribution U(−2,2), so the profile has an equal probability to demonstrate concave and

convex shape. Finally, the maximum benefit (0 ≤ b < 1) was sampled from a uniform
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distribution, U(0,1). For each tested combination of control parameters, we found the

optimal developmental strategy for every sampled profile. We then classified these as

irreversible somatic differentiation (ISD), reversible somatic differentiation (RSD), or no

somatic differentiation (NSD).

3.5.2 Under costless cell differentiation, irreversible soma strategy cannot

be evolutionarily optimal

In this section, we will show that an ISD strategy can never be an evolutionary optimum

without cell differentiation being costly. To do that, we first consider the deterministic dy-

namics of the expected composition of the organism. Then, for an arbitrary ISD strategy,

we identify a more advantageous RSD strategy which gives the same organism compos-

ition at the end of life cycle but higher number of soma-role cells during the life cycle.

In our model, the composition of the organism is governed by the stochastic de-

velopmental strategy and differs between different organisms. Here, as a proxy for this

complex stochastic dynamics, we consider the mathematical expectation of the compos-

ition. Assume that after t ≥ 0 cell divisions the fraction of soma-role cells is s(t) and the

fraction of germ-role cells is g(t) = 1−s(t). Then, the expected fractions of cells of the two

types after the next cell division is

s(t +1) =
(

sss +
sgs

2

)
s(t)+

(ggs

2
+gss

)
g(t) = (1−ms)s(t)+mgg(t),

g(t +1) =
(

ggg +
ggs

2

)
g(t)+

(sgs

2
+ sgg

)
s(t) = (1−mg)g(t)+mss(t),

(3.4)

where we introduced ms = sgg +
sgs
2 and mg = gss +

ggs
2 – the probabilities that the offspring

of a cell will have a different role. Naturally, for irreversible somatic differentiation (ISD)

ms = 0 and mg > 0 , for NSD strategies mg = 0 and ms being irrelevant, while the reversible

differentiation (RSD) class covers the rest. Eq. (3.4) can be written in matrix forms(t +1)

g(t +1)

=

1−ms mg

ms 1−mg

 ·
s(t)

g(t)

 (3.5)

85



Chapter 3. Evolution of irreversible somatic differentiation

A newborn organism contains a single germ-role cell (s(0) = 0, g(0) = 1), therefore, the

expected composition of an organism after i divisions iss(t)

g(t)

=

1−ms mg

ms 1−mg

t

·

0

1

 (3.6)

The matrix has two eigenvalues: 1 and 1−mg−ms, with associated right eigenvectors

(mg,ms)
T and (1,−1)T , respectively. Hence, the expected composition after t divisions

can be obtained in the explicit form

s(t) =
1

mg +ms

[
mg−mg(1−mg−ms)

t] ,
g(t) =

1
mg +ms

[
ms +mg(1−mg−ms)

t] . (3.7)

For an arbitrary irreversible somatic differentiation strategy D, ms = 0, the expected num-

ber of soma-role cells changes as

sD(t) = 1− (1−mg)
t , (3.8)

which is a monotonically increasing function of the number of cell divisions t, see the

green line in Fig. 3.5. In the life cycle involving n cell divisions, the fraction of soma-role

cells at the end of life cycle is sD(n) = 1− (1−mg)
n.

Now, we consider another developmental strategy D′ with reversible somatic differ-

entiation in which m′g = sD(n) and m′s = 1− sD(n). Using m′g +m′s = 1 in Eq. (3.7), it can be

shown that the expected fraction of soma-role cells in D′ after the very first cell division

is exactly sD(n) and stays constant thereafter, see the orange line in Fig. 3.5. Thus, the

number of offspring produced is the same for both development strategies.

If cell differentiation is costless (ds = dg = 0), then the cell doubling time depends

only on the fraction of soma-role cells. As all soma-role cells are then present already

after the first cell division, organisms following the RSD strategy D′ will grow faster than

organisms using the ISD strategy D at any stage of organism development, independ-
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ently of the choice of the composition effect profile (Fcomp). At the end of the life cycle,

both strategies have the same expected number of offspring. Therefore, under costless

cell differentiation, for any ISD strategy, we can find a RSD strategy that leads to a larger

population growth rate.
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Figure 3.5: Under costless differentiation, for any irreversible somatic differentiation strategy,

exists a reversible somatic differentiation strategy dominating it. The green curve

shows the dynamics of the expected fraction of soma-role cells in an organism using

an ISD developmental strategy (mg = 0.1, ms = 0.0, n = 12). The orange curve shows

the dynamics of the expected fraction of soma-role cells in an organism using the

specific RSD developmental strategy [m′g = 1−(1−mg)
12≈ 0.72, m′s = 1−m′g≈ 0.28]. In

this strategy, the number of offspring produced at the end of the life cycle is the same

as in the considered ISD strategy. At the same time, the fraction of soma-role cells

during the life cycle is larger. Therefore, under costless differentiation, the presented

RSD strategy is more effective than the considered ISD strategy.
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3.5.3 Conditions promoting the evolution of ISD, RSD, and NSD strategies

Irreversible somatic differentiation Reversible somatic differentiation No somatic differentiation
A B C

Figure 3.6: Impact of cell differentiation costs on the evolution of development strategies.

The fractions of 200 random composition effect profiles promoting ISD (A), RSD (B),

and NSD (C) strategies at various cell differentiation costs (cs, cg). In the absence of

costs (cg = cs = 0), only RSD strategies were observed. RSD strategies are prevalent

at smaller cell differentiation costs. NSD strategies are the most abundant at large

costs for germ-role cells (cg). ISD strategies are the most abundant at large costs for

soma-role cells (cs). The maturity size used in the calculation is 210 cells.

Irreversible somatic differentiation Reversible somatic differentiation No somatic differentiationA B C

Figure 3.7: Impact of maturity size on the evolution of development strategies. The fractions

of 200 random composition effect profiles promoting ISD (A), RSD (B), and NSD (C)

strategies at various cell differentiation costs (c = cs = cg) and maturity size 2n. ISD

strategies are most abundant at larg maturity sizes and intermediary cell differenti-

ation costs. RSD strategies are most abundant at small cell differentiation costs. NSD

strategies are most abundant at small maturity sizes and cell differentiation costs.
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3.5.4 Parameters of composition effect profiles promoting ISD, RSD, and

NSD strategies
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Figure 3.8: Impact of composition effect parameters on the evolution of development

strategies. Each diagonal panel represents individual distribution of each of four

parameters among composition effect profiles promoting ISD (green), RSD (orange),

and ISD (black) strategies. Each non-diagonal panel represents a pairwise co-

distribution of these parameters. ISD strategies are promoted at small contribution

thresholds x0 and for large maximal benefit b. Also, either the contribution synergy

α must be large, or the saturation threshold x1 should be small - see main text for

detailed discussion. RSD strategies require very large b - there the benefits of having

a large number of soma-role cells outweighs costs paid by frequent differentiation.

Due to the fast accumulation of soma-role cells, RSD strategies tolerate larger x0 than

ISD. RSD exhibit the same restrictions with respect to x1 as ISD and are insensitive

to α . For this figure, 3000 composition effect profiles were investigated with costs

c = cs = cg = 5 and n = 10.
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3.5.5 Evolution of irreversible somatic differentiation under various

maturity sizes and unequal cell differentiation costs

n = 5 n = 10 n = 15
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Figure 3.9: Evolution of irreversible somatic differentiation at unequal cell differentiation

costs. A-C. The fraction of 200 random composition effect profiles promoting ISD

at various cell differentiation costs (cs, cg) at fixed maturity size n = 5 (panel A), 10

(B), and 15 (C). Larger maturity sizes promote the evolution of ISD across all cell

differentiation costs. D-F. The fraction of composition effect profiles promoting ISD

at unequal cell differentiation costs cs/cg = 2 (panel D), cs/cg = 1 (E), and cs/cg = 0.5

(F). Even with unequal differentiation costs, the minimal maturity size allowing the

evolution of ISD stays roughly the same — 25−26 cells. Dashed lines indicate overlap

between panels.
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Chapter 4

Evolution of reproductive strategies

in incipient multicellularity

A manuscript based on this chapter is in preparation: Yuanxiao Gao, Yuriy Pichugin,

Chaitanya Gokhale and Arne Traulsen, “Evolution of reproductive strategies in incipient

multicellularity”.

Abstract

Multicellular organisms can potentially enjoy a notable diversity in terms of reproductive

strategies to reproduce offspring with varying sizes and composition, compared to their

unicellular ancestors. In reality, only a few reproductive strategies are prevalent. So far,

little is known about the evolution of reproductive strategies in multicellularity. Here, we

develop a stage-structured population model to probe evolutionary growth advantages

of reproductive strategies in incipient multicellularity. In the model, populations take

different reproductive strategies, whose performance is evaluated by the growth rates

of populations they are in. We seek the optimal reproductive strategy, who leads to the

largest growth rate to a population. Considering the effects of organism sizes and cel-

lular interactions, we found that distinct reproductive strategies could perform uniquely

or equally optimal under different conditions. Among them, the binary-splitting repro-

ductive strategy is unique optimal. Our results show that organism size and cellular

interaction in the form of a threshold effect play crucial roles in shaping the reproduct-

ive strategies in nascent multicellularity. Our model sheds light on understanding the

mechanism driving the evolution of reproductive strategies in complex multicellularity.

