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Abstract

The abundance of data that is gathered every day with the ultimate goal to under-
stand and to predict the world around us requires techniques to analyze the data
efficiently and accurately. Methods that are widely used in this context involve a de-
coding of the collected data into a sequence of symbols following a certain symbolic
scheme. These symbolic-based analysis techniques facilitate not only the analysis
and increase the numerical efficiency in most cases, but also have a foundation in the
mathematical fields of information and system theory. For instance, the distribution
of symbols or the determination of entropy changes can be used to detect temporal
characteristics in the data.

In this thesis, symbolic schemes are formalized and information-theoretic similarities
and differences of symbolic-based analysis techniques are highlighted. In particu-
lar, a formalization of symbolic schemes is presented that is natural and sufficiently
general. It includes, for instance, threshold crossings, the relatively new ordinal
symbolic approach which goes back to innovative works of Bandt and Pompe, and
variants of both approaches. Moreover, results achieved in ordinal symbolic dy-
namics are generalized via this formalization to show that symbolic schemes which
regard a dependency between two measured values provide, under very natural con-
ditions, a route to the Kolmogorov-Sinai entropy. This is a substantial advantage
over symbolic schemes such as threshold crossings or other variants where the de-
coding is only performed on a one-dimensional level, and a scheme has to be found
that characterizes the Kolmogorov-Sinai entropy directly.

The results show that a theoretical study of different symbolic schemes at once gives
further insight into differences and similarities of symbolic-based analysis techniques
and increases the spectrum of methods and potential applications.





Zusammenfassung

Symbolbasierte Analysetechniken finden ein breites Echo in der Zeitreihenanalyse
und werden vielfältig eingesetzt und weiterentwickelt. Bekannte Verfahren sind
zum Beispiel Schwellwert-Methoden oder Methoden, die auf der ordinalen Idee
basieren. Die ordinalen Verfahren gehen auf innovative Arbeiten von Bandt und
Pompe zurück und werden unter anderem in der Analyse von EEG-Daten zur Iden-
tifikation von Schlafphasen oder epileptischen Anfällen genutzt. Im Mittelpunkt
einer symbolbasierten Analysetechnik steht eine Übersetzung experimenteller oder
simulierter Daten in eine Symbolsequenz, indem ein bestimmtes Symbolisierungs-
schema angewendet wird. Diese Symbolfolge kann meistens effizienter und auch
robuster gegenüber den Rohdaten analysiert werden. Außerdem können durch
Symbolverteilungen oder Änderungen der Entropie zeitliche Merkmale der Zeitreihe
schneller identifiziert werden. Das ist insbesondere interessant, wenn zum Beispiel
ein drohender Herzinfarkt, ein epileptischer Anfall, ein Wetterumschwung oder eine
seismologische Aktivität vorhergesagt werden soll.

In dieser Arbeit werden Symbolisierungsverfahren natürlich formalisiert sowie auf
informationstheoretische Gemeinsamkeiten und Unterschiede untersucht. Hierbei
wird angenommen, dass ein zeitabhängiges System als maßerhaltendes dynamisches
System modelliert werden kann und dass jedes Symbolisierungsschema eine Parti-
tion des zugrunde liegenden Zustandsraumes liefert. Durch die Formalisierung wird
gezeigt, dass Symbolisierungsschemata, die eine Abhängigkeit zwischen zwei gemes-
senen Werten berücksichtigen, unter sehr natürlichen Bedingungen einen Weg zur
Kolmogorov-Sinai-Entropie liefern. Dies ist ein wichtiger Unterschied zu Schemata,
die bei der Dekodierung nur eine Beobachtung berücksichtigen. Der Unterschied
ist insbesondere interessant, wenn kein Schema gefunden werden kann, welches die
Kolmogorov-Sinai-Entropie direkt charakterisiert, d.h. wenn die zugrunde liegende
Partition nicht generierend unter der Dynamik des Systems ist.

Die Ergebnisse zeigen, dass eine simultane Untersuchung verschiedener Verfahren zur
Symbolisierung dem Anwender nicht nur eine größere Anzahl an Symbolisierungs-
schemata zur Verfügung stellt, sondern auch einen zusätzlichen Einblick in theo-
retische Unterschiede und Gemeinsamkeiten schafft.
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Chapter 1

Introduction

Symbolic-based analysis techniques are efficient and popular research tools for ana-
lyzing real-world time series that are continuously refined and improved. The data
mostly stems from non-linear and possibly chaotic time-dependent systems, and
therefore, is not easy to understand. In the application of these techniques, the
central task is to decode the experimental data into a sequence of symbols follow-
ing a certain symbolic scheme, and subsequently, conflating successive symbols into
symbol words. In most cases, the analyst analyzes this symbol sequence or symbol
word sequence not only more efficiently and robustly than the original data, but
can also rely on tools of information and system theory (see for instance Cover and
Thomas [25], Choe [23] and Lind and Marcus [64]). Thus interesting temporal pat-
terns that are hidden in the data can be exposed by determining, for example, the
symbol distribution or changes in the entropy. This is particularly interesting when
trying to predict an impending epileptic seizure, cardiac infarction, weather change,
seismological activity or the like.

Popular methods of symbolic-based analysis techniques are, for instance, based on
threshold crossings and the relatively new ordinal symbolic approach, which goes
back to the innovative works of Bandt and Pompe [11] and Bandt et al. [10]. Further
techniques and application examples are listed in the review papers of Kurths et
al. [60], Daw et al. [27], Zanin et al. [88] and the examples in biology, medicine,
artificial intelligence, data mining—just to mention a few—given therein. Moreover,
see the contributions to the special topic Recent Progress in Symbolic Dynamics
and Permutation Complexity. Ten Years of Permutation Entropy of The European
Physical Journal [6] and to the special issue Symbolic Entropy Analysis and Its
Applications of Entropy [65] (see also Section 1.1).

In fact, there exists a great pool of symbolic schemes to choose from, where the
simplest variants result in sequences of single bit values. Hence the analyst faces
the challenge to pick symbolic schemes and word lengths that are most suitable and
reliable for the specific data that has to be evaluated and interpreted. Overall, the
analyst can rely on know-how, practical experience or on theoretical results and
ideas. However, although there exists a lot of literature with convincing results and
application examples for each symbolic scheme (see the references given previously),
little attention has been paid to the study of different symbolic schemes and their
information content at once. The main objective of this thesis is to give the analyst
an additional overview of symbolic-based analysis techniques.

In fact, by studying the different symbolic schemes at once via a natural formaliza-
tion, we generalize results achieved in ordinal symbolic dynamics and show thereby
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Chapter 1 Introduction

that symbolic schemes that regard a dependency between two measured values, such
as the techniques based on the ordinal idea, provide, under very natural conditions,
a route to the Kolmogorov-Sinai entropy (KS entropy). This means that the ana-
lyst who picks such a scheme can skip the search for a technique that characterizes
the KS entropy directly. The search for such a scheme is hopeless in a lot of cases
anyway, for instance, in the presence of noise (see Crutchfield and Packard [26],
Bollt et al. [15], Daw et al. [27], Kennel and Buhl [56] and the references given
therein). Nevertheless, applying symbolic-based analysis techniques is a trade-off
between computational capacity and computational accuracy. Thus we still recom-
mend to compare different schemes in the finite setting of applications since even
if the KS entropy is not characterized directly, the underlying symbolic scheme can
still be efficient and sufficient in order to find and quantify relevant information in
the analysis process (see Daw et al. [27]).

Note that some of the results presented in this thesis are published in Keller et
al. [50, 49] and Stolz and Keller [79].

1.1 An application example: a symbolic-based analysis of
seismic data

The aim of this section is to motivate symbolic-based analysis techniques as a tool
to analyze real-world data. Symbolic based-techniques are applied in many research
areas as the authors summarize in Kurths et al. [60], Daw et al. [27], Zanin et
al. [88], in the special topic [6] and the special issue [65] (see also Section 1.1). In
particular, there exist many scientific publications on analyzing electroencephalo-
gram-data (EEG data) by applying techniques that are based on the ordinal idea.
For instance, the empirical Permutation entropy or the ordinal Conditional entropy
are determined in order to detect complexity changes in the EEG data. The results
are used to describe the considered EEG data, to detect epileptic seizures or different
sleeping states. For a fuller treatment, we refer the reader to Keller and Lauffer [48],
Cao et al. [21], Keller et al. [54], Unakafova [85], Unakafov [82], Berger et al. [12] and
the references given therein. The authors show that in a lot of cases—depending on
the patients, the choice of the channel, etc.—symbolic-based complexity measures
decrease during an epileptic seizure.

These results raise the question, whether analog results can be obtained by analyzing
data that has similar characteristics as EEG data, such as audio data, physiological
data (heart rate, blood pressure, stroke volume, systemic vascular resistance, etc.),
climate data and so on. The question is answered by the researchers Glynn and
Konstantinou in their publication Reduction of Randomness in Seismic Noise as a
Short-term Precursor to a Volcanic Eruption [36]. The authors discuss the decrease
of empirical Permutation entropy in seismic noise, eight days prior to the 1996 Gjálp
eruption in Iceland. The eruption, accompanied by an intense earthquake swarm,
took place in the most productive area of Iceland’s hotspot and was preceded by
an earthquake at the northern rim of the Bárdarbunga caldera of magnitude 5.4
(Richter scale) on the 29th of September in 1996 (see Einarsson et al. [30]). The
data was collected with 20 samples per second by the temporary seismic network
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1.1 An application example: a symbolic-based analysis of seismic data
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(b) Empirical Permutation entropy (blue), ordinal Conditional entropy (red) and a
weak version of empirical Permutation entropy (yellow) for d = 3 and a window length
of 12000 samples (for more details see Section 3.2.2, Section 3.5 and Chapter 4).

Figure 1.1: The curves in (b) reflect the 1996 Gjálp eruption in Iceland by a
decrease of their values eight days before the eruptive activity.

HOTSPOT with a PASSCAL Guralp CMG3-ESP Broadband Sensor (see the FDSN
entry [40] and Allen et al. [2, 3, 4]).

In the following, we touch only on a few aspects of the data acquisition, and mainly
focus on the usage of symbolic-based analysis techniques in order to identify com-
plexity changes. For a deeper discussion of the experimental setup and the results in
the seismological context, we refer the reader to the work of Glynn and Konstanti-
nou [36] and the references given therein.

We analyzed the vertical component of broadband seismic data collected by station
HOT23 at Gŕımsvötn that is eight kilometers south of Gjálp from the 1st of Septem-
ber to the 7th of October in 1996 (see Figure 1.1(b)). We used the facilities of IRIS
Data Services and, in particular, the IRIS Data Management to access the data and
related metadata (http://ds.iris.edu/mda/XD/HOT23?timewindow=1996-1998).
In Figure 1.1(a), we skipped the days of high seismic activity in order to zoom in
on the seismic noise, as otherwise the fluctuations would not be visible to the naked
eye.

We computed the empirical Permutation entropy (see Unakofova [85] and Unakafova
and Keller [84]), the empirical ordinal Conditional entropy (see Unakafov [82] and
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Chapter 1 Introduction

Unakafov and Keller [83]) and a weak version of empirical Permutation entropy,
as described in Keller and Sinn [51], for the ordinal order d = 3, the time delay
τ = 1 and a sliding window of 12000 samples (see also Section 3.2.2, Section 3.5 and
Chapter 4). The window length is equivalent to 10 minutes of data acquisition. The
choice of d, τ ∈ N and the window length was motivated by our results presented
in Figure 4.1 and facilitates the comparison of the three methods. Note that Glynn
and Konstantinou picked the ordinal order d = 5, a sliding window of 20 minutes
and the time delay τ = 5. In fact, the choice and role of the delay τ ∈ N is
an interesting theme in itself. More details on this topic can be found in Keller
et al. [50], in Berger et al. [12], in the supplementary information published along
with the manuscript of Glynn and Konstantinou [36] (see also Section 3.2.2 and
the references given therein). For our numerical computations, we used MATLAB
R2017b [67] and the MATLAB scripts given by Unakafova [86] in order to compute
the empirical Permutation and ordinal Conditional entropy in sliding windows in a
fast way (see also Unakafova and Keller [84]).

Indeed, the curves of empirical entropy reflect the 1996 Gjálp eruption in Iceland
by a decrease of their values. The decrease starts, as Glynn and Konstantinou also
point out, on the 22nd of September and reaches a trough on the 27th of September.
The curves increase rapidly on the day of the Bárdarbunga earthquake. Moreover,
it is noticeable that the magnitude of fluctuations between the 22nd and 29th of
September differs from the magnitude previous to September 22nd. Overall, the
results, as the ones presented here, emphasize that a symbolic-based analysis of
experimental data can detect interesting complexity changes. However, since all
three curves behave similarly, but the peak-to-through fluctuations differ in their
height, this section also shows that the choice of a symbolic-based measure is not
evident and should be made, for instance, in accordance with the application purpose
and the algorithmic efficiency and accuracy.

