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Abstract 

In natural environments, multiple objects compete for our attention. Thus, the incoming 

information must be reduced by attentional filtering. Listening to a talker of choice (top-down attention) 

can be corrupted by the attentional capture of a more salient, distracting talker (bottom-up attention). 

In this thesis, I investigated the neural signatures of auditory attention under continuously varying 

acoustic conditions. 

Two neural signatures of auditory attention have been recently studied: the neural tracking of speech 

and the modulation of alpha power. Neural tracking refers to the neural phase-locking to the (spectro-) 

temporal fluctuations of speech, which has been previously shown to be indicative of top-down attention. 

Alpha power refers to induced neural oscillations around 10 Hz, which has been previously proposed to 

control the distribution of neural resources through inhibition of brain regions or neural pathways 

processing irrelevant information. A comprehensive understanding of the interplay between neural 

tracking of speech and the modulation of alpha power has not been established yet.  

In this thesis I used electroencephalography to investigate the simultaneous attentional modulation 

of neural tracking and alpha power during continuous selective listening tasks. We dynamically 

manipulated the demand on top-down attentional control by varying the signal-to-noise ratio (SNR) 

and the location of the to-be-attended as well as the to-be-ignored talker. We applied and refined 

forward encoding models, which allowed us to predict the neural response to continuous speech as well 

as to detect the lis  attentional focus. Based on those predicted neural responses, we traced the 

cortical representation (i.e., neural tracking) of the attended and the ignored talker, respectively. We 

disentangled the impact of bottom-up versus top-down-attentional modulation (i.e., neural selectivity).  

Furthermore, we investigated whether the neural signatures of auditory attention can be recorded at a 

reduced set of EEG electrodes, which could provide valuable information for the neural steering of a 

hearing aid.  

In the first part (studies 1 3), I show that the neural tracking of speech is composed of bottom-up-

driven as well as top-down-controlled modulation. We show that top-down attention strongly shapes 

later components of the neural response. This results in increased neural selectivity by way of suppressed 

responses to the ignored talker. Under most adverse conditions, increased late neural tracking and 

neural selectivity of the ignored talker indicates top-down-controlled suppression. However, the 
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modulation of alpha power did not follow the hypothesized direction. Neither the SNR nor the location 

of the talkers predicted the attentional modulation of alpha power.  

In the second part of this thesis (studies 4 6), I  be detected 

with in-ear EEG based on the neural tracking of speech. We replicate this finding and additionally show 

that the increased late tracking of the ignored talker is also indicated by in-ear EEG. 

I argue here that the top-down neural tracking of speech and the modulation of alpha power are two 

distinct neural strategies rather than two sides of the same coin. I conclude that attentional filtering is 

primarily achieved by spectro-temporal, proactive filtering in auditory cortex and that adverse listening 

conditions is controlled by an additional late suppressive tracking of the ignored talker in the fronto-

parietal attention network. I conclude that neural strategies related to the attentional modulation of 

alpha power were not obligatory under the given task demands. Regarding neurally steered hearing aids, 

neural tracking provides valuable information for the neural steering of a hearing aid. 

In sum, the neural tracking of speech is the most prominent signature of top-down auditory attention 

and I showed that it adapts to the current listening conditions. I could not confirm a significant role of 

alpha power modulation as a signature of top-down attention to continuous speech. It is up to further 

studies to close the gap between the attentional modulation of the neural tracking of speech and of alpha 

power during continuous listening. 
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1 General introduction 

1.1 Auditory selective attention 

In natural environments, multiple objects compete for the allocation of our attention. In a 

crowded auditory scene, the ability to attend to a certain sound source in the presence of multiple 

distractors has been called the cocktail-party effect (Cherry, 1953). During the investigation of 

selective attention in the last 70 years or so, dichotomous concepts such as parsing and grouping, 

early and late selection, bottom-up and top-down were coined. Those terms will be described 

within this section. 

1.1.1 Selective attention in an auditory scene 

Auditory objects such as a certain talker play an important role when studying auditory selective 

attention. The process of the perceptual formation of auditory objects was called auditory scene 

analysis by Bregman (1990) and opened a new field of research. It was argued that attention 

operates on an object-based level (e.g., Duncan, 2006; Shinn-Cunningham, 2008) and it was 

shown that attention is not a prerequisite for the formation of objects (Alain et al., 2001; Dyson et 

al., 2005; Hautus and Johnson, 2005). However, it was also shown that the formation of auditory 

objects depends on attention (Zobel et al., 2015). 

The main questions asked in the field of auditory scene analysis concerned the features (such 

as pitch or location) of an incoming sound or sound mixture that may or may not lead to the 

formation of auditory objects, also called auditory streams. Two conceptual processing stages 

were introduced to describe the process of auditory scene analysis: First, parsing describes the 

decomposition of a sound or sound mixture into its basic building blocks. Parsing starts at the 

level of the cochlea. The cochlea can be approximated by a bank of bandpass filters which returns 

a time-frequency representation of the auditory input, which can be illustrated in the form of a 

spectrogram, also called cochleogram (e.g., Patterson, 1976; Glasberg and Moore, 1990). Each 

time-frequency bin of such a cochleogram might or might not belong to a certain auditory object. 

Subsequently, grouping reorganizes those bins and ascribes each bin to an auditory stream. In the 

presence of multiple sound sources, parsing is mathematically ill-posed due to the superposition 

of multiple waveforms. Hence, the auditory system must rely on certain cues that allow 
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assumptions about the present auditory objects in the auditory scene (e.g., Griffiths and Warren, 

2004; Bizley and Cohen, 2013). 

The features that allow the formation of auditory streams have been categorized by Bregman 

(1990) into horizontal and vertical cues, which he based on the common illustration of 

spectrograms. While horizontal cues refer to the temporal regularities of an auditory object, 

vertical cues refer to its spectral regularities. For example, an alternating sequence of tones of 

separate pitch might be perceived as two separate streams if the pitch difference exceeds a certain 

threshold and as one stream otherwise (Micheyl et al., 2005). Interestingly, close to threshold, bi-

stability of the perception allows a listener to actively bias the perception, which raised the 

question if attention can act prior to object formation or only on previously formed objects 

(Gutschalk et al., 2005; see Snyder et al., 2012 for a review). However, if the tones are temporarily 

aligned, they unavoidably form one stream in form of a complex tone, which highlights the role 

of temporal coherence in auditory object formation (Elhilali et al., 2009; Teki et al., 2013; Shamma 

et al., 2013). 

This thesis primarily focuses on the attention-related neural processing of talkers without 

spatial segregation. Irrespective of the question which cue dominates object formation in this case, 

we mainly investigate the neural response to the broad-band temporal dynamics of the talkers 

represented by the envelope of their speech signals. 

1.1.2 Early and late selection 

Selective attention is a cognitive process which determines how and if a certain stimulus, 

amongst the presence of others, is transferred towards perception. One of the first models of 

selective attention was predominantly tested in the auditory modality (Broadbent, 1958). 

Broadbent presented two separate auditory inputs at each ear (i.e., dichotic listening), while 

subjects had to attend and later repeat one of the two. Subjects were only able to report the content 

of the attended input. Broadbent argued that the processing of the incoming information is 

constrained by limited computational resources and that a filter is tuned to reduce the amount of 

incoming information. This reduction by way of a filter was later called bottleneck. The filter was 

suggested to act at an early stage (i.e., early selection), which means that it is tuned to basic physical 

properties (e.g. location or pitch) of a stimulus rather than the content (meaning of the message) 

it is about to transfer.  
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The concept of mere early selection was challenged by later findings. Moray (1959) found that 

subjects are still able to detect their own name in the unattended stream during dichotic listening. 

Treismann (1960) showed that a sudden switch of the two streams tempts subjects to follow the 

stream in the to-be-ignored ear, at least for a few words. She argued that the selective filter tuned 

to physical properties of the stimulus such as its location is not unalterable but can be overruled 

by semantic cues. Going beyond the concept of an attentional filter that is strictly tuned to the 

physical properties of a stimulus, the concept of late selection was established as well. The model 

of Deutsch and Deutsch (1963) even assumed that all input is processed up to the semantic 

representation and selection merely acts at this stage.  

Even if early and late selection are well established terms, it is not well defined where early 

selection ends and where late selection begins. In sum, the two concepts highlight that the 

investigation of (auditory) attention always comes with the assumption that the underlying neural 

processes are organized in a hierarchical structure and that attention transforms the 

representation of sensory input in an incremental manner. Until now this view has not changed 

much, but how and in which direction information flows through this hierarchy as well as which 

stages are involved is still a matter of debate.  

1.1.3 Bottom-up and top-down attention 

The bi-directional concept of bottom-up and top-down attention accounts for the fact that in 

selective attention tasks, to-be-ignored or distracting stimuli can capture attention if those stimuli 

exceed a certain saliency threshold (for review see Katsuki and Constantinidis, 2014; Wolfe and 

Horowitz, 2004). While bottom-up attention is the exogenous, sensory-driven capture of attention 

by a stimulus due to its saliency, top-down attention describes the internal, voluntary selection of 

a certain stimulus. The concept of bottom-up and top-down attention is closely linked to early and 

late selection (see section 1.1.2), because the features of an intentionally ignored stimulus that 

could possibly capture bottom-up attention are determined by how late (i.e., up to which stage) 

an ignored stimulus is processed. 

Many studies have investigated the interplay between bottom-up and top-down attention in 

the visual modality (for review: Egeth and Yantis, 1997, Connor et al., 2004). However, visual 

attention differs from auditory attention in some substantial respects. For example, the 

involvement of eye-movements into visual bottom-up attention has been extensively studied, but 
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an equivalent movement of the peripheral sensory organs cannot be found in the auditory 

modality. Furthermore, dichotic listening tasks have been used multiple times to study auditory 

attention, whereas presenting two different stimuli to each eye is rather unusual in studies of visual 

attention. Another aspect is the difference of the temporal structure between visual and auditory 

stimuli. While visual stimuli are usually presented in a static fashion, auditory stimuli such as 

speech unfold in time. Consequently, auditory bottom-up and top-down attention have to be 

investigated with respect to the unique properties of the to be encoded sensory signals. 

Which features of unattended or distracting stimuli attract attention and which intensity of 

those features are needed to rule out top-down attention? To answer this question, researchers 

tried to come up with objective measures of saliency (for review see Kaya and Elhilali, 2017). One 

approach is to psycho-acoustically quantify the saliency of a stimulus based on ratings of subjects 

(Kayser et al., 2005; Tsuchida and Cottrell, 2012; Kaya and Elhilali, 2014). Basic features such as 

sound intensity, spectral and temporal contrast were shown to strongly contribute to enhanced 

saliency. However, such designs do not allow to directly infer on bottom-up attention, since 

subjects performed the main task on the rating of an attended stimulus. To overcome this 

problem, other studies investigated the distractive potential of certain stimulus features such as 

regularity (Southwell et al. 2017) or verbal and spatial deviance (Vachon et al., 2017). It turned 

out that the multidimensional space of acoustic features and their probable non-linear interaction 

hampers the development of an overarching model. In a recent attempt, a comprehensive dataset 

of auditory scenes was presented in random pairs (one to each ear). Subjects had to freely listen 

to the scenes and continuously report which of the scenes attracts more of their attention (Huang 

and Elhilali, 2017). As shown before, change of loudness (i.e., perceived sound intensity) was 

found to be mostly driving the salience, but also other features such as change of harmonicity, 

pitch, timbre (i.e., brightness) and spectral frequency (i.e., scale) were found to contribute to 

overall saliency. This highlights that in particular the rate of change of a feature and not the 

absolute intensity is crucial for capturing bottom-up attention. 

Furthermore, the investigation of attention-capturing features led to the conclusion that not 

only the instantaneous features but also the stimulus history plays an important role, not least 

because the stimulus history influences predictability of upcoming changes (Kaya and Elhilali, 

2017).  
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1.2 Electroencephalography 

Electroencephalography (EEG) is an electrophysiological method of measuring the cortical 

(and also subcortical) activity of the (human) brain. Technically described, EEG is the voltage 

fluctuation between at least two electrodes attached to the scalp. The first EEG measurements 

were conducted by Hans Berger (1929). Since then, the basic principle of EEG has not changed 

very much, whereas the certainty about the neural source of the EEG signals has increased. 

Currently it is accepted that EEG mainly captures the shifting of extracellular charge due to the 

superposition of the postsynaptic potentials of multiple neurons within the cerebral cortex 

(Zschocke,2012). EEG mainly captures the summed potentials of co-aligned ensembles of 

pyramidal cells lying in radial orientation relative to the skull. However, tangential sources and 

deeper sources (e.g., brainstem) are captured as well. 

Berger (1929) discovered dominant waves of frequencies around 10 Hz, which he later called 

alpha- -waves; Berger, 1932).  He found the amplitude of those alpha waves was increased 

when the eyes of the subjects were closed as compared to opened. In the following years, various 

phenomena discovered by other researchers led to the subdivision of the EEG frequency band, 

which led to established terms (whereas the exact frequency range varies between authors): delta-

3.5 Hz), theta- 7.5 Hz), alpha- 13 Hz), beta- 30 Hz) 

and gamma- 90 Hz; Lopes da Silva, 2013).  

Within this thesis, the analysis primarily focuses on lower 

broad-band amplitude modulation (see 

section 1.3; Ding et al., 2017)  as exemplary shown in Figure 1-1. However, it was also shown that 

-band co-varies with attention-dependent factors during listening tasks (see section 

1.5). Hence, modulations -band are also under investigation in this thesis. 

EEG signals can be analyzed within different domains (i.e., representations), depending on the 

experimental design and the underlying research question. Two important representations are 

the time and frequency domain (Wöstmann et al., 2017a). 
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Figure 1-1: Common frequency bands of speech envelope and EEG signal. A) Exemplary EEG signal 

bandpass-filtered between 1 and 40 Hz. B) Power spectral density of a 15-minute EEG recording. Besides the 
-band, lower frequency bands are showing increased power compared to higher bands. 

A) The temporal envelope approximates the amplitude modulation of a broad band speech signal. B) The power 
spectral density of the speech envelope exemplarily shows that amplitude modulation is dominated by 

 

Time-domain EEG signals are usually analyzed by obtaining event-related potentials (ERPs). 

Typically, an ERP is obtained by the multiple presentation of the same stimulus and subsequent 

averaging of the EEG signals aligned to the onset of the stimulus. Averaging leads to the 

cancellation of stimulus-unrelated noise, given that the noise has a mean of zero. ERPs obtained 

from auditory experiments are called auditory evoked potentials (e.g., Burkard et al., 2007).  

The transformation of the time domain EEG signal into the frequency domain is used to 

analyze the spectral constitution or oscillatory content of an EEG signal (e.g. Figure 1-1B), which 

may or may not be related to the onset of a stimulus. In complex form, both the amplitude and 

phase at a certain frequency can be analyzed (e.g., relative to the onset of a stimulus). Hybrids of 

time and frequency representations exist in the form of time-frequency representations (TFRs), 

which represent the fluctuation of power and/or phase within a frequency band over time. 
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1.3 Neural signatures of auditory selective attention in event-related 

potentials 

Auditory evoked potentials (AEPs) are the average neural response to an auditory stimulus 

obtained in the time domain of the electrophysiological signal (e.g., EEG or MEG). AEPs are 

obtained by the multiple repetition (i.e., trials) of the identical auditory stimulus (or stimulus 

category) and the subsequent averaging across the single-trial EEG signal aligned to the stimulus 

onset. An AEP is a sequence of deflections alternating between positive and negative halfwaves, 

also called components (Burkard et al., 2007). Every component can be interpreted as a 

representation of a neural operation along the auditory pathway (see Picton, 2013). Thus, the 

latency of the components allows inference on the underlying neural sources of the components 

(e.g. Kraus and Nicol, 2008). Early (i.e., fast) components within the first 10 ms are associated 

with the cochlear, the auditory nerve and the brainstem. During latencies between 10 and 80 ms 

(i.e., middle), the auditory cortex shows a response to an auditory stimulus. Components during 

latencies beyond 80 ms (i.e., slow) are mainly associated with the auditory cortex followed by 

frontal as well as parietal brain regions (Picton et al., 1999). Thus, in auditory cortex, the 

processing of the stimulus is branching, such that components in the AEP might overlap in time. 

Neuroanatomical models suggest that the auditory cortex itself is hierarchically organized and 

that information flows from core to belt areas and from caudal towards rostral regions via superior 

temporal regions (Hackett et al., 2014; see also Venezia et al., 2019).   

Researchers use AEPs to investigate when and where attention is involved in the processing of 

an auditory input (for a review: Picton, 2013)

inference on the neural implementation of attentional filters. It is of interest whether attention 

acts early at a sensory stage or late on a higher order stage such as the semantic level (see above). 

Note that the attention-related dichotomy of early and late selection does not necessarily reflect 

in early and late components of an AEP, since higher order features could possibly be extracted 

at a relatively early stage along the auditory pathway, same as lower order features such as location 

could possibly affect later ERP-components as well. 

It is still under debate which features of an auditory input are relevant for the neural system 

and which stage of the auditory pathway shows earliest signatures of auditory attention. To 

answer this question, i , ERPs have been recorded (including AEPs) from human 
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participants undergoing selective tasks (for a review: Näätänen, 1975). Early studies on AEPs 

showed enhanced N1- and P2-components in the neural response to attended compared to 

ignored auditory stimuli (Hillyard et al., 1973), which was replicated in numerous studies (e.g., 

Tiitinen et al. 1993; Woldorff et al. 1993; Rimmele et al. 2011). The underlying neural generators 

of the N1-component were localized in auditory cortical as well as frontal and parietal brain 

regions (Näätänen and Picton, 1987; Picton et al., 1999).  

Besides the investigation of the neural when and where of attention, researchers asked how 

attention might be neurally implemented. The characterization of attention as a filter led to the 

theory of two basic principles: the enhancement of an attended signal (i.e., amplification) and the 

inhibition of an ignored signal (i.e., attenuation, suppression). The alternation between states of 

high and low excitability of neurons plays an important role in this regard. Single cell recordings 

showed that attention enhances the firing rate (Motter, 1993) and sharpens the tuning curves of 

neurons sensitive to features of an attended stimulus (Spitzer et al., 1988).  

The alternation between states of high and low excitability of neuronal ensembles in the 

primary auditory cortex was shown to align to the rhythmic structure of attended versus ignored 

stimuli, resulting in a neural oscillation (Lakatos et al., 2008; Bosman et al., 2009; Luo et al., 2010). 

Similarly, the phase of such an oscillation was shown to depend on the attended (and ignored) 

stimulus frequency, which showed that similar neuronal mechanisms working both on the 

temporal and the spectral feature dimension build up a spectro-temporal attentional filter (Fritz 

et al., 2007; Lakatos et al., 2013). 

Spectro-temporal filtering alone would not be robust enough to broad-band distractors (see 

Willmore at al., 2014). Considering that broad-band noise fills temporal sound intensity troughs 

of an attended (speech) stimulus, the dynamic range (i.e., variance) of the attended stimulus 

decreases. This problem might be overcome by the adaptation of the neuronal gain in the auditory 

cortex, which preserves and amplifies the left variance (e.g., Rabinowitz et al., 2011). 

Within this thesis, primarily late (>50 ms) evoked cortical components of the neural response 

to continuous speech will be discussed, since earlier research has mainly presented attention-

related modulation at this stage (see below). However, recent studies have found attentional top-

down modulation at the level of the brainstem as well (Forte et al., 2017, Etard et al., 2018). 
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1.4 Phase-locked neural response and the neural tracking of attended versus 

ignored speech 

Neural phase-locking refers to the observation that firing patterns of single neurons or 

populations of neurons reproduce the temporal structure of a stimulus. Temporal information in 

acoustic signals such as speech are manifold and unfold on different time scales (Rosen, 1992; 

Ding and Simon, 2014). 

As a framework, Rosen (1992) defined three physical features of speech signals that carry 

temporal information: envelope, periodicity and fine-structure. The temporal envelope is the 

instantaneous magnitude of a (broad-band) sound, hence, it describes the fluctuation in sound 

intensity. The fine structure describes the actual sound wave form containing the instantaneous 

phase and frequency information. Periodicity describes whether the carrier signal is rather tonal 

(i.e., periodic wave form) or noise-like.  

Based on this framework, the relative contribution of the temporal components to speech 

comprehension were quantified. Besides the temporal fine-structure (Shannon et al., 1995; 

Obleser and Weisz, 2012), the broad-band temporal envelope moved into the focus of studies. It 

was shown in animals that slow and fast temporal modulations are differently represented in the 

auditory cortex, which led to inference on neural phase-locking to lower modulation frequencies 

and the temporal resolution of auditory cortical processing (Wang et al., 2003). Later, the low-

frequency (1‒8 Hz) cortical tracking of the speech envelope was shown in humans using 

magnetoencephalography (MEG; Luo and Poeppel, 2007; Ding and Simon, 2012), 

electrocorticography (ECoG; Mesgarani and Chang, 2012, Zion Golumbic et al., 2013) and 

 

Neural phase-locking to speech has also been called neural tracking of  or entrainment to  

speech (Ding and Simon, 2014). Calling the whole phase-locked response to speech entrainment 

can be somewhat misleading, since it implies that there is some neural oscillator going along with 

the speech signal based on the temporal regularities such as the syllable rate. Such entrainment to 

frequency modulations was found for non-speech signals (Henry and Obleser, 2012). However, 

there is no clear evidence for instantaneous (i.e., non-time-lagged) or even preceding neural 

activation to continuous speech (e.g. Alexandrou et al., 2018). Observed neural entrainment to 

the envelope of speech can also be explained by a model of superimposed evoked responses, 
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unfolding after onsets in the envelope (Howard and Poeppel, 2010). In contrast, the term neural 

tracking implies that the neural response is following (i.e., time-lagging) the speech signal, the way 

it is usually observed. Hence, the term neural tracking will be used throughout this thesis. 

Neural tracking of speech has been investigated from different methodological perspectives. A 

general estimate of the degree of phase-locking to a speech signal can be obtained by the 

calculation of inter-trial phase coherence (ITPC; Lachaux et al., 1999), which reflects the strength 

of alignment of neural (oscillatory) phase across multiple stimulus repetitions (trials). It was 

shown that the phase of slow cortical oscillations (4-8 Hz) in auditory cortical regions 

discriminates different spoken sentences and predicts speech intelligibility (Luo and Poeppel, 

2007). Some limitations come with ITPC such as the necessity for multiple trials of the same 

stimulus (or at least the same temporal structure) and the restriction to the phase only, neglecting 

the amplitude of the neural response. 

Researchers have come up with methods to describe the temporal relationship between the 

speech envelope and the EEG. In early approaches, the speech envelope and the EEG were simply 

cross-correlated within a certain range of time lags (Hertrich et al., 2012; Hambrook and Tata, 

2014; Petersen et al., 2016). The goal of this approach is the detection of time-lagged similarities. 

Anecdotally reported, this approach however has been criticized for neglecting the auto-

correlation of both speech and EEG signals.  

To overcome this issue, the neural response was extracted by a regression-based method (Lalor 

et al., 2009; Lalor and Foxe, 2010; Crosse et al., 2016; see section 2.5 for methodological details). 

This method results in a temporal response function (TRF), which is a linear finite-impulse 

response model of the neural response to a certain representation of a continuous stimulus. 

Similar to auditory evoked potentials, the components of a TRF consist of multiple succeeding 

positive and negative deflections from zero, usually unfolding between time lags of 0 and 500 ms. 

A conceptual similar approach was used to obtain the stimulus-frequency-dependent temporal 

response to continuous speech, which was called spectro-temporal response function (STRF; Ding 

and Simon, 2012). Note that the abbreviation STRF is ambiguous with the somewhat related term 

spectro-temporal receptive field, which refers to the neuronal preference for certain spectro-

temporal modulation patterns (Aertsen et. al, 1980; Richard et al., 1995). Unless stated otherwise, 

here STRF will refer to the earlier term spectro-temporal response functions.  
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Another approach to estimate the phase-locked relationship between a speech signal and the 

neural response is mutual information (MI). MI is an information-theoretic measure that captures 

non-parametric, non-linear relationships between two variables (Shannon, 1948; Ince et al., 

2010). Based on MI, relationships between various time scales of speech signals and the neural 

response were observed (e.g., Keitel et al., 2018). In sum, the investigation of speech tracking has 

shown that predominantly temporal brain areas associated with the auditory cortex track speech 

signals. 

The discovery of neural tracking of speech directly prompted researchers to ask how neural 

tracking of speech is affected by auditory attention. It was shown that a clean representation of 

the attended talker is predominantly represented at the stage of the auditory cortex (Mesgarani 

and Chang, 2012; Ding and Simon, 2012; Zion Golumbic et al., 2013; Horton et al., 2014, 

. The long-standing question; At which stage of the auditory pathway 

attention sculptures the representation of the continuous speech out of the mixture of multiple 

sound sources, was now narrowed down. However, strictly controlled stimuli such as the 

matching of long-term sound intensity between the attended and the ignored talker did not allow 

one to generalize those findings to the manifold of possible listening conditions. Assuming the 

auditory system makes use of multiple cues in order to selectively process the input, we can expect 

that neural strategies to overcome challenging listening are as manifold as the listening conditions 

themself. Thus, the neural tracking of speech has to be further investigated from multiple 

perspectives. 

1.5 Induced alpha oscillations and auditory selective attention 

The observed neural responses to auditory stimuli are not only characterized by slow potentials 

in the delta and theta range which phase-lock to the stimulus onset (i.e., evoked oscillations), but 

the amplitude of a neural oscillations can be modulated as well by auditory stimulation without a 

concomitant phase reset. Such oscillations are referred to as induced oscillations, since 

stimulation is not triggering the oscillation per se, but rather changes the gain (e.g., Tallon-Baudry 

et al., 1999; Pfurtscheller, 2003; David et al., 2006). Due to its random phase, induced oscillations 

usually cancel out after time-domain-averaging across trials (i.e., ERPs; Wöstmann et al., 2017a). 

Hence, to obtain total power, time-frequency representations are calculated for single trials and 

subsequently averaged across trials. Time-frequency representations can be obtained by various 
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methods such as short-term Fourier transformation, wavelet analysis or bandpass-filtering with 

subsequent envelope extraction. To obtain induced power only, the ERP must be subtracted from 

the single trials beforehand. 

Induced oscillations have been interpreted as signatures of top-down rather than bottom-up 

selective attention, not least because of the task-dependent dynamics of alpha power. For example, 

in an early study by Adrian (1944), alpha power oscillations were shown to increase when subjects 

switched from visual to auditory attention. Supported by subsequent studies that found enhanced 

alpha power in task-irrelevant sensory areas, alpha oscillations were interpreted as the idling 

rhythm of currently irrelevant sensory brain areas (Pfurtscheller and Klimesch 1992; Salmelin and 

Hari 1994; for review, see Pfurtscheller, 1996). Similarly, the gating-by-inhibition hypothesis 

postulates that alpha power configures brain networks by inhibition of irrelevant areas in order to 

guide cognitive processes (Jensen and Mazaheri, 2010). Throughout listening to speech, the 

modulation of alpha power has been related to the general demand for cognitive resources (see 

Weisz et al., 2011, Strauß et al., 2014). Consequently, it can be assumed that alpha power plays an 

important role for the distribution of cognitive resources in the process of selective attention. 

Not only between, but also within modalities, attention-dependent alpha power modulation 

can be observed. Lateralized spatial attention in the visual (Worden et al., 2000), auditory (Kerlin 

et al 2010) and tactile modality (Haegens et al., 2011) leads to a hemispheric imbalance of alpha 

power. In a dichotic speech task, that the temporal synchronization of alpha power lateralization 

to the rhythm of speech predicts behavioral performance (Wöstmann et al., 2016). In sum, these 

studies emphasized the involvement of alpha power into top-down attentional control and 

strengthened the hypothesis of alpha power representing a distractor-inhibiting neural strategy. 

1.6 Neurally steered hearing aids 

Hearing aids amplify the incoming sound mixture to compensate for sensorineural, 

frequency-dependent hearing loss by amplification. However, increasing the sound intensity does 

not overcome epiphenomena such as decreased dynamic range due to an increased hearing 

threshold (e.g., Shapiro, 1979). Hence, additional algorithms that increase the signal-to-noise 

ration are necessary.  
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Current noise-suppression algorithms built in hearing aids rely on heuristics of stereotypical 

listening scenarios (for a review, see: Levitt, 2001; Bentler, 2005; Doclo et al., 2010). While the 

efficacy of noise reduction algorithms might be proven in the lab environment, it is not the case 

in highly unpredictable and versatile real-world listening scenarios. For example, broad-band 

noise emitted by an air condition is seldomly attended by a listener and can be suppressed by 

default. However, if multiple human voices are part of the incoming sound mixture, an automatic 

decision criterium is hard to define. Hence, a closed-loop solution that informs the hearing aid 

f hard-wired noise 

suppression. 

Based on the findings that electrophysiological signals such as MEG and EEG are informative 

of (e.g., Ding and Simon, 2012; Horton et al., 2013; 

O Sullivan et al., 2014), the idea emerged to feed neural information about the listener s 

attentional focus and/or the demand for attentional control back to the hearing aid (Lunner and 

Gustafsson 2014; Bleichner et al., 2015; Mirkovic et al.; 2015, Biesmans et al., 2016). Hence, a 

neurally steered hearing aid must first analyze the auditory scene and the neural data 

simultaneously and in a second step, find relations between the two that are informative of the 

current attentional state of the listener. 

The endeavor of neurally steered hearing aids came with two main research questions: First, 

which signatures of auditory attention are represented in electrophysiological signals across the 

manifold of listening conditions? Second, which configuration of sensors is needed to capture the 

neural signatures of auditory attention? While answering the first question requires 

neurocognitive methods of measurement, the second question is more technical in nature. 

Nevertheless, the two research questions are tightly linked. For instance, the topographical spread 

of a attention-indicating neural signature directly influences the configuration of sensors needed 

to capture this neural signature. Hence, existing studies cannot be clearly associated with one or 

the other question, but rather operate in between. 

It has been shown that reduced sets of EEG electrodes placed around the ear and inside the ear 

canal capture neural responses to both visual and auditory stimuli (Looney et al., 2012; Debener 

et al 2015; Bleichner and Debener 2017). Enhanced alpha power during eye-closure, auditory and 

visual steady-state responses as well as visually evoked potentials can be recorded from electrodes 
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placed inside the ear canal and within the pinna (Looney et al., 2012; Mikkelsen et al., 2015). EEG 

electrodes in the ear canal were also shown to capture neural signatures of visual selective 

attention such as a P300 component (Bleichner et al., 2015). Signatures of auditory attention in 

form of enhanced N1- and P2-components were shown with electrodes placed around the ear 

(Bleichner et al., 2016). In sum, those studies showed that the results from well-established EEG 

paradigms can be reproduced with a reduced set of electrodes ; 

Mikkelsen et al., 2017), albeit the signal-to-noise ratio was found to be lower compared to 

conventional scalp EEG. 

Whether neural signatures of auditory attention to concurrent, continuous speech can be 

captured with a reduced set of electrodes has been investigated with electrodes placed around the 

ear (Mirkovic et al., 2016) and in the ear canal (Fiedler et al., 2017; see section 4.2). The studies 

show that even a small number of electrodes in the periphery of the ear capture the attentional 

modulation of brain responses to continuous speech. However, compared to conventional, multi-

channel scalp EEG, the detection accuracy was found to be lowered.    

Still an open question is where to place a second electrode as a reference in order to best capture 

the neural signatures of attention. The ideal reference electrode should capture all the noise which 

is also captured by the signal electrode but at the same time capture nothing of the neural signal 

of interest. Since scalp potentials originating from both neural and noise sources are wide-spread 

across the scalp, such an ideal, clear-cut reference-to-signal electrode configuration does not exist. 

However, the location, orientation as well as the distance between the two electrodes are crucial 

(Mirkovic et al., 2016; Fiedler et al., 2017; Narayanan and Bertrand, 2018; Denk et al., 2018). In 

sum, the studies suggest that a distance of a few centimeters is sufficient if the orientation of two 

electrodes placed inside or around the ear is directed towards fronto-temporal scalp regions. 

The paradigmatic transition from discrete auditory stimuli such as tones or syllables to 

continuous speech has pushed lab-based selective listening tasks further towards real-life listening 

scenarios. However, the paradigms still do not capture the manifold of real-life listening scenarios. 

For example, the presented concurrent talkers are usually matched in sound intensity and do not 

move in space. Some studies have shown that the neural tracking of speech is robust to 

degradation of the attended speech signal. For example, it was shown that the neural tracking of 

a speech signal is robust to degradations caused by stationary noise down to an SNR of 6 dB 
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(Ding and Simon, 2013). Decoding of the attentional focus was shown to be robust to 

reverberation (Fuglsang et al., 2017). Interestingly, the decoding accuracy of two spatially 

separated talkers was shown to increase when the speech signals were filtered with head-related 

transfer functions (HRTFs) instead of presented dichotically (Das et al., 2016). In sum, those 

particular findings lead to the conclusion that the detection of the focus of auditory attention is 

possible across the manifold of listening conditions. However, this must be proven with first 

prototypes of neurally steered hearing aids in in real-life settings. One caveat of most of the studies 

named above is the fact that stimulus reconstruction methods were applied, such that a detailed 

investigation of the neural responses (i.e., TRFs) is not provided. This hinders conclusions on the 

neural strategies that lead to such a noise-robust tracking of attended speech. 

As explained above, the feasibility of EEG signals to steering of a hearing aid have so far been 

only investigated based on the phase-locked neural responses to speech. However, it was also 

shown that the amplitude modulation of induced alpha oscillations is indicative 

attentional state and the spatial focus of attention (Obleser and Weisz, 2012; Wöstmann et al., 

2015). a 

hearing aid as well, especially when it comes to dynamics of the listening difficulty due to the 

modulation of background noise.  

1.7 Research questions 

The research questions of this thesis are posed between two thematic cornerstones: First, the 

neural implementation of auditory selective attention as its signatures can be observed in the 

electroencephalogram. Second, the application of those neural signatures by way of asking 

whether they are captured by a reduced set of electrodes in order to neurally steer a hearing aid 

.  

The first part of this thesis (see chapter 3) tries to answer the question, how continuously 

varying listening conditions are neurally compensated for and how bottom-up capture of 

attention is avoided by the dynamic adaptation of top-down neural strategies. Study 1 tests 

whether phase-locked neural responses to concurrent speech are modulated by varying demands 

for top-down and bottom-up attentional control. To this end, the signal-to-noise ratio between an 

attended and ignored talker was varied dynamically (see section 3.1). Study 2 tests whether 
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induced alpha oscillations indicate the demand for enhanced top-down control, such that the 

modulation of alpha resamples the dynamically varying SNR (see section 3.2). Study 3 tests 

whether us of spatial 

attention and if this lateralization interacts with the demand for top-down attentional control. To 

this end, the location of the talkers and their SNR were varied dynamically (see section 3.3).  

The second part of this thesis tries to answer the question whether neural signatures of 

auditory attention can be captured by a reduced set of EEG electrodes placed around the ear and 

inside the ear canal (see chapter 4). Study 4 tests whether the neural response to auditory stimuli 

rich of spectro-temporal modulation can be captured at in-ear EEG electrodes (see section 4.1). 

Study 5 tests whether the phase-locked neural responses to concurrent tone streams and mixed 

speech recorded at in-ear EEG electrodes are  (see 

section 4.2). Study 6 tests whether the varying demand for top-down control reflected in the phase-

locked neural responses can be captured at in-ear EEG electrodes as well (see section 4.3). 
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2 General methods 

The general motivation for the applied methods and the underlying assumptions will be 

described in this chapter. More detailed methodological information can be found within the 

Method sections of the particular studies. 

2.1 Continuous speech stimuli 

Throughout this thesis, primarily audiobooks were presented to the subjects. The presentation 

of continuous speech instead of trial-based presentation of single words or sentences was 

motivated by two factors: First, in the recent years it has been shown that neural responses to 

continuous speech can be extracted (see section 1.4). Second, our results should contribute to the 

development of neurally steered hearing aids (see section 1.6). Thus, the listening scenarios 

presented in the laboratory should emulate real listening scenarios as far as possible. However, 

real-world scenarios are rarely merely listening, but rather multisensory, interactive experiences. 

Hence, we presented speech stimuli based on certain assumptions which go along with certain 

restrictions explained in the following paragraphs. 