Meanwhile, beyond multicellularity, we suggest a crucial factor in the evolution of repro-
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ductive strategies among unicellular species - organism size.

4.1 Introduction

The evolution of multicellularity has been viewed as a major evolutionary transition,

which has happened repeatedly across prokaryotes to eukaryotes [Bonner, 1998, Gros-

berg and Strathmann, 2007, Rokas, 2008, Claessen et al., 2014, Sebe-Pedros et al., 2017,

Brunet and King, 2017]. Along with the increased organism size, phenotypically hetero-

geneous organisms emerged through cell differentiation [McCarthy and Enquist, 2005,

Arendt, 2008, Brunet and King, 2017]. The reproductive mode may transform with the

change of size and organism composition. In principle, multicellular organisms could

reproduce multiple offspring with distinct cell numbers and organism composition in

contrast to their unicellular ancestors [Michod and Roze, 1999, Ratcliff et al., 2012, ?,

Pichugin et al., 2019, Gao et al., 2019]. The number of reproductive modes can rap-

idly increase with organism size. For example, for an organism containing three cells,

two reproductive strategies are possible: reproducing three single-celled offspring or a

single-celled offspring and a two-celled offspring. However, only a few of reproduct-

ive strategies are prevalent across the tree of life. Some prominent examples abound

such as binary fission reproducing two single-celled organisms, multiple fission repro-

ducing many single-celled organisms simultaneously [Suresh et al., 1994, Angert, 2005,

Flores and Herrero, 2010], the fragmentation reproducing some many-celled propagules

[Ratcliff et al., 2012] and a special bottleneck reproductive strategy, a multicellular organ-

ism reproducing a single-celled offspring repeatedly [Grosberg and Strathmann, 1998,

Wolpert and Szathmáry, 2002, Brunet and King, 2017]. We tackle this disparity between

conjecture and reality in terms of the number of reproductive strategies in primitive mul-

ticellularity.

The origin and evolution of reproductive strategies are little understood, and only a

few of them have been considered in previous work. The fragmentation mode of re-
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producing many-celled propagules has been investigated to understand cell death in

yeast [Libby et al., 2014] or to understand the advantages of multicellular life exper-

iencing a unicellular stage [Grosberg and Strathmann, 1998, Michod and Roze, 1999].

The mechanism of the life cycle transition from unicellular to multicellular has been ex-

amined, however, the underlying reproductive strategies are still unknown [Staps et al.,

2019]. Recently, reproductive strategies have been explored for phenotypically homo-

geneous organisms, where an organism is allowed to take mixed reproductive strategies

[?Pichugin et al., 2019]. The mixed reproductive strategy allows an organism to have

different fragmentation modes in a population. For example, a three-celled organism

can reproduce three single-celled offspring or a one-celled offspring and a two-celled

offspring. The pure reproductive strategy only has one fragmentation mode. Pure re-

productive strategies have been studied in phenotypically heterogeneous organisms, but

the size effect has not been considered [Gao et al., 2019]. Meanwhile, cellular interactions

have been only considered in linear frequency-dependence. Therefore it is still unclear

how organism size and cellular interactions beyond linear forms, can shape reproductive

strategies.

The organism size confers multifarious advantages to organisms [Kaiser, 2001, Car-

roll, 2001], such as to avoid predators [Fisher et al., 2016, Kapsetaki and West, 2019], and

to incentivise the division of labour [Carroll, 2001, Matt and Umen, 2016]. Meanwhile,

disadvantages in organism growth have also been suggested due to different reasons,

such as less space [Libby et al., 2014] or less light [Kapsetaki and West, 2019]. Further-

more, the organism size can affect reproductive strategies as early as in nascent multicel-

lularity [Michod, 2007, Solari et al., 2013, Ratcliff et al., 2012, Libby et al., 2014]. Field ob-

servations are ambiguous about the effects of organism size [Yamamoto and Shiah, 2010,

Nielsen, 2006, Li et al., 2014, Wilson et al., 2006, Li and Gao, 2004, Wilson et al., 2010]. The

effects of size have also been considered in investigating reproductive strategies in phen-

otypically heterogeneous organisms [?Pichugin et al., 2019]. But only the monotonous

increasingly functional forms of size on growth rate has been considered. Here, we con-

sider a wide scope of size effects that can increase, decrease or no change of an organism’s
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growth rate. And the functional forms of size effects are broader.

The previous studies have shown that cellular interactions can transform reproduct-

ive modes [Kaiser, 2001, Solari et al., 2013, Ratcliff et al., 2012]. For example, a new pheno-

type with a higher death rate leads to the reproduction of reproducing propagule among

yeast Saccharomyces cerevisiae. Phenotypically heterogeneous organisms could provide di-

verse cellular interaction forms, considering different organism composition. The effects

of linear frequency-dependent organism composition have been investigated [Gao et al.,

2019]. Here we study the cellular interaction that depends on the minimum threshold of

a certain phenotype of an organism. This cellular interaction form has frequently been

observed in nature. For example, to differentiate heterocyst for cyanobacteria in response

to nitrogen depletion, a spatial pattern is found, in which one heterocyst surrounded by

thresholds of vegetative cells between 10 to 20 [Kumar et al., 2010, Flores and Herrero,

2010]. In the genus Volvox, along with the germ-soma differentiation [Matt and Umen,

2016], a pattern of cell distribution has been observed, in which the thresholds of germ

cells are between 1 to 20 and soma cells are between 500 to 42,000 [Shelton et al., 2012].

In our model, we study the threshold effects of the organism composition.

Thus in heterogeneous multicellular organisms both size and composition could af-

fect growth rates. We develop a theoretical model to address the evolution of reproduct-

ive strategies considering the effects of size and threshold. The size effects could increase

or decrease organism growth. The threshold effects depend on the number of cells with

a certain phenotype. We assume that organisms grow fast if they meet a given threshold.

Organisms in a population share the same reproductive strategy. Thus, reproductive

strategies compete with each other via their population growth rates. The optimal re-

productive strategy is the one with the largest population growth rate. We found that

reproductive strategies can co-exist or can dominate others under different conditions.

The unique optimal reproductive strategy is always the one reproducing two offspring.
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4.2 Model

We consider multiple infinite large populations. Each population possesses a unique

reproductive strategy for all of its organisms. Reproductive strategies are the partition

of integers. For example, for an integer N = 3, there are two reproductive strategies:

1+1+1 and 1+2. In the population with reproductive strategy 1+2, mature organisms

with three cells can only reproduce a single-celled newborn organism and a two-celled
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Figure 4.1: Schematic of life cycle and reproduction. A. Examples of life cycles of two or-

ganisms ({1,0} and {0,2}) in the population with reproductive strategy 1+2. In the

shaded area, we show the potential random offspring organisms and their probabil-

ities, see Appendix 4.5.1 for the calculation. B. Organism size effects on the growth

time of organisms. The grey dots are an example of the neutral condition, where

populations have the same growth rate. C. Threshold effects on the growth time of

organisms. In an organism, when the cooperator number nC meets the contribution

threshold k, the threshold component of growth time tgn will decrease according to

the cooperator benefits via a volunteer dilemma game, see the explanation in the

main text. D. An example of a population’s newborn organisms and their payoffs

under the threshold effect. Newborn organisms of the population with reproductive

strategy 1+ 2 are shown. Each cell’s payoff in an organism and organisms’ average

payoffs are listed under the contribution threshold k = 2. The mature state prospect

describes the most likely cell composition of each newborn organism. The long-term

prospect of newborn organisms is classified into “beneficial” and “intermediate be-

neficial”, see the detail in main text.

newborn organism. Furthermore, a reproductive strategy determines the organism sizes

at newborn stages and mature stages. For a reproductive strategy n1 + n2 + · · ·+ nM, its

population has newborn organisms with different sizes of ni (i ∈ [1,M]) and the maturity

size of newborn organisms N, where N = ∑
M
i=1 ni. Inspired by the viability investment of

germ cells and somatic cells in the genus Volvox, we consider organisms consisting of two

cell phenotypes: cooperator and defector [Kirk, 2001, 2005, Matt and Umen, 2016]. There-

fore, a population composes of different organisms considering their sizes and organism

composition. For example, the population with reproductive strategy 1+2 has five types

of newborn organisms: {1,0}, {0,1}, {2,0}, {1,1}, and {0,2}, where nD and nC in {nD,nC}
represent the number of defectors and cooperators respectively, see Fig 4.1D. Each new-

born organisms grow by one cell increment at a time. During each increment, a cell with

higher fitness is selected to divide and two daughter cells are produced. Each daughter

cell can switch to another phenotype independently with a cell-type switching probab-
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ility, which is constant in our model m = 0.01. After reaching their maturity size N, or-

ganisms reproduce via random fragmentation in terms of organism composition, and the

probabilities of forming different newborn organisms are calculated in Appendix 4.5.1.