1.2 Outline of this thesis

In the following, we give a brief overview of the content of this thesis with some
complementary remarks and close this chapter with Figure 1.2 in order to show the
leitmotif of this thesis and to put the results into context.

In Chapter 2, we first introduce the mathematical framework: We assume that an
underlying time-dependent system can be modeled as a measure-preserving dynam-
ical system, and a measuring process by a sequence of real-valued random variables
that we call observables. Further, a symbolic-based analysis technique or rather the
underlying symbolic scheme entails a finite partition of the underlying state space
of the system, and thus we review symbolic dynamics in this context. Secondly, we
introduce the concept of ergodicity and recall Birkhoff’s ergodic theorem. Ergodic-
ity is needed in several statements in this thesis to ensure that the analysis of the
underlying system cannot be simplified by studying subsystems and that proper-
ties of the considered system can be recovered from the outcome of a time-infinite
measurement (in a measurable way).
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1.2 Outline of this thesis

A main part of Chapter 2 is devoted to the KS entropy, i.e. we review some of the
standard facts on the KS entropy and summarize different possibilities to theoreti-
cally determine this complexity measure. In this respect, we also look more closely
at the wide range of theoretical entropy measures accompanying symbolic dynamics.
We close Chapter 2 by stating sufficient conditions on the measuring process such
that the information of the underlying system is preserved. This is a basic prerequi-
site for estimating the complexity of a time-dependent system by a symbolic-based
analysis technique since information that is lost during the measuring process can-
not be restored. Moreover, we present sufficient conditions on a discretization of the
state space such that the information of the underlying system is preserved.

Chapter 3 is devoted to the study of which symbolic-based analysis techniques pro-
vide a route to the KS entropy. In this context, the main results of this thesis
are stated. At first, we present a formalization of symbolic schemes that is natural
and sufficiently general, i.e. it includes threshold crossings, the ordinal symbolic ap-
proach and variants of both approaches (see Section 3.2). Secondly, in Theorem 3.2,
we state sufficient conditions on symbolic-based analysis techniques such that they
preserve, under relatively weak assumptions, the information given by the observ-
ables, and in Theorem 3.3, we state conditions such that even the information given
by the measuring process is preserved. In doing so, we demonstrate, in Theorem 3.1,
a main advantage of the ordinal approach: The ordinal approach and variants of it
provide, under very natural conditions, a route to the KS entropy. In order to show
our key findings, we assume that underlying dynamics are ergodic. For complete-
ness, we include a study of the non-ergodic case. Moreover, we give an example of a
symbolic-based analysis technique that does not preserve the information given by
the measuring process in general. We close Chapter 3 with a summary of the results
and concluding remarks.

In Chapter 4, we show how the presented theory can be applied by analyzing sim-
ulated data. We apply different empirical complexity measures based on different
symbolic schemes that play a role in this thesis, and study the dependence on the
orbit length. In doing so, we reflect on the practical difficulty to choose a symbolic-
based measure from a big pool of possibilities. We consider a one-dimensional orbit
of a logistic map and a two-dimensional orbit of Arnold’s cat map.

This thesis includes an appendix where the interested reader finds definitions and
properties from measure theory and topology that are relevant in our discussions.
Moreover, at this point, we would like to refer to two books that assisted the process
of writing: The booklet by Trzeciak [81] provides a major support in writing math-
ematical theses by summarizing common phrases and problems. The handbook of
mathematics by Bronstein et al. [18] is a good guide of mathematical knowledge.
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Chapter 2

The mathematical framework

This chapter introduces the mathematical framework of this thesis along with some
basic notation and concepts (see also the appendix). For a more detailed treat-
ment of measure theory and topology, we refer the reader to Brin and Struck [17],
Billingsley [13], Munkres [68] and the references given therein. Further, Section 2.2
is devoted to the Kolmogorov-Sinai entropy which is an important complexity mea-
sure of dynamical systems (see for instance Walters [87] and Amigó [5]). Moreover,
we look more closely at the information content of metric-based analysis techniques
and symbolic dynamics, and study whether the information of the underlying sys-
tem is preserved. For a detailed review on system, estimation and ergodic theory,
the theory of signal processing, differential equations, symbolic dynamics, recurrence
and sensitivity analysis, we refer the reader to Marx and Vogt [66], Denker [28] and
the references given therein.

2.1 Measure-preserving and ergodic dynamical systems

This section is organized as follows. Firstly, we introduce how we model both a
real-world system that evolves over time and a measuring process of this system.
Secondly, we look more closely at symbolic-based analysis techniques or rather at
the underlying symbolic schemes in this mathematical framework. Note that this
framework is generally used to study time-dependent systems and symbolic-based
analysis techniques (see for instance Gutman [39], Amigó et al. [7], Keller et al. [50]
and the references given therein).

In this thesis, we model a real-world system by a (discrete) dynamical system (Ω, T ),
which consists of a non-empty set Ω, and a map T : Ω ←↩. For t ∈ N0, the t-th
iterate of ω under T is given by a t-fold composition

T ◦t(ω) :=

t times︷ ︸︸ ︷
T (T (T (. . . T (ω)))) for t ∈ N and T ◦0(ω) := ω.

A dynamical system is usually used as a basic model in order to study a time-
dependent system. We call the sequence (T ◦t(ω))t∈N0 the orbit of ω ∈ Ω with
respect to T . A state ω ∈ Ω is fixed if T ◦t(ω) = ω for all t ∈ N0, and periodic of
period t ∈ N if T ◦t(ω) = ω. The minimal period of a periodic state ω ∈ Ω is the
smallest t ∈ N0 such that T ◦t(ω) = ω. We denote by T ◦−t(A) = (T ◦t)−1(A) the
preimage of A ⊆ Ω under T ◦t, i.e. the set

{
ω ∈ Ω | T ◦t(ω) ∈ A

}
.

7



Chapter 2 The mathematical framework

In accordance to application, which includes a discrete data acquisition starting at
a finite time, we consider t ∈ N0 and talk about a (discrete-time) dynamical system.
Thus we interpret (T ◦t(ω))t∈N0 as the dynamical evolution of a state ω ∈ Ω over time,
and call Ω state space and t ∈ N0 time point. Henceforth, we consider a dynamical
system (Ω, T ) within a probability space (Ω,A, µ) where the map T : Ω←↩ is A-A-
measurable, and denote it by (Ω,A, µ, T ). Moreover, we say the information content
of (Ω,A, µ, T ) is based on the measure µ on the σ-algebra A.

The following definition, for instance, can be found in Walters [87, Definition 4.4].

Definition 2.1. Let (Ω,A, µ) be a probability space. We say a sub-σ-algebra
F ⊂ A preserves almost surely the information given by a sub-σ-algebra F ′ ⊆ A,

and write F ′
µ
⊂ F if for each F ′ ∈ F ′ there exists some F ∈ F with

µ
(
F 4 F ′

)
= 0,

where 4 denotes the symmetric difference of two sets.

♣ Example 2.1 (Logistic maps on the unit interval and rotations on the unit circle).
Classical and simple examples of discrete-time and non-linear dynamical systems are
given on the unit interval and on the unit circle. For a two-dimensional example,
we refer the reader to Remark 4.3.

Let r ∈ (0, 4], Ω = [0, 1), and consider a transformation Tr : Ω←↩, defined by

Tr(ω) = rω(1− ω)

for all ω ∈ Ω, i.e. Tr is a logistic map on the unit interval. The graph of the map
T4 : [0, 1)←↩ and the orbit

(
T ◦t(0.4854)

)9
t=0

are given in a cobweb plot in Figure 2.1

on the left, and, on the right, the preimage T ◦−1
4 ([a, b)) of an interval [a, b) ⊂ [0, 1)

is exemplified. Note that, for all ω ∈ [0, 1), it holds

T ◦−1
4 (ω) =

1∓
√

1− ω
2

.

Another popular example of a discrete-time dynamical system is given on the unit
circle Ω = {z ∈ C | |z| = 1} by the transformation Ta : Ω←↩ with a ∈ R and

Ta(z) = e2πiaz

for all z ∈ Ω, i.e. Ta is a rotation on the unit circle. For simplicity, the states in Ω
are identified with those in the unit interval [0, 1) in the obvious way ω 7→ z = e2πiω.
Then the rotation reads as follows

Ta(ω) = (ω + a) mod 1

for all ω ∈ Ω. Note that for [b, c) ⊂ [0, 1) with b+ a < 1 ≤ c+ a the following holds

Ta([b, c)) = [0, c+ a) ∪ [b+ a, 1). ♣

The following definition, for instance, can be found in Walters [87, Definition 1.1].

8



2.1 Measure-preserving and ergodic dynamical systems

Definition 2.2. An A-A-measurable map T : Ω←↩ is called µ-preserving if

µ
(
T ◦−1(A)

)
= µ(A)

for all A ∈ A. Equivalently, the measure µ is called T -invariant.

From now on, we make the assumption: (Ω,A, µ, T ) is a measure-preserving dynam-
ical system, i.e. T is µ-invariant.

♣ Example 2.2 (Measure-preserving dynamical systems). The rotation Ta with a ∈
R is invariant with respect to the Lebesgue measure λ. In order to see this, recall that
the family of half-closed intervals ξ := {[m,n) | m,n ∈ Q ∩ [0, 1),m < n} is closed
under the formation of finite intersections and generates B([0, 1)) (see Appendix B.5).
Since

T ◦−1
a ([b, c)) =


[b− a, c− a) if 0 ≤ b− a < c− a,
[0, c− a) ∪ [b− a+ 1, 1) if b− a < 0 ≤ c− a,
[b− a+ 1, c− a+ 1) if b− a < c− a ≤ 0

for any [b, c) ∈ ξ, it holds T ◦−1
a (A) ∈ B([0, 1)) for all A ∈ ξ, i.e. Ta is B([0, 1))-B([0, 1))

measurable (see Billingsley [13, Theorem 13.1.]). Moreover, λ
(
T ◦−1
a (A)

)
= λ(A) for

all A ∈ ξ, i.e. λ
(
T ◦−1
a (B)

)
= λ(B) for all B ∈ B([0, 1)) (see Billingsley [13, Theorem

3.3.]). Consequently, Ta is µ-preserving.

In the case of the logistic map T4, there exists an invariant measure µ4 with density
p : [0, 1)→ [0,∞) given by

p(ω) = 1

π
√
ω(1−ω)

for all ω ∈ (0, 1). In particular, the measure µ4 is absolutely continuous with respect
to the Lebesgue measure, i.e. µ4(A) = 0 for all A ∈ B([0, 1)) whenever λ(A) = 0
(see for instance Amigó [5, Section 1.1.3] and Chan and Tong [22] and the references
given therein). ♣

The following definition, for instance, can be found in Walters [87, Definition 1.2].

Definition 2.3. A µ-preserving map T : Ω←↩ is called ergodic with respect to the
probability measure µ (or rather µ is ergodic with respect to T ) if for all A ∈ A
with T ◦−1(A) = A either µ(A) = 0 or µ(A) = 1. In this case (Ω,A, µ, T ) is called
an ergodic dynamical system.

Ergodicity means that the study of the dynamics given by T cannot be simplified
by restricting T to the sets A ∈ A with T ◦−1(A) = A (see for instance Walters [87],
Krengel [58] and Remark 3.4).

F Remark 2.1 (Birkhoff’s ergodic theorem). Major achievements in ergodic theory
are the various ergodic theorems. Most relevant for our purposes is Birkhoff’s ergodic
theorem. The theorem legitimates the use of(

T ◦t(ω)
)
t∈N0

9



Chapter 2 The mathematical framework

0 ω0 1
0

T4(ω)

1

Ω = [0,1)

0 i ii iii iv 1
0

a

b

1

Ω = [0,1)

Figure 2.1: Graph of the logistic map T4 : [0, 1)←↩. Left: the orbit
(
T ◦t4 (ω0)

)9
t=0

with ω0 = 0.4854 illustrated by a cobweb plot. Right: preimage T ◦−1
4 ([a, b)) of

an interval [a, b) ⊂ [0, 1), whereby i, iv = 1∓
√

1−a
2 and ii, iii = 1∓

√
1−b

2 . Note
how shifting the interval [a, b) within the unit interval determines the size of the
intervals [i, ii) and [ii, iv) with respect to the Lebesgue measure λ.

for almost every ω ∈ Ω in order to recover properties of the underlying system.
Thus ergodicity has a great physical significance (see for instance Bogachev [14],
and Collet and Eckmann [24] for more details). The following theorem, for instance,
can be found in Choe [23].