We presented two audiobooks simultaneously, which were read by professionals and are thus 

more predictable than free speech. However, we chose audiobooks, since this easily accessible, 

professionally recorded speech. We specifically chose audiobooks which were read without much 

excitement in order to keep their saliency constant. One has to keep in mind that a real-world 

conversation is much more unpredictable, since conversations are neither scripted nor one-

directional. The conversational partner can switch within seconds. However, attending to one of 

two simultaneously presented audiobooks should challenge the basic mechanisms of auditory 

selective attention. 

We always presented concurrent talkers of different genders van et al., 2014). We 

instructed participants to either attend to the female or male voice, while the other voice was 

always of the other gender, such that the cue was unambiguous. This implies that the participants 

could heavily rely on the spectral cues such as pitch and timbre during stream segregation. Such 

a clear basis for stream segregation is not always given in real-world listening scenarios, since the 

voices of an attended and an ignored talker can be more similar in such situations. 
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In most of our experiments (with exception of study 3), talkers were presented without any 

spatial cues (i.e., diotic listening; e.g. Cokely and Hall, 1991), which means that we presented the 

identical mixture of both talkers to both ears. Previous studies have predominantly presented 

dichotic speech, which means that different speech signals were presented to each ear respectively 

). Both, diotic and dichotic speech are extreme 

concepts which rarely exist in the real world. The presentation of dichotic speech may lead to an 

interaction between the topographical distribution of the neural response across the scalp and its 

modulation by attention. Since our goal was to infer on the neural response phase-locked to the 

temporal initially avoided spatial separation. In study 

3 (see section 3.3), we presented talkers continuously moving along the frontal azimuth, which 

was emulated via head-related transfer functions. In this experiment however, we only analyzed 

alpha power modulation here. 

Another aspect to be considered is how to ensure that subjects are indeed following the 

instructions. Here, participants were asked questions regarding the content of the to-be-attended 

audiobook. Such an approach may invite participants into the task, but the amount of collected 

behavioral data is minimal and therefore does not allow an extensive analysis. Thus, this thesis 

mainly focusses on the effect of task instruction (i.e., attended talker an ignored talker) on the 

neural response.     

In sum, with the presentation of continuous speech stimuli our goal was to increase the 

ecological validity compared to trial-based designs. However, there are still limitations left which 

have to be considered during interpretation of the results. 

2.2 EEG sensors 

Within this thesis, two kinds of EEG sensor configurations were used: First, conventional scalp 

EEG configurations in a 64-channel layout based on the 10-20-system (Klem et al., 1999). Second, 

in-ear EEG configurations consisting of three electrodes per ear canal. 

The in-ear EEG devices were crafted individually for every subject and provided by Eriksholm 

Research Centre (Oticon A/S, Snekkersten, Denmark). To this end, impressions of the ear canal 

and outer ear were taken by trained audiologists. Based on the impressions, ear molds were 3D-

printed (Figure 2-1). Subsequently, three holes were drilled into the ear molds. Electrodes were 
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made from a fine silver thread with a diameter of 3 mm cut into slices of 2 mm and glued into the 

holes. Two electrodes pointed upwards and one electrode pointed downwards with a slight 

orientation towards the front.  The electrodes were connected to a standard 3-pin HiPro Easyfit 

plug.  

 

Figure 2-1: Ear molds with in-ear EEG electrodes. 
Ear mold were individually fitted for every subject.   

2.3 Extraction of auditory features from continuous speech 

Speech is transferred via fluctuations in air pressure which reach our eardrum. From there, the 

signal is transformed at every stage along a hierarchical structure of the auditory pathway. 

Henceforth, the electrophysiological representation of the speech signal is also changing in an 

incremental manner (e.g., Picton, 2013). Since the neural response to continuous, non-repetitive 

speech cannot be extracted with the ERP approach of multi-trial averaging (sees section 1.4), some 

representation of the speech signal must be derived in order to make inferences regarding its 

neural encoding. Albeit that the formulation of an overarching model of the auditory pathway up 

to the auditory cortex is still a work in progress (e.g., McDermott and Simoncelli, 2011; Verhulst 

et al., 2018), the representation of the broad-band as well as the spectrally resolved envelope in 

auditory cortex has been revealed by several studies (Mesgarani and Chang, 2012; Zion Golumbic 

et al., 2013). Nevertheless, the exact procedure of extracting the envelope of a speech signal is far 

away from a standardized understanding and lies to some degree in the discretion of the analyst.  

The main goal of this thesis is to extract the overall neural response to continuous speech and 

elucidate how it is modulated by attention. Since the extraction of the neural response relies on a 

regression approach (see section 2.5.2), the number of regressors should be kept to minimum in 

order to avoid overfitting. At the same time, highly correlated regressors hinder conclusions on 

the most important features driving the neural response. Since the features of speech nested in the 
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broad-band temporal envelope are temporally correlated (see Ding and Simon, 2014), a regressor 

that captures the overall temporal modulation at the cost of fidelity might explain more of the 

neural variance than a fine-grained set of regressors such as the cochleogram. 

A straightforward approximation to the broad-band temporal envelope of speech is the 

magnitude of the analytic signal (Figure 2-2A; e that this 

procedure is sometimes inaccurately called Hilbert-transformation, which refers to only one of 

the operations within the calculation of the analytic signal (e.g., Lyons, 2004). Furthermore, 

auditory peripheral models of the cochlear exist and can be applied to extract a cochleogram of a 

sound (e.g., NSL-toolbox; Chi et al., 2005; auditory modelling toolbox; Hohmann, 2002). It was 

shown that the cochleogram summed across frequency leads to a better approximation of the 

representation of the speech envelope in the EEG (Biesmans et al., 2016). Hence, we followed the 

latter approach (Figure 2-2A). 

Most of the above-mentioned studies investigated the neural representation of the broad-band 

speech envelope. However, there is strong evidence that the auditory cortex is particularly 

sensitive to the rate of change of the envelope (i.e., acoustic edges; onsets and offsets; Howard and 

Poeppel, 2010; Doelling et al., 2014, Daube et al., 2018). Especially onsets (i.e., instances of positive 

increase) were shown to evoke neural responses in dedicated superior temporal gyrus regions, 

whereas the sustained, envelope-like features were found to be tracked in middle temporal gyrus 

regions (Hamilton et al., 2018, see also Brodbeck et al., 2018). Importantly, it must be considered 

that the representations of onsets, envelope and offsets are highly cross-correlated, since every 

onset is followed by a peak in the envelope (here around 80 ms), which is in turn followed by an 

offset (here around 100 ms; Figure 2-2A & B). Interestingly, we found the strongest neural 

responses (TRFs) to the envelope onsets (Figure 2-2C). Most importantly, the latencies of the TRF 

components have the highest similarity to ERPs when the envelope onsets are used as regressors 

(Fiedler et al., 2016), whereas the TRFs to envelope inaccurately suggest that a neural response 

emerges before the presentation of a stimulus (Figure 2-2, middle). Hence, the representation of 

envelope onsets is used throughout this thesis. This representation was obtained by zeroing 

negative values of the first derivative of the envelope (i.e., half-wave rectified first derivative, 

Figure 2-2A). 
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Figure 2-2: Extraction of representations of continuous speech. A) The broad-band temporal envelope can 
be approximated by the magnitude of the analytic signal. The transformation via a cochleogram and 
subsequent summing across frequencies approximates a broad-band envelope better matching the neural 
processing along the auditory pathway. By zeroing negative (or positive) values of the first derivative of the 
envelope, representations of the onsets (or offsets) can be derived.  B) Onsets, envelope and offsets share 
similarity in a time-lagged fashion, which has been revealed by auto- and cross-correlation of the 
representations derived from one hour of two different audiobooks, respectively. C) TRFs to onsets, envelope 
and offsets share a high morphological similarity, but are shifted in time. Onsets evoke the strongest neural 
responses and the TRFs have the characteristics of a causal filter (i.e., weakest deflections from zero for negative 
time lags.). 

2.4 Pre-processing of EEG data 

2.4.1 Filter design 

The goal of filtering electrophysiological signals is to get rid of stimulus- or task-unrelated 

noise such as low-frequent drifts or high-frequent noise originating from irrelevant brain areas or 

non-brain sources like muscles or electromagnetic interference caused by external sources. There 

is no one-size-fits-all filter design, but the filter must be designed according to the research 

question and the underlying assumptions (Widmann et al., 2014). One important consideration 

is whether a finite impulse response filter (FIR) or an infinite Impulse response filter (IIR) is applied 

and how a potential phase shifts will be compensated. 
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If not stated otherwise, we used high- and low-pass Hamming-window FIR-filters. For the 

analysis of neural tracking of speech, the lower and higher cutoff frequencies were set to 1 and 10 

Hz, in order to avoid reduction of the amplitude within the passband between 2 and 8 Hz (the 

frequency range where neural tracking was previously observed; see section 1.4; Figure 2-3). The 

filter order was set to 375 (high-pass) and 100 (low-pass), respectively. On the one hand, this 

ensured the removal of low-frequent drifts (Figure 2-3A & D), which is important because a trial-

wise baseline cannot be applied in continuous data. On the other hand, a comparably steep 

frequency roll-off at the higher cut-off reduced non-phase-locked alpha activity.  

 

Figure 2-3: Essentials of filter design. Raw EEG signal was simulated as the cumulative sum of random 
gaussian noise. A) The raw EEG signal (blue) was filtered forward (red) and filtered again backward (yellow) with 
Hamming-window FIR filters as a low-pass (cut-off frequency fc: 10 Hz; order: 100) and a high-pass (cut-off 
frequency fc: 1 Hz; order: 375). B) Simulated raw EEG has a power spectral slope similar to real EEG signals. Filters 
were designed to keep the cut-off frequencies outside the pass-band between 2 and 8 Hz. C) One-directional 
filtering introduces a group delay of approximately 2 seconds, which can be revealed by cross-correlation 
between the raw and filtered EEG signal. Backward filtering compensates the group delay. D) An event-related 
potential was simulated as two cycles of a 4 Hz sine with decaying amplitude. Multiple instances (240 trials) of 
this ERP were distributed across the simulated EEG signal and averaged. Low-pass-filtering removes high-
frequent noise whereas high-pass-filtering removes drifts.  

 

The group delay of approximately two seconds was compensated by forward- and backward-

filtering the EEG signal (i.e., two-pass), which doubles the effective filter order (Figure 2-3B & C). 

Two-pass filtering is non-causal, which means that the calculation of the current sample in time 

is also based on samples which lie in the future. This has to be kept in mind during interpretation 

of the results, because pre-stimulus deflections from zero may occur which cannot be interpreted 

as pre-stimulus activity per se, but might be due to smearing within the passband. 
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As exemplarily shown in Figure 2-3D, filtering removes drifts and high-frequent noise. 

However, noise within the passband still leads to deflections from zero not related to the ERP, 

which cannot be reduced by a filter but only by the acquisition of more electrophysiological data, 

such that stimulus unrelated noise cancels out. 

2.4.2 Independent component analysis 

Independent component analysis has been invented to split-up a mixture of multiple sources of 

variance into its underlying components (e.g., Comon, 1994). Originally invented as a method for 

blind source separation mainly applied to acoustic signals, it was later applied to 

electrophysiological data in order to get rid of irrelevant components such as eye blinks or muscle 

activity (Makeig, 2004). Importantly, the maximal number of components that can be separated 

equals the number of independent sensors. 

 

Figure 2-4: The effect of independent 
component analysis (ICA) on classification 
accuracy (i.e., neural selectivity). Classification 
accuracy is mainly enhanced at frontal channels 
after ICA by up to 20%, which is possibly related to 
the removal of noise related to eye blinks and eye 
movement. Electrodes close to the ear are only 
slightly affected by the noise removed by ICA 
(preliminary analysis of data of 18 subjects; see 
study 1) for further details. 

Within this thesis, we applied ICA only on scalp EEG data (see chapter 3; study 1 3), since in 

those studies, we were investigating the cognitive mechanisms of selective auditory attention. In 

the studies about the feasibility of in-ear EEG we did not make 

2015), since we claimed that our results can be achieved with single EEG channels, which would 

not hold true if we applied ICA based on all sensors beforehand (see chapter 4; study 4 6). 

Interestingly, ICA mainly improves classification accuracy (i.e., neural selectivity; see section 2.7) 

at frontal EEG channels, most probably due to the removal of eye artifacts (Figure 2-4). This has 

implications on the single-channel classification based on electrode configuration close to the ear, 

which seems not as extensively affected by eye-artifacts. 
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2.5 Estimation of the neural response to continuous auditory stimuli 

After deciding which representation of the stimulus to use, we next had to decide which 

method to apply in order to extract the temporal relationship between this stimulus 

representation and the brain signal (i.e., EEG). This requires some review of established methods 

in order to decide which one best fits our research questions.  

2.5.1 Forward vs. backward modelling 

Generally, in advance of such a modelling a crucial decision between two options must be 

made (Figure 2-5; see also Naselaris et al., 2011; Holdgraf et al., 2017): First, are we aiming to 

predict the brain signal at one sensor (or voxel) based on the representation of multiple stimulus 

features (e.g. talkers; Figure 2-5, right)? This is called a forward, prediction or encoding approach 

(also known as forward model). It is called forward because we usually assume that a brain 

response is following a stimulus with a certain time lag and that we can predict the future brain 

signal based on the current (and past) state of the stimulus representation. 

Or second, are we aiming to reconstruct the stimulus representation based on the brain 

response of multiple sensors (or voxels; Figure 2-5, left)? This is called a backward, reconstruction 

or decoding approach (also known as backward model). It is called backward because we 

reconstruct the past stimulus representation based on the current (and future) state of the brain 

response. 
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Figure 2-5: Reconstruction of one speech envelope by a backward model and prediction of one EEG signal 
by a forward model. Left: Backward model reconstruction of a single EEG envelope based on multiple EEG 
channels. Middle: Speech signals and envelopes of the attended and the ignored talker. Right: Forward model 
prediction of one EEG signal based on multiple speech envelopes. 

 

Both backward and forward models have in common that the relationship between the 

stimulus representation and the brain signal is expressed in a kernel. Since here we are mainly 

investigating the temporal, time-lagged relationship between the stimulus representation and the 

brain signal, this kernel is called temporal response function (TRF; see section 2.5.2). 

Mathematically, forward and backward models are similar, but each approach comes with 

strengths and weaknesses (Haufe et al., 2014). The advantage of a forward model is that we can 

directly analyze and contrast TRFs between conditions just as ERPs or even disentangle brain 

responses to simultaneously presented stimuli, such as attended and ignored stimuli (e.g., Jia et 

al., 2017). Furthermore, forward models allow to make inference on the topographical location of 

encoding in the brain. However, prediction at a single EEG channel (or voxels) does not draw on 

the full potential of the whole set of recorded electrophysiological data. This is where the backward 

model has an advantage, since the information of all sensors (or voxels) can be used to reconstruct 

the representation of one stimulus. However, since only one stimulus representation can be 

reconstructed at a time, a contrast between the TRFs to two stimulus categories is not directly 

feasible. Furthermore, an exact inference on the topographical brain location of encoding cannot 

be made (Haufe et al., 2014; see also Popov et al., 2018). 
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Within this thesis, primarily forward models have been applied due to two reasons: first, we 

wanted to investigate the attention-related effects on the morphology of the TRFs including their 

topographical distribution across the scalp. Second, our goal was to investigate the classification 

accuracy at single-channel EEG configurations and their potential to steer a hearing aid. 

2.5.2 Estimation of temporal response functions 

The temporal response function (TRF) reflects the temporal relationship between a stimulus 

representation and the electrophysiological signal, such that in can be used to predict an EEG 

signal in a forward model approach (see section 2.5.1). The basic assumption is that the EEG signal 

results from the convolution of the stimulus representation and the TRF plus some stimulus-

unrelated noise: 

𝒚(𝒕) = 𝒙 ∗ 𝒈 =  ∑[𝒙(𝒕 −  𝝉) · 𝒈(𝝉)] + 𝒏(𝒕)

𝝉

 2-1 

where x is the stimulus representation, g is the TRF,  is the time lag between the stimulus 

representation and the EEG signal y, n is the noise. Note that convolution is the mathematical 

operation to calculate the output of an FIR-filter (here the EEG) using the input signal (here the 

stimulus representation) and the impulse response of the filter (here the TRF). Thus, the TRF can 

be described as an FIR-filter, which shapes the amplitude and the phase-delay of the stimulus 

representation such that it becomes the EEG signal (e.g., Lalor et al., 2006). In other words, 

convolution means that every sample of the EEG signal is the weighted sum of past stimulus 

samples and the TRF is comprised of those time-lag-dependent weightings. Thus, the estimation 

of the TRF boils down to multiple linear regression (e.g., Fox, 2015).  

Analogous to linear regression, a point of debate is how to find the TRF from some known 

dataset (stimulus and EEG) that best predicts an unknown EEG signal based on a stimulus. In 

other words: Which TRF minimizes the prediction error? To answer this question, first the 

measure of the prediction error must be defined (i.e., error term). The mean-squared error (MSE) 

is the most common target of minimization (see ordinary least squares; e.g., Fox, 2015), and is 

defined as 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 −  𝑌̂𝑖)

2
𝑛

𝑖=1

 
2-2 
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where n is the number of observations (i.e., samples of the EEG signals), Y is the measured EEG 

signal and 𝑌̂ is the predicted EEG signal. Consequently, bigger deflections between the measured 

and the predicted EEG signal get more strongly punished than smaller deflections. However, other 

error terms exist such as the mean absolute error, which usually leads to increased sparsity (most 

of the weights are zero). However, ordinary least squares regression is the only approach that has 

an analytical solution, such that it is computationally efficient. Consequently, the TRF can be 

estimated by a matrix operation 

𝐺 = (𝑋𝑇𝑋)−1𝑋𝑦 2-3 

where G is a matrix containing the TRFs, X is a matrix containing the stimulus representations 

with its sample-wise, time-lagged replications and y is the EEG signal. 

A common issue in multiple linear regression is multicollinearity of the regressors, which takes 

effect on the estimated TRFs since neighbored samples in the TRFs are not independent due to 

its low-pass characteristic. This results in implausible high-frequency artifacts and edge-effects 

(Figure 2-6). Those artifacts can be avoided by regularization, which modulates the degree of how 

strongly the multicollinearity affects the weightings. Regularization can be introduced by adding 

the identity matrix I multiplied with the  

𝐺 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑦 2-4 

Interestingly, regularization only slightly affects the outcome measures neural tracking and 

neural selectivity in a forward model (Figure 2-6), as it was also confirmed by a comprehensive 

comparison of various methods for regularization (Wong et al., 2018). Consequently, within this 

disappeared (more details can be found in the method 

sections). Nevertheless, note that Wong et al. (2018) found that regularization has a stronger 

impact in a backward model. 
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Figure 2-6: The influence of varying degrees of regularization in a forward model approach. Temporal 
response functions of a representative subject were estimated with different degrees of regularization. Note that 

ridge regression converges to ordinary least 
squares regression ridge regression converges to cross-correlation (i.e., 
neglecting multi-collinearity of the regressors). 

2.6 Goodness of fit as a measure of neural tracking 

The goodness of fit is a measure to describe the predictive power of a model (TRFs) trained on 

a subset of the data and subsequently used to predict unknown EEG data based on the stimulus 

representation. Throughout this thesis, a leave-one-out cross-validation approach was chosen, 

which means that one part of the data, such as a block of one-minute length was left out during 

training of the TRF and subsequently predicted. Mathematically, the prediction of the EEG signal 

is the convolution of the stimulus representation with the trained TRF (Eq. 2-1). In matrix-based 

notation, this operation is expressed as 

𝑦̂ = 𝑋𝐺 2-5 

where 𝑦̂ is the predicted EEG signal, which is a vector since single-channel EEG signals are 

independently predicted (see also Figure 2-5). 

Now that an EEG signal was predicted, a measure for the goodness of fit must be defined. Most 

commonly, the Pearson-correlation coefficient r between the predicted and the measured EEG 

signal is calculated. This is motivated by the fact the square of r (i.e., R2) is proportional to the 

explained variance of the EEG signal. Hence, it is a measure for the least mean-squared error 

(MSE), which was the subject to minimization beforehand. The MSE can also be used as a measure 
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of the inverse goodness of fit (Crosse et al., 2016). However, the MSE depends on the general scale 

of the to-be-predicted data and hence, is not directly comparable across participants and studies.  

Given that the noise n(t) (see Eq. 2-1) is stationary across a whole experiment, the to-be-

explained variance in the EEG signal depends on the strength of neural tracking. In other words, 

the stronger the neural tracking, the more the recorded EEG contains signal relative to noise. 

Hence, the Pearson-correlation coefficient is a direct measure of the strength of neural tracking. 

Importantly, in contrast to the most commonly used case of Pearson correlation, negative 

coefficients do not have the same meaning as positive coefficients. For example, a value of 0.5 

does not mean that the prediction is as good as a prediction that results in a value of 0.5 (even if 

they result in the same R2), since we expect that the predicted and the measured EEG signal have 

the same polarity and that negative correlation coefficients can only be caused by noise. A Pearson 

correlation coefficient of around 0.05 was typically observed in previous studies (e.

et al., 2014), which means that the predicted EEG signals explains 0.25% of the variance of the 

recorded EEG signal, which corresponds to a signal-to-noise ratio of approximately 60 dB. 

2.7 Classification accuracy as measure of neural selectivity 

Within the recent decades, the field of machine learning has increasingly gained popularity 

due the increasing availability of data and the exponentially growing computational resources 

(Waldrop, 2016). One main objective of machine learning is classification of unknown data. To 

this end, data is usually categorized in classes, such that the goal of classification is to predict the 

membership of a data point to a class (e.g., Kotsiantis et al., 2007). Classification accuracy refers 

to the percentage (or proportion) of correctly classified trials. The field of machine learning has 

brought up a myriad of approaches, describing which, would go beyond the focus of this thesis. 

Loosely defined, classification is a multi-dimensional, non-parametric statistical test of the 

difference between the mean of two classes, where classification accuracy is the outcome measure. 

Here, a classification approach  The 

two classes can be labelled as attend talker A or attend talker B and one data point belongs to a 

certain time frame (e.g., a block of five minutes where the female talker was attended). The 

classification is based on the coefficients obtained by Pearson correlation between the predicted 

EEG signal and the measured EEG signal as described above (see section 2.6). Crucially, not only 
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one EEG signal is predicted based on the trained TRFs, but a second EEG signal is predicted by 

flipping the labels of the TRFs (i.e., attended and ignored). Subsequently, both predicted EEG 

signals are Pearson-correlated with the measured EEG signal. The two resulting correlation 

coefficients are compared. One of the two is representing the class attend talker A and the second 

is representing attend talker B. Since we instructed participants to attend to one of the talkers, the 

Pearson correlation coefficient that corresponds to this instruction should be more positive. If 

this is the case, the classification is correct. The percentage of correctly classified trials will be 

referred to as classification accuracy, while the chance level is 50%. 

Since the prerequisite for yielding a classification accuracy above chance is a numerical 

difference between the TRFs to the attended and the ignored talker, it directly expresses how 

differently and how consistently attention shapes the morphology of the TRFs. In other words, 

classification accuracy indicates neural selective processing. Throughout this thesis, classification 

accuracy will be referred to as neural selectivity.  

2.8 Overview of experiments 

For greater comprehensibility, all conducted experiments are listed below (see Table 1). Given 

that multiple experiments were analysed both within a single study as well as in various studies, 

an overview is provided to increase the comprehensibility. 

Exp. N Stimuli Task EEG Sensors Study 

1 7 
Concurrent Oddball 

Concurrent Audiobooks 

Attend left/right 

Attend male/female 
In-ear/ Scalp 5 

2 6 Natural sounds One-back task In-ear 4 

3 18 Concurrent Audiobooks with modulated SNR Attend male/female Scalp 1,2 

4 6 Concurrent Audiobooks with modulated SNR Attend male/female In-ear / scalp 6 

5 25 Concurrent Audiobooks with modulated SNR and location Attend male/female Scalp 3 

Table 1: Overview of experiments 
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3 Neural adaptation to continuously varying acoustic conditions 

3.1 Study 1: Late cortical tracking of ignored speech facilitates neural 

selectivity in acoustically challenging conditions1 

3.1.1 Abstract 

Listening requires selective neural processing of the incoming sound mixture, which in 

humans is borne out by a surprisingly clean representation of attended-only speech in auditory 

cortex. How this neural selectivity is achieved even at negative signal-to-noise ratios (SNR) 

remains unclear. We show that, under such conditions, a late cortical representation (i.e., neural 

tracking) of the ignored acoustic signal is key to successful separation of attended and distracting 

talkers (i.e., neural selectivity). We recorded and modelled the electroencephalographic response 

of 18 participants who attended to one of two simultaneously presented stories, while the SNR 

between the two talkers varied dynamically between +6 and 6 dB. The neural tracking showed 

an increasing early-to-late attention-biased selectivity. Importantly, acoustically dominant (i.e., 

louder) ignored talkers were tracked neurally by late involvement of fronto-parietal regions, 

which contributed to enhanced neural selectivity. This neural selectivity, by way of representing 

the ignored talker, poses a mechanistic neural account of attention under real-life acoustic 

conditions. 

3.1.2 Introduction 

Human listeners comprehend speech surprisingly well in the presence of distracting sound 

sources (Cherry, 1953). The ubiquitous question is how competing acoustic events capture 

bottom-up attention (e.g., by being dominant, that is, louder than the background), and how in 

turn top-down selective attention can overcome this dominance (e.g., listening to a certain talker 

against varying levels of competing talkers or noise; Kaya and Elhilali, 2017). 

Auditory selective neural processing has been mainly attributed to auditory cortex regions. It 

is by now well-established that the auditory cortical system selectively represents the (spectro-) 

                                                           
1 This section is highly adopted from a published article (Fiedler et al., 2019) with contributions 

to the study design, analysis and writing from Malte Wöstmann, Sophie K. Herbst and Jonas 
Obleser. 
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temporal envelope of attended, but not ignored speech (i.e., neural phase-locking; Magneto-

encephalography: Ding and Simon, 2012; Electroencephalography: Kerlin at al., 2010; Power et 

allow for a reconstruction of the spectrogram of speech and to detect the attended talker (e.g., 

Mesgarani and Chang, 2012; Zion Golumbic et al., 2013). In sum, selective neural processing in 

auditory cortices establishes an isolated and distraction-invariant spectro-temporal 

representation of the attended talker. 

However, as has been shown, degradations of the acoustic signals attenuate the neural phase-

locking to speech. Experimental degradations have included artificial transformations of temporal 

fine structure (Ding et al., 2014; Kong et al., 2015), rhythmicity (Kayser et al., 2015), reverberation 

(Fuglsang et al., 2017) or decreased signal-to-noise ratio (SNR; Kong et al., 2014; Ding and Simon, 

2013; Giordano et al., 2017). Not least, neural selection of speech appears weakened in people with 

hearing loss (Petersen et al., 2016). In sum, those studies suggest that the strength of neural phase-

locking indicates behavioral performance such as speech comprehension. 

Additionally, higher order non-auditory neural mechanisms facilitate speech comprehension 

as well. The supra-modal, fronto-parietal attention network is a candidate to be involved in top-

down selective neural processing during demanding listening tasks (Woolgar et al., 2016). Beyond 

the phase-locking in lower frequency bands (i.e., approx. 1  8 Hz; Wang et al 2018, Pomper and 

Chait 2017), top-down selective neural processing has also been associated with changes in the 

power of induced alpha-oscillations (i.e., approx. 8  12 Hz; Obleser and Weisz 2012; Kayser et al. 

2015, Wöstmann et al. 2016). Specifically, increased parietal alpha-power is related to enhanced 

suppression of the distracting input (Wöstmann et al., 2017b). This reflects that, besides the neural 

spectro-temporal enhancement of the attended talker, a crucial role in top-down neural selective 

processing was attributed to the suppression of the ignored talker.  

Neural signatures of suppression can be two-fold. First, suppression can attenuate the neural 

response to an ignored talker compared to an attended talker, like it was found in neural phase-

locking from latencies of around 100 ms (Ding and Simon, 2012; Wang et al., 2018). Second, active 

suppression can add or increase components in the neural response to the ignored talker, given 

that the response is dissociable from the response to the attended talker (e.g.; a louder ignored 

talker evoking a stronger neural response anti-polar to the response to a louder attended talker). 
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Here we asked, how the components of the phase-locked neural response are affected by selective 

attention under varying signal-to-noise ratio (SNR). 

The phase-locked neural response to broad-band continuous speech can be obtained from 

EEG by estimating the (delayed) covariance of the temporal speech envelope and the EEG, which 

results in a linear model of the cortical response; a temporal response function (TRF; Lalor et al., 

2009; Crosse et al., 2016). Analogous to the event-related potential (ERP), the components of the 

TRF can be interpreted as reflecting a sequence of neural processing stages where later 

components reflect higher order processes within the hierarchy of the auditory system (Davis and 

Johnsrude, 2003; Picton et al., 2013; Di Liberto et al., 2015). 

Here, we use a listening scenario in which two concurrent talkers undergo continuous SNR 

variation. Our results demonstrate differential effects of bottom-up acoustics vs. top-down 

selective neural processing on earlier vs. later neural response components, respectively. Source 

localization reveals that not only auditory cortex regions are involved in the selective neural 

processing of concurrent speech, but that a fronto-parietal attention network contributes to 

selective neural processing through late suppression of the ignored talker. 

3.1.3 Methods 

3.1.3.1 Participants 

Eighteen native speakers of German (9 females) were invited from the participant database of 

the Department of Psychology, University of Lübeck, Lübeck, Germany. We recruited participants 

who were between 23 and 68 years old at the time of testing (mean: 49, SD: 17), to allow valid 

conclusions from such a challenging listening scenario to middle-aged and older adults. All 

reported normal hearing and no histories of neurological disorders. Incomplete data due to 

recording hardware failure was obtained in four more, initially invited participants. All 

by the local ethics committee of the University of Lübeck. 

3.1.3.2 Stimuli 

The goal of this study was to investigate the selective neural processing of one of two talkers 

under a continuously varying signal-to-noise ratio (SNR). Here, the signal is a to-be-attended 
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talker and the noise is a to-be-ignored talker. Our study was conducted in a within subject 2 by 3 

design (attention by SNR (three levels)).  

We selected two audiobooks read by native German speakers, one female (Elke Heidenreich, 

preparation were done using custom code written in MATLAB (Version 2017a; Mathworks Inc., 

Natick, MA, United States). Sequences of silence longer than 500 ms were truncated to 500 ms to 

for further preparation. The first 30 minutes of each audiobook served as the to-be-attended and 

the rest served as the to-be-ignored speech, such that all subjects could attend both stories from 

the beginning and attended (and ignored) both the female and the male voice the same amount 

of time. 

The identical mixture of the attended and ignored talker was presented on both ears, resulting 

in a concurrent listening scenario without any spatial cue (i.e. diotic, Figure 3-1A). Hence, the 

only cues available for talker segregation consisted in the spectro-temporal features of the talkers, 

such as pitch, formants, and amplitude modulation.  

The SNR was modulated symmetrically around 0 dB. An SNR of 0 dB refers to concurrent 

talker signals with a matched long-term root-mean-square (rms) amplitude as used previously in 

from an SNR of 0dB, the SNR was either increased to +6 dB by raising the sound pressure level 

(SPL) of the to-be-attended talker by 6 dB or decreased to 6 dB by raising the SPL of the to-be-

ignored talker by 6 dB. Thus, the talkers were either balanced (Figure 3-1B, black) or one of the 

talkers was dominant (purple) and the other was non-dominant (grey). The particular SNR-range 

( 6 to +6 dB) was chosen to create a challenging but at the same time solvable listening task. Even 

if an SNR of 6 dB is rare in real-life listening scenarios (Smeds et al., 2015), the neural tracking 

of attended speech has been reported as intact at SNRs as low as 6 dB (Ding and Simon, 2013). 

However, speech perception (number of words repeated correctly) of normal hearing subjects 

starts to suffer around an SNR < 0 dB and the speech-reception threshold (i.e. 50% correct) usually 

lies between 5 and 0 dB (Pichora-Fuller et al., 1995, Bentler et al., 2004). 
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As building blocks for SNR modulation, we created a sample of plateaus (i.e., constant SNR of 

6, 0 or +6 dB) and ramps (i.e., transition between plateaus). The length of plateaus was uniformly 

distributed between 5 and 9 seconds in discrete steps of one second. The ramps were linear 

interpolations between SNRs with the length uniformly distributed between 1 and 5 seconds in 

discrete steps of one second. The length distributions of plateaus and ramps were kept uniform 

within each talker and within their assignments as being attended or ignored. We concatenated 

plateaus via ramps such that a 0 dB plateau was either followed by a +6 dB or a 6 dB plateau, 

whereas a +6 dB or a 6 dB plateau were always followed by a 0 dB plateau via a respective ramp. 

Randomly varying SNR time courses were created for each subject individually in order to avoid 

systematic overlap between the SNR modulation and the audiobooks. Stimulus material was cut 

into twelve blocks, which resulted in an average block length of five minutes. Sound files were 

created with a sampling rate of 44.1 kHz and a 16-bit resolution. The experiment was 

implemented in the software Presentation (Neurobehavioural Systems, Berkeley, United States). 

Stimuli were presented via headphones (HD25, Sennheiser, Wedemark, Germany). 

 

Figure 3-1: Experimental design, forward model, and neural selectivity. A) Two mixed talkers (female & male) 
were presented on both ears without spatial segregation (diotic). B) The signal-to-noise ratio (SNR) between 
attended (signal) and ignored (noise) talker was varied between 6, 0 and +6 dB by either raising the level of the 
attended talker or the ignored talker. Length of ramps and plateaus were drawn from uniform distributions. C) 
Neural selectivity, here expressed as classification accuracy in detection of the attended and ignored talker, were 
averaged across subjects. Shown here is accuracy as obtained by prediction of EEG signals (Fiedler et al., 2017) 
at single EEG channels and single voxels in source space, respectively. Highlighted channels of topographic 
maps indicate that the lower bound of the confidence interval (bootstrapped mean on the group level) was 
greater than the 95%-confidence bound of a binomial distribution (CI0.95 = 60%; Combrisson and Jerbi, 2015). D) 
Temporal response functions (TRF) to the attended and ignored talker were extracted by a forward model based 
on the assumption that the measured EEG signal is the superposition (convolution) of the envelope onsets (of 
the attended and ignored talkers) and the TRFs, respectively. TRFs reflect the neural response evoked by a single 
envelope onset. 
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3.1.3.3 Task 

The twelve blocks were presented such that subjects were instructed to attend to the female or 

to the male talker in an alternating fashion. After instruction before each block (i.e. attend to 

female or attend to male), subjects were asked to start the stimulus presentation by a button press, 

which enabled the participants to take a break between blocks. During listening, subjects were 

asked to fixate a cross presented on the screen in order to reduce eye movement.  

Every other block, the stories picked up at the point it ended two blocks before. After each 

block, subjects were asked to rate the difficulty of maintaining attention by mouse-clicking on a 

continuous color bar ranging from red (difficult) to green (easy). For later analysis, the continuous 

color bar was discretized into ten segments (1 = difficult, 10 = easy). Subsequently, participants 

were asked to answer four multiple-choice questions concerning the content of the to-be-attended 

audiobook. The average rating of difficulty was neither significantly correlated with the number 

r = 0.17, p = 0.51). Furthermore, we found no significant correlation of the number of correctly 

answered questions with a 0.11, p = 0.65). 

3.1.3.4 Data acquisition and preprocessing 

EEG was recorded with 64 electrodes Acticap (Easycap, Herrsching, Germany) connected to 

an ActiChamp amplifier (Brain Products, Gilching, Germany). EEG signals were recorded with 

the software BrainVision Recorder (Brain Products) at a sampling rate of 1 kHz. Impedances were 

 

The EEG data were pre-processed in MATLAB 2017a (The MathWorks, Inc., Natick, 

Massachusetts, United States) using both the Fieldtrip-toolbox (version: 20170321; Oostenveld et 

al., 2011) and custom-written code. The EEG data were re-referenced to the average of the 

electrodes TP9 and TP10 (left and right mastoids) and resampled to fs = 125 Hz. The continuous 

EEG data were highpass-filtered at fc = 1 Hz and lowpass-filtered at fc = 30 Hz (two-pass 

Hamming window FIR, filter order: 3fs/fc). 

From the continuous EEG data, we extracted the parts during which the twelve blocks of 

audiobooks were presented (see above). For every subject, we applied independent component 

analysis (ICA; Makeig et al., 2004) on the concatenated data of the twelve blocks and manually 
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rejected components that were clearly related to eye movements, eye blinks, muscle artifacts, 

heartbeat as well as singe-channel noise. On average, 26 of 62 components (SD: 7.3) were rejected.  