These life cycles, from newborn stages to reproductive stages, are repeated by organisms

in a population, see Fig 4.1A.

We assume that organisms in populations grow independently without density de-

pendence, thus populations follow exponential growth [Tuljapurkar and Caswell, 1997].

The population growth rate λ can be calculated by the leading eigenvalue of a matrix,

based on the offspring numbers and the growth time of organisms [De Roos, 2008, Gao

et al., 2019], see Appendix 4.5.2. Since there are no death events in a population, so

the offspring number of each organism is constant, which depends on its reproductive

strategy. For example, under strategy 1+ 2, all organisms reproduce two offspring after

reproduction. Thus, the population growth rate is determined by the growth time of its

organisms from being newborn to mature. We additionally assume that reproduction

is instantaneous and no time is needed for this process. We consider that population

growth time is determined by the size and composition of its organisms as

T =
N

∑ tn =
N

∑(tsn× tgn) (4.1)

where the tn is the cell increment time for an organism growing from size n to (n+ 1).

The tsn and the tgn are the size component and the threshold component contributing to

tn. Next, we introduce how we design the tsn and the tgn, respectively.

The size component tsn depends on the cell number of an organism. Under neutral

condition t0
sn = γln n+1

n , all populations have the same growth rate 1, where γ is a positive

constant [Gao et al., 2019]. Without lose of generality, we chose γ = 1. To seek the size

effects beyond the neutral conditions, we screen a large number of values of tsn around

the neutral condition (t0
sn), see Fig 4.1B and Fig 4.2A. We refer to χn = χn as normalised cell

increment components, where n ∈ [1,N]. When χn = 1, we recover the neutral condition.

The threshold component tgn depends on the number of cooperator cells in an organ-
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ism. An organism grows faster if the number of cooperators meets a given threshold k,

Fig 4.1C. There are many methods to construct the compositional threshold effect. Here

we choose the volunteer dilemma game. Consider an organism consisting of n cells with

nD defectors and nC cooperators. When cooperator number nC meets the contribution

threshold k, each cell can get a b payoff. Each cooperator always bears a cost c and de-

fectors pay no costs, see Eq4.2 and Fig 4.1D.

PD(nC) =

 b nC >= k

0 nC < k

PC(nC) = PD(nC)− c.

(4.2)

Meanwhile, the cell payoffs affect the division probability among these two phenotypes,

i.e. which phenotypic cell is more likely to divide, see Eq.4.3.

DD =
nDewPD

nDewPD +nCewPC

DC =
nCewPC

nDewPD +nCewPC
,

(4.3)

where DD and DC are the division probability for defectors and cooperators, respectively.

w is the intensity of selection. The composition component tgn is defined by the payoff of

PD and PC, see Eq4.4.

tgn =

(
nDewPD +nCewPC

nD +nC

)−1

. (4.4)

To check the compositional threshold effects, we screen the threshold values of k.

98



4.3. Results

4.3 Results

4.3.1 The effects of organism sizes on reproductive strategies
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Figure 4.2: The performance of reproductive strategies under organism size effects. A. A dia-

gram of perturbations at size n = 3. Grey dots are the conditions for neutral popu-

lation growth i.e. χn = 1. Blue dots are the perturbed dots at size 3 with different

degrees, where 0.4 ≤ χ3 ≤ 2.5. B. Population growth rates of reproductive strategies

under perturbations at size n = 3. The asterisk ∗ shows the unaffected reproductive

strategies. C. The distribution of χn that promotes the reproductive strategy 1+ 3

(in blue) among samples (in grey). χn are drawn from the uniform distribution and

χn ∈ [0.5,1.5]. A sequence of χn (n ∈ [1,7]) is randomly chose at a time for finding the

optimal reproductive strategy. 10000 sequences are investigated in total. D. The fre-

quency of observed optimal reproductive strategies under size effects. Parameters for

all panels, each population growth rate has been calculated by running its organisms’

life cycles for 5000 times. The growth rates of 58 populations are calculated under ma-

turity size N ≤ 8. In the lower legend panel, the reproductive strategies highlighted

in blue are the optimal ones under a size perturbation.

We investigate size effects by perturbing a cell increment component χn form neutral con-

ditions χn = 1, see Fig 4.2A. Under a perturbation at size n, we found that the perform-

ance is affected (population growth rate deviates from 1) for the reproductive strategies,

whose populations contain organisms going through the size n. Since population growth

rate is inversely related to growth time, thus the perturbation of χn is either advantageous

(χn < 1) or adverse (χn > 1) for population growth. A reproductive strategy is referred

as being promoted (suppressed), when its population growth rate is greater (smaller)

than the neutral growth rate 1. Under χn < 1, the reproductive strategy is promoted if its

population’s organisms go through the size under perturbations, see Fig 4.2B. The pro-

moted extent (|λ −1|) of a reproductive strategy is positively related to the perturbation

degree, i.e the deviation value χn from 1. The performance of reproductive strategies is

unaffected when their populations’ organisms do not go through the size under perturb-

ations. For χn > 1, reproductive strategies which are promoted for χn < 1 are suppressed.

Likewise, the suppressed extent of the reproductive strategies is positively related to the

perturbation degree. Among these affected populations, we found that the reproductive
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strategy 1+ n is the most affected one under perturbations at size n. Because its popu-

lation contains n-celled newborn organisms, which mature at size n+ 1, thus its growth

time depends on χn. Therefore, under the condition of χn < 1 and χk = 1 (k 6= n,k ∈ [1,N]),

the reproductive strategy 1+ n is unique optimal. At the same time, the reproductive

strategy 1+ n is the most suppressed one for χn > 1, see Fig 4.2B. Analogous to repro-

ductive strategy 1+n, the reproductive strategy 2+n is the second most affected strategy,

as a result of its population containing organisms going through size stage from n to n+2.

Similarly, the structure of a population decides its reproductive strategy’s performance

for other affected strategies.

Under the general size effect by perturbing χn from 1 for different n, we found that

the normalised cell increment components determines the optimal reproductive strategies.

We observed that the populations of optimal reproductive strategies contain the organ-

isms, who mostly undergo the size n possessing the small χn, and meanwhile mostly

do not contain the size n possessing the large χn, see Fig 4.2C D. The small normal-

ised cell increment components are the relatively smaller normalised cell increment com-

ponents, see Fig 4.2D and the analytical proof for reproductive strategies with N ≤ 3

in Appendix 4.5.3. Furthermore, we found that only the binary-splitting reproductive

strategy (reproducing two offspring with varying sizes) can be the unique optimal one,

see Fig 4.2E and the analytical proof in Appendix 4.5.4. In a population, the fastest-

growing newborn organisms largely decide its population growth rate. However, the

fastest-growing newborn organisms in a population with a multiple-splitting reproduct-

ive strategy can always be found in another population with a binary-splitting repro-

ductive strategy. For example, the reproductive strategy 1+1+2 cannot outcompete re-

productive strategies of 1+1, 1+2, or 2+2 at the same time under any conditions of tsn,

where n ∈ 1,2,3. Additionally, 1+ 1 is the most frequently observed strategy in binary-

splitting reproductive strategies, see Fig 4.2E. Because of 1+ 1 is the only reproductive

strategy that depends on a single cell increment component, i.e. ts1. Therefore, under the

randomly chose tsn (n ∈ [1,N]), 1+1 has a higher frequency to turn into the optimal one.

Generally, reproductive strategies have lower chances to be optimal when they make or-
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ganisms undergoing many cell increment stages. But this numerical conclusion needs

to be further confirmed by taking large sampling size, especially for the binary-splitting

reproductive strategies with frequencies lower than 0.01.

4.3.2 The effects of thresholds on reproductive strategies

Under the threshold effect, newborn organisms of a population with cooperator num-

ber nC ≥ k have large payoffs and thus have shorter growth time, see Eq 4.2 and Eq 4.4.

In a population, newborn organisms contribute relatively different to the growth rate.

We take the newborn organisms in the population with strategy 1+ 2 as an example,

see Fig 4.1D. Under contribution threshold k = 2, {0,2} grows fastest as its cooperator

number starts with 2. {0,1} is the second fastest growing newborn organisms as it may

gain benefits by producing 2 cooperators during growth. The rest newborn organisms

of {1,0}, {1,1} and {2,0} grow relative slow because their cooperator numbers are less

likely to meet contribution threshold k. For convenience, we refer to newborn organisms

in a population as “beneficial” ones if nC ≥ k and “intermediate beneficial” ones if nC < k

and nD = 0. The growth rate of a population depends primarily on its beneficial newborn

organisms and secondly on its intermediate beneficial newborn organisms. The homo-

geneous newborn organisms are more populous than the heterogeneous ones, because

for the cell-type switching probability m = 0.01, populations mostly contain homogen-

eous newborn organisms in the long run, see Appendix Fig 4.5.