Theorem 2.1 (Birkhoff’s ergodic theorem). Let (Ω,B(Ω), µ, T ) be a measure-
preserving dynamical system and

X : (Ω,B(Ω), µ)→ (R,B(R))

some µ-integrable function, i.e.∫
Ω
|X| dµ(ω) <∞.

Then there exists some µ-integrable function X∗ with X∗(T (ω)) = X∗(ω) for all
ω ∈ Ω such that

lim
t→∞

1

t

t−1∑
s=0

X (T ◦s(ω)) = X∗(ω)

for almost every ω ∈ Ω. Supplementary, if (Ω,B(Ω), µ, T ) is ergodic, then X∗ is
constant and

lim
t→∞

1

t

t−1∑
s=0

X (T ◦s(ω)) =

∫
Ω
X dµ(ω) (2.1)

for almost every ω ∈ Ω.

10



2.1 Measure-preserving and ergodic dynamical systems

Consider the characteristic function 1A : Ω → {0, 1} for all A ∈ A in (2.1). This
gives

lim
t→∞

1

t

t−1∑
s=0

1{T ◦s(ω)∈A} =

∫
Ω

1A(ω) dµ(ω) = µ(A)

for almost every ω ∈ Ω. By Birkhoff’s ergodic theorem, the measure of A coincides
with the relative frequency of how often the state ω visits A over time. F

If T is not ergodic, it can be interesting to ask whether (Ω,A, µ, T ) can be decom-
posed into ergodic subsystems. An answer to this question is given by the ergodic
decomposition theorem, which we introduce in Remark 3.4 (consult also Einsiedler
and Ward [33], Einsiedler et al. [31], Quas [72] and the references given therein).

♣ Example 2.3 (Non-ergodic and ergodic dynamical systems, Example 2.2 contin-
ued). The rotation Ta is not ergodic with respect to the Lebesgue measure λ if a
is rational. In order to see this, denote by id the identity map, and let p ∈ N and
q ∈ N be coprime with p < q, then a := p

q is rational. It follows easily that T ◦qa = id,
and thus every state ω ∈ Ω is periodic of period q. Let now, for instance,

A =
⋃

t∈{0,1,...,q−1}

T ◦ta

([
0,
p

q2

))
,

then T ◦−1
a (A) = A, but 0 < λ(A) = q p

q2
= p

q < 1, and thus Ta with a = p
q is not

ergodic as claimed. However, λ can be decomposed into ergodic components (see
Remark 3.4 for a brief exposition of the topic).

In contrast, if a is irrational, then the rotation Ta is ergodic with respect to λ (see for
instance Brin and Stuck [17, Chapter 4]). In order to show the difference between
rational and irrational rotations, we illustrate in Figure 2.2 different orbits for a = 1

4

and an orbit segment for a =
√

2. Moreover, the irrational rotation Ta holds dense
orbits

(
T ◦ta (ω)

)
t∈N0

in [0, 1) for all ω ∈ Ω (see for instance Hasselblatt and Katok

[42, Section 4.1.2]). Hence, for any ω ∈ Ω and howsoever small interval [b, c) with
b, c ∈ Ω and b < c, there exists a point s ∈ N0 such that T ◦sa (ω) ∈ [b, c). This implies
that [0, 1) is the only closed non-empty element A ∈ B([0, 1)) fulfilling T ◦−1(A) = A.
In fact, the following holds (see for instance Walters [87, Chapter 1]).

Proposition 2.1. Let (Ω, d) be a compact metric space and µ be a Borel measure
on Ω (see Appendix A.3, A.5 and B.8). If T is ergodic and µ(A) > 0 for all open
non-empty subsets A of Ω, then almost every orbit of ω ∈ Ω is dense in Ω. ♣

2.1.1 Modeling measurements

In general, the laws of a time-dependent system to be analyzed are unknown, i.e.,
in most cases, it is impossible to study the dynamics of a real-world system directly.
Therefore, measurements or rather observations have to be made and further inves-
tigated (see for instance the introductory remarks of Isermann [44], and the natural

11
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0

π
2

π

3π
2

(a)

0

π
2

π

3π
2

(b)

Figure 2.2: Graph of the rotation map on the unit circle. (a): five random
starting states and their orbits with a = 1

4 (indicated by markers of the same

size). (b): an orbit segment of length 28 (square) for a =
√

2 and a random
starting state ω0 ∈ Ω (diamond).

scientific discussion of Hively et al. [43]). In the following, these measurements are
modeled by a countably infinite set of random variables Xi : (Ω,A, µ) → (R,B(R))
and by the map T , i.e.(

X ◦ T ◦t
)
t∈N0

: Ω→
(
RN×N0 ,B

(
RN×N0

))
,

where X = (Xi)i∈N : (Ω,A, µ) →
(
RN,B

(
RN)). The sequence

(
X ◦ T ◦t

)
t∈N0

is

called measuring process,
(
X
(
T ◦t(ω)

))
t∈N0

a realization of
(
X ◦ T ◦t

)
t∈N0

for ω ∈ Ω
and the random variables Xi are called observables.

Note that, in accordance with our framework, we keep definitions regarding the
measuring process

(
X ◦ T ◦t

)
t∈N0

as general as possible. The finite case, meaning

that there is no information gain when additionally
(
Xi ◦ T ◦t

)
t∈N0

with i ≥ n and

n ∈ N is considered, fits into our framework by assuming that all
(
Xi ◦ T ◦t

)
t∈N0

with i ≥ n coincide. Nevertheless, in some proofs, we work with X = (Xi)
n
i=1 and

X = X, respectively, where X : (Ω,A, µ)→ (R,B(R)) is a random variable.

In order to emphasize the structure, we write
(
RN×N0 ,B

(
RN×N0

))
, though by the

countability of N×N0, we restrict discussions to RN (see also Appendix B.8). Sub-
sequently, we consider the following sub-σ-algebras (see Appendix B.5):

σ(X) =
∨
i∈N

σ(Xi) =
∨
i∈N

{
X−1
i (B) | B ∈ B(R)

}
⊂ A,

σ (X ◦ T ◦s) =
∨
i∈N

σ (Xi ◦ T ◦s) =
∨
i∈N

{
(Xi ◦ T ◦s)−1 (B) | B ∈ B(R)

}
⊂ A and

σ
((

X ◦ T ◦t
)
t∈N0

)
=
∨
t∈N0

σ
(
X ◦ T ◦t

)
=
∨
t∈N0

∨
i∈N

σ
(
Xi ◦ T ◦t

)
⊂ A

12



2.1 Measure-preserving and ergodic dynamical systems

for X = (Xi)i∈N being a sequence of observables and s ∈ N.

F Remark 2.2 (The reason why we introduce observables). Commonly, measure-
ments are applied to determine quantitative properties, for instance, the linear mo-
mentum or the speed of movement of an examined object. In doing so, it is assumed
that measurements provide the state of a system directly. In this thesis, we assume
that hidden states are measured (compare to Gutman [39] and the references given
therein) in order to determine whether information of the underlying system is lost
during the measuring process or during a symbolic-based analysis. Even though
observables are superfluous if states are measured directly, we model these mea-
surements by a sequence X = (Xi)i∈N of random variables Xi where Xi is the i-th
coordinate projection, i.e. Xi(ω) = xi for ω = (x1, x2, . . .). F

F Remark 2.3 (Random process). In this thesis, we model measurements by a mea-
suring process in the aforementioned way. Another possibility is to model measure-
ments by a sequence (Yt)t∈N of random variables Yt : (Ω,A, µ)→ (R,B(R)) (see for
instance Unakafov [82] and the references given therein). Mostly, it is assumed that
the random process (Yt)t∈N is stationary, i.e. the distribution of (Yt1 , Yt2 , . . . , Ytd)
and (Yt1+τ , Yt2+τ , . . . , Ytd+τ ) coincide for all τ, t1, t2, . . . , td ∈ N0.

Note that each measuring process on a measure-preserving dynamical system induces
a stationary random process on the probability space (Ω,A, µ) and each stationary
random process (Yt)t∈N with random variables Yt : (Ω,A, µ) → (A,B(A)) and at
most countable A ⊂ R induces a measure-preserving dynamical system. In order
to see this, let (Ω,A, µ, T ) be a measure-preserving dynamical system and X be an
observable. Then (Yt)t∈N with Yt = X ◦ T ◦(t−1) is a real-valued stationary random
process on (Ω,A, µ). On the contrary, let (Yt)t∈N be a stationary random process
on (Ω,A, µ) with values in AN ⊂ RN, where A is at most countable. Then (Yt)t∈N
induces the measure-preserving dynamical system

(
AN,B

(
AN) , µ(Yt)t∈N , σ

)
. The

map σ : AN ←↩, defined by

(σr)t−1 = rt

for all t ∈ N and r = (r1, r2, . . . ) ∈ AN, is called shift-map, B
(
AN) is the sigma-

algebra generated by the family of cylinder sets Zt(a1, a2, . . . , at) with t ∈ N and
a1, a2, . . . , at ∈ A that are given by

Zt(a1, a2, . . . , at) :=
{
r = (r1, r2, . . . ) ∈ AN

∣∣∣ r1 = a1, r2 = a2, . . . , rt = at

}
.

Moreover, µ(Yt)t∈N is the probability measure defined on the cylinder sets by

µ(Yt)t∈N(Zt(a1, a2, . . . , at))

:= µ ({ω ∈ Ω | Yt(ω) = at, Yt−1(ω) = at−1, . . . , Y1(ω) = a1}) .F

2.1.2 Symbolic schemes in the framework

The opening chapter of this thesis motivates the study of time-dependent, non-linear
systems by encoding outcomes of measurements by sequences of symbols following
a certain symbolic scheme. Therefore, a symbolic scheme is nothing else than a
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Chapter 2 The mathematical framework

rule to classify measured values (see Section 3.2). Further, applying this rule to a
dynamical system (Ω,A, µ, T ) in a measurable way gives a finite partition of Ω. A
finite partition C ⊂ A of Ω is a set

C :=
{
C(1), C(2), . . . , C(q)

}
⊂ A

with q ∈ N elements, where
⋃q
l=1C

(l) = Ω and C(l) ∩ C(k) = ∅ for any l, k ∈
{1, 2, . . . , q} and l 6= k. That is why we say that a symbolic scheme entails a finite
partition in the following. Usually, a symbolic scheme entails not only one partition
but a sequence (Cr)r∈N of finite partitions

Cr =
{
C(1)
r , C(2)

r , . . . , C(|Cr|)
r

}
⊂ A; r ∈ N,

i.e., in each step r ∈ N of the symbolic analysis, more information of the underlying
system is accessed, however, the nature of symbolic encoding is not changed.

F Remark 2.4 (Symbolic dynamics). We are mainly interested in the properties
of partitions that arise from different symbolic schemes. Note that the actual idea of
symbolic dynamics is to pick an arbitrary initial partition C ⊂ A of Ω and to study
the dynamical evolution of (Ω,A, µ, T ) with respect to this partition. For the theory
of symbolic dynamics, we refer the reader to Choe [23] and to Lind and Marcus [64].

F

Note that we are only interested in the partitions and not in the symbols in the
following. In particular, we have a special interest in the information content of a
symbolic-based analysis technique and whether the technique preserves the informa-
tion of the underlying system. In the following, let (Cr)r∈N be a sequence of finite
partitions of Ω entailed by a symbolic-based analysis technique or rather by the
underlying symbolic scheme. We say that the information content of the technique
is based on the measure µ on the sub-σ-algebra σ((Cr)r∈N) of A. The sub-σ-algebra
σ((Cr)r∈N) of A is given by

σ((Cr)r∈N) :=
∨
r∈N

σ(Cr) =
∨
r∈N

{⋃
l∈L

C(l)
r

∣∣∣∣L ⊂ {1, 2, . . . , |Cr|}
}
, (2.2)

i.e. σ((Cr)r∈N) is the minimal sub-σ-algebra containing all σ(Cr) (see Appendix B.5).
Moreover, we say that the symbolic-based technique preserves the information of the
underlying system if (Cr)r∈N has the following property.

Definition 2.4. Let (Cr)r∈N be a sequence of finite partitions. If σ((Cr)r∈N)
µ
⊃ A

(see Definition 2.1), then we call (Cr)r∈N generating.