For further analysis, we lowpass-filtered the data again at fc = 10 Hz (two-pass Hamming 

window FIR, filter order: 3fs/fc), which assured that the amplitudes at all frequencies up to 8 Hz 

were not reduced. Previously, neural activity phase-locked to the envelope was only found up to 

a frequency of approximately 8 Hz (Zion Golumbic et al., 2013; Ding et al., 2014). We could 

morphology of the TRFs (see below) but only decreased the prediction accuracy due to the 

interference of non-phase-locked neural activity and external noise in higher frequencies. 

3.1.3.5 Extraction of envelope onsets 

A temporal representation of the acoustic onsets, further called envelope onsets, was extracted 

from the presented speech signals (Fiedler et al., 2017). Those representations later served as 

regressors to model neural responses to the talkers (see below). First, we extracted an auditory 

spectrogram containing 128 spectrally resolved sub-band envelopes of the speech signals 

logarithmically spaced between approximately 90 and 4000 Hz using the NSL toolbox (Chi et al., 

2005). Second, the auditory spectrogram was summed up across frequencies, which resulted in 

broad-band temporal envelopes of the audiobooks. Taking the derivative of the envelope and 

zeroing all values smaller than zero (Hertrich et al., 2012) returned the envelope onsets, which 

only contain positive values at time periods of an increasing envelope, as can be found at acoustic 

onsets (Figure 3-1C).  

Using the envelope onsets as regressor does not imply that we only modeled the encoding of 

acoustic onsets. Every onset is followed by a peak in the speech envelope (Figure 3-1C), which is 

then again followed by an offset and the next onset and so forth, resulting in a high autocorrelation 

between those features. Nevertheless, onsets are the earliest feature that could possibly evoke a 

neural response (Picton, 2013). The latency of modeled responses to envelope onsets (compared 

to envelopes) was found to be most similar to conventional ERPs (Fiedler et al., 2017, 

supplemental material). 
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3.1.3.6 Estimation of temporal response functions 

We applied an established method to estimate a linear forward (encoding) model (Lalor et al., 

2009; Crosse et al., 2016). The model contains temporal response functions (TRFs), which are 

estimations of the neural response to a continuously varying stimulus feature. In our case, this 

stimulus feature is the envelope onsets (see above) of both, the attended and the ignored talker. 

Based on the assumption that every sample in the EEG signal r(t) is the superposition of neural 

responses to past onsets and thus can be expressed for one talker by a convolution operation: 

𝒓(𝒕) = 𝒔 ∗ 𝑻𝑹𝑭 = ∑[𝒔(𝒕 − 𝝉) ⋅ 𝑻𝑹𝑭(𝝉)

𝝉

] 
3-1 

where s(t) is the envelope onsets, TRF is the temporal response function that describes the 

Figure 3-1C). The TRF contains a weight 

n the range from 100 to 500 ms. In order to obtain 

-weights of the TRF to both talkers contained in the matrix GTRF, ridge regression (Hoerl and 

Kennard, 1970) was applied, which can be expressed in the linear algebraic form: 

𝑮𝑻𝑹𝑭 = (𝑺𝑻𝑺 + 𝝀𝒎𝑰)−𝟏𝑺𝑻𝑹 3-2 

where S is matrix containing the envelope onsets of both the attended and ignored talker and its 

sample-wise time-lagged replications, R contains the measured EEG signal,  is the ridge 

parameter for regularization, the scalar m is the mean of the trace of STS (Biesmans et al., 2016) 

and I is the identity matrix.  

Note that the usage of the scalar m is equivalent to normalizing the auto-correlation matrix 

XTX (i.e., dividing it by the variance of the regressors), such that amount of regularization is 

proportional to the variance of the regressors. 

ow-pass characteristic of the envelope onsets, we need regularization because 

neighboring samples are highly co-linear. Using the time-lagged envelope onsets as regressors, 

this co-linearity usually results in high-frequent artifacts as well as implausible high regression 

weights at the edges of the TRFs (see section 2.5.2

igh-frequent artifacts. 
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TRFs were estimated on a trial-by-trial basis, where trial refers to a part (e.g. a plateau of +6 

dB) of certain length cut from the continuous stimulus and the respective EEG data. For the 

subsequent analysis, we subdivided the data in two ways: First, to get a general estimate of the 

-

Mirkovic et al., 2015; Biesmans et al., 2016; Fiedler et al., 2017). This resulted in 60 trials per 

subject. Second, we cut the data based on the applied SNR modulation, which resulted in three 

groups of trials: 6 dB, 0 dB and +6 dB. To use the entire recording, the data were cut at the time 

points where ramps of the SNR time courses either crossed 3 dB or +3 dB (Figure 3-1B). This 

resulted in 180 trials of 0 dB and 90 trials of 6 and +6 dB, respectively. The average length of 

those trials was 10 seconds (i.e. average length of a plateau (7 seconds) and average length of two 

halves of a ramp (2x1.5 seconds)). In order to balance the number of trials across SNRs, 90 trials 

from 0 dB were randomly drawn from the 180 trials of every subject. During the analysis, we 

contrasted TRFs not only within conditions, but also contrasted the TRFs to the talkers within 

their role of being dominant (Fig 2B, purple; attended under SNR = +6 dB, ignored under SNR = 

6 dB) or non-dominant (Fig 2B, grey; attended under SNR = 6 dB, ignored under SNR = +6 

dB). We will use those terms and schematic bar graphs (Figure 3-1B) throughout the entire 

section. 

3.1.3.7 Statistical analysis on temporal response functions 

To extract significant spatio-temporal deflections in the TRFs at an SNR of 0 dB, we applied a 

two-level statistical analysis (two-level cluster-test; e.g. Obleser et al., 2012). At the single-subject 

level, we used one-sample t-tests to test the TRF to the attended, the ignored as well as the 

attended ignored difference against zero. Resulting t-values were transformed to z-scores. At the 

group level, the deflection of z-scores from zero was tested by a cluster-based permutation one-

sample t-test (Maris and Oostenveld, 2007), which clusters t-values with p-values < 0.001 of 

adjacent time-electrode bins (with a minimum of 4 neighboring electrodes). The extracted cluster 

is compared to 4,000 clusters drawn randomly from the data by permuting condition labels. The 

resulting cluster p-value reflects the relative number of Monte Carlo iterations in which the 

summed t-statistic of the observed cluster is exceeded. This contrast indicates how components 

of the TRF are generally affected by attention under balanced conditions.  
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In a second step, the identical cluster-based permutation test was applied to obtain significant 

differences between the TRFs depending on whether a talker was dominant or non-dominant. 

This contrast was separately computed for the attended an ignored talker and it indicates, how 

the TRFs are affected by changing SNR. 

In a third step, the difference between the TRFs to the attended and ignored talker were 

contrasted separately for dominant and non-dominant talkers. This contrast describes how 

attention affects the TRF to a dominant talker (easy-to-attend, hard to ignore) or a non-dominant 

talker (hard-to-attend, easy-to-ignore), respectively. 

For illustration of the neural responses, we averaged single- -weights across 

channels of interest. Channels of interest were defined as the channels being part of both 

significant clusters found in the attended ignored difference between TRFs under a balanced SNR 

of 0 dB (Figure 3-2B). The 95%-confidence-bands were obtained by bootstrapping (Efron, 1979) 

across the averaged TRFs of all subjects, using 4,000 iterations. 

3.1.3.8 Neural tracking and neural selectivity 

To further disentangle bottom-up and top-down effects, we investigated the TRFs based on two 

measures: neural tracking and neural selectivity. While neural tracking is a measure of how 

strongly a talker is encoded in the EEG (irrespective of attention), neural selectivity is a measure 

of how differential (i.e., attended vs. ignored) those representations are due to the impact of 

selective attention. 

As a base for those two measures, we followed the forward method of predicting EEG signals 

and comparing those to the measured EEG signal, as described in detail by Fiedler et al. (2017). 

In a leave-one-out fashion, we predicted EEG signals of a single trial contained 𝑅̂ in following the 

equation: 

𝑹̂ = 𝑺𝑮𝑻𝑹𝑭 3-3 

where S is the matrix containing the envelope onsets and GTRF is the matrix containing the trained 

TRFs.  

Neural tracking was defined as the Pearson-correlation coefficient r between the predicted and 

recorded EEG signals using the estimated TRFs (see above). While TRFs are zero-centered and 
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components alternate between positive and negative deflections like ERPs, one advantage of the 

r-value is its directionality towards positive values (negative values are due to noise). Hence, the 

strength of neural tracking can be directly evaluated without dissociation between positive and 

negative deflections. 

Neural selectivity was defined as the percentage of trials the TRFs could successfully identify a 

talker as being attended or ignored. Therefore, two different EEG signals were predicted per trial 

(Eq. 3), the first representing a talker being attended and the second representing the same talker 

being ignored. While one of the EEG signals is representing the task instruction (i.e., attend the 

to-be-attended talker; ignore the to-be-ignored talker), the other EEG signal represents the 

alternative (i.e. attending the to-be-ignored talker; ignoring the to-be-attended talker). We 

calculated the Pearson correlations for both predicted EEG signals with the measured EEG signal 

(Fiedler et al., 2017). Talker identification was successful if the EEG signal referring to the task 

instruction yielded higher correlation. Note that during unbalanced SNRs (i.e., 6 dB & +6 dB), 

the alternative EEG signal was predicted based on the TRFs estimated on the opposite SNR (e.g., 

under an SNR of +6 dB, the alternative to attending the to-be-attended talker (dominant) is 

ignoring the to-be-ignored talker under an SNR of 6 dB). 

Since this is a forward model approach, neural tracking and neural selectivity were obtained at 

every single EEG channel (Crosse et al., 2016). Likewise, both measures were obtained at the 

source level at every single voxel. We split up the prediction by either using only the prediction of 

the to-be-attended, only the prediction of the to-be-ignored or the sum of both predictions, such 

that the talker-specific contribution to neural tracking (neural selectivity) could be compared to 

the overall neural tracking (neural selectivity). 

In order to evaluate the unfolding of neural tracking and neural selectivity over TRF time lags, 

we used a sliding-window of time lags (size: 48 ms, 6 samples) with an overlap of 24 ms (3 samples) 

for the prediction. For every position of the window, neural tracking and neural selectivity were 

calculated (see above). 

To estimate if the found effects are just random observations, we created surrogate data by 

circularly shifting the stimulus relatively to the EEG signal, such that the temporal structure was 

preserved but the stimulus-to-EEG relationship in time got distorted. The number of shifted 
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samples was randomly varied and at least one second (125 samples). This procedure was done 

during prediction of every single trial, such that we obtained the same amount of values for 

surrogate neural tracking and neural selectivity. As a result, we obtained 95%-confidence bands 

for both the observed and the surrogate neural tracking and neural selectivity. 

In advance of any arithmetic operation on neural tracking, the underlying Pearson-correlation 

coefficients were fisher-z-transformed. Accordingly, neural selectivity (i.e., percentage correct) 

was logit-transformed. 

3.1.3.9 Source localization 

To further trace the origin of effects observed in sensor space, we applied LCMV-beamforming 

(Drongelen et al., 1994; Van Veen et al., 1997) to obtain source-activity time courses in single 

voxels of the brain. Using a standard template brain from Fieldtrip/SPM (Montreal Neurological 

Institute) together with the Acticap electrode layout, leadfields were calculated with a grid 

resolution of 10 mm. Individual LCMV-filter weights were obtained using 5% regularization. The 

continuous time-domain EEG data were projected to source space, resulting in three source 

activity time courses (X-Y-Z) per voxel. In order to obtain a single time course for each voxel, the 

direction of highest variance was determined by principal component analysis and used for further 

analysis. All further processing steps in source space were done analogously to sensor space EEG 

data. Note that the source maps must be interpreted with caution due to the limited spatial 

resolution of EEG data. We only provide source maps to support our interpretations of the 

significant effects found in sensor space (e.g., Sohoglu et al., 2012). 

3.1.4 Results 

We asked participants to listen to one of two simultaneously presented audiobooks under 

varying signal-to-noise ratio (Figure 3-1A & B; 6 to +6 dB SNR). After each of twelve five-minute 

blocks, subjects were asked to rate the difficulty of listening to the to-be-attended talker on a color 

bar ranging from red (difficult = 1) to green (easy = 10). The average difficulty ratings strongly 

varied between subjects (mean: 5.2, SD: 2.2, range: 2.3 8.9). No difference in difficulty ratings for 

listening to the female versus the male talker was found (one-sample t-test, t17 = 1.17, p = 0.26).  

To test their successful attending, participants were asked to answer four multiple-choice 

questions on the content of the to-be-attended audiobook after each five-minute block. The 
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percentage of correctly answered questions was far above chance (25%) for all participants (mean: 

81%, SEM: 2%, range: 60 96%). All participants were thus able to follow the to-be-attended talker. 

3.1.4.1 Neural selectivity 

To obtain a general estimate of which EEG channels and which voxels reveal signatures of 

neural selectivity, we identified the attended (and the ignored) talker by forward prediction of 

EEG signals based on one-minute parts of the EEG and envelope onsets (see methods). Overall 

neural selectivity was highest (up to 80%) at fronto-central electrodes and respective temporal 

cortex regions in source-space (Figure 3-1C). 

 

Figure 3-2: Temporal response functions (TRF) to continuous speech of concurrent talkers under balanced 
SNR (0 dB). -weights depict average across subjects and average across channels of interest. Confidence 
bands (95%) were obtained by bootstrapping the mean across subjects. Horizontal lines indicate time ranges of 
significant difference from zero obtained from a cluster-based permutation test at the group level. Topographic 

-weights of clusters averaged across the cluster time range. Highlighted channels are part of the 
significant clusters. Source localizations show the 20% most strongly contributing voxels with full opacity and 
faded to transparency towards zero. A) Response to the attended talker (green, upper topographic maps) clearly 
show a cascade of three components (P1TRF N1TRF P2TRF). Response to the ignored talker (red, lower topographic 
maps) only show a P1TRF, whereas the N1TRF and P2TRF are suppressed. B) Significant differences between neural 
responses to the attended and ignored talker are present in the N1TRF- and P2TRF-timerange. Thin grey lines show 
single subject TRFs averaged across channels of interest. 
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3.1.4.2 Attention modulates neural responses to concurrent speech 

Next, we assessed in greater detail the unfolding of attentional selection of to-be-attended 

speech in time. To this end, we estimated the TRFs from the balanced SNR trials of 0 dB (i.e. 

independent of the SNR manipulation) and assessed the most prominent response components 

and their modulation by attention. We inspected both the TRFs to the attended and ignored talker 

individually (Figure 3-2A), as well as the difference between the TRFs to the attended and ignored 

talker (Figure 3-2B) to examine signatures of neural selectivity. 

First, an early positive component (termed P1TRF) appeared in the TRFs to the attended (Figure 

3-2A, 24 88 ms, p = 2×10 4) and ignored (Figure 3-2A, 24 112 ms, p = 2×10 4) talkers, but 

without any attention-related difference (Figure 3-2B). Latency, polarity, and topography of this 

component compared well to a P1 as found in auditory evoked potentials (AEPs).  

Second, a later negative deflection (termed N1TRF) was only present in the TRF to the 

attended talker (Figure 3-2A; 112 176 ms, p = 5×10 4). This component was significantly 

increased in magnitude (i.e., more negative) for the attended versus the ignored talker (Figure 

3-2B, 80 176 ms, p = 5×10 4). Noteworthy, the significant attentional modulation of this 

component (attended ignored) started already at a time lag of 80 ms, when both the TRF to the 

attended and to the ignored talkers were still in positive deflection (see Figure 3-2A). 

Third, a positive deflection between 200 and 300 ms (termed P2TRF; Figure 3-2A, 216 304 ms, 

p = 5×10 4), was again only present in the TRF to the attended talker. This component mainly 

drove the significant difference between the responses to the attended and ignored talker (Figure 

3-2B, p = 2×10 4). 

Interestingly, in the same time interval, a negative deflection was found in the TRF to the 

ignored talker (termed N2TRF; Figure 3-2A, 248 424 ms, p = 2×10 4). While at earlier stages, TRFs 

to the attended and the ignored talker showed the same polarity (P1TRF), at the stage of the P2TRF 

we see an anti-polar relationship. Effectively, this also enhanced the late, attended ignored 

difference in the P2TRF time range (Figure 3-2B). 

In sum, three prominent components (P1TRF, N1TRF, P2TRF; Figure 3-2A) were identifiable with 

notable consistency across individual subjects. The latter two components were absent in the TRF 

to the ignored talker and thus indicated neural selectivity. All three components (P1TRF, N1TRF, 
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P2TRF) mainly localized to superior and inferior temporal regions (Figure 3-2A). Note that the 

source localizations of the two latter components (N1TRF, P2TRF) compared well to the sources of 

enhanced neural selectivity between attended and un-attended talkers (Figure 3-1C). 

3.1.4.3 Late representation of ignored talker enhances towards more detrimental 

SNRs 

Next, we analyzed the impact of a varying SNR on the temporal response functions (TRFs). To 

this end, we first contrasted the TRFs of the two extreme conditions (SNRs 6 vs. +6 dB; Figure 

3-3A & B). Second, we contrasted TRFs across SNRs matched for the acoustic properties of being 

either the louder or the quieter talker (Figure 3-3C & D), such that the occurring differences 

between the TRFs to the attended and the ignored talker can solely be related to top-down 

attending versus ignoring. For simplicity, we will use the terms dominant (attended talker under 

+6 dB SNR, ignored talker under 6 dB SNR) and non-dominant (attended talker under 6 dB 

SNR, ignored talker under +6 dB SNR). We observed an SNR-dependent latency shift which 

hindered time-lag-wise attended ignored contrasts within SNRs. 

Importantly, two later additional components appeared whenever the ignored talker was 

dominant (Figure 3-3B): the first (160 178 ms, p = 0.04) localized to temporal regions, while the 

second extended markedly into parietal regions (232 280 ms, p = 0.001). The enhanced 

involvement of parietal regions differentiated this detrimental-SNR, ignored-speech component 

from all others. Visual inspection of the TRFs to dominant talkers (Figure 3-3C) highlights the 

additional late N2 component in the TRF to the ignored talker, which appears to be anti-polar to 

the P2TRF to the attended talker.  

In contrast, TRFs to non-dominant talkers (Figure 3-3D) suggest that the observed attention-

related differences are decreased (cf., Figure 3-3C) due to smaller deflections of the N1TRF and 

P2TRF to the non-dominant attended talker and the lack of the anti-polar N2TRF to the non-

dominant ignored talker. We summed the magnitude of the attended ignored difference across 

all time lags, which revealed a smaller attended ignored difference for non-dominant versus 

dominant talkers (t17 = 3.80, p = 0.0014). Thus, the neural response to a dominant ignored talker 

does not resemble the neural response to a dominant attended talker by capturing bottom-up 

attention. Instead, dominant 

likely to due to top-down neural signaling of its to-be-ignored status. 
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In sum, our findings indicate that, when a talker is dominant, neural signatures of selective 

processing are enhanced (compared to non-dominant). Importantly, this enhancement is not only 

affecting the representation of the attended talker, but an important contribution to this enhanced 

top-down processing can be attributed to an additional late component (N2TRF) in the neural 

response to the ignored talker. To further disentangle the contribution of the selective processing 

of the attended and ignored talker, we established the time lag and talker resolved measures neural 

tracking and neural selectivity, which will be discussed in the following section. 

 

Figure 3-3: Temporal response functions (TRF) to continuous speech of concurrent talkers contrasted as 
dominant vs. non-dominant talkers and attended vs. ignored talkers, respectively. -weights depict 
average across (N = 18) subjects and average across channels of interest. Confidence bands (95%) were obtained 
by bootstrapping the mean across subjects. Schematic bar graphs indicate the investigated contrast. Black 
horizontal lines indicate time ranges of significant difference obtained from a cluster-based permutation test at 

-weight differences of clusters averaged across the cluster time range. 
Highlighted channels are part of the significant clusters. Source localizations show the 20% most strongly 
contributing voxels with full opacity and faded to transparency towards zero.  A) Responses to the non-dominant 
attended talker are delayed compared to the dominant attended talker. B) A late component appeared in the 
response to the dominant ignored talker, which involved parietal regions. C) Late negative response (N2TRF) to 
the dominant ignored talker appears anti-polar to the response to the dominant attended talker. Inset: 
Magnitude of the attended ignored TRF difference summed across all time lags for dominant and non-dominant 
talkers.  D) Non-dominant talkers show significant but decreased attention-related differences. 
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3.1.4.4 Neural selectivity increases by way of a late cortical representation of 

ignored speech 

We established two measures to quantify the encoding and the selective neural processing of 

the talkers during the unfolding of the neural response reflected in the TRFs. First, neural tracking 

reflects the strength of representation (i.e., encoding) of a talker in the EEG and is related to TRF 

deflections from zero. Second, neural selectivity quantifies how accurately an attended talker can 

be identified as attended and an ignored talker as ignored, respectively. Thus, neural selectivity 

reflects the TRF difference between the attended and the ignored talker.  

Parallel inspection of neural tracking and neural selectivity allowed us to consolidate our 

findings and to further disentangle the effects of bottom-up and top-down attention on the TRFs. 

A prerequisite for neural selectivity is neural tracking (i.e., TRF deflection from zero) of at least 

one of the talkers. In turn, neural tracking does not necessarily mean that neural selectivity is 

involved, since both talkers can be identically tracked (i.e., TRFs show same deflection from zero). 

Consequently, mere enhancement of neural tracking due to acoustic changes indicates pure 

increase of bottom-up auditory encoding, as the neural processing of both talkers is equally 

affected. In contrast, the co-occurrence of enhanced neural tracking and enhanced neural 

selectivity indicates increased top-down attentional selection, as the neural processing differs 

between the talkers.  

For example, the increased sound pressure level of a to-be-ignored talker may increase its 

saliency and thus bottom-up-pull attention towards it. This would result in enhanced neural 

tracking of the ignored talker and the neural response would become less distinct from the 

respective response to a dominant, but intentionally attended talker. However, if there exists a 

counter-acting, top-down process that enhances and maintains a neural-response differentiation 

between the attended and the ignored talker, neural selectivity would increase at the same time. 

To get a total estimate of neural tracking of the two talkers, we first used all time lags of the 

TRFs (i.e., 100-500 ms). Figure 3-4A shows the neural tracking of the attended, the ignored as 

well as the overall neural tracking of the two talkers (attended & ignored). The overall neural 

tracking was found to be well above zero for all participants as well as the neural tracking of the 

two talkers separately (Figure 3-4A, bottom). 
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In a next step, we estimated the time-lag- and channel-dependent unfolding of neural tracking. 

Importantly, we found enhanced neural tracking of the attended talker compared to the ignored 

talker under the balanced SNR of 0 dB (144 288 ms, p = 0.02×10 2, data not shown), driven by 

fronto-central channels. This is congruent with the time ranges and topographies of the N1TRF and 

P2TRF, which were absent in the TRF to the ignored talker. Accordingly, enhanced neural tracking 

of the attended compared to the ignored talker was also found in the unbalanced conditions 

(Figure 3-4B; 6 dB: 120 192 ms, p = 0.004; +6 dB:  144 288 ms, p = 0.001). 

Interestingly, towards more adverse SNRs (dominant ignored talker), the late enhanced neural 

tracking of the attended talker compared to the ignored talker seems to shrink (Figure 3-4B). 

Visual inspection of the time-lag resolved neural tracking suggests that this shrinkage is due to an 

additional late cortical representation of the ignored talker that appears when the ignored talker 

is dominant. The contrast of the neural tracking of the dominant and the non-dominant ignored 

talker confirmed such a late cortical representation (Figure 3-4C, 240 312 ms, p = 1.5×10 3) 

originating mainly from fronto-parietal as well as temporal regions. 

Importantly, the overall neural selectivity is not affected by adverse conditions (Figure 3-4E, 

grey bars, 6 vs +6 dB, one-sample t-test, t17 = 0.24, p = 0.81). However, the relative contribution 

of the neural selectivity of the attended talker and ignored talker changes across SNRs ( 6 vs +6 

dB; one-sample t-test; attended: t17 = 4.6, p = 2.77×10 4; ignored: t17 = 2.18, p = 0.044): Towards 

more adverse SNRs, the neural selectivity of the ignored talker increases, while the neural 

selectivity of the attended talker decreases (Figure 3-4E, top). This is also discernible in single 

subjects (Figure 3-4E, bottom), where neural selectivity of the attended talker is stronger under an 

SNR of +6 dB (right, 16 of 18 subjects) and stronger for the ignored talker under an SNR of 6 dB 

(left, 11 of 18 subjects).  

If the increased neural tracking of the dominant ignored talker at later stages (Figure 3-4C) is 

solely driven by its increased saliency (i.e., higher dominance evoking a stronger response), we 

would expect no concomitant increase in neural selectivity (see above). However, we found a late 

increase in neural selectivity for the dominant compared to the non-dominant ignored talker 

(Figure 3-4G, 216 264 ms, 2.5×10 3). Neural sources compared well to the increased fronto-

parietal neural tracking of the dominant ignored talker (see Figure 3-4C & G).  
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Furthermore, neural tracking and neural selectivity (for dominant vs non-dominant ignored 

speech) were positively correlated (Figure 3-4D, r = 0.78, p = 0.014×10 2 neural 

tracking was relatively strong for the dominant versus non-dominant ignored talker, the neural 

response allowed more accurate identification of the ignored talker as ignored.  

In sum, at later stages, not only increased selective neural processing of the attended talker but 

also the selective neural processing of the ignored talker facilitates input segregation under 

adverse listening conditions. 

 

Figure 3-4: Unfolding of neural tracking and neural selectivity reveals late neural selective processing of 
the ignored talker. Neural tracking and neural selectivity were estimated based on the extracted TRFs to the 
attended (green), the ignored (orange), as well as both talkers (grey). Confidence bands (95%) were obtained by 
bootstrapping for both the observed data (solid lines and error bars) and surrogate data (dotted lines and error 
bars). Over time lags, only the upper confidence bound is shown for the surrogate data. Highlighted channels 
(topographic maps) are part of a significant cluster. Source localizations show the 20% most strongly 
contributing voxels with full opacity and faded to transparency towards zero. A) Neural tracking across all time 
lags ( 100-500 ms). Scatterplots (bottom) show single-subject data averaged across channels of interest. Grey 
lines indicate overall neural tracking of both talkers at the 45°-line. B) Unfolding of neural tracking across time 
lags under SNR of 6 (left) and +6 dB (right). Black horizontal lines indicate time ranges of significant clusters for 
the difference between attended and ignored talkers. C) Contrast of neural tracking between the dominant and 
non-dominant ignored talker. D) Correlation of change in neural tracking and change of neural selectivity 
256 ms. E) Neural selectivity across all time lags ( 100-500 ms). Scatterplots (bottom) show single-subject data 
averaged across channels of interest. Grey lines indicate overall neural tracking of both talkers at the 45°-line. F) 
Unfolding of neural selectivity across time lags under SNR of 6 (left) and +6 dB (right). G) Contrast of neural 
selectivity between the dominant and non-dominant ignored talker. 
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3.1.5 Discussion 

In the present study, human listeners attended to one of two concurrent talkers under 

continuously varying signal-to-noise ratio (SNR). We asked to what extent a late cortical 

representation (i.e., neural tracking) of the ignored acoustic signal is key to the successful 

separation of to-be-attended and distracting talkers (i.e., neural selectivity) under such demanding 

listening conditions. 

Forward modeling of the EEG response revealed neural responses to the temporal envelopes of 

individual talkers and their modulation by both, top-down attentional set, and bottom-up SNR. 

Critically, towards more adverse SNRs, an additional late negative component occurred in the 

neural response to the ignored talker. Under adverse conditions, this component was found to be 

accompanied by enhanced selective neural processing (neural selectivity), emerging primarily 

from fronto-parietal brain regions. 

The present result suggests that irrelevant, to-be-ignored acoustic inputs are not simply absent 

from the late cortical response but become actively suppressed in regions beyond auditory cortex. 

3.1.5.1 Early and late neural signatures of selective neural processing 

Generally, we replicated previous results that showed that attention ignored differences in the 

neural response can primarily be found at time lags > 80 ms, which were mainly attributed to 

stronger neural tracking caused by enhanced N1 and P2 components in the response to the 

and Simon, 2012). 

Here we show that a P2-counter-acting response to the ignored talker enhances the attended

ignored difference as well. 

While earlier studies showed that selective neural processing in auditory cortices is mainly 

working out a clean representation of the attended talker (Mesgarani and Chang, 2012; Zion 

Golumbic, 2013), we show that a late neural representation of a distracting auditory input is 

accompanied with enhanced selective neural processing in a cocktail-party scenario as well. This 

additional late neural representation was revealed by going beyond strictly matched sound 

pressure levels of attended versus ignored speech (cf., Horton et 

Ding and Simon, 2012; Mirkovic et al., 2015; Biesmanns et al., 2016), by presenting speech signals 

both as target and distractor (cf., Ding and Simon, 2013) and by applying SNR-variation 
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symmetrically around 0 dB (cf., Kong et al., 2014). In sum, our design allowed us to draw 

conclusions on the neural selective processing of real-world listening scenarios of dynamically 

varying listening demand. 

Our investigation of concurrent speech under varying SNR helps to disentangle neural 

mechanisms of early and late selection (Treisman 1964). Since the ignored talker predominantly 

masks the attended talker under adverse listening conditions (i.e., negative SNRs, which we have 

labelled dominant), early neural filters tuned to the spectro-temporal properties of the attended 

talker might not be sufficient (i.e., neural gain, Willmore et al., 2014).  

Thus, a later filter on the ignored signal must actively suppress distracting inputs. We found 

such a neural filter mechanism (Figure 3-4C & G) active in a time range which was previously 

attributed to processing of phonological (Di Liberto et al. 2016, Brodbeck at al. 2018) as well as 

semantic features (Broderick at al. 2018), which both go beyond basic acoustic properties of 

speech (Obleser and Eisner, 2009). One suggestion of our results is that when phonemes (or even 

words) of the dominant ignored talker pull bottom-up attention, their representation is actively 

speech. 

3.1.5.2 Late distractor suppression in a non-auditory, fronto-parietal attention 

network  

 Previously, it has been shown that neural selective processing of concurring auditory stimuli 

-invariant 

representation of the attended talker (Mesgarani and Chang 2012; Zion Golumbic 2013).  

Critically, under the adverse SNR o

ignored talker in a later time range (i.e., 200 300 ms) consisting of a positive and a negative 

component (Figure 3-3B). The latter is anti-polar to the P2TRF (to the attended talker). This 

additional component, which we interpret as a signature of active suppression of the ignored 

talker, involved non-auditory regions, which are part of the fronto-parietal attention or global-

demand network (Woolgar et al., 2016), where we found enhanced neural selective processing of 

the ignored talker.  
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Under the assumption that such active suppression is costly to the cognitive system, it has been 

suggested that it is only deployed if necessary (Chait et al., 2010). Neural signatures for active 

suppression of irrelevant signals during late (~200 ms) AEPs have been examined before (Melara 

et al., 2002; Chait et al., 2010). Pomper and Chait (2017) related enhanced centro-parietal activity 

in the theta band (4 7 Hz) to enhanced top-down control. Parietal activity in the theta-band was 

also found to be inversely related to the delta-band auditory entrainment in superior temporal 

gyrus (Keitel et al., 2017). Here we show how late top-down, fronto-parietal neural processing of 

the distracting auditory input is unfolding in time and might facilitate overall selective neural 

processing. 

In earlier studies, researchers highlighted the predominant tracking of the attended talker 

(Mesgarani and Chang, 2012; Ding and 

2014), emphasizing that a clean representation of the attended talker is key to successful listening. 

In some contrast to this, previous results shed light on the neural processing of the ignored talker 

(see also Wöstmann et al., 2017b, Olguin et al., 2018). We have shown here that the overall neural 

selective processing is surprisingly robust against such demanding listening conditions (Ding and 

e ignored talker is at least as essential. 

This finding invites some speculation on the neural implementation of attentional filters more 

generally. On the one hand, a selective neural filter can be solely optimized to let pass relevant 

features of attended signals. On the other hand, it can be optimized to let pass features of the 

ignored talker, which might be relevant for suppression at a later stage. In line with earlier studies, 

we found that the neural tracking was dominated by the attended talker (speaking for the first 

strategy). However, under most demanding listening conditions (i.e., negative SNR), neural 

selectivity was dominated by the ignored talker. 

Neural filter mechanisms might thus adapt depending on the listening demand. Follow-up 

studies should investigate the relationship of such filter adaptation to the concept of listening 

effort (Rönnberg et al., 2013; McGarrigle et al., 2014): Additional tracking of the ignored talker 

leads to higher neuro-computational load and might also be related to working memory 

performance (Rudner et al. 2011). 
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Within our design, we can only draw limited conclusions on the behavioral impact of the late 

neural tracking of the ignored talker. This is due to the tradeoff between sufficient behavioral data 

(e.g., trial-based design) and ecological validity (e.g., presentation of continuous speech; Hamilton 

and Huth, 2018). Following studies should acquire more fine-grained behavioral data, ideally 

without losing much of the ecological validity. 

Our results show that, within the hierarchy of the central auditory pathways, the cocktail-party 

problem might look solved or settled at the stage of secondary auditory cortex (Mesgarani and 

Chang, 2012), but higher-order, attentional networks and their dedicated processing of 

distracting speech appear key to this solution. 

3.1.5.3 Conclusions 

The present data show how components of the unfolding temporal response function as 

identified in a forward model of the electroencephalographic signal can reflect distinct neural 

stages of attentional filtering. These stages contain the initial, attention-independent encoding of 

acoustic signals; the extraction and amplification of relevant features; and lastly a robust, purely 

attention-driven selective response to the attended and ignored acoustic signals.  

Most consequential to our thinking about attentional filtering in the central auditory system, 

an active-suppression response to ignored acoustic signals originates from non-auditory, fronto-

parietal attentional networks. In sum, with a design closer to real-life listening scenarios, our study 

provides insight into how selective neural processing of attended speech unfolds and is upheld 

not only by auditory cortices. Instead, establishing a clean cortical representation of the attended 

talker as suggested previously hinges on achieving a late suppression of ignored signals, with 

contributions by regions of the fronto-parietal attention network. 

3.2 Study 2: Neural selective processing is more strongly reflected in phase-

locked responses than the modulation of alpha power 

3.2.1 Abstract 

Alpha power is a dominant neural oscillation in the human brain. Across sensory modalities, 

alpha power has been associated with inhibition of task-irrelevant brain regions or neural 

pathways. It is also modulated by the degree of acoustic degradation of both target and distracting 
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auditory stimuli. Consequently, alpha power has been associated with the top-down attentional 

distribution of cognitive resources and a link to the concept of listening effort has been established. 

Here, we investigated if alpha power modulation was key to selective neural processing of 

concurrent and continuous auditory inputs. We recorded and modelled the time-frequency 

electroencephalographic response of 18 participants who attended one of two simultaneously 

presented talkers, while the signal-to-noise ratio (SNR) between the two talkers varied 

stochastically. We hypothesized that alpha power tracks the SNR and thus reflects the demand for 

inhibition of distracting auditory inputs. Our results show that there is no statistically significant 

modulation of alpha power driven by the SNR. Exploratorily, we modeled the response to various 

derivates of the SNR, which did not reveal statistically significant SNR-related modulation. A 

direct comparison between alpha band neural selectivity and phase-locked neural selectivity 

highlighted the prominence of neural selectivity in the phase-locked responses. Our results show 

that conclusions drawn from studies (using trial-based designs) did not directly transfer to the 

presentation of continuous speech. This has implications on the understanding of neural 

mechanisms involved in auditory selective processing as well as the development of neurally-

steered hearing aids. 

3.2.2 Introduction 

Alpha waves are prominent oscillatory components of around 10 Hz. The alpha power peak 

usually sticks out of the otherwise 1/f-shaped power spectrum of human EEG (see section 1.2). Its 

saliency led researchers to the investigation of its functional role. While earliest observations 

showed that eye closure leads to enhancement alpha power (Berger, 1929), it was also observed 

that alpha power decreases when subjects were involved in a visual compared to an auditory task 

(Adrian, 1944). Those findings already suggested that alpha power is related to the distribution of 

cognitive resources deployed across different modalities, whose sensory areas constantly compete 

for attention. 