Under the threshold effects, the unique optimal reproductive strategies are the binary-

splitting ones with the maximum maturity size, see Fig 4.3A. Furthermore, the optimal

reproductive strategies can be classified into three categories: the multiple optimal, the

symmetric binary-splitting N
2 +

N
2 (or N+1

2 + N−1
2 ) and the asymmetric binary-splitting with

a k-celled newborn organism (N − k) + k. Under k = 1, all reproductive strategies are

multiple optimal, see Fig 4.3A B and C. Since all populations contain beneficial new-

born organisms, the population growth rates of reproductive strategies are close to each

other. As k increases, the symmetric binary-splitting reproductive strategies N
2 + N

2 (or
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N+1
2 + N−1

2 ) are optimal under 1 < k ≤ 1
2 N, see Fig 4.3A B. As the beneficial newborn or-

ganisms benefit a population most, therefore, the optimal reproductive strategy’s pop-

ulation should consist of the beneficial newborn organisms, whose newborn sizes are

larger or equal to the contribution threshold k. But, among them, we found that N
2 + N

2

(or N+1
2 + N−1

2 are the optimal ones, rather than others, such as k+k+k or (k+1)+k. This

is due to the intrinsic population structure of reproductive strategies and the effects of

Noise 
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Figure 4.3: Optimal population profile across different thresholds. A. The optimal reproduct-

ive strategies across the contribution threshold k and the maturity size N, where k < 8

and N ≤ 8. The grey dashed lines indicate parameter space in panel C and D. The

dark brown dashed lines (panel A and B) are the boundaries between the multiple

optimal strategies, the symmetric binary reproductive strategies, the asymmetric bin-

ary reproductive strategies and noise sections. B. The growth rates of the optimal re-

productive strategies in panel A. The shaded area with maximum maturity size 8 and

k = 3 is the parameter space we investigated all populations featured by symmetric

binary reproductive strategies in panel E. C. Population growth rates of reproductive

strategies with N ≤ 6 are shown across different contribution threshold k. D. Pop-

ulation growth rates under contribution threshold k = 5 are shown across different

maturity size N ≤ 8. E. The growth rates of populations with symmetric binary re-

productive strategy are shown across to varying ratio of benefit to cost. In the lower

legend panel, the optimal populations appeared in panel A are highlighted in black.

The unique optimal populations under the threshold effect are highlighted in bold

and red. Parameters w = 0.1, b = 10, c = 1 and m = 0.01.

the relatively small cell-type switching probability m = 0.01. We take 4+ 4 and 3+ 3 at

k = 3 as an example to explain it. Under k = 3, the population of 4+4 contains the bene-

ficial newborn organisms {0,4}. The population of 3+3 contains the beneficial newborn

organisms {0,3}. Thus the two populations should have the same growth rate asymptot-

ically without considering m. But cell-type switch leads to a decline in the proportion of

beneficial newborn organisms in a population. This decline gives rise to an advantage for

populations with larger maturity size. For example, if there is a cell-type switching event

for {0,4} and {0,3}, then after their reproduction {1,3} and {1,2} can be reproduced,

respectively. {1,3} is still a beneficial newborn organism, but not for {1,2}. Population

growth rates are close to each other among binary-splitting reproductive strategies un-

der m = 0.01. But the differences amplify with the increasing ratios of benefit to cost,

see Fig 4.3E. Finally, when 1
2 N < k < N, the reproductive strategies (N − k) + k become

optimal, see Fig 4.2 A. When 1
2 N < k, each population can have at most one beneficial
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newborn organism. Next, we explain why (N− k)+ k is optimal. For intermediate be-

neficial newborns, a larger newborn size gives rise to a better performance in growth.

As smaller newborn organisms need more time to reach k cells than large ones. We take

1+1+2 for k = 3 as an example. {0,1} undergoes two cell increment stages with negative

average payoffs, while {0,2} only undergoes one stage. As a result, the best strategy is

the one, whose population contains a beneficial newborn organism with size k and an

intermediate beneficial newborn organism with size N− k.

Additionally, our results show that reproductive strategies are suppressed progress-

ively with the growing contribution threshold k, but it is promoted with the maturity

size N and the ratio of benefit to cost b
c , see Fig 4.3B C D and E. Population growth rates

decrease with increasing k because the numbers of beneficial and intermediate beneficial

newborn organisms decrease. Especially, when k≥ N, all reproductive strategies fall into

noisy and their populations grow in the same low growth rate, see Fig 4.3A B. Contrar-

ily, the increasing maturity size N increases population growth rates, as more newborn

organisms become beneficial ones in a population. It is also manifest that population

growth rates increase with the ratio of benefit to cost.

4.3.3 The effects of organism sizes and thresholds on reproductive

strategies

We next find the optimal reproductive strategies under the size and threshold effects. For

simplicity, we only investigate the size effects of a single perturbation at a time. We found

all binary-splitting reproductive strategies can be unique optimal, see Fig 4.4A and B. Un-

der the size and threshold effects, new optimal binary-splitting reproductive strategies

emerge, including 2+2, 2+3, 2+4, 2+5, 3+3 and 3+4. Furthermore, under the bene-

ficial size perturbation χn = 0.4, we found 1+ n (n ∈ [1,7]) is optimal both at small and

large contribution threshold k, see Fig 4.4A and B. Because under small k, reproductive

strategies’ populations could possess similar higher growth rates. Under large k, pop-
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ulations share a similar low growth rate, Fig 4.2B and Fig 4.3C. Therefore, under these

two scenarios, the performance of reproductive strategies depends remarkably on size

effects, especially when k = 1, see Fig 4.4A C. Consequently, the size perturbation plays

a more important role here, leading the reproductive strategy 1+ n becoming optimal,

where n ∈ [1,7]. The advantages arise for the newly emerged binary-splitting reproduct-

ive strategies in the intermediate values of k, suggesting that it is an outcome of the trade-

A

DC

B

N  3 N = 4 N = 5 N = 6 N = 7 N = 8
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Figure 4.4: The binary-splitting reproductive strategies are optimal under the effects of size

with a single perturbation and threshold. A. Optimal reproductive strategies un-

der the effects of single advantages size perturbations and thresholds. B. Optimal

reproductive strategies under the effects of single adverse size perturbations and

thresholds. In panel A and B, the perturbation only occurs at a single size at a time.

The dark brown lines indicate the boundaries of optimal reproductive strategies that

appeared under a single perturbation, threshold effects and both. Note that 1+7 can

be unique optimal strategy under either a single perturbation or threshold effects.

The grey area indicates the multiple-optimal reproductive strategies, whose popula-

tions do not contain newborn organisms undergoing the perturbed size. The white

lines indicate the perturbation being investigated at size n = 3 in panel C and D. C D

The population growth rates of reproductive strategies of 1+ 3 and 3+ 5 under the

effects of a size perturbation at n = 3, threshold and both, respectively. In A and C,
tn
t0
n
= 0.4. In B and D, tn

t0
n
= 1.5. Parameters of all panels w = 0.1, b = 10, c = 1, m = 0.01.

In the legend panel, the strategies in blue are the optimal ones under the size effect of

a single perturbation. The strategies in red are the optimal ones under the threshold

effects. The strategies in brown are the newly emerged optimal ones under both the

size effect of a single size perturbation and the threshold effects.

off between the two factors. Under the adverse size perturbation χn = 1.5, we found the

reproductive strategy 1+n cannot be the optimal one at small k, see Fig 4.4B. Because the

adverse size perturbation leads to the poor performance of reproductive strategies being

influenced, see Fig 4.2B and Fig 4.4D. The optimal reproductive strategies arise when

they enjoy the benefit of threshold effects and meanwhile avoid the disadvantages from

the adverse size effects. For example, 3+ 3 outcompetes 4+ 4 at the size perturbed at

n = 7 and k = 2. As the adverse size perturbation decreases the population growth rate

of 4+4, but have no influences on that of 3+3. Thus the performance of a reproductive

strategy is an outcome of the trade-off between the effects of size and threshold. Our

results indicate that all binary-splitting reproductive strategies can readily evolve under

the joint effects of the size and the threshold.
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4.4 Discussion

More theoretically potential reproductive strategies are conceivable for multicellularity,

yet little attention has been paid to their evolution. To understand that, we developed

a theoretical model considering the effects of size and cell interaction of a threshold ef-

fect on the evolution of reproductive strategies. Only under the size effects, reproduct-

ive strategies are determined by the normalised cell increment components. The small

normalised cell increment components can promote the performance of reproductive

strategies. The large ones have the opposite effect. We found only the binary-splitting

reproductive strategies can be the unique optimal ones. Specifically, only the binary-

splitting reproductive strategy 1+ n is the optimal one under a single size perturbation,

where n is the size under perturbations. Only under the threshold effect, the optimal

reproductive strategies are determined by the contribution threshold and the cell-type

switching probability. We found only the reproductive strategies with maximum matur-

ity size x+ (N − x) are unique optimal, where x ∈ [1,N). Under the joint effects of the

size with a single perturbation and the threshold, we found that all binary-splitting re-

productive strategies can be the unique optimal ones. Our conclusions suggest only the

binary-splitting reproductive strategies can be unique optimal under either condition.