Note that each finite partition Cr of (Cr)r∈N gives again a coarse-grained observation
of (Ω,A, µ, T ) by the random variable Yr : (Ω,A, µ)→ (R,B(R)) that assigns to all

elements of C
(l)
r the value l ∈ {1, 2, . . . , q}. In other words,

Yr(ω) :=

|Cr|∑
l=1

l 1
C

(l)
r

(ω)

14



2.1 Measure-preserving and ergodic dynamical systems

for all ω ∈ Ω, where for each l ∈ {1, 2, . . . , Cr}

1
C

(l)
r

(ω) =

{
1 if ω ∈ C(l)

r ,

0 otherwise

denotes the characteristic function. We call the sequence (Yr)r∈N a sequence of
coarse-grained observations with respect to (Cr)r∈N, and the orbit

(
Yr(T

◦t(ω))
)
t∈N0

with ω ∈ Ω a symbolic path with respect to Cr. In fact, our whole discussion is
concerned with the information content as well as the complexity of possible symbolic
paths with respect to symbolic schemes. However, before we start, we summarize
some basic concepts and properties of finite partitions.

We are interested, in particular, in such sequences (Cr)r∈N that are increasing, mean-
ing that the finite partition Cr+1 ⊂ A is finer than the finite partition Cr ⊂ A for all
r ∈ N. The following definition, for instance, can be found in Walters [87, Definition
4.2].

Definition 2.5. Let p and q be two natural numbers. A partition

D :=
{
D(1), D(2), . . . , D(p)

}
⊂ A

is finer than a partition

C :=
{
C(1), C(2), . . . , C(q)

}
⊂ A

or, equivalently, C is coarser than D if for all l ∈ {1, 2, . . . , q}, there exists a non-
empty set K ⊂ {1, 2, . . . , p} such that

C(l) =
⋃
k∈K

D(k).

If a partition D ⊂ A is finer than a partition C ⊂ A, we say that D is refining C,
and denote it by C ≺ D. Note that the relation ≺ is a partial order on the set of
finite partitions of (Ω,A), i.e. ≺ is reflexive, antisymmetric and transitive. If we
consider an increasing sequence (Cr)r∈N of finite partitions, then there exists for all
l ∈ {1, 2, . . . , |Cr−1|} a non-empty set K ⊂ {1, 2, . . . , |Cr|} such that

C
(l)
r−1 =

⋃
k∈K

C(k)
r .

Moreover, we consider the join
∨m
r=1 Cr of finite partitions Cr ⊂ A with m ∈ N and

r ∈ {1, 2, . . . ,m} which is defined by

m∨
r=1

Cr :=

{
m⋂
r=1

C(lr)
r 6= ∅

∣∣∣∣ lr ∈ {1, 2, . . . , |Cr|} for r ∈ {1, 2, . . . ,m}

}
.

Hence the join is the coarsest partition refining all Cr; r ∈ {1, 2, . . . ,m}. If m = 2,
we also write C1 ∨ C2 instead of

∨2
r=1 Cr. For a fuller treatment, in particular, if m

approaches infinity, we refer the reader to Itô [45, Section 3.3].
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Figure 2.3: Graph of the full tent map T and the iterations T ◦2 and T ◦3. Left:
refining partitions entailed by a threshold crossing method. Right: refining
partitions entailed by an ordinal approach (see Example 2.4 for more details).
This figure is a derivative of Stolz and Keller [79, Figure 4].

♣ Example 2.4 (Increasing sequences of finite partitions). Let Ω be the unit in-
terval [0, 1), and consider the transformation T : [0, 1)←↩ defined by

T (ω) =

{
2ω if 0 ≤ ω < 1

2 ,

2− 2ω if 1
2 ≤ ω < 1.

The map T is called the full tent map on [0, 1), and is ergodic with respect to the
Lebesgue measure λ (see for instance Chan and Tong [22]). Moreover, we have that

T ◦t(ω) =

{
2tω − 2l if 2l

2t ≤ ω <
2l+1

2t ,

2(l + 1)− 2tω if 2l+1
2t ≤ ω <

2l+2
2t

with l ∈ {0, 1, . . . , 2t−1 − 1}.

In Figure 2.3, we display two different symbolic schemes that entail increasing se-
quences of finite partitions. Firstly, we apply a threshold crossing method with
threshold 1

2 , and secondly, we apply an ordinal approach where we relate a state
ω to the iterates T (ω), T ◦2(ω) and T ◦3(ω) (compare also to Section 2.2.1 and Sec-
tion 3.2). In the case of the threshold crossing method, we have

C1 =
{{
ω ∈ Ω | 1

2 ≤ ω
}
,
{
ω ∈ Ω | 1

2 > ω
}}

,

C2 = C1 ∨
{{
ω ∈ Ω | 1

2 ≤ T (ω)
}
,
{
ω ∈ Ω | 1

2 > T (ω)
}}

and

C3 = C2 ∨
{{
ω ∈ Ω | 1

2 ≤ T
◦2(ω)

}
,
{
ω ∈ Ω | 1

2 > T ◦2(ω)
}}

.

In the case of the ordinal approach, we obtain the following finite partitions

D1 = {{ω ∈ Ω | T (ω) ≤ ω} , {ω ∈ Ω | T (ω) > ω}} ,
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2.2 The Kolmogorov-Sinai entropy

D2 = D1 ∨
{{
ω ∈ Ω | T ◦2(ω) ≤ ω

}
,
{
ω ∈ Ω | T ◦2(ω) > ω

}}
and

D3 = D2 ∨
{{
ω ∈ Ω | T ◦3(ω) ≤ ω

}
,
{
ω ∈ Ω | T ◦3(ω) > ω

}}
.

Note that some elements of the partition D3 are unions of intervals, this is indicated
by different grayscale values whereas white represents non-united intervals that are
elements of D3. ♣

2.2 The Kolmogorov-Sinai entropy

What is complexity? In various natural and social fields, in particular, if time-
dependent systems are analyzed, one meets the challenge to define and to measure
complexity (see for instance Adami [1] and Sprott [77, Section 15.7]). For a deeper
discussion of the previous question, we refer the reader to Ladyman et al. [61] and
the references given therein.

In this thesis, we utilize the characterization given from information theory, and
say a system is the more complex the more unpredictable its dynamics are or, in
other words, the less we know about the underlying dynamics before we perform an
experiment. Having symbolic-based analysis techniques at hand, that is nothing else
than determining the complexity of possible symbolic paths or rather the complexity
which is independent of any such discretization. In fact, the latter one is the tra-
ditional and well-defined complexity measure called Kolmogorov-Sinai entropy (KS
entropy for short). Recall, that we assume that (Ω,A, µ, T ) is a measure-preserving
dynamical system.

It is not an easy task to determine the KS entropy since usually an uncountable
set of finite partitions has to be considered (see Section 2.2.1). However, some
special partitions yield properties and concepts which facilitate the determination
(see Section 2.2.2).

2.2.1 Definition of the Kolmogorov-Sinai entropy

Let C =
{
C(1), C(2), . . . , C(q)

}
⊂ A be a finite partition entailed by a symbolic

scheme. In order to determine the complexity of possible symbolic paths with respect
to the considered symbolic scheme, one assigns to every part of C a letter of the
alphabet A = {1, 2, . . . , q}, and classifies, stepwise, the states ω ∈ Ω with respect
to their itinerary (compare to Figure 2.4). In other words, one determines for each
word (a1, a2, . . . , at) of length t ∈ N the sets

C(a1,a2,...,at) :={
ω ∈ Ω

∣∣∣ (ω, T (ω), . . . , T ◦t−1(ω)
)
∈ C(a1) × C(a2) × . . .× C(at)

}
.

(2.3)

All non-empty sets C(a1,a2,...,at) provide a finite partition (C)t ⊂ A of Ω. The finite
partition (C)t describes the dynamical behavior of (Ω,A, µ, T ) up to a point t ∈ N
with respect to an initial partition C. In particular, let (C)1 = C. We use the
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notation (C)t to emphasize that the partition is constructed with respect to T , and
call the sequence ((C)t)t∈N the partition sequence of C under T (see Example 2.5).

The complexity of possible symbolic paths with respect to C is now given by the
entropy rate hµ(T, C) defined by

hµ(T, C) = lim
t→∞

1

t
Hµ((C)t), (2.4)

where Hµ((C)t) is the Shannon entropy of (C)t. The Shannon entropy of a finite
partition C is defined by

Hµ(C) := −
q∑
l=1

µ
(
C(l)

)
ln
(
µ
(
C(l)

))
(2.5)

(with 0 ln(0) := 0), and measures, in our context, the complexity of the considered
symbolic scheme without considering the dynamics. Here, we use the natural loga-
rithm, however, taking the logarithm to other basis is also possible (see Amigó [5,
Annex B]). In computer science, for instance, mostly the base two is chosen in order
to measure complexity in binary digits. Some more notes on the Shannon entropy
are given in Remark 2.5. However, for a fuller treatment of the topic, for instance,
that the limit in Equation (2.4) exists and 1

tHµ((C)t) decreases to hµ(T, C), we refer
the reader to Walters [87, Chapter 4]. Note that the limit in Equation (2.4) can also
be infinite.

F Remark 2.5 (Notes on the Shannon entropy and the entropy rate). The more
we know about the outcomes of an experiment beforehand the less the complexity
of a symbolic scheme (without considering the dynamics) should be. This agrees
with the definition of the Shannon entropy. In order to see this, let us assume that
the outcomes of an experiment are represented by C and that the probability that
C(l) with l ∈ {1, 2, . . . , q} occurs is given by µ

(
C(l)

)
.

In fact, the expression in (2.5) is maximal if µ
(
C(l)

)
= 1

q for all l ∈ {1, 2, . . . , q},
and minimal if for one l ∈ {1, 2, . . . , q} the element C(l) has measure one (see Wal-
ters [87]). Hence the Shannon entropy is bounded, i.e. 0 ≤ Hµ(C) ≤ ln(q).

Moreover, for two finite partitions C ⊂ A and D ⊂ A of Ω, we have that C ≺ D if
and only if σ(C) ⊂ σ(D). Further, if C ≺ D, then Hµ(C) ≤ Hµ(D) and (C)t ≺ (D)t
for all t ∈ N, and thus hµ(T, C) ≤ hµ(T,D) (see for instance Walters [87, Section 4.3
and 4.4]). F

In order to make a statement about the complexity of the considered time-dependent
system independently of any discretization by a symbolic scheme, one determines
the KS entropy, i.e.

hKS
µ (T ) := sup

C finite partition
hµ(T, C).

We close this section with some remarks on the partition sequence of a partition C
under T . First of all, note that ((C)t)t∈N is increasing by construction (compare to
Equation (2.3) and Example 2.5).
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C

ω

T (ω)

T ◦2(ω)

(C)3

• C(1,2,3)

• C(4,1,1)

• C(4,1,4)
classifying
states ω ∈ Ω
with respect to
their itinerary

Figure 2.4: Process underlying the determination of the entropy rate hµ(T, C)
for t = 3 and a finite partition C with four elements (see Section 2.2.1). This
figure is published in Stolz and Keller [79].

Definition 2.6. Let C ⊂ A be a finite partition of Ω. If the sequence ((C)t)t∈N is
generating (see Definition 2.4), then we call C generating under T .

Let C ⊂ A and D ⊂ A be two finite partitions of Ω. If C ≺ D and C is generating
under T , then D is generating under T since (C)t ≺ (D)t for all t ∈ N, and thus
σ(((C)t)t∈N) ⊂ σ(((D)t)t∈N) (see Remark 2.5).

♣ Example 2.5 (Partition sequence of a finite partition C under the full tent map).
Let Ω be the unit interval [0, 1), λ the Lebesgue measure, and T : [0, 1) ←↩ be the
full tent map (see Example 2.4). The partition sequence of

C :=
{[

0, 1
2

)
,
[

1
2 , 1
)}

under T is given by

((C)t)t∈N =

({[
l

2t
,
l + 1

2t

) ∣∣∣∣ l ∈ {0, 1, . . . , 2t − 1
}})

t∈N
.

Thus each (C)t consists of 2t dyadic intervals of [0, 1), and

Hλ((C)t) = t ln(2)

(see Remark 2.5, Figure 3.2 and Example 3.1, and compare also to Bollt et al. [15]).

♣

The determination of the entropy rate, and subsequently, of the KS entropy can be
simplified (see Section 2.2.2) if the symbolic scheme entails a finite partition with
the following property.