Primarily in studies of the visual modality, alpha power has been associated with inhibition of 

task-irrelevant sensory input. The inhibition-timing hypothesis (Klimesch et al., 2007) is based 

on the observation that a decrease in alpha power follows the onset of task-relevant stimuli (event-

related desynchronization; ERD; Pfurtscheller and Aranibar, 1977) and an increase of alpha power 

follows the onset of task-irrelevant stimuli (event-related synchronization, ERS, Worden et al., 
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2000). Similarly, Jensen and Mazaheri (2010) conceptualized 

hypothesis, which proposes that the neural signal is guided through the brain by inhibition of 

irrelevant neural pathways. Likewise, the same mechanism might underly the suppression of an 

irrelevant input to avoid distraction of task-relevant areas. Hence, this mechanism is closely linked 

to selective attention.   

Interestingly, observed alpha power dynamics also show a spatial component, resulting in 

interhemispheric alpha power imbalance (i.e., lateralization) depending on the task-relevant or -

irrelevant location (Worden at al., 2000; Sauseng et al., 2005). It is still debated whether this 

lateralization is driven by both an increase of alpha power in the hemisphere where the distractor 

is processed (i.e., ipsilateral to target) and a decrease in the hemisphere where the target is 

processed (i.e., contralateral to target).  In sum there is evidence that the dynamics of alpha power 

orchestrate hemispheric states of excitation and inhibition.  

In the auditory modality, similar findings underpinned the inhibitory role of alpha power. 

Parietal alpha power lateralization was observed during auditory spatial attention tasks (Kerlin et 

al., 2010; Frey et al. 2014). Successful spatial attention was linked to enhanced synchronization of 

alpha power lateralization to the presentation rate of speech (Wöstmann et al., 2016). This 

suggests that top-down inhibitory alpha power supports auditory selective processing at a 

comparably early, temporo-spatial processing stage. 

Beyond the modulation by temporo-spatial attention, alpha power was found to be differently 

modulated by the spectral degradation of attended vs. ignored speech (Obleser and Weisz, 2012; 

Wöstmann et al., 2017b), which suggests that alpha power is not only inhibitory, but more 

generally related to the degree of deployed cognitive effort. One aspect of deployed cognitive effort 

is working memory load (Rabbitt, 1968; Wingfield et al., 2005; Piquado et al., 2010), of which 

alpha power may be an indicator for. In auditory tasks, various studies show that higher working 

memory load is associated with increased alpha power (Leiberg et al., 2006; Karrasch et al., 2004). 

Crucially, it has been shown that the degree of spectro-temporal degradation of speech and the 

amount of working memory load drive similar neural processes associated with oscillations in the 

alpha range (Obleser et al., 2012). 
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Consequently, alpha power has been suggested to indicate listening effort (Rönnberg at al. 

2013; McGarrigle et al., 2014; Peelle, 2018). The concept of listening effort still lacks a precise 

definition, but it refers to the amount of deployed cognitive resources to understand speech or, 

more generally, to solve a listening task. It was shown that alpha power is modulated by the degree 

of background noise and the amount of memory load, which indicates that more adverse listening 

conditions are compensated by the deployment of more cognitive resources (Petersen et al., 2015). 

Interestingly, Petersen et al. (2015) found that the modulation of alpha power is limited, which 

was interpreted as a signature of limited cognitive resources. Besides the phase-locked neural 

response to speech (which reflects the neural selection of concurrent speech mainly in sensory 

areas, see section 1.4), alpha power may indicate how much cognitive effort is deployed in order 

to achieve such neural selectivity. The mostly fronto-parietal occurrence of listening-effort-related 

alpha power modulation suggests that a more attention-general, multimodal hierarchy such as the 

fronto-parietal attention network may be involved.  

Here, we have investigated whether alpha power modulation is key to selective neural 

processing of concurrent and continuous speech. We continuously varied the adversity of the 

listening condition by either raising the sound pressure level of the attended (signal) or the 

ignored (noise) talker, such that effectively, the signal-to-noise ratio varied over time. Since a 

more negative SNR leads to increased masking of the to-attended talker, we hypothesized that the 

varying SNR also varies the degree of deployed cognitive resources, such that a co-modulation of 

alpha power can be observed.  

3.2.3 Methods 

This is a re-analysis of published data (Fiedler et al. 2019). The experimental design, data 

acquisition and preprocessing were described in detail above (see section 3.1.3.1 3.1.3.3). The 

estimation of the neural response in time-frequency domain is described below in detail.  

In brief, 18 subjects listened to one of two simultaneously presented audiobooks. The level of 

either the attended or the ignored talker was increased ubpredictably by 6 dB, which resulted in 

random fluctuations of the SNR between 6 and +6 dB. The 64-channel EEG data were band-pass 

filtered between 1 and 30 Hz and artifacts were removed by independent component analysis 

(ICA; Makeig et al., 2004). The EEG data were cut into blocks of approximately five-minute length 

according to the presentation, which resulted in twelve blocks per subject.  
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3.2.3.1 EEG time-frequency representation 

The time-frequency representation (TFR) of the pre-processed EEG data was estimated by 

Morlet wavelets (e.g., Bruns, 2004; Cohen, 2014). The frequencies of interest were logarithmically 

spaced between 1 and 32 Hz and the number of cycles was set to seven. This resulted in a total of 

31 bands (6 bands per octave) with an approximate overlap in band-width of 60% (Figure 3-5A). 

Along the time axis, wavelets were shifted in steps of 20 ms, resulting in a temporal resolution of 

50 Hz. 

Other than EEG data in the time domain, TFR values are neither zero-centered nor normally 

distributed, but power values are positive definite and highly skewed (Figure 3-5B). In trial-based 

designs, this skew is compensated by relative or dB-change baselines. Since a baseline is not 

applicable to continuous data, the TFR was transformed based on the equation 

  𝑻𝑭𝑹𝒕𝒓𝒂𝒏𝒔 =  (𝑻𝑭𝑹𝒑– 𝟏)/𝒑 3-4 

using the power value p = 0.22 (Smulders et al., 2018). Across subjects, the chosen power value 

minimized Pearson definition of skewness (i.e., distance between mean and median). 

Subsequently, the TFR was z-scored within each band across time for every block, to equalize 

variance across bands for better interpretation of the response model  -weights (Figure 3-5B).  

To get a general estimate of the dependency of power on SNR, we first contrasted the power 

spectra (time-frequency representations averaged across time) of the two unbalanced SNRs of 6 

vs. +6 dB. We hypothesized to observe increased alpha power during 6 dB compared to +6 dB. 

On the subject level, within every channel-frequency bin, we contrasted the power distribution 

over 90 trials per SNR ( 6 vs + dB; two-sided independent samples t-test). Across subjects, we 

bootstrapped the 95% confidence band of the mean t-values using 2000 iterations (Efron, 1979). 

 

Figure 3-5: Time-frequency representation of EEG data. A) Logarithmically-spaced center frequencies (dots) 
and band widths (vertical lines) of Morlet wavelets. B) Band-wise distribution of power values across time before 
(left) and after transformation and z-scoring (right) of an exemplary subject. 
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3.2.3.2 SNR-related stimulus representations 

 The goal of this analysis was to estimate the relationship of the power time-courses (including 

induced neural oscillations) with the signal-to-noise ratio (SNR). Accordingly, we used the SNR 

as a predictor in a forward model (SNR, Figure 3-6, see section 3.2.3.3). The SNR is the ratio of 

sound intensity between the attended and the ignored talker and thus is an estimator for the 

current listening difficulty. It is important to note that this representation of the SNR is only 

describing the low-frequent modulation was created by scaling the magnitude of the talker signals. 

The representation of the SNR does not contain instantaneous fluctuations due to varying degrees 

of spectro-temporal overlap. 

In an exploratory analysis, we used several stimulus representations derived from the SNR: 

First, we used the individual intensity of the talkers (Levels, Figure 3-6) as predictors, which 

reflects the hypothesis that alpha power is modulated by only one of the talkers. For example, we 

might observe only an increase in alpha power when the ignored talker gets louder, but not a 

decrease in alpha power when the attended talker gets louder. According to our initial hypothesis, 

we expected either a negative relationship between the level of the attended talker and alpha power 

or a positive relationship between the level of the ignored talker and alpha power. 

Second, we used the first derivative of the  intensity as predictors (Change, Figure 3-6), 

which is based on the hypothesis that alpha power is tracking only changes in listening conditions 

rather than the listening conditions in general. 

Third, we only used intensity as 

predictors (Increase, Figure 3-6), which is based on the hypothesis that only increases in intensity 

of the (attended or ignored) talker lead to modulation of alpha power. 

Fourth, we only used the n

predictors (Decrease, Figure 3-6), which is based on the hypothesis that only decreases in intensity 

of the (attended or ignored) talker lead to modulation of alpha power. 

Fifth, we used the envelope onsets as predictors, which also contain local modulation of the 

speech signals (Env. onsets, Figure 3-6). The underlying hypothesis was that a stronger decrease 

(i.e., desynchronization) of alpha power is tracking speech onsets of the attended talker, as it was 

found during visual covert attention (Jia et al., 2017). 
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Figure 3-6: Representations of the signal-to-noise ratio used as regressors and hypothesized modulation 
of the EEG time-frequency representation. Left: SNR: signal-to-noise ratio. Levels: varying levels of the 
attended and ignored talker. Change: rate of change of the individual talker levels (fist derivative). Increase: 
positive change of the individual talker levels. Decrease: negative change of the individual talker levels. Envelope 
onsets: positive change of the individual talker envelopes. Middle: Hypothesized response fields. Right: 
Hypothesized time-frequency representation. 

3.2.3.3 Estimation of time-frequency response fields 

We trained temporal response functions (TRFs) per EEG channel and per frequency band, to 

estimate the (time-lagged) relationship between the stimulus representation (e.g., SNR) and the 

power time-courses within the frequency bands of the EEG signal. Per EEG channel, the training 

of the model resulted in a time-lag-by-frequency response field (Figure 3-6, middle). This 

response field shows the band-wise EEG power response to the stimulus representation (e.g., 

SNR). For example, a n

power within the alpha band increases 3 seconds after the SNR decreases and/or the power in the 

alpha band decreases if the SNR increases. Except for the exact time lag of such a response, this 

example reflects our main hypothesis (Figure 3-6, SNR).  

3.2.3.4 Prediction of time-frequency response 

Analogous to the prediction of time-domain EEG signals (see section 2.5.1), we used the 

response fields to predict the EEG response. Here, instead of the broad-band time domain EEG 

signal, we predicted the power time course within each band. In order to obtain a measure for 
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neural selectivity, we predicted two EEG responses. The first EEG response was predicted with the 

actual stimulus representation as presented (true). The second EEG response was predicted with 

the opposite stimulus representation (false), which means that the SNR was flipped (for all other 

stimulus representations, attended was interchanged with ignored). If the EEG response predicted 

with the true stimulus representation yielded a higher Pearson-correlation coefficient with the 

measured EEG response than the false EEG response, the classification was counted as correct. 

The classification accuracy was expressed in a percentage and called neural selectivity. Note that 

here we used twelve five minute blocks per subject, such that the binomial chance level was 75%. 

3.2.3.5 Reconstruction of SNR 

The advantage of forward models is the interpretability of the response functions or response 

fields to multiple stimulus features (e.g., Level of the attended and the ignored talker). One 

disadvantage however, is that they only predict one neural response (here: EEG power time course 

at a certain frequency independent of all other frequencies). Backward models have the advantage 

of reconstructing one stimulus feature (e.g. SNR) based on multiple neural responses (e.g. all 

power time courses in the alpha range; see section 2.5.1). Given that all subjects may show 

enhanced neural selectivity somewhere in the alpha band but not at the identical frequency, we 

may have missed some general alpha power dynamics by using forward models.  

Thus, exploratorily we trained backward models on the all frequency channels within the range 

of an octave, which roughly corresponds to conventional frequency bands ( low = 1 2 Hz; high = 

2 4 Hz; 4 8 Hz; 8 16 Hz;  16 32 Hz). However, in contrast to conventional backward 

models, we trained the backward model not on all EEG channels but per EEG channel, such that 

an interpretation of the topography was still possible. Consequently, we could also compare band-

wise neural selectivity to the neural selectivity obtained by the phase-locked responses. 

3.2.4 Results 

In this study, we investigated if the power in certain frequency bands of the EEG covaries with 

the signal-to-noise ratio (SNR) during selective attention to continuously presented and 

concurrent speech. We hypothesized that alpha power would be an indicator of the varying SNR. 

We trained forward models (i.e., response fields) in order to estimate the temporal dynamics of 



Neural adaptation to continuously varying acoustic conditions 

72 

EEG power relative to fluctuations of the SNR. We tested the predictive power of the response 

fields by detection of the focus of auditory attention. 

3.2.4.1 No average power difference between SNRs 

First, we contrasted the power spectra (time-frequency representations averaged across time) 

of the two extreme SNRs 6 vs. +6 dB. Within single subjects, we found channel-frequency bins 

where significance was reached (two-sided independent samples t-test, p < 0.05, uncorrected). 

The patterns of single-subject t-values are shown in Figure 3-7B. In general, the patterns show 

high variability across subjects. Contradictory to our hypothesis, only handful of subjects showed 

increased power in the alpha band during an SNR of 6 dB compared to +6 dB.  

At the group level, we only found a few channel-frequency bins in the delta and theta range 

where power was found to be decreased during the SNR of 6 dB compared to +6 dB 

(bootstrapped mean of t-values, p < 0.05; Figure 3-7A). However, those differences did not survive 

correction for multiple comparisons. Consequently, a cluster-based permutation test including 

correction for multiple comparisons did not return any significant clusters.  

 

Figure 3-7: Difference of average power between SNR of 6 dB and +6 dB. A) T-maps (see B) averaged across 
subjects. Channel-frequency bins not significantly differing from zero were masked (one-sample t-test, dof: 17, 
p<0.05, uncorrected) B) Single subject t-maps of the difference of average power between 6 dB and +6 dB. 
Non-significant channel-frequency bins were masked (independent-samples t-test, dof: 178, p<0.05, 
uncorrected). 

The initial analysis of the average power spectra during plateaus of 6 dB versus +6 dB did not 

confirm our hypothesis. However, with this initial analysis, the temporal dynamics of a potential 

alpha power modulation were neglected. For example, the neural response to a decreasing SNR 

(e.g., ramp to 6 dB) can be sluggish and thus smear into a subsequent plateau of 0 dB. Hence, we 

extracted band wise temporal response function in the following step. 
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3.2.4.2 No consistent modulation of alpha power by SNR 

The temporal response fields reflect the time-lagged covariance between the SNR and the 

band-wise EEG power time courses. Positive peaks in the temporal response fields indicate that 

an increased SNR results in enhanced power, whereas negative peaks indicate that a decreased 

SNR results in enhanced power. 

We hypothesized to find a negative relationship between the SNR and power in the alpha band. 

In general, the temporal response fields to the SNR show no unique peak, but rather a noisy, 

unspecific pattern (Figure 3-8A). In response to the SNR (first row), the most salient peak in the 

alpha band is a positive peak at around 10 seconds. Contradictory to our hypothesis, there is no 

evidence for an alpha power decrease when the SNR increases and vice versa.  

Noteworthy, our random variation of the plateau length decreased predictability of the 

upcoming SNR, such that we would expect no peaks at time lags smaller than zero. However, in 

the extracted response fields, the appearance of peaks before zero indicates that mainly noise was 

fitted here rather than true relationships between the SNR and EEG power time courses (Figure 

3-8A). 

3.2.4.1 No significant modulation of alpha power by top-down selective processing 

To estimate the effect of top-down attention on the neural response, we used the temporal 

response fields to predict the band-wise EEG power time courses and to detect the attended talker. 

Consequently, the percentage of trials the attended talker was correctly detected was termed 

neural selectivity. Enhanced neural selectivity within a certain frequency band indicates that power 

within this band is modulated by top-down attention. 

We found slightly enhanced neural selectivity in the frequency range between 10 and 16 Hz 

(Figure 3-8B). However, the confidence band of the bootstrapped mean across subjects did not 

exceed the individual chance level based on a binomial distribution (12 trials; 75%). Furthermore, 

the topography did not show a focal pattern, which further indicates that the observed effects are 

due rather to common channel noise than a true relationship between the SNR and (for example 

parietal) alpha power modulation. 
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3.2.4.2 Exploratory analysis: Representations derived from the SNR did not reveal 

significant signatures of top-down selective processing 

Exploratorily, we estimated the response fields to various derivates of the SNR (see section 

3.2.3.2). First, we used the individual Level of the talkers as regressors (Figure 3-8C, first row). 

The response field to the attended talker shares some similarities with the earlier extracted 

response field to the SNR in the frequency range between 8 and 16 Hz. The inverse of the response 

field to the ignored talker shares some similarities with the earlier extracted response field to the 

SNR in the lower frequency range between 1 and 8 Hz. The channel-frequency pattern of neural 

selectivity turns out to be highly similar as well (Figure 3-8D, first row), which indicates that the 

individual power time courses do not selectively track the individual levels, for neither the 

attended nor the ignored talker. 

Second, we estimated the response fields to the first derivative of the individual talker levels, 

which highlighted changes in the SNR (Figure 3-8, second row). The response fields suggest that 

a more negative deflection is following the attended talker around a time lag of 10 s compared to 

the ignored talker. This means that an increase of the level of the attended talker induces a stronger 

decrease in alpha power and/or a decrease of the level of the attended talker induces a stronger 

increase in alpha power. Yet again the attended ignored response field difference shows multiple 

peaks and no consistent pattern. The alpha frequency range of slightly (but not significantly) 

enhanced neural selectivity is comparable to the results above, whereas its topography now shows 

right temporal channels with enhanced neural selectivity (Figure 3-8D, second row).  

Third, we estimated the response fields to the positive parts (i.e., halfwave rectified) of the first 

derivative of the SNR, which highlighted increases in the talker levels (Figure 3-8C, third row). 

The response fields suggest that an increase of the level of both, the attended and ignored talker 

is followed by an increase in alpha power. Again, there is no salient difference between the 

response fields to the attended and ignored talker. The alpha frequency range of slightly (but not 

significantly) enhanced neural selectivity is comparable to the results above, whereas the 

topography shows no specific pattern (Figure 3-8, third row). 

Fourth, we estimated the response fields to the negative parts (i.e., halfwave rectified) of the 

first derivative of the SNR, which highlighted decreases in talker levels (Figure 3-8C, fourth row). 

Note that we kept the negativity of the regressor after halfwave rectification, such that negative 
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weights in the response fields mean that a decrease of the talker level is followed by an increase of 

power. The response fields suggest that a decrease of the talker level is followed by an increase in 

alpha power independent of attention, we observed the same in the response to level increases. 

Again, there is no salient difference between the response fields to the attended and ignored talker. 

The alpha frequency range with slightly (but not significantly) enhanced neural selectivity is 

comparable to the results above, whereas the topography shows no specific pattern (Figure 3-8D, 

fourth row). 

Fifth, we estimated the response fields to the envelope onsets of the attended and ignored talker 

(Figure 3-8C, fifth row). In contrast to the regressors above, the envelope onsets contain not only 

the low-frequent modulation related to the SNR, but also higher-frequent modulation (delta and 

theta) related to the onsets of syllables. The response field to the attended talker shows a decrease 

in alpha power immediately after the envelope onset. Slightly later, a decrease in power in the delta 

and theta band follows. At a time lag of approximately 7 seconds, an increase of alpha power is 

follows the envelope onset of the attended talker. The response field to the ignored talker shows a 

slightly different pattern with a more sustained alpha power decrease after the onset and a later 

increase of alpha power at a time lag of approximately 15 seconds. The attended ignored contrast 

of the response fields suggests that the attended talker is followed immediately by decreased alpha 

power compared to the ignored talker. With later time lags, increased alpha power (and to some 

extend delta and theta power) can be observed in the response field to the attended compared to 

the ignored talker. However, this observed difference in the response fields does not lead to 

significantly enhanced neural selectivity, even if we again observed slightly enhanced neural 

selectivity in the alpha range (Figure 3-8D). 

In sum, the exploratory analysis did not result in more precise predictions of the attention-and 

SNR-dependent modulation of neural oscillatory power. However, all predictions indicated 

slightly enhanced neural selectivity in the alpha frequency range.   
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Figure 3-8: Time-frequency response fields and neural selectivity. A) Response field to the SNR. B) Neural 
selectivity. The lower confidence bound after bootstrapping the mean across subjects did not reveal any 
significant channel-frequency bins (2000 iterations, binomial chance: 75%, p < 0.05, uncorrected). Topographic 
map shows neural selectivity averaged across 10 16 Hz. C) Response fields to derivates of the SNR (see methods). 
D) Neural selectivity. The lower confidence bound after bootstrapping the mean across subjects did not reveal 
any significant channel-frequency bins (2000 iterations, binomial chance: 75%, p < 0.05, uncorrected). 
Topographic maps show neural selectivity averaged across 10 16 Hz. 

3.2.4.3 Exploratory analysis: Reconstruction of the SNR within the alpha band did 

not reveal significantly enhanced neural selectivity 

In order to use the full predictive (i.e., reconstructive) power of a whole frequency range (e.g., 

alpha band) and allow for individual best-frequency-differences within said range, we trained 

backward models by using multiple frequency channels of the time-frequency representation as 

regressors to reconstruct the SNR. We split up the time-frequency representation into five bands 
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low = 1 high = 2

16 32 Hz).  

Neural selectivity was slightly enhanced in the alpha and beta band compared to the lower 

frequency bands (Figure 3-9, left). However, in none of the frequency bands, the lower confidence 

bound of the bootstrapped mean across subjects exceeded the empirical chance level of 75% at 

any EEG channel (2000 iterations, p<0.05). Again, the topographic maps show an unspecific, non-

focal pattern.  

We compared the neural selectivity estimated in the alpha band to neural selectivity estimated 

in the phase-locked responses (Figure 3-9). Strikingly, the phase-locked responses yielded neural 

selectivity above the empirical chance level at almost all EEG channels. In each subject, at least 9 

of 62 EEG channels exceeded the empirical chance level (mean: 46.94 channels, SD: 18). 

Divergently, in 17 of 18 subjects, neural selectivity of the alpha band exceeded the empirical chance 

level at only two EEG channels (mean: 18, SD: 16.59). The topographical inconsistency of neural 

selectivity in the alpha band does not allow a selection of channels of interest for further 

comparison. Averaged across all EEG channels, neural selectivity of the phase-locked responses 

exceeded the empirical chance level in 13 of 18 subjects, whereas neural selectivity of the alpha 

band exceeded the empirical chance level in only 3 subjects (Figure 3-9). Pearson-correlation of 

the neural selectivity averaged across all channels between phase-locked responses and alpha 

power 

enhanced neural selectivity of the phase-locked responses also show enhanced neural selectivity in 

the alpha band. Phase-locked responses yielded significantly enhanced neural selectivity 

compared to alpha power in all but the occipital EEG channels (two-sided paired samples t-test, 

dof: 17, p < 0.05). In sum, this comparison highlights that neural selectivity of the phase-locked 

responses is an order of magnitude higher than neural selectivity of the alpha band. 
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Figure 3-9: Neural selectivity obtained by backward reconstruction of SNR time courses within frequency 
bands and comparison to neural selectivity obtained by prediction of phase-locked neural responses. 
Topographic maps show channel-wise neural selectivity. Scatter plot compares neural selectivity obtained by 
prediction of phase-locked responses (x-axis) versus alpha-power-based reconstruction of the SNR (y-axis) at 
EEG channels of all subjects (grey) and average across all EEG channels per subject (red). For better illustration 
of density, underlying values were jittered by uniformly distributed values of ±2%. Histograms show distribution 
of neural selectivity across all single-subject EEG channels. Highlighted channels of the topographic maps 
exceeded the binomial chance level of 75% (lower bound of the confidence band obtained by bootstrapping 
the mean across subjects), which was only found in the phase-locked response. Upper-right topographic map 
shows t-values (two-sided paired samples t-test, dof: 17) of contrasted neural tracking between the phase-locked 
response and alpha power. Highlighted channels show a significant difference (p < 0.05). 

3.2.5 Discussion 

Here we investigated whether the modulation of neural oscillatory power depends on the 

signal-to-noise ratio (SNR). Based on previous studies, we hypothesized that alpha power is 

inversely covarying with the SNR, such that a positive SNR results in decreased alpha power and 

a negative SNR results in increased alpha power, reflecting the demand for top-down attentional 

control. Since we had no precise hypothesis about the temporal dynamics of alpha power relative 

to the SNR, we estimated forward models (time-frequency response fields), which reflect the time-

lagged relationship between the SNR and the EEG time-frequency representation (i.e., narrow-

band power time courses). Our analysis revealed no clear evidence, neither on the single subject 

nor on the group level, for alpha power modulation in the hypothesized direction. The estimated 

time-frequency response fields did not show consistent patterns that allowed inference on the 

neural oscillatory dynamics under continuously varying listening conditions (i.e., SNR). 

However, we observed slightly, but not significantly enhanced neural selectivity in the alpha power 
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range with a non-focal, unspecific distribution across the scalp. Exploratory analysis based on 

various regressors did not reveal any conclusive results either. An EEG-channel-wise comparison 

between neural selectivity of the alpha band versus phase-locked responses demonstrated that top-

down neural selective processing of the concurrent speech is much more prominent in the phase-

locked responses. 

3.2.5.1 Alpha power modulation in trial-based but not continuous designs 

Our hypothesis was based on recent, trial-based studies which associated more adverse 

listening conditions with enhanced alpha power (Obleser et al., 2012, Obleser und Weisz, 2012; 

Wöstmann et al., 2017b; McMahon, 2016). However, during our continuously presented speech, 

we did not find clear evidence for such a modulation indicating the demand for top-down 

attentional control. In the following, we will discuss possible reasons for such an indistinct 

finding. 

One possible cause might be the general structure of our design. While earlier studies used trial 

lengths of a couple of seconds, we presented the speech signals in blocks of five minutes. In trial-

based designs, increased alpha power can be usually observed in the beginning compared to the 

end of each trial (Wöstmann et al., 2015; Wöstmann et al., 2016), which suggests that alpha power 

modulation reflects anticipation of the upcoming neural processing or, in other words, adaptation 

of the neural filters, rather than the neural processing itself. In the current design, neural filters 

might have been adapted quickly in the beginning of each block, such that alpha power 

modulation was absent during the rest of the block. However, we also failed to extract attention-

dependent alpha power modulation during changes of the SNR, which would also have induced a 

re-adaptation of neural filters. This might be explained by the fact that alpha power occurs in 

bursts, which might not occur time-locked to changes in the SNR, but rather at any time during 

a plateau. However, we found no consistent differences between the across-time-averaged time-

frequency representations under 6 versus +6 dB, which should capture such non-time-locked 

relationships.  

Another explanation might be the stronger engagement of subjects into a trial-based task 

compared to a continuous task. Increased alpha power has been related to increased working 

memory load (Leiberg et al., 2006; Karraschet et al., 2004; Obleser et al., 2012). It has been argued 

that increased alpha power during presentation of degraded speech reflect enhanced lexical 
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memory access (Obleser and Weisz, 2012). In the trial-based designs, subjects usually repeat some 

words such as digits, which leads to repeated engagement into the task. It was also shown that 

alpha power lateralization follows the temporal structure of the stimuli (Wöstmann, 2016). In 

contrast, during our task, subjects only had to answer four questions in the end of each block, 

which may not have challenged them as much as in the trial-based designs. The risk of missing a 

few words and not being able to answer the subsequent question might have been too low to force 

participants to invest as much of their cognitive resources. This point will be further discussed 

below (see section 0). 

The slight enhancement of neural selectivity found in the alpha band might indicate that there 

exists a relationship between the SNR and alpha power, which did not reach significance because 

of an underpowered study design. As noted above, the effects found in previous studies are 

strongest during anticipation of an upcoming stimulus and tend to decay during towards the end 

of the trial. Hence, continuous presentation might lead to a weaker modulation of alpha power 

which only reaches significance on the group level based on a greater number of subjects. 

Henceforth, we can conclude that alpha power is not as informative 

auditory attention as the phase-locked responses to speech. 

3.2.5.2 Conclusion 

We showed that there exists no consistent pattern of alpha power modulation that allows for 

the conclusion that enhanced alpha power indicates a stronger demand for top-down attentional 

control. Thus, the link of alpha power modulation to the concept of listening effort is not 

supported by this study. However, a slight enhancement of neural selectivity was found in the 

alpha band, which may be a hint that a small effect size led to an underpowered design. In contrast 

to the phase-locked neural responses, alpha power 

of attention, which has implications on the application in neurally steered hearing aids. 
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3.3 Study 3: No alpha power lateralization induced by continuously moving 

talkers 

3.3.1 Abstract 

Alpha power lateralization has been observed during spatial selective attention tasks in the 

visual, somatosensory and auditory modality and has been associated with induced, top-down 

neural mechanisms. Here we first asked whether alpha power lateralization is indicative of a 

spatial focus of auditory selective attention. We then asked if alpha power lateralization 

interacts with varying signal-to-noise ratio (SNR). To this end, we recorded the 

electroencephalogram (EEG) of 25 subjects who listened to one of two simultaneously presented 

stories, while the talkers stochastically moved on the frontal azimuth between 90 and +90 degrees 

and the SNR between the attended (signal) and the ignored talker (noise) varied between 6 and 

+6 dB. First, we hypothesized that alpha power lateralization can be observed when the talkers are 

located on opposite positions.  Second, we hypothesized that alpha power lateralization should be 

enhanced when the SNR is worse due to the stronger demand for top-down attentional control. 

To test our hypothesis, we forward-modelled the time-frequency representation of the EEG signal 

based on the location difference and the SNR. We did not find any indication for alpha power 

lateralization nor the interaction with SNR.  

3.3.2 Introduction 

Alpha power lateralization has been observed during spatial selective attention tasks in the 

visual (Worden et al., 2000), auditory (Kerlin et al 2010) and tactile modality (Haegens et al., 

2011). Due to its non-phase-locked nature, alpha power lateralization is associated with top-down 

attentional, induced neural mechanisms. In particular the observation of lateralized parietal alpha 

power during dichotic listening tasks (Kerlin et al., 2010; Wöstmann et al. 2016)  supported the 

hypothesis that the functional role of alpha power is top-down inhibition of brain areas that are 

bottom-up captured by task-irrelevant sensory input (Klimesch et al., 2007).  

Our earlier study could not confirm our hypothesis that alpha power is indicative of the current 

demand for top-down attentional control during the presentation of continuous speech, which we 

manipulated by the signal-to-noise ratio (SNR; see section 3.2). One possible reason we have not 

observed such an alpha power modulation might be the diotic presentation of the talkers. The lack 
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of distinct predictable spatial (e.g., Wöstmann et al., 2016) and temporal cues (e.g. Wöstmann et 

al., 2018) might have hindered alpha power to operate as an inhibitory mechanism suppressing 

neural pathways occupied by the processing of the ignored talker. 

Consequently, we adopted our earlier paradigm and added virtual acoustic scene, where not 

only the SNR between the talkers but also the location of the talkers stochastically varied. First, 

we hypothesized to find top-down modulated alpha power lateralization by means of enhanced 

alpha power contralateral to the ignored talker and/or decreased alpha power contralateral to the 

attended talker. Second, we hypothesized that alpha power lateralization interacts with SNR due 

to the varying demand for attentional control, such that we would observe stronger alpha power 

lateralization during and SNR of 6 dB compared to +6 dB. 

3.3.3 Methods 

3.3.3.1 Participants 

We recruited 25 native speakers of German within the age range of 18 to 31 (mean: 22.7 years, 

15 female). All reported normal hearing and no histories of neurological disorders. We recorded 

-tone audiogram (PTA) in order to verify normal hearing. None of the subjects 

showed a PTA of more than 20 dB within the frequency range of 125 to 4000 Hz. All participants 

 The data of one participant had to be 

discarded due to technical issues during the experiment. 

3.3.3.2 Stimuli 

Analogous to our earlier study where we stochastically varied only the signal-to-noise ratio 

(SNR) during continuous presentation of audiobooks (Fiedler at al. 2019; see section 3.1), here we 

additionally varied the location of the talkers by simulating continuous movements (Figure 3-10). 

The talkers independently moved along the frontal azimuth between two most lateral locations (

90° and +90°, 0° elevation), resulting in four principle constellations (Figure 3-10, left). In 

combination with the three different SNRs ( 6, 0 and +6 dB), twelve different conditions existed.  

We individually randomized the continuous time course through the twelve conditions for 

every subject (Figure 3-10, middle). Analogous to our earlier study, the condition was kept 

constant during a plateau. A plateau lasted between five and nine seconds (uniformly distributed 
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in discrete steps of one second) and the transitions between plateaus (further called ramps) took 

between one and five seconds (uniformly distributed in discrete steps of one second). During a 

ramp, either the SNR or the location was changed. Within the session of each subject, every 

possible ramp occurred the same amount of times. 

Analogous to our earlier study (Fiedler at al. 2019; see section 3.1),  we selected two audiobooks 

heime Leben der 

to avoid long periods 

selected for further preparation. The first 30 minutes of each audiobook served as the to-be-

attended and the rest served as the to-be-ignored speech, such that all subjects could attend both 

stories from the beginning and attended (and ignored) both the female and the male voice the 

same amount of time. The one-hour audiobooks were split up in 12 blocks of approximately five 

minutes each. 

 

Figure 3-10: Exemplary sequence of SNR and location. Left: three-by-four design of three levels of the signal-
to-noise ratio (SNR; 6, 0 and +6 dB) and four spatial constellations of the talkers (LR, LL, RR, RL). Middle: The 
continuous time course through the conditions was randomized for every subject individually. Based on the 
time course, regressors were defined which represented the SNR, the location and their interaction. Right: 
Hypothesized hemispherical time-frequency response fields estimated based on the regressors. 

3.3.3.3 Spatial presentation via head-related transfer functions 

The spatial movement was realized by the creation of virtual sound sources using head-related 

transfer functions (HRTFs). We used HRTFs from a database recorded in the ear canal of 97 
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subjects (In-The-Ear HRTFs, Institut für Schallforschung, Vienna, Austria). The database 

contains binaural impulse responses with a spatial resolution of 2.5° in the frontal azimuth. 

Theoretically, the presentation of a sound waveform convolved with the binaural impulse 

responses of a certain location should be correctly localized by a subject. However, since head 

shapes largely differ between individuals, one HRTF might create a better spatial impression than 

another. Typical artifacts of non-individualized HRTFs are front-back confusions and elevation 

of the virtual sound source. Hence, the best-fitting HRTF should be selected for each subject. To 

reduce the set of HRTFs to choose from, we first calculated the Pearson-correlation coefficients 

between the impulse responses of two HRTFs for each location and ear. Subsequently, correlation 

coefficients were averaged across all locations. This was done for all possible pairs of all HRTFs. 

We used multi-dimensional scaling (Kruskal, 1964) of the inverted magnitude of the Pearson 

correlation coefficients to obtain a two-dimensional representation of the dissimilarity between 

all 97 HRTFs. We manually selected five most different HRTFs for further evaluation by the 

subjects (see below; selected HTRF index: 4, 66, 92, 123, 162). 

To make out the best-fitting HRTF for every subject, in advance of the main experiment, 

subjects were presented with ten-second probes of audiobooks with a female talker (Elke 

or a male talker (Yuval 

left to the right side (±90°) or vice versa along the frontal azimuth. In advance, subjects were 

informed about typical artifacts such as front-back confusions and elevation of the virtual sound 

source. After each presentation, subjects were asked to rate the spatial quality on a scale from 1 to 

4. In total, 20 probes were presented (5 HRTFs × 2 directions × 2 talkers). The HRTF with the 

highest average rating was selected for the subject. All subjects reported that they heard at least 

one presentation where the talker moved in the frontal hemifield along the azimuth. The 

distribution of the selected HRTFs (9;4;6;2;3) indicates that subjects preferred different HRTFs. 

To create a percept of continuous movement, we first created the binaural sound wave forms 

of all discrete locations from 90° to +90° in steps of 2.5°. Based on the randomized trajectories 

of the talkers resulting from the ramps between locations, we linearly interpolated the sound wave 

forms between the two discrete neighbored locations. 
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3.3.3.4 Task 

The twelve blocks were presented such that subjects were instructed to attend to the female or 

to the male talker in an alternating fashion. Every other block, the stories picked up at the point 

at which 

female or attend to male), subjects were asked to start the stimulus presentation by a button press, 

which enabled the participants to take a break between blocks. During listening, subjects were 

asked to fixate at a cross presented on the screen in order to reduce eye movement. After each 

block, participants were asked to answer four multiple-choice questions concerning the content 

of the to-be-attended audiobook. 