The single size perturbation suggests that the binary-splitting reproductive strategies can

readily evolve in multicellularity under influences of joint factors.

Our conclusion that the unique optimal reproductive strategies are binary-splitting

ones under size effects coincides with the results in our previous work [Gao et al., 2019].

Meanwhile, this conclusion has been obtained when considering the cots of reproduction

[Pichugin and Traulsen, 2020]. Moreover, our results show that the special bottleneck re-

productive strategy 1+N can be unique optimal under either condition, which may indic-

ate a new advantage of it other than the previously stated advantages of decreasing the

mutation load and regulating the cell conflict [Grosberg and Strathmann, 1998, Michod

and Roze, 1999]. Our results also show that multiple reproductive strategies are optimal
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simultaneously under some conditions. This conclusion coincides the phenomenon that

one species can possess several reproductive strategies simultaneously in nature, such

as cyanobacteria, which has the reproductive strategies of binary fission, budding and

multiple fission [Angert, 2005, Flores and Herrero, 2010]. The frequently observed repro-

ductive strategy 1+ 1 among binary-splitting reproductive strategies indicates it is the

best strategy under unpredicted size effects.

In our model, the size form is quite flexible, which could have positive or negative

effects on organism growth even at the same size stage. This model set is corresponding

to the field studies concerning the size effect [Yamamoto and Shiah, 2010, Nielsen, 2006,

Li et al., 2014, Wilson et al., 2006, Li and Gao, 2004, Wilson et al., 2010], where the size

and the organism growth have been shown to have positive, negative or no relationships.

This size set covers a wide range of size functional forms, including the special form that

previous work has been investigated [?Pichugin et al., 2019]. We delineated the threshold

effect in a multiplayer volunteer game because the game theory has been frequently used

to depict the biological interactions ranging from social foraging to cancer development

[Maynard Smith and Price, 1973, Tomlinson, 1997, Dugatkin and Reeve, 2000, Nowak

and Sigmund, 2004, Nowak, 2006b, McNamara and Leimar, 2020]. However, the volun-

teer’s dilemma in our model is quite different from the previous one, where people are

interested in finding the equilibria either for pure strategies or mixed strategies [Archetti,

2009]. In our work, the individual cell only plays a pure strategy, which is manifest via its

cell phenotype. The strategy can change after cell divisions by producing another type

with a probability.

We chose the cell-type switching probability m = 0.01 because, in reality, the emer-

gence of a new cell type usually caused by environmental pressures in multicellularity,

which suggests it happens less likely naturally [Gallon, 1992, Claessen et al., 2014]. This

relative small cell-type switching probability leads to a relatively homogeneous popula-

tion, who mostly contains homogeneous newborn organisms, see Fig 4.5. Homogeneous

newborn organisms consisting of cooperators dominate a population if the maturity size
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of organisms meets a given contribution threshold. Otherwise, homogeneous newborn

organisms consisting of defectors dominate the population. If contribution threshold

is between the maximum size of newborn organisms and the maturity size of organ-

isms for a population, then the intermediate beneficial newborn organisms dominate the

population. Although heterogeneous beneficial newborn organisms are the fastest grow-

ing ones, they are not the populous ones in a population. The conclusions that binary-

splitting reproductive strategies are the unique optimal strategies is similar to the previ-

ous conclusion under relative small m. There the binary-splitting reproductive strategies

appeared when the cell interactions are both beneficial among cells [Gao et al., 2019]. But

here we relax the constrain of the small intensity of selection.

A limitation we assumed in our model is that the organisms are formed in a clonal

way, by considering their advantages of purging deleterious mutations and reducing

conflicts among cells [Grosberg and Strathmann, 1998, 2007]. Nevertheless, the mul-

ticellularity could also form in an aggregative way, usually responding to the adverse

environment [Claessen et al., 2014, Brunet and King, 2017]. In this scenario, the stick-

iness of cells and organisms could significantly impact reproductive strategies [Amado

et al., 2018, Brunet and King, 2017, Staps et al., 2019]. Thus, a new mechanism needs to

implement. Our model provides a framework for it in terms of reproductive strategies.

Future work needs to address how and to what extent this stickiness factor could impact

reproductive strategies in aggregative multicellularity.

Our model is flexible to extend to include more multicellular traits, as we deliber-

ately simplified them to focus on reproductive strategies. We first simplified the number

of cell types into two and then only considered the asexual life cycle of multicellular-

ity. Multicellular organisms could comprise more cell types or sexual life cycles [Leu

et al., 2020, Nishii and Miller, 2010]. These traits can be incorporated into our model as

well. Our work in simple multicellularity may yield insights into the evolving mechan-

ism of reproductive strategies in complex multicellularity. Since complex multicellular-

ity formed through simple multicellular structures at beginning [Knoll, 2011, Nagy et al.,
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2018]. Furthermore, although we investigated the reproductive strategies in multicel-

lularity containing many cells, our model is general to depict the diverse reproductive

strategies in unicellular organisms, which increase the sizes of their single cells rather

than the cell number to reproduce offspring [Angert, 2005]. Our model implies that ana-

logous to the size in multicellularity, the mass of single cells plays an important role in

shaping the evolution of reproductive strategies.

111



Chapter 4. Evolution of reproductive strategies in incipient multicellularity

4.5 Appendix

4.5.1 The probability distribution of offspring

We show the calculation of the probabilities of producing different types of offspring for

an mature organism {i, j}, where i+ j = N. The probability to produce the offspring type

{i′, j′} (i′+ j′ < N) is calculated by

p{i′, j′} =
Ci′

i C j′
j

Ci′+ j′
N

. (4.5)

We take the mature organism {1,2} in a population with reproductive strategy 1+ 2 as

an example. The are five newborn organisms: {1,0}, {0,1}, {2,0}, {1,1} and {0,2}. The

probabilities to reproduce different offspring from the mature organism {1,2} are shown

in Fig 4.5.

+ 

+ 

1

3

2

3

Figure 4.5: The probabilities of producing different offspring for the mature organism {1,2}
in the population reproductive strategy 1+2. The organism {1,2} has the probability

of 1
3 to produce a newborn organism containing a defector and a newborn organism

containing two cooperators. It has the probability of 2
3 to produce a newborn organ-

ism containing a cooperator and a newborn organism containing one cooperator and

one defector.
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4.5.2 Population growth rate

We illustrate the calculation of the growth rate in a population. For the reproductive

strategy n1+n2+ · · ·+nM with maturity size N, its population consists of the newborn or-

ganisms with sizes ni, where 0≤ ni < N and ∑
M
i=1 ni = N. As two cell types are considered,

thus for each size ni contains ni+1 organisms with different numbers of cooperator. Thus,

there are totally ∑
M
i=1(ni + 1) different types of newborn organisms in a population with

maturity size N. For example, the population with reproductive strategy 1+ 2 totally

have 5 newborn organisms, see Fig 4.1D. The population growth rate depends on the

growth of all newborn organisms with different cell composition. We assume that at the

initial state, a population contains one organism of each newborn. We track the growth

time and offspring number of each newborn organism. We use Ti j and Ni j to show that

the growth time and the number of i type newborn organism reproduces j type offspring.