Definition 2.7. Let C ⊂ A be a partition of Ω with q ∈ N elements and ((C)t)t∈N
the partition sequence of C under T . If for each word (a1, a2, . . . , at) ∈ {1, 2, . . . , q}t
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with t, s ∈ N, t > s and µ
(
C(a1,a2,...,at−1)

)
> 0 we have that

µ
(
C(a1,a2,...,at)

)
µ
(
C(a1,a2,...,at−1)

) =
µ
(
C(at−s,at−(s−1),...,at)

)
µ
(
C(at−s,at−(s−1),...,at−1)

) ,
then we say that C has the Markov property of order s with respect to µ.

Note that a partition satisfies the Markov property of order s ∈ N if the probability
of
{
ω ∈ Ω | T ◦t−1(ω) ∈ C(at)

}
with t ∈ N, t > s and at ∈ {1, 2, . . . , q} does not

depend on the visited elements up until T ◦(t−s) (see Parry and Williams [70] and
Unakafov [82]).

♣ Example 2.6 (Partitions with the Markov property of order s ∈ N). There are
many examples of partitions with the Markov property of order one. For instance,
consider ([0, 1),B([0, 1)), λ, T ), where T is the full tent map on [0, 1), and choose the
initial partition

C :=
{[

0, 1
2

)
,
[

1
2 , 1
)}
.

Since λ
([

l
2t ,

l+1
2t

))
= 1

2t , we have

λ
(
C(a1,a2,...,at)

)
λ
(
C(a1,a2,...,at−1)

) =
2t−1

2t
=

2

22
=
λ
(
C(at−1,at)

)
λ
(
C(at−1)

)
for all t > 1 (see Example 2.5). Moreover, C is generating under T (see Billingsley [13,
A31. Dyadic expansions.]). Further examples of partitions with the Markov property
of order one are given in Unakafov [82, Section 2.1.3].

An example of some arbitrary order is designed in the following way: Let (Ω,A, µ)
be a probability space and (Yt)t∈N be a stationary random process with values in
AN ⊂ RN, where A is at most countable (see Remark 2.3). Moreover, let (Yt)t∈N be
a Markov chain of order s ∈ N, i.e. for each natural number t > s

µ (Yt = at | Yt−1 = at−1, Yt−2 = at−2, . . . , Y1 = a1)

= µ (Yt = at | Yt−1 = at−1, Yt−2 = at−2, . . . , Yt−s = at−s) .
(2.6)

Then (Yt)t∈N induces a dynamical system
(
AN,B

(
AN) , µ(Yt)t∈N , σ

)
that is measure-

preserving (see Remark 2.3). Moreover, it holds

µ(Yt)t∈N(Zt(a1, a2, . . . , at))

= µ ({ω ∈ Ω | Yt(ω) = at, Yt−1(ω) = at−1, . . . , Y1(ω) = a1})
= µ(Yt)t∈N(Zt(a1, a2, . . . , at−1))

µ (Yt = at | Yt−1 = at−1, Yt−2 = at−2, . . . , Y1 = a1)

and

µ ( Yt = at | Yt−1 = at−1, Yt−2 = at−2, . . . , Y1 = a1)

(2.6)
= µ (Yt = at | Yt−1 = at−1, Yt−2 = at−2, . . . , Yt−s = at−s)

=
µ ({ω ∈ Ω | Yt(ω) = at, Yt−1(ω) = at−1, . . . , Yt−s(ω) = at−s})

µ ({ω ∈ Ω | Yt−1(ω) = at−1, Yt−2(ω) = at−2, . . . , Yt−s(ω) = at−s})
for each (a1, a2, . . . , at) ∈ {1, 2, . . . , q}t with t > s and µ(Yt)t∈N(Zt(a1, a2, . . . , at)) > 0.
Thus, for some t > s, the cylinder sets Zt(a1, a2, . . . , at) correspond to a partition
with the Markov property of order s ∈ N. ♣
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2.2 The Kolmogorov-Sinai entropy

2.2.2 Determining the Kolmogorov-Sinai entropy

As already stated, the determination of the KS entropy is not easy. However, in the
rare case, that one can find a finite partition C which is generating under T , one can
characterize the KS entropy directly (see Walters [87, Theorem 4.10]):

Lemma 2.1. Let C ⊂ A be a finite partition of Ω which is generating under T ,
then

hKS
µ (T ) = hµ(T, C).

The determination is even more facilitated if the initial partition C is generating
under T and has the Markov property of some order s ∈ N. Before we write down
the relevant statement, note that the entropy rate can be determined alternatively
to (2.4) by

hµ(T, C) = lim
t→∞

(
Hµ((C)t+1)−Hµ((C)t)

)
. (2.7)

In Remark 2.6, we show, using our notation, that (2.4) and (2.7) are equivalent for
the sake of completeness.

Lemma 2.2. Let C ⊂ A be a partition of Ω with q ∈ N elements and ((C)t)t∈N the
partition sequence of C under T . If C is generating under T and has the Markov
property of order s ∈ N, then

hKS
µ (T ) = H((C)s+1)−H((C)s).

The previous theorem is a generalization of a statement given in Unakafov [82,
Theorem 2.1], which says that hKS

µ (T ) = H((C)2)−H((C)1) if C is generating under T
and has the Markov property of order one (compare also to Kitchens [57, Observation
6.2.10]). We give the proof at the end of this section for illustrative purposes in our
notation. Moreover, in order to reinforce the legibility, we switch to the landscape
format.

♣ Example 2.7 (Concluding remarks to the full tent map). Consider the dynamical
system ([0, 1),B([0, 1)), λ, T ), where T is the full tent map on [0, 1), and choose the
initial partition

C :=
{[

0, 1
2

)
,
[

1
2 , 1
)}
.

By the results stated in Example 2.6, we have that

hKS
µ (T ) = H((C)2)−H((C)1) = 2 ln(2)− ln(2) = ln(2). ♣

As already stated, generating partitions generally do not exist or are not accessible
(see Chapter 3, in particular, Section 3.2.1). The following lemma provides a route to
the KS entropy via an arbitrary increasing sequence of finite partitions (see Walters
[87, Theorem 4.14], and Chapter 3 for examples).
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Lemma 2.3. Let (Cr)r∈N be an increasing sequence of finite partitions Cr ⊂ A of
Ω with respect to ≺ and generating, then

hKS
µ (T ) = lim

r→∞
hµ(T, Cr) = sup

r∈N
hµ(T, Cr).

Thus, in general, a double-limit has to be evaluated (see Figure 2.5), where for a

fixed r ∈ N the sequence
(
Hµ((Cr)t+1)−Hµ((Cr)t)

)
t∈N

is monotonically decreasing

to the entropy rate hµ(T, Cr), and the sequence (hµ(T, Cr))r∈N is increasing since
(Cr)r∈N is refining.

As a direct consequence of the last results, we obtain the following proposition
(compare also to Unakafov [82, Lemma 3.8] and Figure 2.5).

Proposition 2.2. Let (Cr)r∈N be an increasing sequence of finite partitions Cr ⊂ A
of Ω which is generating. Moreover, let ((Cr)t)t∈N be the corresponding partition
sequence of each Cr under T .

(1) If Cr has the Markov property of order s ∈ N for all r ≥ m, then

hKS
µ (T ) = lim

r→∞

(
H((Cr)s+1)−H((Cr)s)

)
.

(2) If Cr is generating under T and has the Markov property of order s ∈ N for
some r ∈ N, then

hKS
µ (T ) = H((Cr)s+1)−H((Cr)s).

The previous proposition requires again good knowledge about the properties of the
considered partitions. In general, it is difficult to state whether these partitions are
generating or have the Markov property. In Unakafov [82, Lemma 3.9], examples
for the idea of Bandt and Pompe [11] are given, and conditions are named that have
to be fulfilled such that the corresponding partitions are generating and have the
Markov property of order one.

F Remark 2.6 (Notes on the conditional entropy). Let C be a partition with q ∈ N
elements and ((C)t)t∈N be the partition sequence of C under T . Recall, that ((C)t)t∈N
is an increasing sequence with respect to ≺. In the following, we show that

lim
t→∞

(
Hµ((C)t+1)−Hµ((C)t)

)
= lim

t→∞

1

t
Hµ((C)t). (2.8)

The following, for instance, can be found in Cover and Thomas [25] and in Amigó [5].
We repeat it, using our notation, for the sake of completeness and in preparation
for the proof of Lemma 2.2. In order to show (2.8), we need the following definition
(see for instance Walters [87, Chapter 4]). Let p and q be two natural numbers, and
consider the two finite partitions

C :=
{
C(1), C(2), . . . , C(q)

}
⊂ A and D :=

{
D(1), D(2), . . . , D(p)

}
⊂ A
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of Ω with µ(C(l)) > 0 for each l ∈ {1, 2, . . . , q}. The conditional entropy of D given
C is defined by

Hµ(D|C) = −
p∑

k=1

q∑
l=1

µ
(
D(k) ∩ C(l)

)
ln

(
µ(D(k) ∩ C(l))

µ(C(l))

)
.

We have that Hµ(D|C) = Hµ(C ∨D)−Hµ(C), and thus Hµ(D|C) = Hµ(D)−Hµ(C)
if C ≺ D. Moreover, if C is refining a finite partition C∗ ⊂ A of Ω, then

Hµ(D|C∗) ≥ Hµ(D|C)

(see Walters [87, Theorem 4.3]).

Our proof of (2.8) starts with the observation that the sequence(
Hµ((C)t+1)−Hµ((C)t)

)
t∈N

(2.9)

is a monotonically decreasing sequence of non-negative numbers, and therefore, has a
limit. Note that the limit can also be infinite. In order to see that (2.9) is decreasing,
let (C)∗t+1 be the partition generated by all non-empty sets

C(a2,a3,...,at+1) ={
ω ∈ Ω

∣∣∣ (T (ω), T ◦2(ω), . . . , T ◦t(ω)
)
∈ C(a2) × C(a3) × . . .× C(at+1)

}
,

and D be the partition of all non-empty sets C(at+2) = {ω ∈ Ω | T ◦t+1(ω) ∈ C(at+2)}.
Obviously, (C)∗t+1 ≺ (C)t+1, and by the T -invariance (see Definition 2.2) of µ, we
have that

µ(C(a2,a3,...,at+2)) = µ(C(a1,a2,...,at+1)),

and thus Hµ(D|(C)∗t+1) = Hµ((C)t+1|(C)t). It follows that

Hµ((C)t+2|(C)t+1) = Hµ(D|(C)t+1) ≤ Hµ(D|(C)∗t+1) = Hµ((C)t+1|(C)t).

We next apply the Cesàro mean theorem (see for instance Cover and Thomas [25,
Theorem 4.2.3]), which states that if a sequence (xt)t∈N converges to the limit x,
then x is also the limit of 1

t

∑t
s=1 xs as t approaches infinity. Hence, by defining

Hµ((C)0) := Hµ(Ω) = 0 and setting xt := Hµ((C)t)−Hµ((C)t−1), which yields that

1

t

t∑
s=1

(Hµ((C)s)−Hµ((C)s−1)) =
1

t
Hµ((C)t),

we obtain the desired conclusion. Moreover,

1

t

t∑
s=1

(Hµ((C)s+1)−Hµ((C)s)) ≥ Hµ((C)t+1)−Hµ((C)t),

and hence

lim inf
t→∞

1

t
Hµ((C)t) ≥ lim inf

t→∞

(
Hµ((C)t+1)−Hµ((C)t)

)
. F
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2.2.3 Approximating the Kolmogorov-Sinai entropy

The results of Section 2.2 are summarized in Figure 2.5 as follows. Let (Cr)r∈N be an
increasing sequence with respect to ≺ and generating. Then, by Lemma 2.3, the KS
entropy is the double-limit of 1

tHµ((Cr)t) (see Figure 2.5(a)) and Hµ((Cr)t+1|(Cr)t)
(see Figure 2.5(b)), respectively, as r and the word length t approach infinity. The
arrows in Figure 2.5 indicate the direction of convergence, i.e.

1

t
Hµ((Cr)t) and Hµ((Cr)t+1|(Cr)t)

decrease to the entropy rate hµ(T, Cr) for increasing t ∈ N, and

(hµ(T, Cr))r∈N

increases since (Cr)r∈N is refining. Moreover, by Proposition 2.2, if Cr with r ≥ m has
the Markov property of order s ∈ N, the limit of t approaching infinity is obsolete for
t ≥ s (pointed out by the dashed line; here m = 3). If in addition Cm is generating
under T , the KS entropy coincides with the conditional entropy of (Cm)s+1 given
(Cm)s (indicated by the box).