3.3.3.5 Data acquisition and preprocessing 

EEG was recorded with 64 electrodes Acticap (Easycap, Herrsching, Germany) connected to 

an ActiChamp (Brain Products, Gilching, Germany) amplifier. EEG signals were recorded with 

the software BrainVision Recorder (Brain Products) at a sampling rate of 2.5 kHz. Impedances 

 

The EEG data were pre-processed in MATLAB 2017a (The MathWorks, Inc., Natick, 

Massachusetts, United States) using both the Fieldtrip-toolbox (version: 20170321; Oostenveld et 

al., 2011) and custom written code. The EEG data were re-referenced to the average of the 

electrodes TP9 and TP10 (left and right mastoids) and resampled to fs = 125 Hz. The continuous 

EEG data were highpass-filtered at fc = 1 Hz and lowpass-filtered at fc = 40 Hz (two-pass 

Hamming window FIR, filter order: 3fs/fc). 

From the continuous EEG data, we extracted the parts during which the twelve blocks of 

audiobooks were presented (see above). For every subject, we applied independent component 

analysis (ICA; Makeig et al., 2004) on the concatenated data of the twelve blocks and manually 

rejected components that were clearly related to eye movements, eye blinks, muscle artifacts, 

heartbeat as well as single-channel noise. 

3.3.3.6 EEG time-frequency representation 

The time-frequency representation (TFR) of the pre-processed EEG data was estimated 

analogous to our previous study (see section 3.2), including the transformation to correct for the 
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skew of power distribution (Smulders et al., 2018) and subsequent z-scoring. Only for an 

exploratory analysis of the lateralization index (see below), did we keep the absolute power values.   

To get a general estimate of the dependency of alpha power on SNR as well as location and the 

interaction of the two latter, we first contrasted the power spectra (time-frequency representations 

averaged across time) of the two unbalanced SNRs of 6 vs. +6 dB and the two separated locations 

(LR vs. RL). On the subject level, the variance of every channel-frequency bin was analyzed (Two-

way ANOVA, two-by-two design). In order to test whether a resulting F-statistic is significant or 

simply a random observation, we compared it to a distribution of F-values obtained from 

surrogate data (2000 random permutations of condition labels). If less than 5% of the surrogate 

F-values exceeded the F-statistic obtained from the true condition labels, the channel-frequency 

bin was assumed to show a significant main effect or interaction, respectively. 

3.3.3.1 Prediction of time-frequency response 

Analogous to our earlier study (see sections 3.2), we estimated time-frequency response fields 

to predict the EEG response, but here we predicted the EEG power time course based on the SNR 

as well as the location of the talkers. To this end, we first defined the regressors. The representation 

of the SNR was scaled between 1 and +1. The location regressor was set as the difference between 

the locations of the talkers scaled between 0 (left) and +1 (right), such that 1 represented LR 

(attended talker on the left, ignored talker on the right) and +1 represented RL (attended talker 

on the right, ignored talker on the left). Consequently, during the plateaus RR and LL, the location 

regressor was zero. A third regressor expressed the hypothesized interaction between location and 

SNR. We multiplied the location regressor with the SNR regressor. For example, during an LR 

plateau under an SNR of 6 dB, the regressor was 1. If the SNR changed to +6 dB, the interaction 

regressor changed to +1. Now if the location changes to RL, the interaction regressor became 1. 

To obtain a measure for neural selective processing, we predicted two EEG responses. The first 

EEG response was predicted with the actual stimulus representation as presented (true). The 

second EEG response as predicted with the opposite stimulus representation (false), which means 

that all regressors were flipped between attended and ignored. If the EEG response predicted with 

the true stimulus representation yielded higher Pearson correlation with the measured EEG 

response than the false EEG response, the classification was correct. The classification accuracy 

was expressed in percent (number of trials correct) and called neural selectivity.  
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3.3.3.2 Lateralization Index  

Exploratorily, we calculated the ongoing lateralization index (LI). The LI expresses the time-

resolved hemispheric imbalance of EEG power. In the alpha band, the LI was found to be 

2016). For every frequency, we calculated 

𝑳𝑰 =  
𝒍𝒆𝒇𝒕 − 𝒓𝒊𝒈𝒉𝒕

𝒍𝒆𝒇𝒕 + 𝒓𝒊𝒈𝒉𝒕
 3-5 

where left (right) is the average power at the left (right) occipito-parietal channels. We forward-

modelled and predicted the LI based on the three regressors locations, SNR and their interaction 

(see above). According to our hypothesis, mainly the location regressor and the interaction 

regressor should be predictive of the lateralization index. The predictability was again expressed 

in the percentage of correctly classified trials and called neural selectivity. 

3.3.4 Results 

Here we investigated whether alpha power lateralization can be observed during continuous 

and independent movement of an attended (signal) and an ignored (noise) talker and whether 

alpha power lateralization interacts with the signal-to-noise ratio (SNR). To this end, we presented 

two talkers simultaneously which stochastically moved along the frontal azimuth between 90° 

and +90°. The SNR was stochastically varied between 6 and +6 dB.  

3.3.4.1 No average power difference between lateralized locations or SNRs 

First, we investigated how across-time averaged power is modulated by the location and the 

SNR as well as whether there exists an interaction between location and SNR (Two-way ANOVA; 

see methods). On the single subject level, we found significant channel-frequency bins for the 

main effect of SNR, location and their interaction (Figure 3-11, p < 0.05, uncorrected). However, 

on the group level, we found no channel-frequency bin where any of the main effects or the 

interaction exceeded the critical F-value. This indicates that average power is neither modulated 

by the SNR nor the spatial focus of attention. 
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Figure 3-11: Main effect of location and SNR and their interaction. Left: The power within each plateau was 
averaged across time and the four acoustically equivalent conditions were contrasted in a two-by-two ANOVA. 
Right: Channel-frequency F-maps obtained from an exemplary subject. Values not exceeding the critical F-value 
(2000 permutations, 95%, uncorrected) were masked. On the group level, the F-maps averaged across subjects 
did not exceed the critical F-value at any channel-frequency bin. 

3.3.4.2 The temporal dynamics of EEG alpha 

of attention 

We forward-modelled and predicted the EEG time-frequency representation based on the 

regressors SNR, location and their interaction. We hypothesized that the temporal dynamics of 

alpha power are predictive of a 

the percentage of correctly classified blocks and called neural selectivity. 

 

Figure 3-12: Time-frequency response fields and neural selectivity. Left: Hemispherical time-frequency 
response fields to location, signal-to-noise ratio (SNR) and their interaction. Right: Neural selectivity obtained at 
single frequencies and single EEG channels. 
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The time-frequency response fields express the spatio-temporal relationship between the 

regressors and the time-frequency representation of the EEG signal (Figure 3-12).  We separately 

-weights in the response 

field to the location regressor should appear anti-polar if alpha power lateralization is modulated 

by the spatial focus of attention (see methods). However, the contrast between the two 

hemispheres did not reveal any salient peaks in the alpha power range.  

3.3.4.3 Hemispherical alpha power lateralization 

focus of attention 

In an exploratory analysis, we forward-modelled and predicted the time-resolved parietal 

lateralization of EEG power (Lateralization Index; see methods). In contrast to our hypothesis, we 

did not find enhanced neural selectivity in the alpha power range (Figure 3-13). Neural selectivity 

averaged across subjects remained around chance (50%) across the whole frequency range. 

Individual subjects show a random pattern, which rarely exceeded the binomial chance level of 

75%. 

 

Figure 3-13: Neural selectivity obtained by the prediction of the hemispherical lateralization of EEG 
power. Left: Neural selectivity obtained from the prediction of the lateralization index (LI) at single frequencies. 
Right: The calculation of the LI was based on the average across left and right occipito-parietal channels, 
respectively. 

3.3.5 Discussion 

Here we investigated if alpha power lateralization can be observed during the presentation of 

continuous speech from concurrent talkers moving stochastically along the frontal azimuth in a 

virtual acoustic space. We hypothesized that alpha power lateralization is indicative of the 
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 spatial focus of attention and that there exists an interaction with the orthogonally varied 

signal-to-noise ratio (SNR) between the attended (signal) and the ignored (noise) talker.  We did 

not find any indication that the lateralization of alpha power can be predicted based on the spatial 

focus of attention. Furthermore, there was neither an indication for the overall modulation of 

alpha power by the SNR nor the interaction of the SNR and the location of the talkers.  

3.3.5.1 No lateralization of alpha power during continuous presentation of an 

auditory scene 

  To our knowledge, this is the is the first study that investigates the role of alpha power 

lateralization during selective listening to concurrent, continuous speech of randomly moving 

talkers. The lack of attention-driven alpha power lateralization during continuous listening leads 

to open questions about the involvement of alpha power into attentional filtering as well as to the 

discussion of our experimental design.  

Since alpha power lateralization was shown to be driven by the spatial focus of attention in 

trial-based designs such as dichotic listening to digit streams (Wöstmann et al., 2016), we must 

conclude that there may exist different neural strategies to overcome such a listening task. The 

proposed inhibitory functionality of alpha power might not be the neural strategy that is involved 

here.  

One possible reason might be that here listeners were not forced to invest as much cognitive 

effort as in a trial-based design. In our design, subject only had to answer four questions after five 

minutes of listening, whereas in trial-based designs, subjects are asked much more frequently to 

respond. This might lead to frequent (re-)engagement into the task. In a recent study, it was 

shown that listening to clear, continuously moving pink noise with embedded targets leads to 

alpha power lateralization (Bednar and Lalor, 2018). This is somewhat surprising, since no 

distracting stimulus was presented. However, it strengthens the argument that subjects must 

engage into a more behaviorally fine-grained task, such that alpha power is involved in spatial 

filtering. 

The current findings will be further discussed below within the whole framework attentional 

modulation of phase-locked neural response and alpha power (see section 5.3).  
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3.3.5.2 Conclusion 

We investigated the role of alpha power during auditory selective attention to one of two 

randomly moving talkers, while the SNR between the attended talker (signal) and the ignored 

talker (noise) was varied orthogonally. We did not find clear evidence that alpha power is key to 

selective processing of continuous, dynamic auditory scenes. This has implications on the neural 

implementation of attentional filters and neurally steered hearing aids. 
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4 In-ear EEG captures signatures of auditory attention 

In this chapter, we will show that in-ear EEG is feasible to extract neural responses to 

focus. 

Study 4 will show that single-channel in-ear EEG captures (spectrally resolved) neural 

responses. Study 5 & 6 will show that single-channel in-ear EEG captures neural responses to 

attended and ignored stimuli and that those neural responses indicate which out of two stimulus 

streams is attended.  

4.1 Study 4: In-ear EEG captures spectrally resolved responses to natural 

stimuli2 

4.1.1 Abstract 

Spectro-temporal response functions (STRFs) reflect the average unfolding of a neural response 

to the spectro-temporal modulation of auditory stimuli. Given that the frequency-dependent 

impact of a sensorineural hearing loss modulates STRFs, the latter might be used to estimate a 

hearing loss and to fit a hearing aid. Furthermore, STRFs could be estimated in real-time and a 

hearing aid might be adapted. The goal of this study was the estimation of neural responses to 

natural auditory stimuli (i.e., rich of spectro-temporal modulation) via in-ear EEG. The EEG 

electrode configuration should consist only of a reduced set, to test if such a configuration could 

be attached to a hearing aid. A random sequence of sounds was presented to six subjects wearing 

individually fitted in-ear EEG electrodes. Subjects were asked to detect repeating sounds (one-

back task). STRFs were trained by forward-modelling the frequency-dependent neural response 

via ridge regression. The EEG signals were predicted, and the measures neural tracking and 

prediction accuracy were estimated. The STRFs showed a succession of P1-N1-P2 response 

components, with stronger magnitudes in the response to lower frequencies. Compared to P1 and 

N1, the P2 component was most prominent. At least three out of six in-ear EEG channels in all 

but one subject showed prediction accuracy above chance. A strong relationship between the 

                                                           
2The underlying data (Experiment 2) was conducted and pre-analyzed by Stephan Müller, Daniel Bank 

and Raphaela C. Wurzer (Fachhochschule Lübeck, course: Hörakustik, year of matriculation: 2014). 
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strength of neural tracking and the prediction accuracy was found across subjects. In sum, the 

results show that stimulus-frequency resolved neural responses to sound can be estimated by 

single-channel configurations including in-ear-EEG electrodes. 

4.1.2 Introduction 

Note: The following two paragraphs are adopted from Wöstmann et al. (2017a) and were 

primarily drafted by Lorenz Fiedler.   

Supported by increasing computational resources and efficient algorithms, the growing field 

of brain-computer interfaces has moved M/EEG towards real-time applications. Recent studies 

showed an attention-dependent neural tracking of speech (Ding and Simon, 2012; Sullivan et 

al., 2014, Mirkovic et al., 2015). This has encouraged the development of brain-controlled hearing 

aids (Lunner and Gustafsson, 2016). Thus far, hearing aids are amplifying the incoming sound 

regardless of the listener's intent. A detection of the attended talker based on the listener's neural 

response might be used to steer directional microphones or noise suppression of a hearing aid. 

Moreover, researchers make effort on the development of portable EEG devices, including the 

shrinking and hiding of sensor units to achieve higher convenience and thus a lower barrier of 

acceptance for users (Debener et al., 2015). 

There are several challenges in these real-world applications to be addressed in the near future: 

(1) low SNR caused by a lack of shielding, movement artefacts, and unreliable electrode 

connectivity; (2) low number of channels hinders localization of contributing cortical regions; 

and (3) real-world hearing scenarios are manifold and change unpredictably and thus might not 

be comprehensively addressed by abstract scenarios presented in the lab. 

While EEG detection of auditory attention is mainly based on the neural phase locking to the 

broad-band temporal envelope, the stimulus-frequency dependent neural response can also be 

extracted from M/EEG in the form of spectro-temporal response functions (STRFs; Ding and 

Simon, 2012). STRFs reflect the average neural response to sound-intensity fluctuations resolved 

in certain frequency bands. As in ERPs and TRFs, the components of the STRFs can be interpreted 

as representatives for processing stages along the auditory pathway. Hence, in-ear EEG might also 

serve as a diagnostic tool for conductive and sensorineural hearing loss. 
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Here we asked whether STRFs can be extracted from in-ear EEG and if increased spectral 

resolution of the stimulus leads to prediction accuracy above chance. We show that STRFs can be 

extracted from in-ear EEG. The STRFs show frequency-dependent modulation. However, the 

increased spectral resolution did not lead to a clear enhancement of prediction accuracy. 

4.1.3 Methods 

4.1.3.1 Participants 

Six normal-hearing participants were enrolled in this study. In advance, they underwent a 

fitting of individualized in-ear-EEG devices (Figure 4-1D). Imprints from both ears were taken 

by trained audiologists (Akademie für Hörakustik, Lübeck, Germany). Earmolds were 

manufactured by Oticon (Oticon A/S, Copenhagen, Denmark). Each earmold was attached with 

three in-ear-EEG electrodes (see section 2.2).  

4.1.3.2 Stimuli & task 

A set of 168, one-second long sounds was used in this study (Santoro et al., 2014). A random 

sound sequence was generated for every subject individually. To reduce predictability, a jittered 

inter-stimulus interval (ISI) of 0.3 to 3.1 seconds was inserted (Figure 4-1B). Ten percent of the 

sounds were presented twice in a row, while participants were instructed to press a button as soon 

as such a repetition occurred (1-back task).  Due to technical issues, 

recorded. However, the task was comparably easy and only assured that subjects were listening to 

the stimuli. In total, eight blocks of approximately eight-minute length were presented. During 

presentation, subjects were asked to visually fixate a cross on the screen.  

The presentation of sounds was controlled from MATLAB 2017a (The MathWorks, Inc., 

Natick, Massachusetts, United States) and an RZ6 audio device (Tucker-Davis technologies, 

Alachua, United States). The outputs of the RZ6 were connected to the direct input of hearing 

aids (Oticon A/S, Smørum, Denmark). The audio outputs of the hearing aids were connected to 

the earmolds. Triggers at sound onsets were sent to via labstreaminglayer 

(https://github.com/sccn/labstreaminglayer). 



In-ear EEG captures signatures of auditory attention 

95 

 

Figure 4-1: Stimulus, prediction, and in-ear EEG configuration.  A) Exemplary stimulus representation 
(Cochleogram) of three successive sounds. Estimated neural responses (STRFs) to the band-wise onsets were 
used to predict the EEG. B) Left: Distribution of inter-stimulus intervals. Right: Distribution of onsets across 
frequencies. C) Left: Earmolds with attached in-ear EEG electrodes. Right: Additional electrode attached to the 
scalp. 

4.1.3.3 Data acquisition 

Since the goal of this study was to record EEG from a hearing-aid compatible electrode 

configuration, we reduced the number of EEG electrodes to a minimum. In addition to the 2×3 

in-ear EEG electrodes, we attached an electrode in front of each ear at the height of the temple, 

respectively. The additional electrodes were used as reference for ipsi-lateral in-ear-EEG 

electrodes. Hence, three channels were recorded per ear. The orientation of the channels should 

capture activity in temporal brain regions (Figure 4-1C). 

Ground and DRL electrode were placed at the forehead of the subjects. All electrodes were 

connected to a Smarting EEG amplifier (mBrainTrain, Belgrade, Serbia) via custom-soldered 

connectors. The comparably small amplifier was attached to a headband. The conductance of 

non-in-  

EEG data and triggers were recorded in one file with LabRecorder 

(https://github.com/sccn/labstreaminglayer). The recording of subject 2 stopped due to technical 

issues, such that only 7 of 8 blocks could be recorded.  

4.1.3.4 Extraction of stimulus features 

Extraction of stimulus features was conducted using the NSL-toolbox 

(http://www.isr.umd.edu/Labs/NSL/Software.htm), which resulted in a 128-channel cochleogram 

covering a frequency range approximately between 200 and 8000 Hz. The 128 logarithmically 
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spaced frequency channels were down-sampled to 32, 16, 8 (Hann-window with 50% overlap) or 

summed up to one channel (broad-band). The halfwave-rectified temporal first derivative of the 

cochleogram resulted in the envelope onsets within each band (Figure 4-1A). The cochleogram 

summed across time shows the distribution of envelope onsets across the whole frequency range, 

with a slightly increased density between 500 and 2000 Hz (Figure 4-1B). 

4.1.3.5 Data analysis 

STRFs were trained by forward-modelling the stimulus-frequency-dependent neural response 

via ridge regression (See general methods). Beforehand, we cut both the stimulus and the EEG 

data into one-minute parts, which resulted in approximately sixty parts per subject (59; 46; 60; 58; 

57; 58). STRFs were trained in a part-wise leave-one-out fashion and the EEG signal of the left-

out part was predicted at every in-ear-EEG channel. 

To evaluate the STRF-based prediction, we first calculated the Pearson-correlation coefficient 

r (further called neural tracking) between the predicted EEG signal and the measured EEG signal 

(i.e., true) as well as a randomly chosen EEG signal from another block (i.e., surrogate).  Prediction 

accuracy was defined as the percentage of parts where the true EEG signal reached higher 

correlation than the surrogate. Given that the in-ear EEG channels capture some neural activity 

related to the stimulation, the STRFs should explain some variance in the EEG signal. Hence, the 

true EEG signal should yield greater correlation-coefficients than the surrogate EEG signal.  Based 

on the number of parts, the binomial chance level was calculated per subject based on the chance 

level of 50%. 

4.1.4 Results 

In this study, we evaluated the neural tracking and prediction accuracy of spectro-temporal 

response functions (STRFs) recorded with in-ear EEG. STRFs are estimates of the stimulus-

frequency dependent neural response. In-ear EEG is a set of three electrodes placed inside each 

ear canal, as it could possibly being attached to a hearing aid. We presented stimuli rich of spectro-

temporal modulation, while participants were asked to detect repeated sounds (one-back task). 

We forward-modelled the STRFs and tested their predictive power based on two measures: Neural 

tracking is a measure of how strong the neural response is represented in the EEG signal. 

Prediction accuracy is measure of how precise our prediction fits the measured EEG data 
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compared to randomly chosen EEG data (i.e., surrogate). Due to the low number of subjects (N = 

6), we will provide single subject data and apply single subject statistics. 

4.1.4.1 In-ear EEG captures neural tracking 

First, we looked at the neural tracking to the broad-band envelope onsets within single subjects 

and in-ear-EEG channels. Enhanced neural tracking was found for all but one of the subjects (S5) 

and at all six in-ear EEG channels (Figure 4-2A, first row). The average neural tracking varied 

between channels and subjects, but the true neural tracking was generally greater than the 

surrogate neural tracking (except S5). The underlying correlation coefficients spanned a range 

approximately between 0.01 0.05. 

 

Figure 4-2: Neural tracking and prediction accuracy. A) Neural tracking at six in-ear EEG channels estimated 

on the measured EEG signal (true) and an EEG signal randomly drawn from another block (surrogate). Black dots 
indicate the best channel of each subject, which was chosen for further comparisons. B) Scatter plots of 
estimated neural tracking. Percentage indicates prediction accuracy. C) Prediction accuracy as the percentage of 
trials the true EEG signal yielded higher neural tracking than the surrogate EEG signal. 

 

4.1.4.2 Prediction accuracy above chance 

In all but one subject (S5) we found at least three out of six in-ear-EEG channels where 

prediction accuracy reached (or exceeded) single-subject chance level (Figure 4-2C

chance = 0.5). This indicates that the modelled TRFs to the onsets of the broad-band envelope 

were explained stimulus-related variance in the EEG signal. 
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Figure 4-2B shows the underlying distribution of true and surrogate correlation-coefficients. 

Visual inspection suggests that the overall variance of the underlying correlation coefficients is 

similar across true and surrogate EEG signals. However, for subjects with higher prediction 

accuracy, the true correlation coefficients are more biased towards positivity.  

4.1.4.1 Spectro-temporal response functions show frequency dependence 

The stimulus features (i.e. onsets) were extracted with different spectral resolution (i.e., 1, 8, 

16 and 32 channels). Here we asked if higher spectral resolution leads to an enhanced prediction 

accuracy or if the prediction is mainly relying on the overall broad-band temporal modulation.  

Across all spectral resolutions, we found the typical temporal pattern of three succeeding 

components (P1-N1-P2; Figure 4-3A). Interestingly, the P2STRF was much more prominent 

compared to other studies within this thesis. In general, the average STRFs look similar across the 

number of bands. The N1STRF and P2STRF seem to be enhanced towards lower frequencies, 

indicating a frequency dependent neural response. Towards higher spectral resolutions, The 

STRFs suggest a more fine-grained, frequency-specific pattern. 

4.1.4.2 Higher spectral resolution does not enhance prediction accuracy 

Next, we were asking if higher spectral resolution leads to estimations of enhanced neural 

tracking as well as to an enhanced prediction accuracy. For all subjects, the estimated neural 

tracking decreased towards higher spectral resolution (Figure 4-3B), which indicates that a 

spectrally-resolved stimulus representation does not lead to more precise prediction of the EEG 

signal. Only two subjects (S2 and S6) show and increasing prediction accuracy towards higher 

spectral resolution. 

Unsurprisingly, we observed a strong relationship between the neural tracking and prediction 

accuracy, suggesting that prediction accuracy is generally depending on the strength of neural 

tracking captured by an (in-ear) EEG electrode. As indicted before, no general trend of enhanced 

(or decreased) estimations of neural tracking or prediction accuracy can be found towards higher 

spectral resolution of the stimulus representation. 
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Figure 4-3: Spectro-temporal response functions and prediction accuracy. A) TRF and STRFs to stimulus 
representations of different spectral resolutions. B) Neural tracking and prediction accuracy of single subjects for 
different spectral resolutions. C) Scatterplots of neural tracking versus prediction accuracy at all channels of all 
subjects. 

4.1.5 Discussion 

We investigated the stimulus-frequency dependent neural tracking captured by single-channel 

in-ear EEG. After participants listened to a sequence of sounds rich of spectro-temporal 

modulation, we trained spectro-temporal response function (STRFs) on the recorded in-ear EEG 

signals. We estimated the strength of neural tracking and we tested the prediction accuracy of the 

STRFs against random EEG signals unrelated to the stimulus. Here we show that stimulus-

frequency dependent neural responses can be extracted from single in-ear-EEG channels. 

However, increased frequency resolution did not increase the estimated neural tracking. 

4.1.5.1 The magnitude of neural tracking is comparable to scalp EEG 

Neural tracking was found in a range between correlation-coefficients of 0 and 0.08, which is 

comparable to previous studies ( t al., 2014; Mirkovic et al., 2015; Fiedler et al., 2019; 

see section 3.1). Even if the explained variance is weak in absolute terms, the observed bias towards 

more positive correlation coefficients led to prediction accuracy above chance in almost all 

subjects. We thus conclude that the configuration of in-ear EEG electrodes together with an ipsi-
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lateral electrode superior frontal to the ear is feasible to capture neural responses from auditory 

cortical areas. 

4.1.5.2 Increased spectral resolution does not lead to a more precise prediction 

Contradictory to our hypothesis, a higher spectral resolution of the stimulus representation 

did not lead to an enhanced estimation of neural tracking or prediction accuracy. This indicates 

that the voltage fluctuations recorded from in-ear EEG mainly capture the response to overall, 

broad-band sound intensity fluctuations. However, the STRFs showed similar components as the 

broad-band TRFs. A slightly stronger response to lower frequencies was observed, which indicates 

that some frequency specificity was captured by the in-ear EEG electrodes. Apparently, this 

frequency specificity did not outweigh the increased number of parameters (i.e., regressors) the 

model must be fitted to, such that it did not result in more precise predictions. Consequently, the 

spectral resolution of the stimulus should be chosen only as high as necessary, such that the 

number of regressors can be kept to a minimum. 

Regarding neurally steered hearing aids, it should be further investigated if the frequency-

dependent neural responses is modulated by a sensorineural hearing loss. Here, we only 

investigated the neural response to attended stimuli without any distraction. In particular, it 

should be investigated how signatures of selective attention are affected by the frequency-

dependent amplification of a hearing aid. 

4.1.5.3 Conclusion 

Our results indicate that the estimation of the frequency-dependent neural tracking of auditory 

inputs could be implemented in hearing aids, but the spectral resolution should be adapted to the 

current application. If only a general estimate of the neural response is needed, a broad-band 

representation of the stimulus is adequate. However, if a spectrally-resolved measure is needed, 

in-ear EEG might be feasible as well, but the spectral resolution should be kept to a minimum. 
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4.2 Study 5: Single-channel in-ear EEG detects the focus of auditory attention 

to concurrent tone streams and mixed speech3 

4.2.1 Abstract 

Conventional, multi-channel scalp electroencephalography (EEG) allows the identification of 

the attended talker in concurrent-

might provide valuable information to complement hearing aids with some form of EEG and to 

install a level of neuro-

detected from single-channel hearing-aid-compatible EEG configurations, we recorded EEG 

from three electrodes inside the ear canal -ear 

the scalp. In two different, concurrent listening tasks, participants (n = 7) were fitted with 

individualized in-ear EEG pieces. They were either asked to attend to one of two dichotically-

presented, concurrent tone streams or to one of two diotically-presented, concurrent audiobooks. 

A forward encoding model was trained to predict the EEG response at single EEG channels. Each 

-channel EEG response 

recorded from short-distance configurations consisting only of a single in-ear EEG electrode and 

an adjacent scalp EEG electrode. The differences in neural responses to attended and ignored 

stimuli were consistent in morphology (i.e. polarity and latency of components) across subjects. 

In sum, our findings show that the EEG response from a single-channel, hearing-aid-compatible 

 

4.2.2 Introduction 

In multi-talker situations, hearing-aid users find it difficult to comprehend the attended 

conversational partner against background noise (i.e. cocktail party problem, Cherry 1953). Part 

of this problem might be caused by the fact that the hearing aid is lacking the explicit information 

which sound source the listener wants to listen to. The investigation of the neural tracking of 

speech  al., 2016) using Electroencephalography (EEG) 

                                                           
3 This section is adopted from a published article (Fiedler et al. 2017) with contributions to the 

study design, analysis and writing from Malte Wöstmann, Carina Graversen, Thomas Lunner & 

Jonas Obleser. 
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and identification of the attended talker in multi-talker scenarios from multichannel scalp-EEG 

(Mirkovic et al.,  al., 2014) has demonstrated that EEG could feasibly inform 

attention would allow hearing aids for example to adapt noise suppression algorithms or to align 

directional microphones to the attended sound source (Mirkovic et al., 2016; Van Eyndhoven 

et al., 2016).  

The implementation of EEG into comparably small hearing aids allows the attachment of only 

few electrodes at restricted positions inside the ear canal (Bleichner et al., 2015; Mikkelsen et al., 

2015) or around the ear (Debener et al., 2015, Mirkovic et al., 2016). Since EEG responses quantify 

the potential difference between a signal electrode and a reference potential, at least two electrodes 

are required to measure the EEG. The position and distance as well as the orientation of the two 

electrodes mainly determines, if relevant and irrelevant electrophysiological and external sources 

will be captured, respectively. Due to the limited number of channels in such a hearing-aid-

compatible configuration, established offline methods of EEG signal enhancement such as 

independent component analysis relying on covariance of multiple, whole scalp covering 

electrodes (Makeig et al., 2004) are not applicable.  

An established method to extract auditory evoked potentials (AEP) is based on multiple time-

locked presentations of identical stimuli and the subsequent averaging of the measured EEG time-

domain signal (Rockstroh et al., 1982). Using this method, it has been shown that the AEP can be 

extracted from the potential difference between in-ear EEG electrodes and adjacent scalp-EEG 

electrodes (Bleichner et al., 2015, Mikkelsen et al., 2015, Fiedler et al., 2016). For the presentation 

of continuous, non-repetitive speech, averaging across multiple trials is not applicable (for review 

see Wöstmann et al., 2016). Thus, a method to estimate a response evoked by continuous speech 

is needed. Importantly, the quasi- -band 

temporal envelope have recently been reconstructed successfully from Magnetoencephalography 

(MEG) (Ding and Simon, 2012) and EEG (Mirkovic et al.,  al., 2014) using 

linear models. Despite some remaining ambiguities as to the signal features that do get encoded 

in the neuro-cortical signal (see e.g. Ding and Simon, 2014), a main finding here is that the 

attended-speaker signal attains a dominant representation in the measured neural signal.  
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In sum, recent scalp-

attentional focus from EEG very generally. In this present study, however, the overriding goal is 

to examine single-channel in-ear EEG configurations that possibly could be part of a hearing aid. 

To this end, we focus our analyses on single-channel electrode configurations consisting of an in-

ear EEG and a scalp EEG electrode close to the ear only, to allow future smooth integration with 

extant hearing-aid systems (Lunner and Gustafsson, 2016). We employ estimation of a forward 

(i.e. encoding) model since we focused on the encoding of onsets in the broad-band temporal 

envelope and the prediction of the to-be-expected EEG-signal at single EEG channels. 

Furthermore, we avoided any methods of artefact rejection such as independent component 

analysis or trial rejection. This approach allows us to presume that the same results could have 

been achieved by solitarily recording the respective channel by attaching only two electrodes. 

The resulting data from two challenging, cocktail-party-like listening paradigms demonstrate 

from a single-channel EEG setup consisting of electrodes in and around the ear. 

4.2.3 Methods 

4.2.3.1 Participants 

Eight subjects were enrolled in the study (aged 23, 25, 28, 29, 39, 41, 43 and 49; 4 males). Each 

participant was provided with individually fitted ear molds. Each ear mold was equipped with 

three in-ear EEG electrodes (Fiedler et al., 2016; see section 2.2). Five of the subjects were native 

Danish speakers, while two were French and one was a German native speaker. All reported 

normal hearing and no histories of neurological disorders. Participants gave informed consent. 

Procedures were in accordance with the Declaration of Helsinki and approved by the local ethics 

committee of the University of Leipzig Medical faculty. All subjects participated in the oddball task, 

while only the five native Danish speakers participated in the audiobooks task (aged 29, 39, 41, 43 

and 49, 3 males). For both tasks, the recording from one of the Danish subjects had to be discarded 

due to invalid in-ear EEG data, as the device did not remain in place during recordings. Note that 

the comparably low number of subjects is caused by the fact that in-ear EEG devices are in a 

prototype stadium and can

are based on rigorous levels of statistical significance in the single subject. 
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4.2.3.2 Stimuli and tasks 

We implemented two experimental paradigms to investigate whether neural responses for two 

concurrent auditory streams can be extracted from in-ear EEG and whether such responses can 

predict which out of two streams is being attended.  

First, we implemented a non-speech, two-stream, dichotic tone paradigm, in close analogy to 

Lakatos et al. (2013), hereafter called oddball task. Two dichotically presented (i.e. left versus right 

ear) concurrent streams of 100 ms tones (with a sawtooth carrier waveform) were presented for 1 

min. On each trial, the two streams differed in tone repetition rate (1.4 versus 1.8 Hz) and pitch 

(410 versus 610 Hz). 10 15% of the tones occurred as oddballs (1/4 tone pitch deviation) in both 

streams. Participants were asked to either attend to the stream presented on the left or right ear 

and to press a button with their right hand as soon as they heard an oddball in the attended stream. 

In total, 40 trials of 1 min length were presented (Figure 4-4). All stimulus manipulations, 

repetition rate (1.4 versus 1.8 Hz), pitch (410 versus 610 Hz), and attention (left versus right) were 

counterbalanced across trials.  

The second paradigm was a two-stream, continuous-speech paradigm, hereafter called 

audiobooks task. Emulating typical challenging listening scenarios, we presented a mixture of two 

concurrent audiobooks to both ears (i.e. diotic presentation without any spatial cues; Figure 

4-4A). The stimuli were two different Danish works of fiction spoken by a female (Marryatt, 

Children of the forest) and a male speaker (Poe, A Descent into the Maelström), with matched long-

term root-mean-squared (rms) sound intensity. Each exemplar of one-minute mixtures was 

presented twice in succession. Counterbalanced across trials, subjects were asked to either attend 

to the male voice first and second to the female voice or vice versa. In total, 60 trials of such one-

minute mixtures were presented. 
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Figure 4-4: Design and Envelope onset extraction. A) Exemplary stimulus waveforms show the spatial 
separation of target (green) and distractor (grey) stimuli in both tasks. In the oddball task, two streams of 100-
ms tones differing in repetition rate and pitch were presented. Subjects were asked to attend to the left or the 
right stream and press a button as soon as they heard an oddball (pitch deviation) in the attended stream. In the 
audiobooks task, two Danish audiobooks spoken by a female and male speaker were presented. The identical 
mixture of both speakers was presented on both ears (diotic). Subjects were asked to attend either the female 
or the male voice. B) In the oddball task, the broad-band temporal envelope was captured from the stimulus-
waveforms directly. In order to capture the broad-band temporal envelope from the audiobooks, an auditory 
time-frequency representation was summed up across its spectral sub-bands. C) The envelope onsets was 
obtained by computing the first derivative of the broad-band temporal envelope and subsequently zeroing 
values smaller than zero (half-wave rectification). 

4.2.3.3 EEG-data acquisition and preprocessing 

Sixty-four-channel scalp-EEG was recorded alongside in-ear EEG using an ActiveTwo 

amplifier (Biosemi, Amsterdam, Netherlands). In-ear EEG electrodes were connected to the 

auxiliary inputs of the amplifier via pre-amplifiers identical to the ones used for scalp EEG. EEG 

data were recorded with a sampling rate fs = 2048 Hz. Data were preprocessed using both the 

fieldtrip toolbox (Oostenveld et al., 2011) for MATLAB 2017a (The MathWorks, Inc., Natick, 

Massachusetts, United States) and custom-written code. The continuous EEG data recorded 

during the oddball task were highpass-filtered at fc = 1 Hz and lowpass-filtered at fc = 15 Hz. The 

continuous EEG data recorded during the audiobooks task were highpass-filtered at fc = 2 Hz and 

lowpass-filtered at fc = 8 Hz acc  al (2014). In order to compensate phase 

shifts, data were filtered both forward and backward using Hamming window FIR filters with 

orders N = 3fs/fc. Subsequently, all data were down-sampled to 125 Hz to match the sampling 

rate of the envelope onsets (see below). 

After an initial inspection of the event-related potential (ERP) between in-ear EEG electrodes 

and Cz, we encountered the issue of not all in-ear EEG electrodes keeping proper conductance 

across the whole experiment. Thus, for each ear canal, only the electrode showing minimal 

standard deviation across trials in the ERP summed up between 0 and 500 ms relative to tone-
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onsets was selected for further analysis. In order to evaluate the potential difference between in-

ear EEG electrodes and scalp EEG electrodes, we created two datasets for each participant, one 

with all scalp channels referenced to the priorly selected left in-ear EEG electrode and the other 

with all scalp-EEG channels referenced to the selected right in-ear EEG electrode. 