The growth time Ti j depends on both the current size and the organism composition of

defectors and cooperators by Eq 4.1. The offspring number Ni j depends on the cell-type

switching probability and the cell division probabilities of each phenotype. Then the

population growth rate can be calculated by the largest eigenvalue of the matrix

A = ∑ai j, (4.6)

where ai j = N jie−λTji [De Roos, 2008, Gao et al., 2019]. We obtain the conclusions of the

size effect analytically when maturity size is not greater than 3, see Appendix 4.5.3. We

obtain the conclusion that only the binary-splitting reproductive strategies are the unique

optimal analytically under size effects, see Appendix 4.5.4. Other cases are investigated

by simulation. In our simulation, we simulate the growth trajectory of each organism in

a population. In each trajectory, we record its growth time Tji and its offspring N ji of an

organism with newborn type i reproducing the newborn organism type j. And then we

run 5000 times to get the element ai, j =
∑

5000
z Nz

jie
−λT z

ji

5000 , where T z
ji and Nz

ji are the values in z-th

single run.
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4.5.3 Analytical prove of the general size effects on populations with

maturity size N ≤ 3

There are three reproductive strategies when maturity size N ≤ 3: 1+ 1, 1+ 1+ 1 and

1+2. We prove that under general cell division sequence [ts1, ts2], the optimal population

is determined by the beneficial size stages. The beneficial size stages have the relative

small normalised values of χn, see the explanation in main text. Thus, the reproductive

strategy 1+ 1 is optimal when χ1 < χ2 (size n = 1 is the beneficial size stage) and the

reproductive strategy 1+ 2 is the optimal when χ1 > χ2 (size n = 2 is the beneficial size

stage). The population growth rates λ[1,1], λ[1,1,1], and λ[1,2] of 1+ 1, 1+ 1+ 1 and 1+ 2

respectively can be calculated through the matrix A in Appendix 4.5.2,

λ[1,1] =
ln2
ts1

(4.7)

λ[1,1,1] =
ln3

ts1 + ts2
(4.8)

e−λ[1,2](ts1+ts2)+ e−λ[1,2]ts2−1 = 0. (4.9)

λ[1,2] cannot be calculated directly, but it satisfies Eq 4.9. The population growth rate

is positive, as there is no cell death in our model setting. As t0
sn = ln n+1

n , thus [ts1, ts2] =

[χ1t0
s1,χ2t0

s2] = [χ1ln2,χ2ln 3
2 ], where χ1,χ2 > 0.

We first prove that the reproductive strategy 1+1 is the optimal one under the con-

dition of χ1 < χ2, i.e. χ1 < χ2. Since χ1
χ2

< 1, thus

λ[1,1]

λ[1,1,1]
=

ln2
χ1ln2
ln3

χ1ln2+χ2ln 3
2

=
1

ln3
χ1ln2+χ2ln 3

2
χ1

=
1

ln3

(
ln2+

χ1

χ2
ln

3
2

)
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>
1

ln3

(
ln2+ ln

3
2

)
= 1.

Thus λ[1,1]> λ[1,1,1] for χ1 < χ2, indicating the reproductive strategy 1+1 performing better

than the reproductive strategy 1+ 1+ 1. Next we prove that λ[1,1] > λ[1,2] for χ1 < χ2. If

λ[1,2] > λ[1,1] =
1
χ1

, then

e−λ[1,2](ts1+ts2)+ e−λ[1,2]ts2−1 = e−λ[1,2](χ1ln2+χ2ln 3
2 )+ e−λ[1,2]χ2ln 3

2 −1

< e−ln2−λ[1,2]χ2ln 3
2 + e−λ[1,2]χ2ln 3

2 −1

=
3
2

e−λ[1,2]χ2ln 3
2 −1

=
3
2

(
2
3

)λ[1,2]χ2

−1.

Because the left side is 0 due to Eq 4.9, we get

3
2

(
2
3

)λ[1,2]χ2

−1 > 0(
2
3

)λ[1,2]χ2

>
2
3

λ[1,2]χ2 < 1

λ[1,2] <
1
χ2

<
1
χ1

,

which contradicts the assumption of λ[1,2] > λ[1,2] =
1
χ1

. Thus λ[1,1] > λ[1,2] for χ1 < χ2,

which shows the reproductive strategy 1+1 is optimal under χ1 < χ2.

Then, we prove that the reproductive strategy 1+ 2 is the optimal one under the

condition of χ1 > χ2, i.e. χ1 > χ2. Since χ2
χ1

< 1, thus

λ[1,1,1]

λ[1,1]
=

ln3
χ1ln2+χ2ln 3

2
ln2

χ1ln2

=
χ1ln3

χ1ln2+χ2ln 3
2

115



Chapter 4. Evolution of reproductive strategies in incipient multicellularity

=
ln3

ln2+ χ2
χ1

ln 3
2

> 1.

Thus λ[1,1,1] > λ[1,1] for χ1 > χ2, indicating the reproductive strategy 1+1+1 performing

better than the reproductive strategy 1+ 1. Next we prove λ[1,2] > λ[1,1,1] for χ1 > χ2. If

λ[1,2] < λ[1,1,1] =
ln3

χ1ln2+χ2ln 3
2
, then

e−λ[1,2](ts1+ts2)+ e−λ[1,2]ts2−1 = e−λ[1,2](χ1ln2+χ2ln 3
2 )+ e−λ[1,2]χ2ln 3

2 −1

> e−ln3 + e−λ[1,2]χ2ln 3
2 −1

=

(
2
3

)λ[1,2]χ2

− 2
3
.

Because the life side is 0 due to Eq 4.9, thus we get(
2
3

)λ[1,2]χ2

− 2
3
< 0

λ[1,2]χ2 > 1

λ[1,2] >
1
χ2

.

Since χ1
χ2

> 1, thus

1
χ2

ln3
χ1ln2+χ2ln 3

2

=
χ1ln2+χ2ln 3

2
χ2ln3

=
1

ln3

(
χ1

χ2
ln2+ ln

3
2

)
> 1.

This result 1
χ2

> χ1ln3
χ1ln2+χ2ln 3

2
contradicts the assumption λ[1,2] <

ln3
χ1ln2+χ2ln 3

2
and the conclu-

sion λ[1,2]>
1
χ2

. Thus the reproductive strategy 1+2 is the optimal one under the condition

of χ1 > χ2.

Furthermore, our results of the size perturbation is a special case of this general
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conclusion by set χ1 = 1 or χ2 = 1. Under this condition, the reproductive strategy 1+1 is

optimal when n = 1 is under perturbation and the reproductive strategy 1+2 is optimal

when n = 2 is under perturbation. The results of size effects further show that the optimal

reproductive strategy is the binary-splitting ones (1+1 or 1+2) instead of the multiple-

splitting one (1+ 1+ 1). The multiple-splitting reproductive strategy is the optimal one

when χ1 = χ2 = x∗, where the populations of reproductive strategies of 1+1, 1+1+1 and

1+2 possess the same growth rate 1
x∗ .

4.5.4 Only the binary-splitting reproductive strategies can be the optimal

one under size effects

For a reproductive strategy n1+n2+ · · ·+nM with maturity size N = ∑
M
i=1 ni. Since ni might

equal to n j, the types of newborn organisms could small than M. We suppose there are

M′ types of newborn organisms, where M′ ≤M. As under the size effects, the cell types

do not impact the newborn organisms. Thus, there are only size differences between

newborn organisms. Therefore N ji = Ni for j ∈ [1,M′]. Equation Eq 4.6 can be written in

Eq 4.10. ∣∣∣∣∣∣∣∣∣∣∣∣

N1e−λT1−1 N1e−λT2 · · · N1e−λTM′

N2e−λT1 N2e−λT2−1 · · · N2e−λTM′

...
...

. . .
...

NM′e−λT1 NM′e−λT2 · · · NM′e−λTM′ −1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.10)

Next, we simplify the determinant in the left size of Eq 4.10. In ith row, we add the values

of the first row multiplied by Ni
N1

, where i ∈ [2,M′]. We get

∣∣∣∣∣∣∣∣∣∣∣∣

N1e−λT1−1 N1e−λT2 · · · N1e−λTM′

N2
N1

−1 · · · 0
...

...
. . .

...
NM′
N1

0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.11)
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Then we let the first column add i− th column multiplied by Ni
N1

, where i ∈ [2,M′]. We get

∣∣∣∣∣∣∣∣∣∣∣∣

∑
M′
i=1 Nie−λTi−1 N1e−λT2 · · · N1e−λTM′

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.12)

Then we get

M′

∑
i=1

Nie−λTi−1 = 0, (4.13)

where i ∈ [1,M′]. For the reproductive strategy n1 +n2 + · · ·+nM with N = ∑
M
i=1 ni, Eq 4.13

can be written in the following equation

M

∑
i=1

e−λTni −1 = 0, (4.14)

Where Tni is the growth time for an organism from newborn size ni to its maturity size

N. Since Ni is the repetitive times of a newborn organism. For example, N1 = 3 for the

reproductive strategy 3+3, as there is only one type of newborn organisms.

To prove that only binary-spitting reproductive strategies are the optimal and unique

ones, we use a similar method as that in [Pichugin and Traulsen, 2020]. We show three

reproductive strategy S1 = n1+n2+ · · ·+nM, S2 = n1+n2+ · · ·+nM and S3 = n1+n2, where

N = ∑
M
i=1 ni. We use λ1,λ2, and λ3 to denote the growth rates of S1,S2 and S3, respectively.