Dropping the double limit in Lemma 2.3 provides a wide range of theoretical entropy
measures, for instance, it is common to work with

h(Cr)r∈N
µ := lim sup

r→∞

1

ln(|Cr|)
Hµ(Cr)

where the prefactor is chosen in order to normalize the Shannon entropy (see Re-
mark 2.5). In Chapter 4, we use the prefactor 1

r due to the results of Bandt and
Pompe [11] and Bandt et al. [10] in ordinal dynamics. Moreover, we give conclud-
ing remarks on theoretical entropy measures directly derived from symbolic-based
analysis techniques in Chapter 4. In general, these complexity measures are not
only studied in their relationship to the KS entropy, but also used individually or
combined in order to compare time-dependent systems, to distinguish determinism,
chaos and pure randomness.

The variety of theoretical entropy measures provides a large number of practical
measures of complexity, namely by dropping the respective limit. Here, we assume
that the considered sequence of finite partitions (Cr)r∈N is generating, and thus we
approximate the KS entropy by fixing r and t. However, this approximation can
be arbitrarily bad, particularly, if the considered system is complex, and the KS
entropy is high.

Nevertheless, comparing different values of r and t can give further insight into the
dynamics of the time series, and thus can be used for classification problems, detect-
ing entropy changes etc. (see remarks and examples in Chapter 1 and Chapter 4).
Note that the choice of r ∈ N and the word length t ∈ N is also a compromise
between the computational costs and the information loss (see Li and Ray [63]).
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lim
r→∞

y

lim
t→∞−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hµ((C1)1) 1
2Hµ((C1)2) 1

3Hµ((C1)3) . . . 1
sHµ((C1)s) . . . ↘ hµ(T, C1)

Hµ((C2)1) 1
2Hµ((C2)2) 1

3Hµ((C2)3) . . . 1
sHµ((C2)s) . . . ↘ hµ(T, C2)

Hµ((C3)1) 1
2Hµ((C3)2) 1

3Hµ((C3)3) . . . 1
sHµ((C3)s) . . . ↘ hµ(T, C3)

Hµ((C4)1) 1
2Hµ((C4)2) 1

3Hµ((C4)3) . . . 1
sHµ((C4)s) . . . ↘ hµ(T, C4)

Hµ((C5)1) 1
2Hµ((C5)2) 1

3Hµ((C5)3) . . . 1
sHµ((C5)s) . . . ↘ hµ(T, C5)

...
... · · · ... · · · ...

Hµ((Cm)1) 1
2Hµ((Cm)2) 1

3Hµ((Cm)3) . . . 1
sHµ((Cm)s) . . . ↘ hµ(T, Cm)

...
... · · · ... · · · ...

↗ hKS
µ (T )

(a) Approximating the entropy rate hµ(T, Cm) for some m ∈ N by computing
1
sHµ((Cm)s) for a word length s ∈ N, and determining the KS entropy by Lemma 2.3.

lim
r→∞

y

lim
t→∞−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hµ((C1)2|(C1)1) Hµ((C1)3|(C1)2) . . . Hµ((C1)s+1|(C1)s) . . . ↘ hµ(T, C1)

Hµ((C2)2|(C2)1) Hµ((C2)3|(C2)2) . . . Hµ((C2)s+1|(C2)s) . . . ↘ hµ(T, C2)

Hµ((C3)2|(C3)1) Hµ((C3)3|(C3)2) . . . Hµ((C3)s+1|(C3)s) . . . ↘ hµ(T, C3)

Hµ((C4)2|(C4)1) Hµ((C4)3|(C4)2) . . . Hµ((C4)s+1|(C4)s) . . . ↘ hµ(T, C4)

Hµ((C5)2|(C5)1) Hµ((C5)3|(C5)2) . . . Hµ((C5)s+1|(C5)s) . . . ↘ hµ(T, C5)
...

... · · · ... · · · ...

Hµ((Cm)2|(Cm)1) Hµ((Cm)3|(Cm)2) . . . Hµ((Cm)s+1|(Cm)s) . . . ↘ hµ(T, Cm)
...

... · · · ... · · · ...

↗ hKS
µ (T )

(b) Approximating the entropy rate hµ(T, Cm) for some m ∈ N by computing the
conditional entropy Hµ((Cm)s+1|(Cm)s) = Hµ((Cm)s+1)−Hµ((Cm)s) for a word length
s ∈ N (see (2.7) and Remark 2.6), and determining the KS entropy by Lemma 2.3.

Figure 2.5: By Lemma 2.3, the KS entropy is the double-limit of 1
tHµ((Cr)t)

(see (a)) and Hµ ((Cr)t+1|(Cr)t) (see (b)), respectively, as r and the word length
t approaches infinity. The arrows indicate the direction of convergence. The
dashed line and the box, respectively, represent Proposition 2.2(1) and Propo-
sition 2.2(2) (see also the notes to this figure in Section 2.2.2).
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2.3 Preserving the information of the considered system

By Lemma 2.3 a basic prerequisite for estimating the complexity of a time-dependent
system by a symbolic-based analysis method is that the information of the system
is preserved, i.e.

A
µ
⊂ σ((Cr)r∈N), (2.10)

where (Cr)r∈N is the sequence of finite partitions Cr ⊂ A of Ω entailed by the
underlying symbolic scheme. We show, in Chapter 3, that under relatively weak
assumptions the search for a generating partition can be skipped if one chooses a
symbolic scheme that regards a dependency between two measured values. However,
in this case, one needs to assume that there is no information lost by the measuring
process, i.e.

A
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
. (2.11)

In this section, we state sufficient conditions on the measuring process such that
(2.11) holds true. Moreover, our results provide conditions on an arbitrary increas-
ing sequence (Cr)r∈N of finite partitions such that (2.10) is satisfied (compare to
Remark 2.4). Note that it is natural, to a certain extent, to reconstruct the underly-
ing dynamics T from a realization of the measuring process. For a deeper discussion
of the topic, we refer the reader to Takens [80] and Gutman [39].

2.3.1 A metric-based analysis of measurements

Do we lose information if we perform measurements? In this section, we present
sufficient conditions on the measuring process such that (2.11) holds true. Note, by
setting T = id, these conditions are also sufficient to answer whether

A
µ
⊂ σ(X) (2.12)

is fulfilled. This is, in particular, interesting if the considered symbolic-based analysis
technique preserves the information given by the observables but not the one given
by the measuring process (see Chapter 3). In fact, in the case that measurements are
analyzed quantitatively, there is a strong link between information preservation and
a measure theoretic separation property. Our approach, in this section, is motivated
by the following result.

Theorem 2.2 (Antoniouk et al. [9, Theorem 4.2.]). Let Ω be a separable and com-
pletely metrizable topological space (see Appendix A.7 and Appendix A.9). Further,
let µ be a measure on B(Ω) and X = (Xi)

n
i=1 with n ∈ N. Then

B(Ω)
µ
⊂ σ(X)

if the set ΘX :=
{
ω ∈ Ω | X−1 (X(ω)) 6= {ω}

}
lies in B(Ω) and is a µ-null set.

29



Chapter 2 The mathematical framework

In the following, we call ΘX the set of no X-separation. Moreover, if ΘX lies in
A and is a µ-null set, then we say that Ω is almost surely X-separated, and just
X-separated if ΘX = ∅.

Now, we restrict our attention to the measuring process (X◦T ◦t)t∈N0 , and investigate
which states are not separated.

Definition 2.8. Let X = (Xi)i∈N be a sequence of observables. Define the set of
no (X, T )-separation ΘX,T by

ΘX,T :=

{
ω ∈ Ω

∣∣∣∣ ((X ◦ T ◦t)t∈N0

)−1 ((
X ◦ T ◦t

)
t∈N0

(ω)
)
6= {ω}

}
.

If ΘX,T = ∅, we say that Ω is (X, T )-separated, and if ΘX,T lies in A and is a µ-null
set, we say that Ω is almost surely (X, T )-separated.

Note that if Ω is (X, T )-separated, then, for any two different states ω1, ω2 ∈ Ω,
there exists some i ∈ N and some t ∈ N0 such that

Xi

(
T ◦t(ω1)

)
6= Xi

(
T ◦t(ω2)

)
. (2.13)

If there exists some i ∈ N and some t ∈ N0 such that (2.13) holds for two different
states ω1, ω2 ∈ Ω, we say ω1, ω2 are (X, T )-separated. Moreover, note that the
restriction of the measuring process

(
X ◦ T ◦t

)
t∈N0

to any subset B ⊂ Ω \ΘX,T , i.e.(
X ◦ T ◦t

)
t∈N0
|B, is one-to-one.

Example: Consider the irrational rotation Ta (see Example 2.2 and Example 2.3),
the Lebesgue measure λ and the continuous observable Y defined by

Y (ω) =


0 if ω ∈

[
0, 1

2

)
,

1
2 − ω if ω ∈

[
1
2 ,

3
4

)
,

ω − 1 if ω ∈
[

3
4 , 1
) (2.14)

(see Figure 2.6). On the one hand, Ω = [0, 1) is not Y -separated. On the other
hand, for any two states ω1 6= ω2 of Ω, there exists a time t ∈ N such that

Y
(
T ◦ta (ω1)

)
6= Y

(
T ◦ta (ω2)

)
since Ta holds dense orbits.

F Remark 2.7 (A different representation of the set of no (X, T )-separation).
In the following, we consider the dynamical system (Ω,B(Ω), µ, T ) and a sequence
X = (Xi)i∈N of observables. We say that two states ω1 6= ω2 are equivalent with
respect to X and T if(

X
(
T ◦t(ω1)

))
t∈N0

=
(
X
(
T ◦t(ω2)

))
t∈N0

.

Let Ω̃ ⊂ Ω be a set which contains exactly one element of each equivalence class (we
assume the axiom of choice; see for instance the remarks of Billingsley [13, A8.]). If
the cardinality of Ω̃ is greater than one, then

ΘX,T =
⋃
ω∈Ω̃

((
X ◦ T ◦t

)
t∈N0

)−1 ((
X ◦ T ◦t

)
t∈N0

(ω)
)
.
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0 ω1 ω2 1
2

T ◦ta (ω1) 3
4

T ◦ta (ω2)1

−1
4

0

Figure 2.6: Graph of the continuous observable Y as given in (2.14). Consider
the irrational rotation Ta, then Ω = [0, 1) is not Y -separated, however, for
any two states ω1 6= ω2, there exists a time t ∈ N such that Y

(
T ◦ta (ω1)

)
6=

Y
(
T ◦ta (ω2)

)
(see Example 2.2 and Example 2.3).

Since
(
RN × RN0

)
is Hausdorff (see Appendix A.8 and Munkres [68, Theorem 19.4.])

the singleton
{(

X ◦ T ◦t
)
t∈N0

(ω)
}

is closed for every ω ∈ Ω̃, and thus measurable

with respect to B
(
RN × RN0

)
. Hence, for each ω ∈ Ω̃,

Aω :=
((

X ◦ T ◦t
)
t∈N0

)−1 ((
X ◦ T ◦t

)
t∈N0

(ω)
)

(2.15)

is measurable with respect to B(Ω) (see also Appendix B.8). Therefore, if Ω̃ is
countable, i.e. the set

(
X ◦ T ◦t

)
t∈N0

(
ΘX,T

)
is countable, then ΘX,T ∈ B(Ω). F

The following theorem goes back to the work of Antoniouk et al. [9, Section 4.1.]
and Keller et al. [49, Lemma 6.9].

Theorem 2.3. Let X = (Xi)i∈N be a sequence of observables and ΘX,T be the set
of no (X, T )-separation. If there exists some B ∈ A such that

(i) ΘX,T ⊂ B,
(ii) µ(B) = 0 and
(iii)

(
X ◦ T ◦t

)
t∈N0

(A \B) ∈ B
(
RN × RN0

)
for all A ∈ A,

then

A
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
.

Note that by slightly adapting Theorem 2.3 and considering ΘX one gets sufficient
conditions on the observables such that (2.12) holds true.

F Remark 2.8 (A closer look at Theorem 2.3). If Condition (i) and Condition (ii)
of Theorem 2.3 are fulfilled, then Ω is almost surely (X, T )-separated. In order to
check Condition (iii) of Theorem 2.3, the following result from descriptive set theory
is useful (see for instance Kechris [47, Theorem 15.1] and Kuratowski [59, Theorem
1 in Section 39 V.]). For a deeper discussion of the topic, we refer the reader to
Kechris [47], Kuratowski [59] and Cantón et al. [20].
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Lemma 2.4. Let Ω be a separable and completely metrizable topological space (see
Appendix A.7 and Appendix A.9). Moreover, let µ be a measure on B(Ω) and
X : (Ω,B(Ω), µ)→ (R,B(R)) be a random variable. If A ∈ B(Ω) and the restriction
X|A is one-to-one, then X(A) ∈ B(Ω).