4.2.3.4 Extraction of envelope onsets 

Several approaches to extraction of the broad-band temporal envelope from a speech signal 

have been proposed (Biesmans et al., 2016, Thwaites et al., 2016). In case of the oddball task, the 

envelope was extracted by a direct calculation of the absolute values of the analytic signal. In case 

of broad-band speech signals, the analytic signal is only a rough approximation and it has been 

shown that an intermediate step of extraction and subsequent summation of frequency sub-band 

envelopes increases the accuracy of detecting the attended talker (Biesmans et al., 2016; see section 

2.3). Thus, for the audiobooks task, we extracted the sub-band envelopes using NSL Toolbox (Ru, 

2001), which resulted in a representation containing the envelopes of 128 frequency bands of 

uniform width on the logarithmic scale with center frequencies logarithmically spaced between 

0.1 and 4 kHz (24 bands per octave). In order to obtain the broad-band temporal envelope, sub-

band envelopes were summed up across frequency (Figure 4-4B). 

Furthermore, it has been proposed to transform the broad-band temporal envelope in order 

to extract salient increases of signal power (Hertrich et al., 2012, Hambrook and Tata, 2014). This 

method is based on the assumption that earliest time points of sensation that could evoke 

responses are tone or syllable onsets, respectively. It can be calculated by zeroing negative values 

(halfwave rectification) of the first derivative of the broad-band temporal envelope and results in 

a pulse-train-like series of peaks. Most salient peaks occur both at tone or syllable onsets (Figure 

4-4C). This time-series will be called envelope onsets. Recently, we have shown that the cross-

correlation of the envelope onsets and the EEG-signal results in estimations of the neural response 

are similar to conventional ERPs obtained by multi-trial averaging (Fiedler et al., 2016). 

4.2.3.5 Training EEG response models 

A schematic illustration of the approach to identification of the attended speaker is provided 

in Figure 4-5. In order to evaluate the performance in detection of the attended talker at every 
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single EEG channel, we first trained a model for each individual participant. The model is a linear 

mapping of the envelope onsets onto the measured EEG signal (see section 2.5).  

We used a well-established form of regularized regression (i.e., ridge regression; Hoerl and 

Kennard, 1970) to train our model, as ridge regression has been shown to be applicable for 

predicting neurophysiological signals on the base of stimulus features (forward encoding model) 

(Santoro et al., 2014; Lalor et al., 2009) as well as reconstructing stimulus features from EEG 

., 2014; Mirkovic et al., 2015). A Matlab-

toolbox (mTRF Toolbox) is provided (https://sourceforge.net/projects/aespa). As established 

above, the EEG signal should be independently predicted for every single EEG channel, which is, 

due to the implementation, inherent of forward modelling (Crosse et al., 2016). 

In detail, a single-channel encoding model g is the linear mapping of the envelope onsets s 

onto the EEG signal r, which can be expressed as a convolution operation 

𝒓(𝒕) = 𝒔 ∗ 𝒈 =  ∑[𝒔(𝒕 −  𝝉) · 𝒈(𝝉)]

𝝉

 4-1 

where t for t envelope onsets and the EEG signal 

with length L and  for min, min max is the investigated sample-wise time lag between s and 

r. We investigated time lags (between the envelope and the EEG signal) ranging from 100 to 550 

ms. In our design, we expect a difference in morphology of the response functions gatt and gign 

(Figure 4-5B), which are models of the responses to the attended and the ignored stimulus 

envelope onsets satt and sign (Figure 4-5A). Moreover, we assume that the responses ratt and rign sum 

up and some noise n interferes (Zion Golumbic et al., 2013). Accordingly, we can express the 

measured EEG signal rEEG (Figure 4-5C): 

𝒓𝑬𝑬𝑮(𝒕) =  ∑[𝒔𝒂𝒕𝒕(𝒕 −  𝝉) · 𝒈𝒂𝒕𝒕(𝝉)]

𝝉

+ ∑[𝒔𝒊𝒈𝒏(𝒕 −  𝝉) · 𝒈𝒊𝒈𝒏(𝝉)]

𝝉

+ 𝒏(𝒕)  =  𝒓𝒂𝒕𝒕(𝒕) + 𝒓𝒊𝒈𝒏(𝒕) + 𝒏(𝒕) 4-2 

Since our goal was to estimate a response model including gatt and gign that minimizes the mean-

squared error of the subsequent predicted EEG response 𝑟̂EEG, it can be obtained by the standard 

matrix operation in regularized regression, 

𝑮 = (𝑺𝑻𝑺 + 𝝀𝒎𝑰)−𝟏𝑺𝑻𝑹 4-3 

where S is an L-by- -matrix with its columns containing envelope onsets of both the attended 

satt and ignored sign stimulus envelope onsets and their time-lagged replications. R is a column 
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vector of length L containing the measured single channel EEG signal rEEG. The relative 

regularization parameter  is first multiplied with m, the mean of the diagonal elements of STS 

(Biesmans et al., 2016). Second, it is multiplied with the identity matrix I and added to the 

covariance-matrix STS. This regularization term mI prevents overfitting (Crosse et al., 2016), 

which appeared as high frequent artifacts in the to be estimated response models. The resulting 

matrix G contains the time-lag-wise response weightings gatt and gign for both the attended and 

ignored stimulus envelope onsets. 

After an initial inspection of the response models, we decided to choose 2. Please note 

that the greater  is chosen, the more the term (ST ) converges to a multiple of the identity 

matrix, and the influence of covariance vanishes. This would lead to the same results as cross-

correlation, which was also shown to be feasible for extracting neural responses (Kong et al., 2014; 

Fiedler et al., 2016) account for potential confounds caused by auto-correlation in the 

se 

classification accuracy did not decrease by further increasing  However, in order to be consistent 

with the literature, we applied regression as stated above. 

In line with former studies we decided to apply 

leave-one-out cross-validation. According to Biesmans et al. (2016) we trained the prediction 

models by concatenating both the stimuli and EEG signal of all but the to-be-tested trial. Thus, 

we obtained a prediction model for every single trial. 
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Figure 4-5: Identification of the attended speaker from single-channel EEG exemplary for audiobooks 
task. Training: After extraction of the onset-envelope (A) and preprocessing of the EEG signal (C), a linear forward 
model (B) is estimated for each trial and each speaker by concatenated stimulus and EEG signal of all other trials. 
Testing: The convolution of the envelope onsets of speaker A and B (D) with the trained prediction models (E) 
predicts to be expected EEG signals 𝒓̂𝐀 and 𝒓̂𝐁 e 
predicted EEG signal labeled true (i.e., corresponds to the trial instruction) yields higher Pearson-correlation 
coefficient with the measured EEG-signal than the predicted EEG signal labeled false (i.e., is contrary to trial 
instruction), the classification is correct. 

 

4.2.3.6 Testing EEG response models: Identification of the attended stream 

In order to classify which of the streams a listener attended to, the former trial-wise trained 

models gatt and gign (figure Figure 4-5B) were assembled to become two contrary prediction models 

(Figure 4-5E). According to (1), the sum of the convolution of the envelope onsets sA and sB 

(Figure 4-5D) and each response model (Figure 4-5E) predicts an EEG signal, respectively. For 

both scenarios with the labels Attend A and Attend B, EEG signals 𝑟̂A and 𝑟̂B (Figure 4-5F) were 

predicted: 

𝒓̂𝐀(𝒕) = ∑[𝒔𝐀(𝒕 −  𝝉) · 𝒈𝐚𝐭𝐭(𝝉)]

𝝉

+ ∑[𝒔𝐁(𝒕 −  𝝉) · 𝒈𝐢𝐠𝐧(𝝉)]

𝝉

 

 

4-4a 

𝒓̂𝐁(𝒕) = ∑[𝒔𝐀(𝒕 −  𝝉) · 𝒈𝐢𝐠𝐧(𝝉)]

𝝉

+ ∑[𝒔𝐁(𝒕 −  𝝉) · 𝒈𝐚𝐭𝐭(𝝉)]

𝝉

 4-4b 

This operation can be expressed by matrix multiplication of the envelope onsets matrix S and 

the response model matrix G: 
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𝑹̂ = 𝑺𝑮 4-5 

where 𝑅̂ is a column vector containing the predicted EEG signal 𝑟̂𝐴 or 𝑟̂B, respectively. 

In order to estimate which of the predicted EEG signals (𝑟̂A vs 𝑟̂B) is most likely representing 

the trial instruction (attend A vs attend B), we calculated the Pearson-correlation coefficient of 

the predicted EEG signals (𝑟̂A and 𝑟̂B)  and the measured EEG signal rEEG, respectively (L = 7500 

samples, Figure 4-5G). The predicted EEG signal that matched the to-be-attended stream (A vs 

B) was labeled true, the other one was labeled false. The classification was considered correct if 

the predicted EEG signal labeled true yields greater (i.e., more positive) correlation than the EEG 

signal labeled false. 

4.2.3.7 Goodness of fit 

As a measure for the goodness of fit, we will refer to the correlation coefficient obtained from 

Pearson-correlation of the true prediction and the measured EEG signal. The greater this 

model. Because a convolution is a weighted sum and here the weights are the response models 

with positive or negative weights at certain time lags, the predicted EEG signals should have the 

same polarity as the measured EEG signal. Hence, the inspection of the correlation 

magnitude (or square) woul  

coefficient indicates the true prediction. 

4.2.3.8 Classification accuracy 

By classification accuracy we will refer to the percentage of trials in which the predicted EEG 

signal labeled true yields higher correlation with the measured EEG signal than the predicted EEG 

signal labeled false. For statistical analyses, both the correlation coefficients resulting from 

Pearson-correlation of the true and the false prediction with the measured EEG signal, 

respectively, were fisher-z-transformed and called ztrue and zfalse. Considering the number of trials 

and the binary nature of the decision between two alternatives Attend A or Attend B, a single-

subject chance level was defined at a level of significan

., 2014, Mirkovic et al., 2016). This resulted in thresholds of 65% for 

the oddball task (40 trials) and 61.67% for the audiobooks task (60 trials). 
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4.2.4 Results 

The main goal of this study was to identify the attended stimulus stream based on responses 

at single-channel EEG configurations consisting of one in-ear electrode and one scalp electrode. 

To this end, we trained forward encoding models in order to predict EEG signals containing the 

predicted responses to both the attended and the ignored stimulus stream. Two alternative EEG 

signals representing the scenarios Attend A and Attend B were predicted. The prediction 

corresponding to the to-be-attended stream was called true and the other one false. Goodness of 

fit was quantified by Pearson-correlation coefficient of the true predicted and the measured EEG 

signal. For further statistical analyses, this coefficient was Fisher-z-transformed and called ztrue, 

whereas its counterpart zfalse was equivalently computed by correlation of the false prediction and 

the measured EEG signal. Our approach to classification relies on the assumption that the true 

prediction better fits the measured EEG signal and thus leads to more positive correlation 

coefficients than the false prediction. Based on that, the percentage of correctly classified trials will 

be referred to as classification accuracy. All plots but the topographic maps are showing data from 

the exemplary configuration of FT7 referenced to the left in-ear EEG channel. 

4.2.4.1 Response functions reveal consistent attention-related differences 

Applying ridge regression to obtain forward models is known to return response functions 

comparable to ERPs (Lalor et al., 2009, Fiedler et al., 2016). Beyond that, ridge regression can be 

applied on data measured during the presentation of continuous stimuli such as speech. The 

above-mentioned difference between the correlation coefficients ztrue and zfalse (see below) has to 

arise from differences between the response functions of the attended and ignored stimuli. 

An inspection of the grand average response functions averaged across subjects in the dichotic 

oddball task (Figure 4-5A) indicated that we extracted components equivalent to a P50-N100-

P200 complex. The response functions (Figure 4-5A) suggest an enhanced N100-equivalent 

component in responses to attended tones, which can be confirmed by the consistent differences 

of the responses to attended and ignored tones (Figure 4-5C). All subjects show a negative 

deflection in responses to attended tones at around 160 ms, while all but one of the subjects show 

a positive deflection in responses to attended tones at around 380 ms. The topographies of the 

differences at time lag of maximal deflections show a bilateral pattern.  
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In the audiobooks task, a clear P50-N100-P200-equivalent complex could be found in the 

responses to the attended talker (Figure 4-5B). The responses to the ignored talker show only 

weak magnitudes and suggest a suppression of the responses to the ignored talker. Compared to 

the oddball task, this is leading to a greater difference between the responses to the attended and 

the ignored talker (Figure 4-5D functions 

show a consistent pattern with a common negative deflection at a time lag of 130 ms and a later 

positive deflection at around 250 ms (Figure 4-5D). The topographies of the components at 130 

ms and 260 ms both have fronto-central patterns, spreading out towards temporal regions. 

In both tasks, we have found response functions that show consistent patterns across subjects. 

In particular the deflections between responses to attended and ignored stimuli are prerequisites 

for a single channel classification approach (see above). Most interesting, these deflections could 

even be recorded at scalp EEG electrodes located close to its in-ear EEG reference electrode. 

 

Figure 4-6: Response functions. Response functions shown here were obtained from potential difference 
between left in-ear EEG and FT7 electrode. A) Grand average response functions to both attended and ignored 
tones in the oddball task. B) Grand average response functions to both attended and ignored talker in the 
audiobooks task. C) and D) show single subject data of difference between response functions in the oddball 
task and in the audiobooks task, respectively. Topographies show grand average weightings at time lags of 
maximal difference between the response functions (i.e., attended ignored). 
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4.2.4.2 Goodness of fit as a basis for identifying the attended stream 

Goodness of fit was defined as correlation coefficient resulting from the Pearson-correlation 

of the measured EEG signal and the predicted EEG signal that consists of the responses to the to-

be-attended and to-be-ignored stream (i.e., true prediction).  

Generally, the average goodness of fit with values in a range of 0.02 0.15 (oddballs: mean = 

0.12, range 0.08 0.15; audiobooks: mean = 0.04, range: 0.02 0.06) seems weak. In order to 

statistically evaluate if the correlations of the predicted and the measured EEG signals provide 

valuable information for classification, we investigated the distribution of the Fisher-z-

transformed Pearson-correlation coefficients ztrue and zfalse. Figure 4-7A & B show the distribution 

of the correlation coefficients in both tasks, where every single dot represents a single trial 

performed by a (color-coded) single subject. The correlation of the true prediction and the 

measured EEG signal (ztrue) tends to be greater than its counterpart zfalse in the majority of the trials 

(Figure 4-7A & B). The difference ztrue  zfalse was found to be significantly above zero for each 

subject (one-sample t-test, oddballs: six subjects p < 0.001, one subject p < 0.01, dof = 39, Figure 

4-7C; audiobooks: two subjects p < 0.001, one subject p < 0.01, one subject p < 0.05, dof = 59, 

Figure 4-7D), suggesting it to be a valuable basis for deciding which of the streams is attended. 

In order to evaluate which electrode configuration provides best inference on identification of 

the attended talker, we inspected the grand average topographies (Figure 4-7C & D) of the single 

subject t-values obtained from the distribution of the difference between ztrue and zfalse (see above). 

Strongest effects were found at in-ear EEG configurations incorporating fronto-central scalp-EEG 

channels. Interestingly, in both tasks highest t-values were observed for configurations consisting 

of scalp-EEG electrodes (i.e. FT7, FT8, T7, T8) close to the ear that the reference in-ear EEG 

electrode was placed in. 

Generally, the analysis of goodness of fit gave insight how a set of two electrodes consisting of 

one electrode in the ear canal and another at the scalp close to the ear should be oriented in order 

to explain attention-related variance in the EEG signal caused by auditory stimulation. 
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Figure 4-7: Goodness of fit and classification 
accuracy. Single subject data shown here were 
obtained from potential difference between 
left in-ear EEG and FT7 electrode. Topographies 
show grand average data. A&B) Each dot 
represents the relation of both Pearson-
correlations ztrue and zfalse in single trials of the 
oddball task. C&D) Distributions of the 
difference ztrue  zfalse for single subjects, which 
were tested against zero (t-test). Topographies 
show grand average t-values. E&F) 
Classification accuracy based on the difference 
ztrue  zfalse. Horizontal lines indicate significance 
above chance based in a binominal 
distribution. Topographic maps show grand 
average classification accuracy. Highlighted 
channels are indicating channels where at least 
n-1 subjects yield classification accuracies 
significantly above chance. 

4.2.4.3 The attended stream can be identified from single-channel configurations 

Classification accuracy was defined as the percentage of trials the predicted EEG signal labeled 

true yields a more positive Pearson-correlation coefficient with the measured EEG signal than the 

predicted EEG signal labeled false. For statistical analyses, Pearson-correlation coefficients were 

Fisher-z-transformed and called ztrue and zfalse. 

The classification accuracy at FT7 referenced to the left in-ear EEG electrode is shown in 

Figure 4-7E & F. Classification accuracy was found to be significantly above chance (p < 0.05) for 

all subjects and both the oddball task (mean: 77%, range 69 85%, Figure 4-7E) and the audiobooks 

task (mean: 70%, range 62 80%, Figure 4-7F) at this exemplary electrode configuration. 

Regarding the application in hearing aids, a purely in-ear EEG configuration consisting of two 

electrodes within the same ear canal is most desirable. We investigated those configurations as 
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well and provided the results in the supplements (Fiedler et al., 2017; figure S2). Note that these 

alternative configurations did not yield classification accuracy consistently above chance. 

Grand average topographies of classification accuracy (Figure 4-7E & F) show patterns similar 

to the t-value topographies above (Figure 4-7C & D). Highlighted channels in Figure 4-7E & F 

indicate that classification accuracy was found to be above chance (p < 0.05) for at least all but 

one of the subjects. Interestingly, channels close to the ear the reference in-ear EEG electrode was 

placed in showed classification results above chance consistently across subjects.  

Due to the low number of subjects, drawing a general conclusion on the most appropriate 

electrode configuration is not possible. However, for the present data we can state that we have 

found a configuration, showing classification results above chance for every subject consisting of 

only two electrodes, FT7 referenced to left in-ear EEG electrode. Single-subject topographical 

maps provided in the supplements (Fiedler et al., 2017; Figure S1 A) confirm that various short-

distance electrode configurations yield classification accuracy above chance. Based on the single-

channel data of subjects who participated in both tasks, we found a strong dependency of 

classification accuracy between tasks (figure S1 B), which emphasizes the robustness of our 

findings despite our relatively low number of participants. 

4.2.5 Discussion 

It is a frequently stated long-term goal to fuse EEG recordings with hearing aid technology in 

order to attune the hearing aid to an attended sound source. Here, we investigated whether the 

attended sound stream out of two concurring streams can be identified from single-channel EEG 

recordings. Single channels were electrode configurations consisting of one reference in-ear EEG 

and one scalp EEG electrode. We focused our analyses on a configuration consisting of a left in-

ear EEG electrode and scalp-EEG electrode FT7. 

Participants performed two tasks. In both tasks, concurrent sound streams (i.e. tones and 

speech) were presented. We hypothesized single channel in-ear EEG data to provide valuable 

information to identify the attended stream. 
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4.2.5.1  

In contrast to backward models, the estimation of forward models allows the comparison of the 

obtained response functions with conventional ERPs (Lalor et al., 2009). An attention-related 

difference between response functions is a prerequisite for identification of the attended speaker 

(see Methods). 

In both tasks, we have found an enhanced N100-equivalent component in the responses to 

attended stimuli compared with ignored stimuli for each subject (Figure 4-6A & B). This is in line 

with auditory evoked potential (AEP) studies, showing that the N100 component is enhanced if 

the stimulus is attended (e.g., Näätänen et al., 1981). 

Notably, attention-related differences in the response functions could be found even in short-

distance configurations consisting of a reference in-ear EEG electrode and a scalp-EEG electrode 

close to the ear, as exemplarily shown for FT7 referenced to left in-ear EEG electrode. Regarding 

hearing aid applications, these findings encourage the attachment of only a few electrodes in the 

periphery of the ear (Mirkovic et al., 2016). 

The consistent morphology of the difference between responses to attended and to ignored 

stimuli (Figure 4-6C & D) further suggests the training of a model based on the data of all but one 

., (2014) 

showed that a generic model still allows predicting the attentional focus. With respect to its 

application in hearing aids, a generic model could provide a default set of parameter values before 

a listener-specific model is adapted over time (Mirkovic et al., 2015). In the current study, the 

training of a robust generic model was hindered by the low number of subjects and should be 

further investigated. 

The dichotic oddball paradigm employed here also is appropriate when investigating neural 

responses to discrete and spatially separated stimuli. However, such a paradigm is removed from 

real-world listening scenarios, since two or more sound sources in natural environments are 

rarely separated in a dichotic fashion and are rarely as stationary regarding their rhythm and 

spectral content. 

In contrast, the audiobooks paradigm with two diotically presented talkers represents a 

challenging listening situation and is more akin to realistic scenarios (also with respect to a 
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ource and comprehending what is being conveyed 

(Obleser, 

scenario was presented. Sound source separation can only be achieved based on spectral-temporal 

cues of the two talkers. Since each participant attended to either the male or to the female voice 

in the same number of trials, the revealed differences of the response function cannot be explained 

by spatially separated stimuli nor from talker specific features. 

In most of the cited studies on detection of auditory attention from EEG data, the speech 

., 2014, Mirkovic et al., 2015, 

Biesmans et al., 2016). In contrast we used envelope onsets, that is, the halfwave-rectified first 

derivative of the envelope. Using instead the envelope led to similar detection accuracies (Fiedler 

et al., 2017; figure S4A), but responses were shifted by approximately 50 ms such that the P50 

equivalent component appeared before time lag of zero (figure S4 B). This is due to every onset 

being followed by a peak in the envelope after approximately 50 ms (Fiedler et al., 2017; figure S4 

C). For the oddball task, the correct latencies of the components (i.e. P50, N100, P200) are known 

from previously calculated ERPs (Fiedler et al., 2016). Since the latencies of the envelope onsets 

responses in the audiobooks task fit the latencies of the ERP onset responses in the oddball task 

better than the envelope responses do, we conclude that envelope onsets lead to more precise 

estimations. 

A comparison of the response functions reveals similar latencies of components between tasks, 

but the relative suppression of the response to the ignored stream is stronger in the audiobooks 

task. Two diotically presented talkers are more likely masking each other than dichotically 

presented tones of 100 ms length (and up to 614 ms pauses between tones). The suppression of 

the responses to the ignored talker might indicate higher demand for suppression of the ignored 

stream and thus a higher task difficulty. 

Of course, the low number of individually in-ear-fitted subjects tested here (n = 7 & n = 4) 

allows only for limited conclusions. However, the markedly consistent morphologies of the 

response functions and the individually significant detection success suggest that differential 

responses to attended and ignored auditory stimuli, even continuous speech, can be recorded 

from short-distance electrode configurations. These configurations here consisted only of one 

electrode in the ear canal and another close to the same ear, as exemplarily shown in Figure 4-7E  
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& F for a left in-ear EEG electrode referenced to scalp-EEG electrode FT7. Please note that the 

shortest distance we could achieve was determined by the electrode positions of the scalp EEG. 

The exemplary electrode FT7 is placed at a distance of approximately 8 cm to the entrance of the 

ear canal (tragus) at an angle of 40° relative to the tragus-Cz-line. With the development of 

adhesive electrodes to be attached around the ear it was shown that responses could be recorded 

at even closer positions (Bleichner et al., 2016). 

4.2.5.2 Goodness of fit provides basis for identification of the attended stream 

Former studies about approaches to identification of the attended talker mainly used backward 

decoding models ., 2014, Mirkovic et al., 2015, 2016, Biesmans et al., 2016). 

Backward models are trained on multi-channel EEG data and used to reconstruct a single speech 

envelope. In contrast, we used forward models to predict the EEG signal in response to the 

stimulus, which allowed us to quantify the goodness of fit at every single EEG channel (see section 

2.5.1).  

The goodness of fit was quantified by Pearson-correlation coefficient for the predicted versus 

the measured EEG signal. In the previous backward model studies cited above, correlation 

coefficients obtained from Pearson-correlation of the reconstructed and the original speech 

envelope between 0.02 and 0.10 were reported. Here, we obtained correlation coefficients of 

similar magnitude, but they were here obtained solely on the basis of a potential difference 

recorded at a single EEG-channel consisting of left in-ear EEG and scalp-EEG electrode FT7. 

Crucially, the topographies of single-trial-derived t-values (Figure 4-7C & D) show that 

meaningful differences can be found satisfyingly at single electrodes close to the referenced in-ear 

EEG electrode. 

We thus conclude that short-distance electrode configurations like the exemplary 

configuration consisting of the left in-ear EEG reference and FT7 electrode capture information 

sound source. To achieve this, we based our analyses on certain assumptions. First, we assumed 

that strongest responses can be found at stimulus onsets and thus extracted respective 

representations (see Methods). Especially for speech, features known to evoke responses are 

manifold and rarely mutually exclusive, since all are, to some extent, nested or derived from the 

broad-band temporal envelope (Ding and Simon, 2014). Second, we applied ridge regression in 
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order to train a model under the assumption of linearity and with the goal to reduce the mean 

squared error of the prediction. The extraction of features from speech is wedded to the selection 

of an appropriate model and both affect the contrast between responses to attended and ignored 

speech. 

Comparing several methods of extracting features of speech and going beyond the simple 

assumption of linearity as well as incorporating several loss-functions might further boost the 

contrast between the two predicted EEG signals and thus further refine the information about the 

attentional focus. 

4.2.5.3 The attended stream can be identified from single-channel configurations 

The major goal of this study was to identify the attended sound stream based on single-channel 

hearing aid-compatible EEG channel configurations. Considering that, classification accuracy is 

the most important measure to evaluate the performance of our approach of single channel 

classification. 

As stated above, former studies have used backward models to bring in the advantage of having 

multiple EEG signals to reconstruct one single speech envelope. In order to reduce the number of 

channels, Mirkovic et al. (2015) already applied an approach of recursive channel elimination. 

Starting from a grid of 96 channels, it was shown that a stepwise exclusion of worst performing 

cha

best performing electrodes were concentrated at temporal positions close to the ear. However, the 

average of all electrodes served as reference potential which hinders a conclusion for single 

channel configurations consisting of only two electrodes. In a recent study (Mirkovic et al., 2016), 

it was shown that based on the data of a grid of ten electrodes around the ear the attended talker 

could be identified with a backward model.  Here, we go even further and show that a montage of 

only two electrodes, left in-ear EEG electrode and scalp-EEG electrode FT7, is sufficient to identify 

the attended sound source in two experimental tasks. In Mirkovic et al., (2016), we presume that 

placing a few electrodes at positions favorable for identifying the attended speaker is more crucial 

than obtaining more or less redundant EEG signals from multiple channels. 

With respect to the long-term goal of controlling a hearing aid in real-time, our results provide 

valuable insight. First, in a hearing aid, computational resources are limited. We thus decided not 
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to apply any method of artifact rejection or other methods of signal enhancement other than 

band-limiting the EEG-signal. Once a model is trained, the algorithm consists of only four 

convolutional operations and two correlations. Considering the comparably low sampling rate of 

125 Hz and one-minute trials of 7500 samples, the computational effort is comparably low.  

Nevertheless, a classification accuracy of around 70% after one minute might not yet comply 

with the requirements of a hearing-aid user. Furthermore, data were recorded in a shielded room 

which reduced environmental noise as well as subjects were asked to move as less as possible 

which lead to a minimum of muscle artifacts. Please note that an implementation of such an 

electrode configuration into a hearing aid would raise further issues not addressed here, such as 

how to attach an electrode outside the ear canal and dealing with low conductance due to hairy 

positions and skin resistance. One possible solution might be permanently or daily placed 

electrodes around the ear (Debener et al., 2015, Mirkovic et al., 2016, Bleichner et al., 2016). Thus, 

for real-life applications, there are still major challenges ahead. Our findings however do map out 

a significant step towards the application of single channel in-ear EEG in future hearing aids. 

4.2.5.4 Conclusion 

The identification of attended sound sources based on neural data has become increasingly 

important for both, neuro-scientists and hearing aid developers, since it contains the potential to 

control a hearing prosthesis in a brain computer interface fashion. One unsolved problem is the 

embedding of EEG electrodes and utilization of EEG signals in the hearing-aid periphery. 

In the current study, we have shown that in-ear EEG can feasibly capture information about 

-

computer inte

be fed back to other hearing aid algorithms in real-time (e.g., controlling for directional 

microphones and noise suppression) at low computational cost. 
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4.3 Study 6: In-ear EEG detects the focus of auditory attention under 

continuously varying listening conditions 

4.3.1 Abstract 

In-

presented, concurrent speech scenario where the talkers were matched in sound intensity. 

However, real-world listening scenarios are not as constant, for example, the signal-to-noise ratio 

(SNR) varies over time. For scalp EEG, we showed that under negative SNRs additional parietal 

components in the neural response to the ignored talker indicate enhanced neural selectivity. Here 

we asked, whether the attentional focus under a continuously varying SNR can be detected with 

in-ear EEG as well. Furthermore, we asked if the parietal component in the response to the 

ignored talker can be observed in in-ear EEG as well. By running the identical protocol as in our 

earlier scalp-EEG study, we varied the SNR between two talkers while participants equipped with 

fitted in-ear EEG listened to one of them. Here, we replicated our earlier findings by showing that 

in-

modulation of neural selectivity between SNRs indicates a late contribution of the ignored talker 

under the most adverse SNR. This has implications on the development of neurally steered 

hearing aids, which might profit from an SNR-dependent training of the underlying neural 

responses. 

4.3.2 Introduction 

Within this decade, multiple studies showed that EEG signals are informative of 

focus of attention in two or more talker scenarios. Those findings encouraged interdisciplinary 

signals. This endeavor required two questions to be answered: First, which EEG signatures of 

auditory attention are omnipresent across the manifold of real-world listening scenarios. Second, 

which EEG electrode configurations are needed to capture those signatures of auditory attention. 

Earliest studies about the neural tracking of continuous speech used two talkers matched in 

long-term sound intensity and some of the studies presented dichotic speech (Ding and Simon, 

). Those conditions are well-suited to investigate 

the principal mechanisms of attention-dependent neural tracking of speech, but only allow 
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limited conclusion on real-world listening scenarios. Assuming a hearing loss degrades binaural 

cues for spatial stream segregation, a diotic listening reflects the worst case in terms of spatial 

segregation. Furthermore, a varying SNR as found in real-world listening scenarios may evoke 

signatures of top-down attentional control that avoid the capture of bottom-up attention (see 

section 3.1). A neurally steered hearing aid may profit from being trained to the SNR-dependent 

modulation of the neural responses.  

Here, we diotically presented two talkers, while the signal-to-noise ratio varied continuously 

and unpredictably. We trained forward models to predict the neural response at single-channel 

in-  under 

varying SNR and that late neural selectivity of the ignored talker under negative SNRs seems to be 

detected at in-ear EEG electrodes as well. 

4.3.3 Methods 

4.3.3.1 Participants 

Six native speakers of Danish (3 females) were invited (age: 42, 30, 40, 50, 41, 27). All reported 

normal hearing and no histories of neurological disorders. All participants gave informed 

consent. Each participant was provided with individually fitted ear molds with attached in-ear 

EEG electrodes. Three of the subjects also participated our previous study (Fiedler et al., 2017). 

4.3.3.2 Stimuli & Task 

We used an experimental design which was identical to our earlier study (Fiedler et al., 2019; 

section 3.1). In brief, we presented two Danish audiobooks simultaneously read by a female and 

a male voice, respectively. The identical mixture of both talkers was presented at each ear (diotic). 

The signal-to-noise ratio (SNR) between the attended (signal) and the ignored (noise) talker 

varied stochastically between 6 and +6 dB. Twelve blocks of five-minute length were presented, 

while participants were asked to listen to the female and male voice the same amount of time. The 

female and male blocks were presented in alternation. After each block, the participants were 

asked to answer a multiple-choice question (four possible answers) concerning the content of the 

to-be-attended audiobook. For all subjects, the amount of correctly answered questions was above 

the chance level of 25% (67%; 92%; 67%; 67%; 92%; 92%). After the questions, the participants 
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self-determined the length of the break between blocks by starting the next block by pressing a 

button. 

4.3.3.3 Data acquisition and preprocessing 

Sixty-four-channel scalp-EEG was recorded alongside in-ear EEG using an ActiveTwo 

amplifier (Biosemi, Amsterdam, Netherlands). In-ear EEG electrodes were connected to the 

auxiliary inputs of the via pre-amplifiers identical to the ones used for scalp-EEG electrodes. EEG 

data were recorded with a sampling rate fs = 2048 Hz. Data were preprocessed using both the 

fieldtrip toolbox (Oostenveld et al 2011) for MATLAB 2017a (The MathWorks, Inc., Natick, 

Massachusetts, United States) and custom-written code. The continuous EEG data were highpass-

filtered at fc = 1 Hz and lowpass-filtered at fc = 10 Hz (two-pass Hamming window FIR, filter 

order: 3fs/fc). In order to compensate phase shifts, data were filtered both forward and backward 

using Hamming window FIR filters with orders N = 3fs/fc. Subsequently, all data were down-

sampled to 125 Hz. 

In order to evaluate the potential difference between each in-ear EEG electrode and all scalp-

EEG electrodes, we created eight datasets for each participant. In six datasets all EEG channels 

were referenced to an in-ear EEG electrode and in the other two datasets all EEG channels were 

referenced to the left and right mastoid, respectively (Fiedler et al., 2017). Henceforth, we 

compared the neural measures between the reference in-ear EEG electrodes and the conventional 

mastoid reference electrodes.  

4.3.3.4 Detection of the attentional focus: neural selectivity 

To investigate if we can replicate two of our recent studies (Fiedler et al., 2017; Fiedler et al., 

2019; see section 3.1 & 4.2), in a first step, we split up the EEG and stimulus data into 60 blocks of 

one minute each. In a leave-one-out fashion, we first predicted the EEG signal of each block based 

on a response model (temporal response function, TRF; Crosse et al., 2016) trained on all other 59 

blocks, respectively. The TRF contained the neural response to the attended and the ignored 

talker, respectively. By interchanging the TRFs to the attended and the ignored talker, we 

predicted a second EEG signal, which did not represent the task instruction (i.e., attend female or 

attend male). If the first predicted EEG signal yielded higher correlation with the measured EEG 

signal than the second predicted EEG signal, the attended talker was successfully detected. The 
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percentage of trials where the attended talker was correctly identified was called neural selectivity, 

as it reflects selective neural processing of the attended versus the ignored talker. 

4.3.4 Results 

4.3.4.1 s focus of attention can be detected at in-ear EEG 

electrode configurations 

We identified the attended talker by prediction of EEG signals based on temporal response 

functions (TRFs). The percentage of correctly classified blocks is a measure of how strongly TRFs 

are modulated by attention and was called neural selectivity.  

We found enhanced neural selectivity at almost all in-ear EEG electrode configurations 

consisting either of a left in-ear EEG electrode and FT7 or a right in-ear EEG electrode and FT8 

(Figure 4-8A). All but S3 showed above-chance neural selectivity in at least two of three in-ear 

EEG electrodes per ear. S3 showed poor neural selectivity not only for in-ear EEG configurations 

but also for conventional reference electrodes, which might be due to technical issues since subject 

three correctly answered 67% of the questions (chance: 25%). Hence, we excluded the data of 

subject three from further group analysis. Neural selectivity at in-ear EEG electrode configurations 

compares well to the conventional reference electrodes (left & right mastoid). For further 

comparisons, we selected the in-ear EEG channel with second best (i.e., median) neural selectivity 

per ear and per subject.  

Across the whole scalp, mainly fronto-central electrodes show enhanced neural selectivity 

(Figure 4-8B) both for in-ear and mastoid reference electrodes. The TRFs show the typical pattern 

of slectively enhanced N1 and P2 in the response to the attended talker compared to the ignored 

talker (Figure 4-8C). The TRFs are markedly consistent across subjects. Subject three, who did 

not show enhanced neural selectivity, shows the weakest magnitude in the difference between the 

TRFs to the attended and the ignored talker.  
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Figure 4-8: Neural selectivity and temporal response functions (TRFs). A) Neural selectivity at all single-channel 
in-ear EEG and mastoid electrode configurations (left electrodes served as reference for FT7, right electrodes 
served as reference for FT8; see also B). The in-ear EEG electrode showing median (i.e., second best) neural 
selectivity was selected per ear of each subject for further analysis. Subject three was excluded from further 
group analysis. B) Group level average of neural selectivity. Highlighted channels exceeded the binomial chance 
level of 60% (Combrisson and Jerbi, 2015). C) TRFs to the attended and the ignored talker at FT7 referenced to 
the left in-ear EEG electrode.  