The growth rates can be calculated in the fellowing equations

f1(λ ) = e−λT(n1 ,N) + e−λT(n2 ,N) +
N

∑
i=3

e−λT(ni ,N)−1 = 0 (4.15)

f2(λ ) = e−λT(n1+n2 ,N) +
N

∑
i=3

e−λT(ni ,N)−1 = 0 (4.16)

f2(λ ) = e−λT(n1 ,n1+n2) + e−λT(n2 ,n1+n2)−1 = 0. (4.17)
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Since the growth time T is positive, thus the above equations are monotonically decreas-

ing functions. We multiply Eq 4.17 by e−λT(n1+n2 ,N) . Since T(x,y)+T(y,z) = T(x,z), we get

f ′3(λ ) = e−λT(n1 ,N) + e−λT(n2 ,N)− e−λT(n1+n2 ,N) = 0. (4.18)

Thus, f1(λ ) = f2(λ )+ f ′3(λ ) = 0. Hence, we have either λ1 = λ2 = λ3 or f2(λ1) f ′3(λ1) < 0

at λ1. If f2(λ1) < 0 and f ′3(λ1) > 0, we get λ2 < λ1 < λ3. If f2(λ1) > 0 and f ′3(λ1) < 0, we

get λ3 < λ1 < λ2. Thus, the unique optimal reproductive strategies are always the binary-

splitting ones.

4.5.5 Newborn organisms distribution at the stationary growth stage of

populations

To understand the newborn organism future prospect on population growth at the pop-

ulation stationary stage. We made a full screen of newborn organism distribution for

all populations across varying cell-type switching probability m and the contribution

threshold k. The newborn organism distribution is calculated by the right eigenvector

of the matrix A = ∑ai j at the point with the largest eigenvalue [De Roos, 2008]. We found

that the beneficial newborn organisms always dominate their population when cell-type

switching probability is small, see Fig 4.5. The multiple beneficial newborn organisms

jointly dominate their population, see the population 1+ 2 in Fig 4.5B. If there are no

beneficial newborn organisms in a population, the intermediate beneficial newborn or-

ganisms will dominate, like the intermediate beneficial newborn organism {0,1} in the

population 1+ 1+ 1 under k = 2, see Appendix Fig 4.5 B. Otherwise, under the condi-

tion lacking both of them (when k≥N), then a population will be dominant by its neutral

newborn organisms rather than adverse newborn organisms because of their payoffs, see

1+1 under k = 2 in Fig 4.5 B. Due to the future prospect of the newborn organisms and

the small type switching rate, in the subsequent investigation of the population growth

rate, we mainly focus on the behaviour of the beneficial newborn organisms and then the

intermediate beneficial newborn organisms.
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A

B

Figure 4.6: Examples of the newborn organism distribution of populations across varying

cell-type switching probability m and contribution threshold k. A. Newborn or-

ganisms of populations with reproductive strategy of 1+ 1, 1+ 1+ 1 and 1+ 2 are

investigated under m ∈ [0,1] and k = 1. B. Newborn organisms of populations with

reproductive strategy of 1+1, 1+1+1 and 1+2 are investigated under m ∈ [0,1] and

k = 2. Parameters w = 0.1, m = 0.01, b = 10 and c = 1.
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Chapter 5

Summary and outlook

5.1 Summary

In this thesis, I found that cellular interactions in hierarchical organisms can shape the

characteristics of organisms in terms of formation, division of labour and reproductive

mode. These three major questions were addressed in structured populations by different

models and methods. Throughout this thesis, I assumed that selection acts on population

growth. Population growth rates were calculated analytically (or numerically) by char-

acteristic equations. In the first model (in Chapter 2) and the third model (in Chapter 4),

the concepts of payoff matrices in evolutionary game theory were adopted to describe

individual interactions. In Chapter 2, the model uses a general 2× 2 game form, while

in Chapter 3, model uses a specific volunteer game. Furthermore, weak intensity of se-

lection was assumed in the first model to obtain the analytical results. This constraint

was relaxed in the third model where population growth rates were numerically calcu-

lated. The Monte Carlo method for sampling was used in the second model (in Chapter

3) and the third model (in Chapter 4) to capture the potential functional forms in high

dimensional spaces.

In Chapter 2, I performed an extensive investigation of the competition of life cycles

driven by cellular interactions in organisms. The results showed that multicellular life

cycles can emerge under a wide range of parameters, see Fig 2.2 and Fig 2.4. Furthermore,

among the huge variety of life cycles, only eight multicellular life cycles were found to

be evolutionarily optimal. The vast majority of games promoted either of two very spe-

cific classes of life cycles: multiple fission (reproducing only single-celled offspring, such

as 1+...+1) or binary-splitting (reproducing exactly two strictly multicellular daughter

groups of the identical or almost identical size, such as 2+2 and 2+3).
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I found that social dilemma games may not promote the evolution of life cycles with

a single-cell bottleneck. Naive intuition would suggest that life cycles with unicellular

offspring are likely to be favoured by all social dilemmas, as a single cell bottleneck is an

effective way to police defectors. However, in our model, I found that social dilemmas

may lead to the evolution of any of eight life cycles (Fig 2.4). This is due to the structure

of the population and the cell-type switching probability, which allows a cell type to

continuously produce another cell type. The cell-type switching probability increases the

phenotypical heterogeneity in an organism, especially when the probability is around

0.5. The strategy of a cell is determined by the cell-type switching probability because

each cell player’s strategy was assigned via its phenotype.

In chapter 3, I investigated the conditions favouring an extreme altruism form of

one cell type completely losing its reproductive ability. Two cell types were considered:

somatic cell (representing cooperators) and germ cell (representing defectors). I sought

the conditions under which somatic cells completely sacrifice their reproductive abilit-

ies, i.e. somatic cells only produce somatic cells. Our results showed that irreversible

somatic differentiation emerges under the conditions of both somatic cells’ benefits and

cell differentiation costs in larger multicellular organisms. Somatic cells’ benefits mean

the somatic cells contribute to organism growth and the contributions of somatic cells is

additive. Cell differentiation costs mean the decreasing in organism growth result from

cell differentiation. Counterintuitively, only under the condition of somatic benefits, ir-

reversible somatic differentiation cannot emerge. The underlying reason is the trade-off

between the viability and fertility of an organism. When there is a benefit from somatic

cells, an organism can exploit somatic cells gaining benefits (grow fast) by producing so-

matic cells. But at the late stage of organism development, the optimal strategy for an

organism is to produce as many germ cells as possible. Due to this trade-off, the best

strategy for an organism is to let germ cells produce somatic cells and let somatic cells

produce germ cells. Thus, only under somatic cells’ benefits, the optimal strategies are

the reversible somatic differentiation rather than the irreversible ones.
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In our results, the contribution threshold x0 is one of the parameters that determine

somatic cells’ benefits functions. x0 implies the proportion at which somatic contribu-

tion starting to contribute to organism growth. The x0 played an important role in the

emergence of irreversible somatic differentiation. That is, most irreversible somatic dif-

ferentiation emerges under the functions of somatic cells’ benefits with a certain small

contribution threshold x0. In reality, species in genus Volvox exemplify the necessity for

the contribution threshold x0. The smaller Gonium consists of identical cells, but without

division of labour, whereas the slightly larger Pleodorina shows a partial division of la-

bour and the larger Volvox carteri exhibits a complete germ-soma division of labour in

reproduction [Matt and Umen, 2016], revealing an underlying threshold for the emer-

gence of division of labour in terms of somatic cells’ proportions. The somatic cells’

benefits functions with four features enhance the chance to capture the potential diverse

somatic contribution functions in reality, which suggests the phenomena of the rarity of

irreversible somatic differentiation [Rodrigues et al., 2012] [Cooper and West, 2018].

In chapter 4, I investigated organism size effects and threshold effects on reproduct-

ive strategies of multicellularity based on the first model (in Chapter 2). Our results

show that reproductive strategies can co-exist under different conditions. This conclu-

sion coincides with the phenomenon that one species can possess several reproductive

strategies simultaneously in nature, such as cyanobacteria, which has the reproductive

strategies of binary fission, budding and multiple fission [Angert, 2005, Flores and Her-

rero, 2010]. Moreover, our results show that the bottleneck reproductive strategy that

repeatedly reproduces one offspring can be optimal and unique under either condition.

This conclusion indicates the new advantages for the bottleneck reproductive strategies

other than the previously stated advantages of decreasing the mutation load and regu-

lating cell conflicts [Grosberg and Strathmann, 1998, Michod and Roze, 1999].

Our results also show that only the binary-splitting reproductive strategies can be

optimal and unique, see Fig 4.2, Fig 4.3, and Fig 4.4,. Among them, the bottleneck re-

productive strategy (producing a single-celled offspring repeatedly) is commonly adop-
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ted for complex species, such as plants and human. Other binary-splitting reproductive

strategies are not frequently observed in nature. Besides, under the size effects, the re-

productive strategy [1,1] is the most frequently observed strategy among binary-splitting

ones. This indicates reproductive strategy [1,1] is the best strategy under the environment

with unpredicted size effects.

Finally, I chose a fixed cell-type switching probability m, where m = 0.01 in our

model. This assumption increases the degree of heterogeneity in organisms compared

with homogeneous organisms. And it also increases the cellular interactions between

cells with different types to a certain extent. Therefore, a population is consisting of or-

ganisms with different cell composition. As the organisms with only cooperators can

grow faster if their cooperator numbers meet a given threshold, they are more abundant

in a population. Otherwise, organisms with only defectors are more abundant in a popu-

lation. The results of optimal reproductive strategies are robust to the cell-type switching

probability, especially for large organisms.