Let X = (Xi)i∈N be one-to-one. This is true, for instance, if each Xi is one-to-one
or each Xi is the i-th coordinate projection (see Remark 2.2). Hence, if Ω is a
separable and completely metrizable topological space and µ a measure on B(Ω),
then X(A) ∈ B

(
RN) for all A ∈ B(Ω). Moreover, ΘX = ∅. Therefore, (2.12) holds

true, and thus, in particular, (2.11) is fulfilled. In Section 2.3.2, we set another
example of observables that fulfill (2.11). F

Proof of Theorem 2.3. We need to show that for each A ∈ A there exists some

F ∈ σ
((

X ◦ T ◦t
)
t∈N0

)
such that µ(A4 F ) = 0. Now, fix A ∈ A. With B as in Theorem 2.3 set

F := A \B.

As A,B ∈ A also F ∈ A. Since (X ◦ T ◦t)t∈N0 |F is one-to-one, we obtain

F =
((

X ◦ T ◦t
)
t∈N0

)−1 ((
X ◦ T ◦t

)
t∈N0

(F )
)

(iii)
∈
((

X ◦ T ◦t
)
t∈N0

)−1 (
B
(
RN × RN0

))
.

Thus F ∈ σ
((

X ◦ T ◦t
)
t∈N0

)
(see also Appendix B.8). Finally, by the definition of

F , we obtain

µ(A4 F ) = µ(A ∩ B) ≤ µ(B) = 0,

which completes the proof.

Proposition 2.3. Let µ be a measure on the Borel σ-algebra B(Ω). Suppose that all
atoms (see Appendix B.2) are separated, the set

(
X ◦ T ◦t

)
t∈N0

(
ΘX,T

)
is countable

and B(Ω)
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
, then µ

(
ΘX,T

)
= 0.

Corollary 2.1. Let µ be a measure on B(Ω). Suppose that all atoms are separated

by X, the set X
(
ΘX
)

is countable and B(Ω)
µ
⊂ σ(X). Then µ

(
ΘX
)

= 0.

Proof. This follows directly from Proposition 2.3 by setting T = id.

Proof of Proposition 2.3. We use the results given in Remark 2.7 and conduct a
proof by contradiction. Suppose that µ

(
ΘX,T

)
6= 0. Note that any Aω as given in
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(2.15) is measurable with respect to B(Ω). Since all atoms are separated and Ω̃ is
countable, there exists an element Aω and a measurable subset Ãω such that

µ(Aω) > µ(Ãω) > 0 and µ(Aω) > µ(Aω \ Ãω) > 0.

In the case that
(
X ◦ T ◦t

)
t∈N0

(ω) ∈ B, we have

Ãω ⊂ Aω ⊂
((

X ◦ T ◦t
)
t∈N0

)−1
(B)

and

µ

(((
X ◦ T ◦t

)
t∈N0

)−1
(B)4 Ãω

)
≥ µ(Aω \ Ãω) > 0.

In the case that
(
X ◦ T ◦t

)
t∈N0

(ω) /∈ B, we have((
X ◦ T ◦t

)
t∈N0

)−1
(B) ∩ Ãω = ∅

and, consequently,

µ

(((
X ◦ T ◦t

)
t∈N0

)−1
(B)4 Ãω

)
≥ µ(Ãω) > 0.

Combining the two cases, we see that µ(A′4Ãω) > 0 for anyA′ ∈ σ
((

X ◦ T ◦t
)
t∈N0

)
,

which contradicts our assumption

B(Ω)
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
,

and completes the proof (see also Appendix B.8).

2.3.2 Symbolic dynamics

Do we lose information if we apply symbolic dynamics? In this section, we present
sufficient conditions on a sequence (Cr)r∈N of finite partitions Cr ⊂ A of Ω such
that (2.10) holds. Note that we pay no further attention to the origin of any finite
partition in the following (see Remark 2.4).

Recall, that each finite partition of Ω entails a coarse-grained observation of the
considered time-dependent system by a random variable (compare to Section 2.1.2).
Therefore, we investigate initially which states are not separated by those coarse-
grained observations. We consider the dynamical system (Ω,B(Ω), µ, T ) in the fol-
lowing. For a treatment of a more general case, we refer the reader to Rudolph [75].

Definition 2.9. Let (Cr)r∈N be a sequence of finite partitions and (Yr)r∈N be the
sequence of coarse-grained observations with respect to (Cr)r∈N, i.e. any Yr is given
by

Yr(ω) :=

|Cr|∑
l=1

l 1
C

(l)
r

(ω) (2.16)

for ω ∈ Ω. If Ω is (Yr)r∈N-separated, we say that Ω is ((Cr)r∈N)-separated. Moreover,
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Chapter 2 The mathematical framework

if Ω is almost surely ((Yr)r∈N)-separated, we say that Ω is almost surely ((Cr)r∈N)-
separated.

Conventionally (see for instance Rudolph [75]), (Cr)r∈N is said to separate two dif-
ferent states ω1, ω2 ∈ Ω if there exists some r ∈ N and some l ∈ N0 such that

ω1 ∈ C(l)
r and ω2 /∈ C(l)

r . (2.17)

Moreover, by convention, Ω is (almost-surely) ((Cr)r∈N)-separated if for (almost)
all distinct states ω1, ω2 ∈ Ω there exists some i ∈ N and some t ∈ N0 such that
(2.17) holds. Note that this complies with the assumption that Ω is almost surely
((Yr)r∈N)-separated. Hence we have two equivalent definitions of Ω being almost
surely ((Cr)r∈N)-separated.

Theorem 2.4. Let (Cr)r∈N be a sequence of finite partitions. If Ω is almost surely
((Cr)r∈N)-separated, then

A
µ
⊂ σ((Cr)r∈N).

Proof. We apply Theorem 2.3. In order to do so, let (Yr)r∈N be the sequence
of coarse-grained observations with respect to (Cr)r∈N, i.e. each Yr is given as
in (2.16). Since Ω is almost surely ((Cr)r∈N)-separated, it is also almost surely
(Yr)r∈N-separated, i.e. Θ(Yr)r∈N lies in B(Ω) and is a µ-null set.

Moreover, Yr(B) ∈ B(R) for all B ∈ B(Ω) since any Yr(B) is a finite union of
singletons that are measurable with respect to B(R) (compare also to Remark 2.7).
Hence we have

(Yr)r∈N ∈ B(R)⊗N = B
(
RN
)

(see also Appendix B.8). Moreover, by Theorem 2.3,

B(Ω)
µ
⊂ σ((Yr)r∈N). (2.18)

Further, each Yr is both B(Ω)-B(R)-measurable and σ(Cr)-B(R)-measurable (see
Billingsley [13, remarks on simple real functions in Section 13]). In particular,

σ((Yr)r∈N) ⊂ σ((Cr)r∈N)

which, together with (2.18), is the desired conclusion.
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Chapter 3

A symbolic route to the KS entropy

Does a freely chosen symbolic scheme provide a route to the KS entropy? In this
chapter, we show that, under relatively weak assumptions, a symbolic scheme that
regards a dependency between two measured values provides a route to the KS
entropy, i.e. the symbolic scheme entails a sequence (Cr)r∈N of finite partitions that
is increasing and generating. This means, from a different angle, the search for
a symbolic scheme that characterizes the KS entropy directly can be skipped, i.e.
the symbolic scheme entails a partition C that is generating under T . A shortened
version of this chapter is published in Stolz and Keller [79].

3.1 Outline of this chapter

We use our general approach of modeling a real-world system by a measure-preser-
ving dynamical system (Ω,A, µ, T ) and measurements by random variables

Xi : (Ω,A, µ)→ (R,B(R)); i ∈ N

(see Chapter 2). Recall, that the most ideal, however unrealistic, case is given if
we know the underlying dynamics and choose a symbolic scheme that characterizes
the KS entropy directly (see for instance Crutchfield and Packard [26], Bollt et
al. [15], Kennel and Buhl [56] and the references given therein). Since, as discussed
in Section 2.2, if a partition C ⊂ A of Ω is generating under T , i.e.

A
µ
⊂ σ(((C)t)t∈N),

where ((C)t)t∈N is the partition sequence of C under T , then

hKS
µ (T ) = hµ(T, C)

(see Lemma 2.1).

Another possibility, discussed in Section 2.2, and of interest in this chapter, is to
choose a symbolic scheme that entails a sequence (Cr)r∈N of finite partitions Cr ⊂ A
of Ω that is increasing, i.e.

Cr ≺ Cr+1

for all r ∈ N and generating, i.e.

A
µ
⊂ σ((Cr)r∈N), (3.1)
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Chapter 3 A symbolic route to the Kolmogorov-Sinai entropy

because then

hKS
µ (T ) = lim

r→∞
hµ(T, Cr) = sup

r∈N
hµ(T, Cr) (3.2)

(see Lemma 2.3).

We are particularly interested in symbolic schemes which entail special types of
increasing sequences (Cr)r∈N of finite partitions (see Section 3.2). This enables us
to study different symbolic schemes at once and to answer, in this way, whether
(3.1), and thus (3.2) holds. The class of symbolic schemes that we consider arises
naturally and is sufficiently general. For instance, the class encompasses threshold
crossings and the ordinal approach (see Section 3.2.1 and Section 3.2.2). In fact, we
obtain an optimal generalization of the ordinal idea which allows us to utilize many
of the achievements made in ordinal symbolic dynamics. In the course of this, we
mainly focus on results stated in Keller et al. [55], Antoniouk et al. [9] and Keller et
al. [49].

Note that we study (3.1) by the real-world scenario where only measurements and
symbolic-based analytical tools are at hand, and state sufficient conditions such that
the information given by a measuring process is preserved, i.e.

σ
((

X ◦ T ◦t
)
t∈N0

) µ
⊂ σ((Cr)r∈N) (3.3)

(see Section 3.3.2). Our results include conditions which ensure that the information
given by the observables is preserved, i.e.

σ(X)
µ
⊂ σ((Cr)r∈N) (3.4)

(see Section 3.3.1). Hence, if we assume in the case of (3.3) that

A
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
(3.5)

(see Section 2.3.1), and in the case of (3.4) that

A
µ
⊂ σ(X), (3.6)

then (Cr)r∈N is generating and a route to the KS entropy is provided.

Note that if the conditions stated in this chapter are not met, the sequence (Cr)r∈N
can still be generating (see Section 2.3.2, Rudolph [75] and the discussion in Sec-
tion 3.5). This we keep in mind, however, we draw no further attention to it in
Section 3.2 and Section 3.3. Moreover, recall that (3.5) is a consequence of (3.6),
hence (3.5) is a stronger assumption (see Section 2.3.1 and Figure 2.6). Moreover,
if a sequence (Cr)r∈N fulfills (3.4), then (3.3) does not necessarily hold true, hence
(3.4) is a weaker assumption than (3.3).

Further, we assume that T is ergodic in several statements of this chapter, however,
if T is non-ergodic but Ω can be embedded into some compact metrizable space such
that A = B(Ω), we still obtain (3.2) by applying the ergodic decomposition theorem
(see Section 3.4).

We close this chapter by giving a detailed example, remarks and a visual summary
of our results (see Section 3.5 and Section 3.6).
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Chapter 3 A symbolic route to the Kolmogorov-Sinai entropy

3.2 Considering different symbolic schemes at once

We are interested in symbolic schemes that classify the mutual position of measure-
ments at two times s and t according to a finite partition R of the two-dimensional
Euclidean space R×R = R2. More precisely, we are interested in a symbolic scheme
that entails the finite partition

(Xi ◦ T ◦s, Xi ◦ T ◦t
)−1

(R)

=
{{
ω ∈ Ω |

(
Xi(T

◦s(ω)), Xi(T
◦t(ω))

)
∈ R

}
| R ∈ R

}
⊂ A

(3.7)

of Ω for one observable, or rather the join of finite partitions

PR,E(T,Xi) :=
∨

(s,t)∈E

(
Xi ◦ T ◦s, Xi ◦ T ◦t

)−1
(R) ⊂ A,

where E ⊂ N0 × N0 is a finite set of time pairs.