4.3.4.2 Replication: Late cortical tracking of ignored speech in in-ear EEG 

We extracted the TRFs for the three different SNRs to contrast the attention-dependent 

responses to an acoustically dominant and non-dominant talker (i.e., 6 vs. +6 dB; see section 3.1; 

Fiedler et al. 2019). In detail, our goal was to replicate our earlier finding of a louder ignored talker 

being selectively processed during later time lags of the TRF, which we previously observed at 

parietal EEG channels. 

We found enhanced neural tracking and neural selectivity comparable to our earlier findings 

(Figure 4-9, see section 3.1). In tendency, the attended talker is more strongly tracked compared 

to the ignored (Figure 4-9A). However, under an SNR of 6 dB, the enhanced neural tracking of 

the attended talker was reduced (Figure 4-9A, middle). We observed a late increase of neural 

tracking of the ignored talker in all subjects (Figure 4-9C), which was predominantly found at 

central and occipital scalp EEG channels, as exemplarily shown for the left in-ear reference. This 
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enhanced neural tracking was accompanied by enhanced neural selectivity of the ignored talker, 

which was found in all subjects mainly at frontal but also occipital channels (Figure 4-9D). Overall 

neural selectivity was found to be robust across the three levels of SNR (Figure 4-9E, left). 

 

Figure 4-9: Neural tracking and neural selectivity obtained at scalp EEG electrodes referenced to the left 
in-ear EEG electrode. Dotted lines represent surrogate data. A) Neural tracking of the attended (green), the 
ignored (orange) and both (grey) talkers. Left: neural tracking over all time lags. Middle: time-lagged neural 
tracking during SNR of 6 and +6 dB. Right: Neural tracking of the ignored talker during SNR of 6 (purple) and 
+6 dB (grey). B) Group average TRFs and single subject TRFs (thin lines). C) Left: topographic map of the 
difference (SNR of 6 vs. +6 dB) of late neural tracking of the ignored talker. Right: Difference (SNR of 6 vs. +6 
dB) of neural tracking of the ignored talker. D) Left: topographic map of the difference (SNR of 6 vs. +6 dB) of 
late neural selectivity of the ignored talker. Right: difference (SNR of 6 vs. +6 dB) of neural selectivity of the 
ignored talker. E) Neural selectivity of the attended (green), the ignored (orange) and both (grey) talkers. Left: 
neural selectivity over all time lags. Middle: time-lagged neural selectivity during SNR of 6 and +6 dB. Right: neural 
selectivity of the ignored talker during SNR of 6 (purple) and +6 dB (grey).  

4.3.5 Discussion 

This study was conducted to replicate two of our earlier studies in combination. First study, 

we showed that single-channel in-

et al., 2017; see section 4.1). In our second study, we showed that under negative signal-to-noise 

ratio (SNR), a late neural tracking of the ignored talker contributes to overall selective processing 

(Fiedler et al., 2019; see section 3.1). Here, we investigated if the attentional focus of a listener can 

be detected with in-ear EEG under a varying SNR and if enhanced neural tracking of the ignored 

talker under negative SNRs can be found as well.  
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In sum, we replicated our earlier study showing 

detected from single channel configurations consisting of in-ear EEG electrodes and short-

distant, neighbored scalp EEG electrodes. Again, we highlighted that an electrode configuration 

pointing towards fronto-central regions is necessary to achieve above-chance neural selectivity. 

Here we additionally showed that this can even be achieved under a varying SNR. Furthermore, 

our results suggest that there is enhanced neural tracking of the ignored talker as well to be found 

in in-ear EEG configurations. 

4.3.5.1 Detection of the attended talker is robust to varying conditions 

We showed that even under a varying SNR, the detection of the attentional focus is robust and 

markedly above chance (Figure 4-8). This has implications on the integration of EEG into neurally 

steered hearing aids (Lunner and Gustafsson, 2016; Fiedler et al., 2017; Mirkovich et al., 2016). 

Real-world listening scenarios are rarely constant, since sound sources are varying in intensity 

and location. Based on our findings, we conclude that within a certain SNR 

focus of attention can be reliably detected from in-ear EEG, even without training of SNR-

dependent neural response models.  

We did not include spatial modulation here, which was shown to affect the topography of the 

neural responses phase-locked to speech as well (Das et al., 2016). The effect of SNR and location 

on the phase-locked neural response to the talkers should be investigated in a combined way (e.g., 

section 3.3), since there might a strong interaction to be observed due to a varying spatial release 

from masking (Schubert and Schultz, 1962; Levitt and Rabiner, 1967).  

4.3.5.2 Accounting for SNR-modulated neural responses might improve detection 

of the attentional focus 

As in our earlier study (see section 3.1; Fiedler et al., 2019), we showed that the phase-locked 

neural response to continuous speech is modulated by the signal-to-noise ratio (SNR). In 

particular, we found enhanced neural tracking and neural selectivity of the ignored talker under a 

negative SNR. That means that the detection of the attentional focus might profit from the 

training of SNR-dependent response models (i.e., TRFs). Furthermore, the late tracking of the 

ignored talker might indicate enhanced effort in the selective processing of the auditory scene, 
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which could be a valuable parameter for the neural steering of hearing aids. This point will be 

further addressed in a general discussion (see section 5.4). 

4.3.5.3 Conclusion 

robustly detected from single-channel in-ear EEG configurations. We also showed that the SNR-

dependent modulation of neural selectivity revealed a late increase of neural selectivity in the 

response to the ignored talker. In sum, our findings confirmed that in-ear EEG reliably detects a 

li -dependent modulation might be a valuable 
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5 General Discussion 

This thesis comprises six studies which investigated neural signatures of auditory selective 

attention in the human electroencephalogram. The goals of those studies were two-fold: first, the 

dynamics of neural signatures of auditory attention were investigated under varying listening 

conditions, which aimed at revealing neural strategies of top-down attentional control to prevent 

bottom-up capture of attention. Second, the recording of neural signatures of auditory selective 

attention at a reduced set of EEG electrodes (including in-ear EEG) was investigated, which aimed 

at proofing the feasibility to neurally steer a hearing aid based on those signatures.  

5.1 Summary of experimental results 

In studies 1 3, we investigated how the neural response to continuous speech is shaped by 

bottom-up and top-down attention (see chapter 3). We focused or analysis on neural signatures 

previously found to be modulated by auditory selective attention: the neural tracking of speech 

and the modulation of alpha power. The adversity of the listening condition was manipulated by 

the variation of the signal-to-noise ratio (SNR) as well as the location of the talkers. 

Study 1 showed that the neural tracking of speech is highly controlled by top-down attention, 

but that the signatures of top-down attentional control depend on the current acoustic adversity 

(i.e., SNR; see section 3.1). Especially in the most adverse listening condition, the late neural 

selective processing of the ignored talker plays a crucial role for the overall selective processing of 

the auditory scene. Importantly, this late neural processing of the ignored talker is accomplished 

by fronto-parietal than sensory brain regions, which highlights its involvement in top-down 

attentional control. 

Study 2 showed, in contradiction to our hypothesis, that alpha power does not indicate the 

current demand for top-down attentional control in an auditory scene (see section 3.2). Further 

exploratory analysis did not reveal any relationship between alpha power modulation (or any 

other frequency band) and the acoustic adversity. A direct comparison of the attention-dependent 

neural tracking versus alpha power showed that during concurrent, continuous speech, neural 

signatures of auditory attention are predominantly emerging from the phase-locked neural 

responses (i.e, neural tracking). 
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Study 3 showed, in contradiction to our hypothesis, that neither the location of the talkers, the 

SNR, nor the interaction of location and SNR modulate alpha power (see section 3.3). Particularly, 

we showed that neither the modulation of alpha power at single EEG electrodes nor the whole-

scalp hemispherical imbalance (i.e., alpha power lateralization) is indicative of the spatial focus of 

auditory attention in our task. 

In studies 4 6, we investigated whether the feasibility of a reduced set of EEG electrodes 

including in- -ear EEG might 

be used to inform a neurally steered hearing aid (see chapter 4).  

Study 4 showed that within single subjects, spectrally resolved neural responses to stimuli rich 

of spectro-temporal modulation can be extracted from EEG electrodes placed around and inside 

the ear canal (see section 4.1). However, we also showed that an increased spectral resolution does 

not necessarily lead to a more precise prediction of the EEG signal.  

Study 5 showed that single-channel in-ear EEG electrode configurations capture signatures of 

auditory selective attention to concurrent, continuous stimulus streams (see section 4.2). The 

attentional focus to dichotically presented tone streams and, more important, diotically presented 

concurrent speech could be detected within single subjects. The results of this study demonstrated 

the feasibility of single-channel EEG configurations attached to a hearing aid as a basis for the 

neural steering. 

istening 

conditions with in-ear EEG electrode configurations (see section 4.3). Hence, we replicated study 

5 by showing that single-channel electrode configuration 

Furthermore, under the most adverse condition, we found a similar increase of late neural 

selectivity in the response to the ignored as found before in study 1. 

5.2 Attention-dependent neural tracking of speech: A consequence of 

spectro-temporal filtering? 

We showed that the attention-modulated phase-locked neural responses to continuous speech 

in the form of temporal response functions show a high, replicable consistency across subjects (see 

sections 3.1, 4.2 & 4.3). We also showed that the modulation of those neural responses by top-
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down attention emerges primarily in temporal, auditory cortical regions (see section 3.1). Due to 

the weak spatial resolution of EEG, we can neither directly infer on the exact anatomical position 

of this filter nor at which exact representation of the speech signal the filter is working. Source 

localizations of the attention-related difference pointed towards temporal and superior temporal 

regions. However, we have a comparably precise estimate of the time lag at which the filter affects 

the neural response, enabling us to infer on the anatomical location and its input based on existing 

literature. 

The transformation from the pure acoustic representation of speech into a linguistic 

representation has been investigated in fMRI by means of comparing the activation by simple 

versus complex sounds or speech versus meaningless speech-like sounds (e.g., reversed speech, 

spectral rotation, vocoding). It was found that speech is preferentially processed in temporal lobe 

with increasing linguistic complexity being preferentially processed in the left superior temporal 

lobe along superior temporal gyrus and sulcus (Binder et al., 2000; Zatorre, 2002; Davis and 

Johnsrude, 2003; Narain et al., 2003; Hickok and Poeppel, 2004). Neuroanatomical models 

suggest that feedforward and feedback connections form a hierarchical structure where 

information is transmitted from core auditory cortical via belt towards parabelt areas (e.g., Sweet 

et al., 2005; Hackett et al., 2014). This highlights that the auditory cortex is branching the 

information about the incoming auditory signal and distributed this information to various brain 

areas. But at which stage does auditory attention come into play? 

We observed earliest signatures of attention at around 80 ms at the transition between P1TRF 

and N1TRF. Slow cortical components such as P1, N1 and P2 (or its neuromagnetic counterparts) 

were localized in  and planum temporale, which are core areas of the auditory cortex 

(Lütkenhöner and Steinsträter, 1998; Godey et al., 2001; Gascoyne et al., 2016). Based on those 

studies, we would assume that the top-down attentional filter we observed is working in a 

comparably early, spectro-temporal domain. This filter mechanism might be achieved by the 

attention-dependent tuning of auditory cortical neurons such that their spectro-temporal pattern 

of excitability (i.e., spectro-temporal receptive field) is biased towards the attended talker (Aertsen 

et. al, 1980; Escabi and Schreiner, 2002; Klein et al., 2000; Theunissen et al., 2000; Depireux et al., 

2001; Fritz et al., 2007; Lakatos et al., 2013). However, there is evidence that linguistic articulatory 

features are already represented in comparably early (i.e., slow) cortical components such as the 
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P1 (i.e., P50m, Tavabi et al., 2007). It was also shown that a combination of spectro-temporal 

features and phonetic features best predict the slow cortical response to continuous speech (Di 

Liberto et al., 2015). Recently, it was shown that the transition between neural representations of 

spectro-temporal to linguistic features of continuous speech is achieved within the time frame of 

the N1 (Brodbeck et al., 2018), which shows that multiple neural encoding operations might be 

nested within one component of an ERP (or TRF) and are executed in parallel. More drastically, 

a recent study suggests that an intermediate linguistic representation does not even exist, since it 

is rendered redundant by an earlier representation merely consisting of acoustic edges (Daube et 

al., 2018). Since the task in our studies was to attend to either the female or male voice and 

participants were familiar with the voices after two blocks, we can assume that the attentional 

neural filters mainly worked in the spectro-temporal domain. 

Importantly, the late component we found in the response to the ignored talker plays an 

exceptional role. This component was most prominent under the worst listening condition (see 

section 3.1). Since it appeared at comparably late time lags and showed a distinct parietal 

topography, we interpreted this component as a late signature of distractor suppression, which 

will be discussed below (see section 5.4).  

One crucial question that arises at this point is whether the observed signatures of top-down 

attentional control are direct eyelet to the implementation of attentional filters or whether they 

are only the epiphenomenal consequence of a higher order top-down control. We tried to answer 

this question by the additional investigation of induced oscillations (see sections 3.2 & 3.3), where 

we specifically expected to find alpha power modulation to go along with the instantaneous 

demand for attentional control. Specifically, we expected to observe a relationship between alpha 

power modulation and the neural tracking response to speech. We did not find a clear evidence 

for such a higher order signature of top-down attentional control, as will be discussed in the next 

section. 

5.3 Alpha power as a neural signature of top-down attentional control: What 

are we missing? 

Our hypothesis about the attentional modulation of alpha power as a consequence of varying 

listening demand due to the SNR between  or spatial location of  the talkers was not confirmed 
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(see section 3.2 & 3.3). This is contradictory to previous studies which showed that alpha power 

is modulated by the current listening demand (e.g., Obleser and Weisz, 2012) and the focus of 

auditory spatial attention (Wöstmann et al., 2016). More generally, alpha power has been 

suggested to be involved in global top-down attentional processes by way of orchestrating sensory 

brain areas through inhibition (Klimesch e al., 2007) or channeling inputs along relevant neural 

pathways (Jensen and Mazaheri, 2010). We assume that our presented listening scenarios are 

more challenging compared to average real-life listening scenarios (Smeds et al., 2015). This leads 

to the question of why we did not observe a clear involvement of alpha power in the top-down 

selective neural processing of the concurrent talkers? This question will be discussed under two 

assumptions (Altman and Bland, 1995): First, modulation of alpha power is indeed absent, such 

that it is not involved in the neural selective processing of the talkers. Second, modulation of alpha 

power is present, but our design did not allow us to extract a consistent pattern. 

5.3.1 Evidence for absence of attentional alpha power modulation 

We designed our experiments to mirror real-world listening scenarios. That the top-down 

attentional modulation of alpha power was absent in these experiments might call into, the 

question arises, why conclusions made from earlier, trial-based studies: does alpha power 

modulation by top-down attention not hold for the more ecologically valid case of continuous 

listening? 

One possible explanation is that selective listening does not necessarily involve alpha-induced 

top-down attentional control. Given that an earlier filter in primary sensory areas provides a 

representation of the attended talker which is sufficient to solve the current task, higher order 

filter strategies might not be exerted.  Hence, the involvement of neural filter strategies related to 

alpha power might strongly depend on the actual listening task. As mentioned above, here the 

task instruction (i.e., attend female or male voice) might have led to the adaptation of spectro-

temporal filters in auditory cortex, such that a top-down attentional adaptation of the filters was 

not necessary during listening but rather in the beginning of each block.  

In contrast, trial-based task designs might reflect the alternating dis- and re-engagement into 

the task, which repeatedly triggers adaptation of neural filters and thus leads to a modulation of 

alpha power. Still, we expected to find SNR-dependent modulation of alpha power since neural 

filter strategies most likely vary between SNRs as the phase-locked neural responses indicated (see 
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section 3.1). A re-adaptation of neural filters that possibly induces an alpha power increase might 

be observed if participants were asked to switch their attentional focus within the blocks from one 

talker to the other (Mehraei et al., 2018). This might also interact with the current SNR, since a 

switch during an unbalanced SN

filter strategies.     

We assumed that a variation of the SNR within the range of 6 and +6 dB would significantly 

vary cognitive effort deployed to solve the listening task. This might have been not the case. Even 

if the SNR-variation led to the subjective impression of varying difficulty (as reported by the 

subjects), the deployed cognitive effort might not have varied. This would mean that the task did 

not explicitly trigger the deployment of more cognitive resources during worse SNRs. This point 

will be further discussed below (see section 0). 

5.3.1 Absence of evidence for attentional alpha power modulation 

Given that alpha power modulation reflects a ubiquitous neural mechanism involved in top-

down neural processing of concurrent stimuli (Obleser et al., 2012; Obleser and Weisz, 2012; 

Wöstmann et al., 2015, 2016, 2017b), it may appear surprising that we have not observed a 

significant and consistent SNR- or location-dependent modulation (see section 3.2 & 3.3). 

In our design, we varied the SNR stochastically. This means that the exact timing of an 

upcoming change as well as the rate of change was unpredictable (see section 3.2 & 3.3). 

Compared to the dominant temporal modulation spectrum of speech (see section 1.2), the SNR 

was low-frequent and sluggish. Thus, the adaptation to the instantaneous demand for attentional 

control might have not occurred under such a high temporal consistency as observed in trial-

based designs, neither within nor across subjects.  This might have led to the slightly increased 

neural selectivity observed in the alpha band, but non-consistent time-frequency response fields 

on the group level. Controversially, we also contrasted the power averaged across a whole period 

of a certain SNR (i.e., plateau), which should also capture dynamics that are not strictly locked to 

changes of the SNR. Still, an adaptation of neural filters might happen on an even larger temporal 

scale during listening to continuous speech.  

Other studies indicate that the modulation of alpha power as a variable depending on external 

factors is following an inverted U-shape (instead of a linear relationship), which determines the 
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operational range of neural gain (Rajagovindan and Ding, 2010; Kloosterman et al., 2018). Since 

the adaptation of attentional filters involves the adjustment of neural gain (Willmore et al., 2014), 

modulation of alpha power might exist. However, since we always assumed a linear relationship 

between the external factor SNR (and location), we might not have captured such non-linear 

relationships.  

5.4 Late response signature of reactive suppression of the ignored talker 

indicates increased listening effort 

We argued that the signatures of auditory attention we observed in the phase-locked neural 

response to speech are mainly brought about by attentional filters tuned to the attended talker, 

such that the ignored talker gets filtered out in auditory cortex (see section 5.2; see also Mesgarani 

and Chang, 2012). However, under most adverse listening conditions, we additionally observed a 

late component in the response to the ignored talker, which unexpectedly localized to fronto-

parietal brain regions. This component could not be explained by bottom-up attentional capture, 

but rather reflected top-down attentional control. We argue here that this component reflects the 

reactive suppression of the ignored talker, which is a mandatory effort in order to avoid the 

bottom-up capture of attention by the salient (i.e., dominant), to-be-ignored talker. 

The suppression of salient, irrelevant stimuli that have the potential to capture attention in a 

bottom-up manner have been extensively studied in the visual modality (for a review see Gaspelin 

and Luck, 2019). Importantly, the potential of a stimulus to capture attention depends not only 

on its saliency, but also on its predictability, decision history and the overall top-down goals 

(Sawaki and Luck, 2010). This led to the formulation of the signal suppression hypothesis (for a 

review see Gaspelin and Luck, 2018), which states that salient, irrelevant stimuli are actively 

suppressed before they can capture attention. This view proposes an important interaction 

between bottom-up and top-down attention: The more precisely the top-down attentional goal is 

defined in terms of the to-be-attended and to-be-ignored stimulus features, the lower the potential 

that a to-be-ignored stimulus captures attention. 

In recent studies, yet another dichotomous concept of attentional filtering has been used to 

explain the results: While proactive suppression refers to the pre-tuning of attentional filters based 

on to-be-expected features of the upcoming stimulus (e.g., Bonnefond and Jensen, 2012), reactive 
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suppression refers to the suppression of irrelevant stimuli after they have been encoded and were 

identified as to-be-ignored (e.g., Fukuda and Vogel, 2009). This means that, up to a certain stage, 

the ignored stimulus must be encoded in parallel to the attended stimulus in order to extract 

features crucial for suppression at a later stage. Importantly, reactive suppression must be 

achieved before the ignored stimulus captures bottom-up attention. 

In our studies, participants were asked to attend to the male or the female voice before they 

self-paced the presentation by a button press, such that their attentional filters could have been 

proactively tuned (see section 5.2). Those filters might be optimized to let pass the features of the 

attended talker and to fend off the features of the ignored talker, as shown by the absence of an 

N1 and P2 component in the response to the ignored talker (Figure 5-1A). One interpretation of 

this attentional modulation is the proactive enhancement of all the features of the attended talker 

(Figure 5-1B, top). This might be an appropriate neural strategy if the signal of the attended talker 

is intact and not extensively degraded (i.e., masked) by the ignored talker, such as under positive 

SNRs. However, a second explanation is that the attentional filter is proactively suppressing the 

features of the ignored talker (Figure 5-1B, middle), such that only undegraded features of the 

attended talker pass the filter. This might be necessary when the attended talker is more degraded 

(i.e., masked) by the ignored talker. In any case, as soon as the incoming mixture passed the filter, 

missing features of the attended talker must be neurally restored (McDermott and Oxenham, 

2008). Since speech signals are highly redundant (i.e., can be degraded and still be understood; 

Shannon et al., 1995) and predictable (e.g., Kutas et al., 2011), slight degradations can be easily 

compensated. However, more severe degradations result in increased demand for cognitive 

resources (Rabbit 1968, Pichora-Fuller and Singh, 2006). 

A study that compared neural responses to clear and concurrent speech under active versus 

passive listening indicated that the neural filters are mainly suppressing the response to the 

ignored talker under selective attention (Kong et al., 2014). However, the authors asked the 

participants to passively listen to clear speech (while watching a silent movie), which might still 

have the potential to capture attention in a bottom-up manner if cognitive resources are not fully 

deployed to any other task (Lavie, 1995). Thus, the suppression of the ignored talker might 

strongly depend on the difficulty of the primary task, which modulates the demand for attentional 

control. There is behavioral evidence that the peripheral processing of ignored speech is reduced 
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under higher working-memory load caused by the primary task (Halin et al., 2015). Recently, it 

was also shown that neural tracking of attended speech 

segregation of ignored sounds is affected by working memory load (Hjortkjær et al., 2018; Molloy 

et al., 2018). 

 Importantly, during the most detrimental conditions, we found a late response to ignored 

talker (N2; see section 3.1). Since it facilitates neural selective processing, we interpret this 

component as a signature for active suppression of the ignored talker. But is this component a 

signature for proactive or reactive suppression? Since the N2 component appeared at a relatively 

late stage, we assume that it is a signature for reactive suppression of the ignored talker. This late 

neural processing of the ignored talker might be necessary because the earlier filter proactively 

tuned to the attended talker is not suffiecient to restore an intact representation of the attended 

talker (Figure 5-1B, bottom). 

In contrast to all other components in temporal brain regions, we observed the late N2 

component in fronto-parietal brain regions. The fronto-parietal network is associated with top-

down attentional control of the dorsal auditory stream (e.g., Alain et al., 2001; Bidet-Caulet and 

Bertrand, 2005; for a review, see Hickok, 2012, Bizley and Cohen, 2013). Sustained frontal 

negativity has been linked to the gating of irrelevant information and its suppression (Chao and 

Knight, 1997), such that it is crucial for the maintenance of top-down attention. It was also shown 

that the lateral prefrontal cortex is involved in the facilitation of late auditory attention (Bidet-

Caulet et al., 2015). In contrast to our findings, a negative component at prefrontal cortex was 

associated with facilitatory response to relevant stimuli (Nd component), whereas a positive, 

inhibitory, component was found in the response irrelevant stimuli (Alho et al., 1987; Michie et 

al., 1990; Alain et al., 1993). Note that in those ERP experiments, relevant and irrelevant stimuli 

were usually presented in some temporal order, such that the basis for attentional filtering was of 

temporal nature. In contrast, in our studies, concurrent speech was presented, which might reveal 

different components. Nevertheless, both the previous and our studies highlight that fronto-

parietal brain regions are involved in the top-down attentional processing of the auditory input. 

Given that the late N2 component is a signature of reactive suppression, it would imply that 

the ignored talker is encoded in parallel to the attended talker. Thus, more cognitive resources 

must be invested in order to work out a clean representation of the attended talker. Consequently, 
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the late N2 component might be an indicator for increased listening effort. Distinct frontal neural 

mechanisms for facilitation (i.e., enhancement of attended) and inhibitory (i.e., suppression of 

ignored) sounds have been shown to be differently affected by memory load (Bidet-Caulet et al., 

2010). This highlights the intertwinement of top-down neural mechanisms and the working 

memory. 

 

Figure 5-1: Neural filter strategies for selective attention. The overall goal of selective attention is to restore 
a clean representation of the attended stimulus (green dot) which is free from interference by ignored stimuli 
(orange dot).  A) Temporal response functions for a dominant attended and a dominant ignored talker (adopted 
from study 1, see section 3.1). B) Neural filter strategies. Top: Proactive enhancement of the features of the 
attended talker. Middle: Proactive suppression of features of the ignored talker. Bottom: Reactive suppression 
of features of the ignored talker. 

The interpretation of the N2 component as signature of late, reactive suppression was purely 

based on the electrophysiological outcome. Further studies should investigate the behavioral 

advantage (or disadvantage) related to this component. For example, considering that earlier, 

proactively tuned spectro-temporal filters cannot work as precise in hearing impaired subjects 

due to a degraded input, we would hypothesize that the late N2 component would appear already 

at better SNRs. This should be investigated by comparing hearing-impaired patients with matched 

controls. More fine-grained behavioral data should be recorded to evaluate the behavioral benefit 

of late, fronto-parietal reactive suppression. 
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5.5 The effort and risk of selective attentional filtering 

In sum, the findings of our studies leave the neural basis for selective processing of concurrent 

speech open to some speculation. While we hypothesized that the neural tracking of speech and 

alpha power modulation are ubiquitous signatures of auditory attention, we found that only 

neural tracking is reliably indicating the attentional focus. Importantly, our analysis revealed late, 

inhibitory tracking of the ignored talker in fronto-parietal brain regions, a key functional role that 

has been previously assigned to alpha power (Klimesch et al., 2007). Hence, the phase-locked 

response to speech and the modulation of alpha power might be signatures of distinct neural 

strategies having a similar functional role. Since the behavioral relevance of alpha power for 

attentional filtering has been proven in previous studies (e.g., Obleser and Weisz, 2012; 

Wöstmann et al. 2016), we here provide a framework that aims at explaining why we did not 

observe clear evidence for the modulation of alpha power.  

Two terms are key of the current framework: First, effort describes the cognitive resources that 

are deployed to solve the listening task (i.e., listening effort; e.g., Rönnberg et al., 2013). Risk 

describes the probability for making an error. Risk depends on how much effort is deployed. The 

more effort is deployed , the lower is the risk of making an error. 

We argue that the deployment of certain neural strategies strongly depends on the task design, 

its demand, and the risk of error. In sum, these factors are assumed to be influential on the 

motivation to solve a listening-in-noise task. This can be seen from a behavioral 

economics and neuroeconomics perspective (Kouneiher et al., 2009; Eckert et al., 2016). 

The following framework is related to the selective engagement hypothesis (Hess, 2014; Hess, 

2006), which argues that the engagement (i.e., deployment of limited cognitive resources) strongly 

depends on the motivation, which in turn depends on the self-rated consequences (positive and 

negative). Hess (2014) argues that limited cognitive resources in older adults result in a more 

selective engagement compared to young adults. This means that high cognitive resources can be 

spent even by older adults. However, due to the limited long-term cognitive resources, they are 

only spent in some, subjectively relevant tasks, but not in others. Here we argue that, independent 

of age, similar mechanisms determine whether certain neural strategies are deployed or not.  
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The current framework is based on the following assumptions. First, we assume that the 

attention-dependent neural tracking of speech (i.e., phase-locked neural response) and attention-

dependent modulation of alpha power are neural signatures of two distinct neural strategies for 

selective attention. If applicable, the attentional modulation of neural tracking in sensory areas is 

less effortful than the modulation of alpha power. Second, both strategies can work proactively or 

reactively (see section 5.4). Third, the cognitive resources to process incoming information are 

limited (Kahneman, 1973; Pichora-Fuller et al., 2016) and this limitation is crucial for selective 

processing (Lavie, 1995). Fourth, the amount of invested cognitive resources (i.e., effort) depends 

on the  depends on the self-rated relevance to solve the task or, 

in other words, the willingness to lower the probability of making an error (here: risk; e.g., Eckert 

et al., 2016; Hess, 2014). 

The general assumption is that the deployment of more cognitive effort reduces the risk of 

making an error (Figure 5-2, top). Minimally deployed effort results in chance performance, 

whereas the maximum of available cognitive resources is subject-specific and determines the 

degree to which the risk can be reduced.  

We do not assume a linear relationship between effort and risk. Instead, we argue that the 

risk), which results in a risk function asymptotically approaching zero for towards higher effort. 

The higher the task demand, the higher the overall risk of making an error. Somewhere between 

minimal and maximal effort, the motivation of the subject determines, how much effort is 

deployed to reduce the risk down to a risk that is an adequate level. Importantly, the effort 

determines which neural strategies are used to solve the task (Figure 5-2, middle). Given that 

lower-level, sensory neural selective strategies are more efficient (but not always sufficient) than 

higher-level neural strategies, we assume that the attention-dependent neural tracking is generally 

used before alpha power modulation. Similarly, if proactive strategies are applicable, they are used 

before reactive strategies. 

Here, we argue here that the audiobooks presented in our studies did not lead to a suffiently 

large motivation that subjects would invest all available cognitive resources. In our task, subjects 

only had to answer four questions at the end of a five-minute block. The risk of missing a few 

words in the to-be-attended stream due to interference of the ignored talker might not have 
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motivated the subjects to invest more cognitive effort into neural strategies related to alpha power. 

To the contrary, in tasks where alpha power modulation was observed, such as in (auditory) 

Posner-tasks (e.g., Wöstmann et al., 2016), subjects are asked to give a much more detailed 

response about the content of the stimulus. Effectively, this results in an increase of task demands 

(see Figure 5-2A). Consequently, subjects must deploy more effort in order to arrive at the same 

risk, which they do by using additional neural strategies, such as alpha power modulation.  

 

Figure 5-2: The effort and risk of attentional filtering.  A) The 
investment of more cognitive effort reduces the risk of making an 
error. Motivation determines how much cognitive effort will be 
invested and is bound between minimal effort, resulting in chance 
performance, and maximal effort, which is limited by cognitive 
resources. B) Proposed neural signatures that reflect two different 
neural strategies: neural phase-locking (tracking) and alpha power 
modulation. If applicable, phase-locking in sensory areas is used 
before alpha power modulation in higher order areas. If 
applicable, pro-active filtering is used before re-active filtering. C) 
The  risk) per additional unit of effort decreases 
towards higher order neural strategies. 
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5.6 Implications on neurally steered hearing aids 

In the second part of this thesis (see chapter 4), we investigated the feasibility of in-ear EEG to 

record neural signatures of attention. Here, we primarily investigated the attentional modulation 

of phase-locked responses (i.e., neural tracking and neural selectivity), since we found it to be more 

focus than modulation of alpha power (see section 3.1 & 3.2). 

We hypothesized that the focus of auditory attention can be detected based on a reduced set of 

electrodes such that a hearing aid could be provided with this information. We showed that a 

 consisting of only two electrodes, 

one in the ear canal and another next to the ear, respectively (see section 4.2). We replicated this 

finding and additionally showed that the detection of the attentional focus can also be achieved 

under varying listening conditions (see section 4.3). 

To date, one issue regarding the application of EEG in hearing aids has been widely neglected 

so far: The detection of the focus of auditory attention is usually achieved based on the clean sound 

source signals, postulating that hearing aids are capable of a computational auditory scene analysis 

that returns clean source signals (e.g., Aroudi et al., 2016). Various hearing-aid-compatible 

algorithms for sound source separation exist (e.g., Wang and Brown, 2006). Each algorithm comes 

with strength and weaknesses, such that the estimated source signals might still be degraded under 

some circumstances. Hence, a decrease in the detection accuracy is expected.  

Only a few studies have benchmarked the detection accuracy after the sound source signal was 

estimated by an ahead-slotted source signal separation. One approach relied on a neural network 

trained to separate voices based on a monaural signal  et al., 2017). Another approach 

used an algorithm adapted from ICA to directly extract the broad-band temporal modulation of 

the sources based on the signals recorded on six hearing aid microphones (Van Eyndhoven et al., 

2017). The latter has the advantage that the temporal modulation is rather low-frequent, so that 

its computational effort is low due to a reduced sampling rate. However, this algorithm can fail if 

background noise is diffuse and non-modulated. In this regard, the neural network approach can 

have an advantage, as it is directly trained to extract speech signals. 

The application of linear models allowed us to inspect the neural response in the form of 

temporal response functions (TRFs). To do so, we first non-linearly transformed the sound waves 

into some representations that complied with our (and others; see section 2.3) assumption of how 
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sound is represented at the stage of the (auditory) cortex. Consequently, we could train linear 

models that were predictive of a . However, the overall explained 

variance in the EEG was quite small (i.e., less than 1%). Eventhough we do not know the to-be-

explained variance, there is enough headroom left which could be possibly filled to some degree 

by fitting non-linear kernels (e.g., artificial neural networks). For instance, convolutional neural 

networks have been shown to improve the detection of the attended talker (Deckers et al., 2018). 

Scientifically, artificial neural networks may have the disadvantage that once fitted, the underlying 

computations are hard to interpret (e.g., Kell et al., 2018). However, for neurally steered hearing 

aids, artificial neural networks have the potential to significantly improve detection accuracy. 

Our models were not only linear, they were also time-invariant. This might have restricted the 

explained variance as well. For example, it is known that the repeated presentation of a stimulus 

leads to a suppression of the neural response (e.g., Nagy and Rugg, 1989). Hence, the stimulus 

history plays an important role. We also showed that the morphology (i.e., amplitude and latency) 

of the phase-locked neural responses varied across SNRs, such that a variable response model 

might improve the detection of the attended talker (and the ignored) as well. 

The high replicability of attended-talker detection from EEG should further encourage 

researchers to move experiments out of the lab and to prototype first neurally steered hearing aids 

in real life 

al., 2016, 2018; Fiedler et al., 2017, 2019; Fuglsang et al., 2017). The manifold of listening scenarios 

cannot be simulated in the laboratory, such that some issues might be only detected in real-life 

listening scenarios.  

For example, in the laboratory, we assume that a hearing-aid user always tries to listen 

attentively, however in real-life, they might just attend to some visual object, ignoring auditory 

input. Hence, a hearing aid should be able to detect if the user is attending to any sound source in 

the first place, before it detects which source is attended. For this purpose, parieto-occipital alpha 

power modulation might be indicative, since it is enhanced during auditory compared to visual 

attention (Adrian, 1944; Fu et al., 2001). 

A factor that may positively influence detection accuracy in the long run is the interaction 

between reward (e.g., the hearing aid increases signal-to-noise ratio and listening gets easier) and 
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the neural signatures of attention (i.e., neurofeedback; Zink et al., 2017). In theory, hearing aid 

users may adapt a certain way of attending as soon as they experience that the hearing aid is 

correctly detecting the attended talker. In turn, this may lead to more distinct attentional neural 

signatures. Such an interaction should be ideally investigated in a longitudinal study. It can be 

debated if the listening success (i.e., understanding a talker) serves as a sufficient reward to induce 

such mechanisms, or if additional reward is needed. 

Even if we showed that the neural tracking 

additional signatures of auditory attention during real-life listening scenarios might be 

discovered. For example, the lack of attention-indicative alpha power modulation might have 

been due to the one-way, non-interactive task design. If hearing aid users engage into real-life 

conversations, alpha power might also reveal valuable signatures of the attentional state. 

Furthermore, there might be other signatures in the EEG that are not directly related to the 

selective processing per se, but rather appear as artifacts caused by effortful listening. For example, 

a listener may be frowning if the listening conditions are too bad (e.g., due to low SNR), which 

results in muscle artifacts. What is a to-be-avoided confound for a neuroscientist, might be a 

valuable signature for an individually trained classifier. Hence, during the training of a classifier, 

the EEG signal should not be restricted to the signatures known to be indicative of attention per 

se. 