5.2 Open questions

In the models of this thesis, I considered organisms growing in rich environments, which

led to populations growing exponentially. While in reality, we know populations will

be limited by resources and they will at most reach carrying capacities. Vanessa Ress

has investigated the evolution of different reproductive strategies, where populations

compete for resources. In an environment with insufficient nutrition, logistic growth is

more natural to describe population growth. Therefore, a question arises: Can we get the

same conclusions by considering finite populations? Meanwhile, what kind of methods

should we adopt? New approaches that can evaluate the performance of reproductive

strategies and conditions for ISD (irreversible somatic differentiation) are needed. In

the following two paragraphs, I introduce two possible methods for investigating the

reproductive strategies of organisms. Similar methods can be used to investigate ISD,
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as long as one replaces reproductive strategies (in Chapter 2 and 4) by developmental

strategies (in Chapter 3).

Let us consider a finite population consisting of organisms, which may have differ-

ent reproductive strategies. One idea for finite population models is introducing internal

competition between organisms with different reproductive strategies. Lotka-Volterra

equations could be an ideal mathematical method to describe the competition. We as-

sume the population only contains few newborns of each reproductive strategy initially

(see newborn types in Chapter 4). The birth rate of each organism should be constrained

by the population carrying capacity. Meanwhile, the birth rate of each organism is pro-

portional to its fitness. The fitness of an organism can be defined by its exponential pop-

ulation growth rate which is calculated in the density-independent models (in Chapter

2 and 4). The death rate of each organism is constant for each organism. Finally, we

can investigate the proportions of different reproductive strategies among organisms at a

strategy stable state. The reproductive strategy with the highest proportion is the optimal

one.

Another idea is using a Moran process to describe a finite population. We can

estimate the performance of two reproductive strategies by their fixation probabilities

[Traulsen and Nowak, 2006]. Fixation probability of a strategy is the probability that

a single organism with this strategy invades a population, where organisms share a

resident strategy. In a pairwise comparison, one reproductive strategy is better when

it has a larger fixation probability. Finally, we can compare all reproductive strategies

through the pairwise comparison. But one should note that in our model one reproduct-

ive strategy are related to several different newborn organisms, thus one should handle

the death process carefully to keep the population size constant.

In the models of this thesis, I considered cells interacting in a well-mixed organism,

where there are no spatial structures. Cells can directly interact with each other in an

organism without taking their physical distances into account. In nature, organisms are

shaped in various forms, such as filament, planes or spheres. Different shapes constrain
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the direct interactions for cells physically located far away from each other. Instead of in-

teractions among all cells, only the neighbour cells can directly interact with each other.

Spatial structures could also play a crucial role in organisms [Nowak, 2006b, Libby et al.,

2014, Yanni et al., 2020], and it remains an open question to know how it can impact cellu-

lar interactions. To address this concern, a model including the interaction ranges among

cells in an organism is required. I will next provide some thoughts for implementing

such a model.

Yanni et al. [2020] proposed graph structures to illustrate cellular interactions in an

organism. In a graph, nodes represent the cells of an organism and links connect two

interacting cells. Similarly, we can use the same method to investigate the effects of

different spatial structures on reproductive strategies by including spatial structures in

organisms. We can set a fixed population structure for all organisms and keep all other

assumptions unchanged in our models. Then, we can investigate the best population

structure for a reproductive strategy of interest (for Chapter 2 and Chapter 4) or for ISD

(for Chapter 3). To find the optimal organism structure for a reproductive strategy or

ISD, the structure can change the number of links, the pattern of links and the cellular

interaction strength (link strength).

For the reproduction of multicellular organisms, I assumed that cells in a mature

organism randomly fragment to form offspring. Since only cooperators benefit an or-

ganism, it is reasonable to assume that the fragmentation relies on a specific mechanism.

For example, cooperators may produce some materials into their environment to stick

to other cells, thus cooperators are more likely to stay together than defectors [Rainey

and Rainey, 2003b]. To model organisms with such reproduction preferences, a new de-

scription is needed. I will propose an approach for a scenario including a fragmentation

preference in the next paragraph.

We consider a situation where cooperators can release a sticky material that keeps

cells staying together after organism fragmentation. An organism containing more co-

operators is thus likely to reproduce larger organisms. It seems reasonable to set a public
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goods game for cooperators and defectors, where cooperators pay a cost but defectors

don’t. Under these assumptions, our classification of reproductive strategies becomes in-

valid, because the organisms in a population may not follow a fixed reproductive strategy

any more. Nevertheless, we can borrow the idea from previous work to adopt mixed

reproductive strategies for organisms [Pichugin et al., 2017]. Initial organisms have all

potential fragmentation modes, and we track the dynamics of the population based on

parameters of cell stickiness and different cellular interactions forms. Finally, we can

obtain conclusions by observing the fractions of existing reproductive strategies at their

stable state. A similar method can be used to investigate ISD.

In the models of this thesis, I investigated clonal organisms by considering their ad-

vantages of purging deleterious mutations and reducing conflicts among cells [Grosberg

and Strathmann, 1998, Michod and Roze, 1999]. Nevertheless, in nature, multicellular

organisms could also form by aggregation, usually responding to adverse environments

[Claessen et al., 2014, Brunet and King, 2017]. The role of aggregation promotes cooper-

ation has been investigated theoretically [Tarnita et al., 2013, Garcia et al., 2015]. In the

models with cell aggregation, the stickiness of cells in organisms could significantly im-

pact reproductive strategies [Amado et al., 2018, Brunet and King, 2017, Staps et al., 2019].

Thus, a new mechanism needs to be introduced. Our model provides a framework for

classifying reproductive strategies. Future work needs to address how and to what extent

the stickiness of cells could impact reproductive strategies in aggregative multicellularity.

In the next paragraph, I will discuss a model considering aggregative organisms.

In a population, when organisms can grow through aggregation, the generation time

of organisms will be heavily impacted. An organism can reach its mature size quickly by

aggregating other large organisms. In organisms with two cell types, it is natural to con-

sider different stickiness abilities. The stickiness of an organism can be defined as the

average one across cells. Or it can be defined as other forms, such as a function of cell

composition. The reproductive strategies of organisms and the other settings are the

same as in our models (see Chapter 2 and Chapter 4). Finally, we can investigate the ef-
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Chapter 5. Summary and outlook

fects of stickiness on reproductive strategies by observing their fractions at strategy stable

state. I expect the results will be the same for ISD under the design of aggregative organ-

isms because only defectors (germ cells) can be aggregated during growth. Therefore, all

developmental strategies are affected at the same time, thus the relative performance of

ISD strategies is likely to be unchanged.

Since I focused on the reproductive strategies of organisms in this thesis, I deliber-

ately simplified other traits, such as multiple cell types and sexual life cycles [Nishii and

Miller, 2010]. Future models can incorporate more cell types or sexual life cycles. Our

results are still attainable if there is no gene recombination happening during gamete

fusion, but conclusions are unknown if gene recombination is involved. Then we ask:

Would the conclusions in our models still hold when considering organisms with sexual

life cycles? Furthermore, we could ask under which environmental conditions sexual life

cycles can outperform asexual life cycles. In the next paragraph, I discuss the potential

outcomes by considering organisms with multiple cell types and sexual life cycles.

The scenario is more complicated for organisms with more than two cell types, as

cell types are corresponding to cellular interaction strategies. There are total n strategies

in a population with n cell types, where n > 2. Multiplayer games with n strategies could

be an approach to construct such a population [Gokhale and Traulsen, 2014]. Cellular

interactions among n cell types can be captured by a payoff matrix. The size of the payoff

matrix depends on n and the cell number of an organism. The parameters in the pay-

off matrix will lead to a high dimensional model, which is highly likely to yield diverse

outcomes in terms of the optimal reproductive strategy. For organisms with sexual life

cycles, not all reproductive strategies in our model are valid. As sexual life cycles start

from the fusion of two gametes, the offspring of organisms can only be single cells. Un-

der this condition, we can only investigate the reproductive strategies of binary fission

and multiple fission (see Chapter 2 and Chapter 4). One also needs to design a mech-

anism to determine the sex of offspring of an organism. The mechanism could include

some ecological factors based on the experimental observation [Nishii and Miller, 2010].

128
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For example, under nitrogen starvation, Volvox carteri reproduces equal-sized gametes

with different types. By doing so, one can investigate the effects of sexual life cycles on

reproductive strategies. A similar method can be used in investigating ISD.

Overall, this work has yielded insights into the mathematical mechanism of the ef-

fects of cell interactions on the competitiveness of organisms with different reproductive

strategies. In this work, I have studied cell interactions based on game-theoretic methods

and populations based on stage-structured methods. In future work, I plan to extend my

models with density-dependence, spatial structures and complex life cycles.
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