In sum, we conclude that the neural tracking of speech is valuable signature for the steering of 

a hearing aid that can be captured by only a few electrodes attached to a hearing aid. However, 

the manifold of listening scenarios might reveal the full range of neural signatures related to 

selective attention. Prototypes of neurally steered hearing aids should be tested in real-life 

listening scenarios in order to evaluate the full potential and to detect possible challenges.    

5.7 Limitations of the present research 

5.7.1 Insufficient behavioral data 

In the current studies, we mainly presented continuous speech of several minutes in order to 

infer the neural dynamics of listening in realistic scenarios. After each block, subjects were asked 

to answer several questions about the content of the to-be-attended story. Unsurprisingly, we 

could not find any relationship between number of correctly answered questions and the neural 
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tracking of speech. However, the behavioral relevance of the differential neural tracking between 

attended and ignored speech should be of interest. Especially, to what extent the late neural 

tracking of the ignored talker (see section 3.1) affects behavior should be investigated. Follwoinf 

our interpretation that this component avoids bottom-up attentional capture, the absence of this 

component should result in stream confusions. 

Particularly, it is of interest to what extent the neural tracking of speech is related to speech 

intelligibility and comprehension. The reconstruction of attended speech in noise from MEG has 

been shown to correlate with the self-rated intelligibility across subjects (Ding and Simon, 2013). 

While a neural measure of instantaneous speech comprehension is still missing, some studies 

showed that speech comprehension is related to the reconstruction accuracy (Vanthornhout et 

al., 2018; Verschueren et al., 2018). However, to achieve variability in speech intelligibility, the 

stimulus itself must be acoustically manipulated (e.g., vocoding or background noise). Thus, a 

lowered neural tracking of speech might be due to the acoustic degradation. Acoustic degradation 

might also affect speech comprehension. However, to directly test the influence of neural tracking 

on speech comprehension, the mediation from the acoustics via neural tracking to the behavioral 

outcome must be tested in a single-trial fashion.  

The low number of questions asked in our studies did not allow to sample behavior at a high 

rate. Furthermore, some questions were formulated in a rather general fashion and did not 

precisely point to a certain sentence or word of the story. To the contrary, in trial-based designs, 

much more fine-grained behavioral data can be recorded, allowing for the investigation of the 

behavioral relevance of neural measures. On the other hand, trial-based designs are lacking the 

degree of ecological validity that comes with continuous stimulation. It is therefore important to 

gather more behavioral data from continuous stimulation. 

One possible is to randomly stop the presentation and ask subjects to repeat the last sentence 

 This has the advantage of introducing a call-and-response structure, 

similar to a real conversation. It would also allow for the investigation of a hazard-dependent 

neural tracking of speech: the longer the sequence, the more likely the presentation will stop. 

Hence, subjects may invest more cognitive resources in the processing towards the expected end 

of the block, such that neural tracking might become a function of the implicit hazard (Herbst et 

al., 2018). This might also be accompanied by modulation of induced oscillations. 
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Another possible approach to gather more behavioral data from continuous stimulation is a 

memory task. After subjects listened to concurrent, continuous speech, they were invited later 

(e.g., the next day) and listen to random probes (e.g., five seconds) of both the to-be-attended and 

to-be-ignored talkers. Subjects should be asked to indicate, whether they have heard the probe 

before. Additionally, some random probes should be presented to infer the rate of guessing. 

Generally, we would expect that more of the to-be-attended probes are remembered. Importantly, 

remembered probes of the to-be-ignored talker indicate stream confusions. Consequently, the 

neural tracking of speech and induced oscillations can be investigated based on the behavioral 

responses. 

In sum, the lack of behavioral data prevented us from estimating whether listening 

performance depends on the neural tracking of speech, even though differential neural tracking 

between attended and ignored speech might indicate it.  However, as shown above, there are ways 

to present continuous speech and still collect more fine-grained behavioral data. 

5.7.2 Ecological validity 

We claimed that the presentation of continuous speech matches real-world listening scenarios 

more closely than trial-based designs. There are several arguments in favor of continuous 

stimulation (Hamilton and Huth, 2018; Alexandrou et al., 2018). However, there are also some 

aspects that still hinder conclusions on real listening. 

First, we presented some pre-selected audiobooks, which might have an impact on the 

motivation. In real environments, listeners can decide whom to listen to and this decision might 

be based on  goal. As discussed above (see section 0), the motivation might interact 

with the deployed effort and consequently with the involved neural strategies. This might explain 

why we did not observe an involvement of alpha power modulation in selective attentional 

filtering (see section 3.2 & 3.3). This can be circumvented (at least to some degree) by offering 

several stories to choose from.  

Second, listening to speech in noise is usually happening in interactive scenarios (e.g., in a bar), 

while listening to the same voice for a couple of minutes is rather happening in quiet (e.g., in a 

lecture). The constant, unidirectional flow of information might have put subjects into a state of 

more general listening, meaning that they were only interested in the general content rather than 
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in every single word. As discussed above (see section 0), this might have also an effect on the 

involved neural strategies, since the participants deploy effort more constantly instead of 

instantaneously. Studying the neural mechanisms in real-world conversations needs 

comprehensive planning and post-processing, but it is increasingly established in recent research 

(e.g., Bevilacqua et al., 2018; Poulsen et al., 2017). Contrary to our initial assumption, a trial-based 

design might even more closely reflect those interactions in terms of bidirectional flow of 

information and instantaneously deployed effort.     

Third, listening to a talker in noise usually is accompanied by visual information. Especially 

lip-reading is known to facilitate speech comprehension in noise (e.g., Macleod and Summerfield, 

1987). Thus, effects of cross-modal integration are largely neglected with our design. For example, 

the cross-modal integration of continuous audio-visual speech has been shown to reveal greater 

reconstruction accuracies than the sum of its parts (Crosse et al., 2015). Regarding neurally steered 

hearing aids, this might be another source of information we have not investigated with our 

design. 

Fourth, not only the presented signal but also the noise is important. Here we always presented 

a to-be-ignored talker of opposite gender. First, this allowed us to leave out the factor of spatial 

segregation and still provide an unambiguous cue to the participants. Second, it allowed us to 

investigate the neural processing of ignored speech.  However, in real listening scenarios, noise is 

much more variable (both spatially and spectro-temporally) and sometimes it is more than one 

sound source that must be ignored.  

In sum, with our designs, we studied the neural mechanisms underlying the selective 

processing of continuous attended and ignored speech. However, auditory selective attention has 

to be investigated in further studies, thoughtfully designed to capture different aspects of real-

world behavior. 
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5.8 Conclusions 

This thesis aimed to explain the modulation of the two neural signatures of auditory attention: 

neural tracking and alpha power. The core results of this thesis suggest that the two neural 

signatures reflect two different neural strategies. While neural tracking is most prominent in 

sensory areas (but also emerges from fronto-parietal brain regions), alpha power was not 

following the expected pattern.  

We conclude that neural attentional filters can work at earlier or later representations along 

the hierarchical processing of the (sensory) pathway. At which stage selection is realized strongly 

depends on the current conditions. In our tasks, attentional filtering is mainly achieved at a 

comparably early, spectro-temporal representation of the concurrent inputs, since their distinct 

features allow a dissociation at this stage.  Spectro-temporal filters are proactively tuned to pass 

features of the to-be-attended voice and/or block features of the ignored talker. Only when 

listening conditions get more adverse, an additional component suppresses the ignored talker at 

a later a stage to avoid bottom-up attentional capture. Hence, neural filter strategies are highly 

adaptive and depend on the current condition. 

We argue that the task itself strongly influences whether alpha power modulation can be 

observed. We suggest that our continuous listening tasks are substantially different from previous, 

trial-based designs. The differences explain the (non-)involvement of neural strategies that are 

related to alpha power in attentional selection. First, given that earlier, proactively tuned spectro-

temporal filters provide a sufficiently clean representation of the attended talker (see above), the 

neural strategy that is mirrored by alpha power was not deployed in the current tasks. Second, the 

task demand and the risk of making an error did not make alpha power neural strategies 

obligatory. This means that presenting the same stimuli, but challenging subjects with a more 

demanding task would lead to the involvement of neural strategies related to alpha power. 

Another scope of this thesis was to detect neural signatures of auditory attention at a reduced 

set of EEG electrodes, that can be attached to a hearing aid. Based on our results, we conclude that 

the neural tracking of speech provides the most reliable basis to inform a hearing aid about a 

 attention. Even though continuous stimulation more closely emulates a real-

world scenario (compared to trial-based designs), neurally steered hearing aids should be tested 

under even more natural conditions. This includes more interactive design such as conversations. 
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Especially the role of real-time neurofeedback should be investigated more in detail. Based on our 

earlier conclusions, we do not disqualify alpha power from providing valuable information for a 

hearing. To the contrary, our experiments might not have mirrored the operational range of alpha 

power. Especially the more global, cross-modal distribution of cognitive resources might reflect 

in alpha power, which would provide valuable information to steer a hearing aid. 

In sum, this thesis provides a broad insight into the neural mechanisms underlying auditory 

selective attention under dynamically varying listening conditions. We provide strong evidence 

for neural tracking to reflect neural strategy that is highly adaptive to the current listening 

condition. In contrast, the role of alpha power in auditory selective attention remains elusive. It is 

up to future research to close the interpretational gap between continuous and trial-based designs.    
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6 Summary 

6.1 Introduction 

In natural environments, multiple objects compete for our attention. Since cognitive resources 

are limited, the incoming information must be reduced. In theory, this reduction is achieved by 

attentional filtering. Our ability to selectively attend one sound source and ignore others (i.e., the 

cocktail-party problem; Cherry, 1953) has been a main body of research in the last decades. 

Psychophysical studies showed which features of a sound lead to the formation of auditory objects 

(i.e., auditory scene analysis; Bregman, 1990) and that selective attention can be allocated to 

different stimulus representations along the hierarchy of the auditory pathway (early vs. late 

selection; Broadbent, 1958; Treisman, 1960). The fact that even initially unattended stimuli can 

capture our attention led to the dichotomous concept of bottom-up attention (i.e., stimulus-

driven) and top-down attention (i.e., goal-driven; Egeth and Yantis, 1997). However, how selective 

filtering is neurally established is still under investigation. 

The neural selective processing of continuous speech recently moved into the focus of 

research. This research profits from the high temporal resolution of electrophysiological methods 

such as electroencephalography (EEG) and magnetoencephalography (MEG). Two neural 

signatures of auditory attention were investigated in detail: First, the neural tracking of speech 

refers to different methods that quantify the neural phase-locking to the (spectro-) temporal 

fluctuations of speech (e.g., Ding and Simon, 2012). Second, the power of induced neural 

oscillations around 10 Hz (i.e., alpha power; Berger, 1932) was proposed to be indicative of the 

distribution of neural resources through inhibition of brain regions or neural pathways processing 

irrelevant information (Klimesch et al., 2007; Jensen and Mazaheri, 2010). It was shown that out 

of a mixture of two talkers, a clean spectro-temporal representation of the attended talker is 

established in auditory cortex. It was also shown that the modulation of alpha power indicates the 

spatial focus of attention (Kerlin et al., 2010) and the demand for attentional control (Obleser and 

Weisz, 2012; Wöstmann et al., 2017b). However, a comprehensive understanding of the 

functional link between neural tracking of speech and the modulation of alpha power has not been 

established yet. Here we investigated the simultaneous attentional modulation of neural tracking 

and alpha power. 
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The finding that the attentional focus of a listener can be estimated from the EEG within a 

Consequently, this approach was investigated based on a reduced set of hearing-aid-compatible 

EEG electrodes, such as electrodes placed around the ear (e.g., Mirkovic et al., 2016). While above-

chance detection based on neural tracking could be achieved, other neural measures such as the 

modulation of alpha power focus, 

valuable for neural steering of a hearing aid. Here we investigated the neural signatures of auditory 

attention captured by electrodes placed inside the ear canal (in-ear EEG). 

The goal of this thesis was to investigate the signatures of auditory attention under 

continuously varying listening conditions. At the core of this thesis, two concurrent talkers were 

presented while subjects were asked to attend one of them (signal) and to ignore the other (noise). 

We continuously varied the signal-to-noise (SNR) and the location of the talkers to manipulate 

the demand on attentional control. We applied and refined forward encoding models, which 

allowed us to predict the neural response to continuous speech as well as to detect the attentional 

focus of a listener. Based on the predictions, we traced the cortical representation (i.e., neural 

tracking) of the attended and the ignored talker, respectively. We disentangled the impact of 

bottom-up-driven versus top-down-attentional modulation (i.e., neural selectivity). We 

hypothesized that both, the neural tracking and alpha power would be modulated by the 

manipulation of the listening condition. First, we expected that the differential neural tracking 

between the attended and the ignored talker shows early bottom-up, but late top-down 

modulation. Second, we expected to find increased alpha power during more adverse conditions, 

indicating top-down suppression of task-irrelevant brain regions or, under spatial segregation, 

suppression of irrelevant neural pathways.  

This thesis shows that the neural tracking of speech is a more prominent neural signature of 

auditory attention compared to alpha power. In the first part, we show that the neural tracking is 

primarily shaped by top-down attention, resulting in suppressed responses to the ignored talker. 

Under most adverse conditions, late neural tracking of the ignored talker indicates its top-down-

controlled suppression. The modulation of alpha power was not following the expected pattern. 

Neither the SNR nor the location of the talkers predicted the modulation of alpha power. In the 

second part of this thesis, we show that phase-locked neural responses to auditory stimuli can be 
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recorded from in- -

ear EEG based on the neural tracking of speech. We replicate this finding and additionally show 

that the increased late tracking of the ignored talker is also indicated by in-ear EEG. 

6.2 Experiments and results 

In studies 1 3, we investigated how the neural signatures of auditory attention to continuous 

speech are shaped by bottom-up and top-down attention. We focused our analysis on the neural 

tracking of speech and the modulation of alpha power. The adversity of the listening condition 

was manipulated by the variation of the signal-to-noise ratio (SNR) as well as the location of the 

talkers. 

In study 1, we stochastically varied the SNR between a to-be-attended and a to-be-ignored 

talker, while we recorded the EEG of N=18 normal hearing subjects. We investigated the 

attention- and SNR-dependent neural tracking of speech. We show that the neural tracking of 

speech is highly controlled by top-down attention, resulting in suppressed neural response to the 

ignored talker in temporal cortical regions.  Importantly, in the most adverse listening condition, 

the late neural selective processing of the ignored talker plays a crucial role for the overall selective 

processing of the auditory scene, brought up by top-down suppression of the ignored talker. This 

late neural processing of the ignored talker is accomplished by fronto-parietal brain regions, 

which highlights that it is brought up by top-down attentional control at a late stage. 

Study 2 was based on the same experimental data as study 1. In contradiction to our 

hypothesis, we show that alpha power does not indicate the current demand for top-down 

attentional control. Further exploratory analysis did not reveal a clear relationship between alpha 

power modulation and the SNR. A direct comparison of neural tracking versus alpha power in 

terms of their modulation by attention showed that during concurrent, continuous speech, neural 

signatures of auditory attention are predominantly emerging from the phase-locked neural 

responses (i.e., neural tracking). 

In study 3, we extended the experimental design of study 1. In addition, we stochastically 

varied the location of the talkers, such that we expected that the lateralization of alpha power 

should indicate the attended location when talkers are situated at different positions. We recorded 

the EEG of N=25 subjects. In contradiction to our hypothesis, neither the location of the talkers, 
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the SNR, nor the interaction of the two were found to modulate alpha power consistently. 

Particularly, we showed that neither the modulation of alpha power at single EEG electrode 

positions nor the whole-scalp hemispherical imbalance (i.e., alpha power lateralization) are 

indicative of the location of the attended talker. 

In studies 4 6, we investigated whether the feasibility of a reduced set of EEG electrodes 

including in- -ear EEG might 

be used to inform a neurally steered hearing aid.  

In study 4, we presented sounds rich of spectro-temporal modulation, while in-ear EEG of 

N=6 subjects was recorded. We show that a single-

can be extracted from two EEG electrodes placed around and inside the ear canal. However, we 

also show that an increased spectral resolution does not necessarily lead to a more precise 

prediction of the EEG signal.  

In study 5, we presented concurrent dichotic tone streams and diotic speech to N=8 subjects, 

while scalp and in-ear EEG was recorded. We show that single-channel in-ear EEG electrode 

configurations capture the neural tracking of the auditory streams. The attentional focus could be 

detected within single subjects. This study suggests the feasibility of single-channel EEG 

configurations to be attached to a hearing as a basis for the neural steering. 

In study 6, we used the experimental design of study 1, while the in-ear and scalp EEG of N=6 

subjects was recorded. We replicated results of study 5 by showing that single-channel electrode 

attention. Furthermore, under the most adverse 

condition, we found a similar increase of late neural selectivity in the response to the ignored 

talker, as found previously in study 1. 

6.3 Discussion 

Our findings demonstrate that the neural tracking of speech is shaped by the top-down 

attentional goal of a listener and that the morphology of the neural responses reveal distinct 

signatures of the demand for attentional control. We also showed that the attention-dependent 

neural tracking is a potential source of information to steer a hearing aid. We could not draw a 

clear picture on the attentional modulation of alpha power. Based on our findings, the 
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involvement of alpha power in top-down attentional control stays inconclusive, but we can 

conclude that neural tracking of speech is much more prominent neural signature of auditory 

attention in EEG.  

One recurrent question within the discussion of our results is why alpha power modulation 

was observed in some (e.g., Wöstmann et al., 2016), but not our studies. We argue here that the 

top-down neural tracking of speech and the modulation of alpha power are two distinct neural 

strategies rather than two sides of the same coin. In what follows, we will discuss the filter 

strategies and why their involvement might strongly depend on the experimental design.  

How is the attention-dependent neural tracking achieved in temporal brain regions? Most 

likely, the clean representation of the attended talker is brought up by the tuning of neurons to 

the spectro-temporal characteristics of the attended talker (Fritz et al., 2007; Lakatos et al., 2013). 

In our studies, we always presented concurrent talkers of different gender, such that their 

differential spectro-temporal characteristics provided a distinct feature for such a filter located in 

auditory cortex (Mesgarani and Chang, 2012). Under most adverse conditions, we observed a 

signature of a late, most likely reactive top-down suppression of the ignored talker, a role we 

hypothetically ascribed to alpha power in advance. We argue that our task design did not challenge 

subjects in the way that dedicated alpha power neural strategies came into play, as can be found 

in trial-based designs. We conclude that attentional filtering was primarily achieved by spectro-

temporal, proactive filtering in auditory cortex. Thus, if a spectro-temporal distinction between 

the talkers is not present (e.g., same talker on left and right ear; see Wöstmann et al., 2016), alpha 

power neural strategies might come into play. 

We found that single channel in-ear EEG captures the auditory attentional focus based on the 

attention-dependent neural tracking of the talkers. This was even achieved under most adverse 

listening conditions. We argue that real-life listening scenarios bear further challenges that cannot 

be resolved in the laboratory (Hamilton and Huth, 2018), such that prototypes of neurally steered 

hearing should be tested in more realistic environments. This might reveal additional neural 

signatures of auditory attention and contribute to a better understanding of the functional role of 

alpha power modulation. 
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In sum, the neural tracking of speech was found to be the most prominent signature of top-

down auditory attention, which adapts to the current listening conditions. The role of alpha power 

modulation as a signature of top-down attention to continuous speech was not confirmed by this 

thesis. It is up to further studies to close the gap between trial-based designs gathering enough 

behavioral data and continuous, ecologically valid designs allowing natural behavior. 
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7 Zusammenfassung 

7.1 Einführung 

In natürlichen Umgebungen konkurrieren viele Reize gleichzeitig um unsere 

Aufmerksamkeit. Da kognitive Ressourcen begrenzt sind, müssen die eingehenden 

Informationen reduziert werden. Theoretisch wird diese Reduktion durch den Filter der 

Aufmerksamkeit erreicht. Unsere Fähigkeit, eine Schallquelle selektiv zu beachten und andere zu 

ignorieren (Cocktailpartyproblem; Cherry, 1953), war ein Hauptgegenstand der Forschung der 

letzten Jahrzehnte. Psychophysikalische Studien zeigten, welche Merkmale eines Klanges zur 

Bildung auditorischer Objekte führen (Auditory scene analysis; Bregman, 1990), und dass 

selektive Aufmerksamkeit an verschiedenen Repräsentationen des Reizes entlang der Hierarchie 

der Hörbahn zum Tragen kommt (frühe vs. späte Selektion; Broadbent, 1958; Treisman, 1960). 

Auch zunächst unbeachtete Reize können unsere Aufmerksamkeit erregen, was zu dem 

dichotomen Konzept von Bottom-Up-Aufmerksamkeit (durch den reiz getrieben) und Top-

Down-Aufmerksamkeit (durch Ziele getrieben; Egeth und Yantis, 1997) geführt hat. Wie die 

selektive Filterung neural stattfindet, ist jedoch weiterhin Gegenstand der Forschung. 

Die neurale, selektive Verarbeitung von kontinuierlich gesprochener Sprache ist in den letzten 

Jahren zunehmend Gegenstand der Forschung geworden. Dies wurde begünstigt durch die hohe 

zeitliche Auflösung elektrophysiologischer Verfahren wie Elektroenzephalographie (EEG) und 

Magnetoenzephalographie (MEG). Zwei neurale Merkmale auditiver Aufmerksamkeit waren 

dabei unter genauerer Beobachtung: Einerseits zeichnen sich die Muster der Zeit- und 

Frequenzmodulation von Sprache in Form einer phasentreuen neuralen Antwort im M-/EEG ab 

(d.h. neurales Tracking; z. B. Ding und Simon, 2012). Zum anderen weisen induzierte neurale 

Wellen um 10 Hz (d. H. Alpha-Wellen; Berger, 1932) auf die Verteilung neuraler Ressourcen 

durch Unterdrückung von Gehirnarealen oder neuraler Bahnen hin (Klimesch et al., 2007; Jensen 

und Mazaheri, 2010). Es wurde gezeigt, dass aus einer Mischung von zwei Sprechern eine 

bereinigte Zeit-Frequenz-Repräsentation des beachteten Sprechers im auditorischen Kortex 

herausgearbeitet wird. Es wurde auch gezeigt, dass die Amplitudenmodulation von Alpha-Wellen 

auf den räumlichen Fokus der Aufmerksamkeit (Kerlin et al., 2010) und die Steuerung von 

Aufmerksamkeit hinweist (Obleser und Weisz, 2012; Wöstmann et al., 2017b). Ein umfassendes 
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Verständnis der funktionalen Verbindung zwischen neuralem Tracking und der Modulation von 

Alpha-Wellen ist jedoch noch nicht gegeben. In der vorliegenden Arbeit wurde die gleichzeitige 

Modulation von neuralem Tracking und Alpha-Wellen durch Aufmerksamkeit untersucht. 

Der Befund, dass der Fokus auditiver Aufmerksamkeit aus dem EEG innerhalb von ca. einer 

Minute geschätzt werden kann, hat die Entwicklung neural gesteuerter Hörgeräte angeregt (z. B. 

lich wurde diese Methode mit einer reduzierten Anordnung von 

EEG-Elektroden umgesetzt, die z.B. um das Ohr platziert werden (z. B. Mirkovic et al., 2016). 

Während die Erkennung von Aufmerksamkeits anhand des neuralen Trackings durchgeführt 

wurde, könnten andere neurale Merkmale wie die Modulation der Alpha-Wellen weitere 

Informationen über den Aufmerksamkeitszustand eines Hörers liefern, welche zur neuralen 

Steuerung von Hörgeräten beitragen könnten. In dieser Arbeit wurden die neuralen Merkmale 

auditiver Aufmerksamkeit mit im Gehörgang platzierten Elektroden untersucht (in-ear-EEG). 

Das Ziel dieser Arbeit war es, die Merkmale auditiver Aufmerksamkeit unter veränderlichen 

Hörbedingungen zu untersuchen. Bei den Kernstudien dieser Arbeit wurden zwei Sprecher 

gleichzeitig präsentiert, während die Probanden instruiert wurden, einen der beiden Sprecher zu 

beachten (Signal) und den anderen oder die andere zu ignorieren (Rauschen). Wir haben das 

Signal-Rausch-Verhältnis (signal-to-noise ratio; SNR) und die Position der Sprecher 

kontinuierlich variiert, um den Bedarf nach Aufmerksamkeitssteuerung zu beeinflussen. Wir 

Enkodierungsmodelle angewendet, mit denen wir die neurale Antwort auf kontinuierliche 

Sprache vorhersagen und den Fokus der Aufmerksamkeit eines Zuhörers detektieren konnten. 

Basierend auf den Vorhersagen verfolgten wir die kortikale Repräsentation (d. h. Neurales 

Tracking) des beachteten bzw. des ignorierten Sprechers. Wir haben die anteiligen Bottom-Up-

getriebenen und Top-Down-gesteuerten (d.h. Neurale Selektivität) Einflüsse auf die neurale 

Antwort analysiert. Wir erwarteten, dass sowohl das neurale Tracking als auch Amplitude der 

Alpha-Wellen durch diese Manipulation der Hörbedingungen beeinflusst werden. Zunächst 

erwarteten wir, dass das differentielle neurale Tracking zwischen dem beachteten und dem 

ignorierten Sprecher eine frühe Bottom-Up-, jedoch eine späte Top-Down-Modulation zeigt. 

Zweitens haben wir erwartet, dass die Amplitude der Alpha-Wellen unter schwierigeren 

Bedingungen größer ausfällt, was eine Unterdrückung der zu ignorierenden Sprechers zur 

Verhinderung von Bottom-Up-getriebener Aufmerksamkeit bedeuten würde. Des Weiteren 
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erwarteten wir einen Zusammenhang zwischen neuralem Tracking und der Modulation der 

Alpha-Wellen zu finden. 

Diese Arbeit zeigt, dass das neurale Tracking von Sprache ein valideres neurales Merkmal 

auditiver Aufmerksamkeit im Vergleich zu Alpha-Wellen darstellt. Im ersten Teil zeigen wir, dass 

das neurale Tracking in erster Linie von der Top-Down-Aufmerksamkeit geprägt wird, was zur 

Unterdrückung der neuralen Antwort auf den ignorierten Sprecher führt. Unter den 

schwierigsten akustischen Bedingungen weist ein spätes neurales Tracking des ignorierten 

Sprechers auf seine Top-down-gesteuerte Unterdrückung hin. Die Modulation der Alpha-Wellen 

folgte nicht dem erwarteten Muster. Weder das SNR noch die Position der Sprecher ließen eine 

Vorhersage der zu erwartenden Alpha-Wellen-Amplitude zu. Im zweiten Teil dieser Arbeit wird 

zum einen gezeigt, dass die phasentreue neurale Antwort auf Hörreize vom EEG im Ohr 

aufgenommen werden können. Es wird des Weiteren gezeigt, dass der Fokus eines Zuhörers mit 

in-ear-EEG auf der Grundlage des neuralen Trackings von Sprache ermittelt werden kann. Wir 

replizieren diesen Befund und zeigen zusätzlich, dass das späte neurale Tracking des ignorierten 

Sprechers auch mit In-Ear-EEG aufgezeichnet werden kann. 

7.2 Experimente und Ergebnisse 

In den Studien 1 3 wurde untersucht, wie die neuralen Merkmale der auditiven 

Aufmerksamkeit auf kontinuierlicher Sprache durch Bottom-Up- und Top-Down-

Aufmerksamkeit beeinflusst werden. Wir konzentrierten unsere Analysen auf das neurale 

Tracking von Sprache und die Modulation von Alpha-Wellen. Die Hörbedingung wurde durch 

die Veränderung des SNRs sowie durch den Ort der Sprecher beeinflusst. 

In Studie 1 haben das SNR zwischen einem zu beachtendem und einem zu ignorierenden 

Sprecher stochastisch variiert, während wir das EEG von N=18 normalhörenden Probanden 

aufzeichnet haben. Wir untersuchten das aufmerksamkeits- und SNR-abhängige neurale 

Tracking von Sprache. Diese Studie zeigt, dass das neurale Tracking von Sprache in hohem Maße 

von der Top-Down-Aufmerksamkeit beeinflusst wird, was zu einer unterdrückten neuralen 

Antwort auf den ignorierten Sprecher in temporalen Gehirnregionen führt. Wichtig ist, dass in 

schlechtesten Hörbedingungen die späte neurale selektive Verarbeitung des ignorierten Sprechers 

eine entscheidende Rolle für die gesamte selektive Verarbeitung der Hörsituation spielt, was auf 
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eine Top-Down-Unterdrückung des ignorierten Sprechers zurückzuführen ist. Diese späte 

neurale Verarbeitung des ignorierten Sprechers findet in fronto-parietalen Hirnregionen statt, 

was unterstreicht, dass sie durch eine späte Top-down-gesteuerte Aufmerksamkeitssteuerung 

hervorgebracht wird. 

Studie 2 basiert auf dem Datensatz von Studie 1. Entgegen unserer Erwartung zeigen wir, dass 

Alpha-Wellen nicht die Unterdrückung des zu ignorierenden Sprechers abbilden und damit kein 

Merkmal von Aufmerksamkeitssteuerung darstellen. Weitere explorative Analysen ergaben 

keinen eindeutigen Zusammenhang zwischen der Modulation von Alpha-Wellen und dem SNR. 

Ein direkter Vergleich der im neuralem Tracking beobachteten Selektivität und der Modulation 

der Alpha-Wellen zeigte, dass während der kontinuierlichen Sprache neurale Merkmale auditiver 

Aufmerksamkeit vorwiegend aus dem neuralen Tracking hervorgehen. 

In Studie 3 wurde das experimentelle Design von Studie 1 um die stochastische Bewegung der 

erweitert. Wir erwarteten eine Lateralisierung der Alpha-Wellen, welche die Position des 

beachteten Sprechers anzeigt. Wir haben das EEG von N=25 Probanden aufgenommen. Entgegen 

unserer Hypothese konnten wir weder die Position der Sprecher, das SNR, noch eine Interaktion 

feststellen. Insbesondere haben wir gezeigt, dass weder die Modulation der Alpha-Wellen an 

einzelnen EEG-Elektroden noch die Alpha-Wellen-Lateralisierung über den gesamten Kopf die 

Position des beachteten Sprechers anzeigen. 

In den Studien 4 6 haben wir untersucht, ob eine reduzierte Konfiguration von EEG-

Elektroden, einschließlich in-ear-EEG, den Fokus der Aufmerksamkeit des Hörers anzeigt. 

Folglich könnte in-ear-EEG zur neuralen Steuerung eines Hörgeräts verwendet werden. 

In Studie 4 wurden Geräusche reich an Zeit-Frequenz-Modulationen präsentiert und dabei 

das in-ear-EEG von N=6 Probanden aufgezeichnet. Wir zeigen, dass die spektral aufgelöste 

neurale Antwort im einzelnen Probanden aus zwei im und um das Ohr platzierten EEG-

Elektroden extrahiert werden kann. Wir zeigen jedoch auch, dass eine erhöhte spektrale 

Auflösung nicht unbedingt zu einer genaueren Vorhersage des EEG-Signals führt. 

In Studie 5 wurden N=8 Probanden gleichzeitige dichotische Tonfolgen und diotische Sprache 

präsentiert, während Skalp- und in-ear-EEG aufgezeichnet wurden. Wir zeigen, dass einkanalige 

EEG-Elektrodenkonfigurationen das neurale Tracking der auditiven Reize erfassen. Der 
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Aufmerksamkeitsfokus konnte im einzelnen Probanden ermittelt werden. Diese Studie zeigt, dass 

einkanalige EEG-Konfigurationen als Grundlage für die neurale Steuerung von Hörgeräten 

verwendet werden können. 

In Studie 6 wurde das experimentelle Design von Studie 1 verwendet, während Skalp- und in-

ear-EEG von N=6 Probanden aufgezeichnet wurde. Wir konnten zum einen Studie 5 replizieren, 

indem wir zeigen, dass einkanalige Elektrodenkonfigurationen den Aufmerksamkeitsfokus des 

Hörers anzeigen. Zum anderen zeigen wir, dass unter den schwierigsten Hörbedingungen eine 

Zunahme des späten neuralen Trackings des ignorierten Sprechers vorliegt, wie wir sie zuvor auch 

in Studie 1 beobachtet haben. 

7.3 Diskussion 

Unsere Ergebnisse zeigen, dass das neurale Tracking von Sprache durch den Top-Down-Fokus 

eines Zuhörers geformt wird und dass der Verlauf der neuralen Antwort unterschiedliche 

Merkmale der Aufmerksamkeitssteuerung aufzeigt. Wir haben auch gezeigt, dass das 

aufmerksamkeitsabhängige neurale Tracking ein zuverlässiges Merkmal für die Steuerung eines 

Hörgeräts ist. Unsere Ergebnisse lassen keinen klaren Schluss auf die aufmerksamkeitsabhängige 

Modulation von Alpha-Wellen zu. Basierend auf unseren Ergebnissen ist die Bedeutung von 

Alpha-Power für die Top-Down-Aufmerksamkeitssteuerung nicht eindeutig, aber wir können 

daraus schließen, dass das neurale Tracking von Sprache ein stärkeres neurales Merkmal der 

auditiven Aufmerksamkeit im EEG ist. 

Eine wiederkehrende Frage in der Diskussion unserer Ergebnisse ist, warum die Modulation 

von Alpha-Wellen in einigen, aber nicht in anderen Studien beobachtet wurde. Wir 

argumentieren hier, dass das neurale Tracking von Sprache und die Modulation der Alpha-Wellen 

zwei verschiedene neurale Strategien und nicht zwei Merkmale der gleichen Strategie darstellen. 

Folglich diskutieren wir die potenzielle Filterstrategien und warum ihre neurale Anwendung stark 

vom experimentellen Design abhängen kann. 

Wie wird das aufmerksamkeitsabhängige neurale Tracking in temporalen Hirnregionen 

ermöglicht? Wahrscheinlich ist, dass eine bereinigte Repräsentation des beachteten Sprechers 

durch die Abstimmung der Neuronen auf die zeitlich-spektralen Eigenschaften des beachteten 

Sprechers realisiert wird (Fritz et al., 2007; Lakatos et al., 2013). In unseren Studien haben wir stets 
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Sprecher unterschiedlichen Geschlechts gleichzeitig präsentiert, sodass ihre unterschiedlichen 

zeitlich-spektralen Eigenschaften ein eindeutiges Merkmal für die Einstellung eines solchen 

Filters im auditorischen Cortex sein könnte (Mesgarani und Chang, 2012). Unter den 

schwierigsten Hörbedingungen haben wir ein Merkmal einer späten, höchstwahrscheinlich 

reaktiven Unterdrückung des ignorierten Sprechers beobachtet, eine Funktion, die wir von 

Alpha-Wellen erwartet haben. Wir argumentieren, dass die absolvierung unserer Höraufgaben 

die Modulation von Alpha-Wellen nicht in dem Maß verlangten, wie dies bei Versuchen mit 

kurzen Durchgängen der Fall ist. Wir schließen daraus, dass die Aufmerksamkeitsfilterung in 

erster Linie durch zeitlich-spektrale, proaktive Filterung im auditorischen Kortex erreicht wurde. 

Wir zeigen, dass anhand von in-ear-EEG der Fokus auditiver Aufmerksamkeit basierend auf 

dem neuralen Tracking der Sprecher ermittelt werden kann, was selbst unter schwierigsten 

Hörbedingungen erreicht wurde. Wir sind der Meinung, dass reale Hörszenarien weitere 

Herausforderungen mit sich bringen, die im Labor nicht simuliert werden können (Hamilton und 

Huth, 2018), sodass Prototypen von neural gesteuerten Hörgeräten in realistischeren 

Umgebungen getestet werden sollten. Dies könnte weitere neurale Merkmale auditorischer 

Aufmerksamkeit hervorbringen und zum besseren Verständnis der Funktion von Alpha-Wellen 

beitragen. 

Zusammenfassend stellen wir fest, dass das neurale Tracking das dominantere Merkmal 

auditiver Aufmerksamkeit ist und eine neurale Anpassung an die aktuellen Hörbedingungen 

festzustellen ist. Die Funktion von Alpha-Wellen als Merkmal der Aufmerksamkeitssteuerung 

wurde durch diese Arbeit nicht bestätigt. Im Weiteren sollten Studien die Lücke zwischen 

durchgangsbasierten Designs, die genügend Verhaltensdaten hervorbringen, und 

kontinuierlichen, realistischeren Designs, die ein natürliches Verhalten abbilden, schließen. 
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