Hence, for n ∈ N observables, the symbolic scheme entails the finite partition of Ω
given by

PR,E (T, (Xi)
n
i=1) :=

n∨
i=1

∨
(s,t)∈E

(
Xi ◦ T ◦s, Xi ◦ T ◦t

)−1
(R) ⊂ A. (3.8)

Moreover, the symbolic scheme should involve a sequence (Ed)d∈N with Ed ⊂ N0×N0

in accordance with Definition 3.1. By this,

(Pd)d∈N :=
(
PR,Ed (T,Xi)

)
d∈N

and

(Pd,n)d,n∈N :=
(
PR,Ed (T, (Xi)

n
i=1)

)
d,n∈N (3.9)

are increasing sequences of finite partitions (see Lemma 3.1). This also means that,
if we choose a finite partition R of R2 and a sequence (Ed)d∈N consistent with
Definition 3.1, we obtain symbolic schemes of the form we are interested in. In light
of this, we callR the basic symbolization scheme and the tuple (R, (Ed)d∈N) symbolic
scheme. Examples of R and Ed are listed in Table 3.1. Note that we display the two-
dimensional Euclidean space R2 by a square for illustrative purposes. Moreover, we
denote PR,Ed (T,Xi) and PR,Ed (T, (Xi)

n
i=1) briefly by Pd and by Pd,n, respectively,

when no confusion can arise, and refer to (Pd,n)d,n∈N as a sequence as well.

Definition 3.1. We call a sequence (Ed)d∈N of sets Ed with

E1 ⊂ E2 ⊂ · · · ⊂ {(s, t) | s, t ∈ N0, s < t}

a timing if there exists a set {v0, v1, . . . } ⊆ N0 with v0 < v1 < v2 < . . . such that:

(i) Ed ⊂ {v0, v1, . . . , vd}2 for each d ∈ N, and
(ii) for each s ∈ {v0, v1, . . . , vd}, there exists some t ∈ {v0, v1, . . . , vd} such that

(s, t) ∈ Ed or (t, s) ∈ Ed.
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3.2 Considering different symbolic schemes at once

Condition (i) ensures that each Ed is finite, and Condition (ii) guarantees that each

Ed consists of at least d and of no more than (d+1)d
2 time pairs. For that reason,

the parameter d quantifies how often R is applied in order to assign a symbol to
one state in Ω. In Remark 3.1, we consider Definition 3.1 under graph-theoretic
aspects.

A timing is, for instance, given by the sets

Ed = {(s, t) | s, t ∈ {0, 1, 2, . . . , d} with s < t} ; d ∈ N. (3.10)

Due to the structure of (3.10), we call the associated sequence (Ed)d∈N the full
timing in the following.

F Remark 3.1 (Symbolic schemes studied by graph theory). A symbolic scheme
(R, (Ed)d∈N) can be represented by an undirected simple graph, in which the vertices
represent time points that are relevant for assigning a symbol to some state in Ω and
edges represent an application of R. With that in mind, a timing can be interpreted
as a sequence (Ed)d∈N of edge-sets Ed of an infinite undirected graph (V,E) as
follows. Let

V := {v0, v1, . . . } ⊆ N0

be the vertex set and

E := {(s, t) ∈ V 2 | s < t}

be the edge set. Each Ed is a subset of E. Condition (i) of Definition 3.1 ensures
that Ed is finite and only connects vertices in Vd := {v0, v1, . . . , vd}. Moreover,
Condition (ii) of Definition 3.1 ensures that each vertex in Vd is at least incident
to one edge in Ed, i.e. the sub-graph (Vd, Ed) of (V,E) does not have any isolated
vertices. Further, by the assumption E1 ⊂ E2 ⊂ . . . , the graph (Vd+1, Ed+1) is an
extension of the graph (Vd, Ed) by adding the vertex vd+1 to Vd and at least one new
edge to Ed that is incident to vd+1. In sum, we have a nested sequence of graphs, in
particular, in the case of the full timing a sequence of complete graphs is given. F

By Definition 3.1, it is indeed ensured that we consider a sequence of finite partitions
that is increasing with respect to ≺ (see Definition 2.5) as Lemma 3.1 shows.

Lemma 3.1. Let (Ed)d∈N be a timing and R be a finite partition of R2. The
sequence of partitions(

PR,Ed (T, (Xi)
n
i=1)

)
d,n∈N

is an increasing sequence in n for fixed d, and for fixed n, it is an increasing sequence
in d with respect to ≺. In fact,(

PR,Edj
(
T, (Xi)

nj
i=1

))
dj ,nj∈N

is an increasing sequence in j if (nj)j∈N and (dj)j∈N are increasing sequences in N.
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Proof. The proof follows by the design of the partition given in Equation (3.8),
which is the coarsest partition refining all(

Xi ◦ T ◦s, Xi ◦ T ◦t
)−1

(R)

with i ∈ {1, 2, . . . , n} and (s, t) ∈ Ed (see Equation (3.7)). Moreover, it holds that
Ed ⊂ Ed+1. Thus

PR,Ed (T, (Xi)
n
i=1) ≺ PR,Ed

(
T, (Xi)

n+1
i=1

)
and

PR,Ed (T, (Xi)
n
i=1) ≺ PR,Ed+1 (T, (Xi)

n
i=1) ,

which is the desired conclusion.

F Remark 3.2 (Conventions). For subsequent statements, we define

PR,Ed(T, Yi) :=
∨

(s,t)∈Ed

(
Yi ◦ T ◦s, Yi ◦ T ◦t

)−1
(R) ⊂ A

and

PR,Ed (T, (Yi)
n
i=1) :=

n∨
i=1

∨
(s,t)∈Ed

(
Yi ◦ T ◦s, Yi ◦ T ◦t

)−1
(R) ⊂ A

for arbitrary random variables Yi with i ∈ N, and consider, for instance, the special
case Yi = Xi ◦ T ◦l and (Yi)

n
i=1 =

(
Xi ◦ T ◦l

)n
i=1

for some l, i, n ∈ N, respectively.

Moreover, we say a sequence (Pd,n)d,n∈N is generating if A
µ
⊂ σ((Pd,n)d,n∈N). F

In the following, we demonstrate that symbolic schemes (R, (Ed)d∈N) are natural
and unifying known symbolic approaches (compare also to Table 3.1). In particular,
we discuss the determination of the KS entropy in this context (compare also to
Section 2.2). Moreover, note that just the mutual position of two measured values
is taken into account, entirely in the spirit of—never forget yesterday but always
live for today; you never know what tomorrow can bring or what it can take away.
This complies with the ordinal approach (see Section 3.2.2), and gives an artificial
two-dimensional blow up of threshold crossings (see Section 3.2.1).

3.2.1 Classical symbolic analysis

Here, we discuss classical symbolic schemes (compare to Chapter 1). For conve-
nience, we assume that Ω = R, and consider the simple case that Ω is subdivided
into a finite number of intervals I1, I2, . . . , Ik. This method is often called threshold
crossings in classical symbolic analysis (see Figure 3.1).

In order to determine the entropy rate hµ(T, C) with respect to the finite partition
C = {I1, I2, . . . , Ik}, we have to generate the sequence ((C)t)t∈N, where

(C)t =
{
C(a1,a2,...,at)

∣∣∣ a1, a2, . . . , at ∈ {1, 2, . . . , k}
}
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0 5 10 15 20

4

3

2

1

Sequence of symbols from the alphabet {1, 2, 3, 4}:
4, 2, 4, 1, 1, 2, 4, 4, 4, 2, 2, 3, 3, 2, 2, 2, 2, . . .

1 2 3 4

Figure 3.1: A time series is transformed into a sequence of symbols by a thresh-
old crossings technique. Left: intervals of equal size are turned into symbols from
the alphabet {1, 2, 3, 4}. Right: two-dimensional view of the basic symbolization
scheme (see Section 3.2.1). This figure is published in Stolz and Keller [79].

(see Section 2.2). Recall, that (C)t ≺ (C)t+1 for all t ∈ N, and

C(a1,a2,...,at) =
{
ω ∈ Ω | ω ∈ Ia1 , T (ω) ∈ Ia2 , . . . , T ◦t−1(ω) ∈ Iat

}
consists of those states ω ∈ Ω which have the symbolic itinerary a1, a2, . . . , at. Note
that, for all t ∈ N, it holds

(C)t =

t−1∨
s=0

(T ◦s)−1(C).

A classical symbolic scheme can be written as a tuple (R, (Et)t∈N) as proposed
previously. Choose, for example,

R := {I1 × R, I2 × R, . . . , Ik × R} (3.11)

(see Figure 3.1) and

Et := {(0, 1), (1, 2), (2, 3), . . . , (t− 1, t)}; t ∈ N. (3.12)

In fact, (3.11) and (3.12) provide an artificial two-dimensional blow up of any par-
tition (C)t:

(C)t =
t−1∨
s=0

(X ◦ T ◦s)−1((C)1) =
∨

(s,u)∈Et

(X ◦ T ◦s, X ◦ T ◦u)−1(R) = PR,Et(T,X).

We deploy the single observable X (meaning X = X in the general framework)
with X(ω) = ω for all ω ∈ Ω in accordance with our general approach (compare to
Remark 2.8 where we consider coordinate projections). It follows that the partitions
Pd := PR,Ed(T,X) with (3.11) and (3.12) coincide with the partitions (C)d. In
particular, it holds

hµ(T,Pd) = hµ(T, (C)d)
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Figure 3.2: Graph of the full tent map T and the iterations T ◦2 and T ◦3

(see examples 2.4, 2.5 and 2.7). Moreover, non-generating partitions under T
which are entailed by threshold crossings (see Example 3.1 for more details).
Information about possible consequences if a non-generating partition is used
in time series analysis is given by Bollt et al. [15]. This figure is a derivative of
Stolz and Keller [79, Figure 4].

for all d ∈ N. Moreover, since hµ(T, (C)t) = hµ(T, C) for all t ∈ N (see for instance
Einsiedler and Schmidt [32, Theorem 3.13]), we obtain

hµ(T,Pd) = hµ(T, C)

for all d ∈ N. This means, as expected, that (Pd)d∈N is generating if and only if C is
generating under T . In other words, R as given in (3.11) has no generating potential
when C fails to be generating under T .

♣ Example 3.1 (Threshold crossings applied to the full tent map on [0, 1)). In
Figure 3.2, we study two different initial partitions, that is on the left D = (D)1 ={[

0, 6
7

)
,
[

6
7 , 1
)}

and on the right G = (G)1 =
{[

0, 1
4

)
,
[

1
4 , 1
)}

, under the full tent
map on [0, 1) (see examples 2.4, 2.5 and 2.7).

Moreover, we visualize, in Figure 3.2, the partitions (D)2, (D)3, (G)2 and (G)3. Note
that some elements of the partitions are unions of intervals, this is indicated for (D)3

and (G)3 by different grayscale values, whereas white represents non-united intervals
that are elements of (D)3 and (G)3, respectively.

The KS entropy is ln(2) (see Example 2.7), and in fact, for the initial partition
C = (C)1 =

{[
0, 1

2

)
,
[

1
2 , 1
)}

, it holds

Hµ(C) = 1
2Hµ((C)2) = 1

3Hµ((C)3) = · · · = 1
tHµ((C)t) = · · · = ln(2)

(see Figure 2.3 and Example 2.4), whereas

Hµ(D) = −6
7 ln

(
6
7

)
− 1

7 ln
(

1
7

)
< ln(2) and Hµ(G) = −1

4 ln
(

1
4

)
− 3

4 ln
(

3
4

)
< ln(2)

(see Section 2.2.1). Since 1
tHµ((K)t) decreases to hµ(T,K) for any finite partition

K ⊂ A of Ω (see Walters [87, Chapter 4]), it follows, by Lemma 2.3, that C is a
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generating partition, and D and G are non-generating partitions under T . Non-
generating partitions are also known as misplaced partitions (see Bollt et al. [15]
and Steuer et al. [78] for detailed information about possible consequences if a non-
generating partition is used in time series analysis). ♣

3.2.2 Ordinal symbolic analysis

In the following, we discuss the idea of Bandt and Pompe [11] (compare to Chapter 1)
from our perspective. Their approach is particularly interesting since it entails a
sequence of finite partitions which is generating (see Antoniouk et al. [9]). In fact,
our approach unravels quite clearly the secret behind it and enables us, in turn,
to list good basic symbolization schemes and timings such that the corresponding
sequences of finite partition have potential to be generating.

Recall, that Bandt and Pompe had the idea to partition the state space according to
ordinal patterns of order d ∈ N. In our framework with a sequence X = (Xi)i∈N of
random variables, this idea reads as follows. Two states ω1 and ω2 ∈ Ω are grouped

together if for each i ∈ N the orbits
(
Xi

(
T ◦t(ω1)

))d
t=0

and
(
Xi

(
T ◦t(ω2)

))d
t=0

have
the same order relations, i.e. for all s, t with 0 ≤ s < t ≤ d it holds

Xi (T ◦s(ω1)) ≥ Xi

(
T ◦t(ω1)

)
if and only if Xi (T ◦s(ω2)) ≥ Xi

(
T ◦t(ω2)

)
.

The partition, so obtained, can be written in the form PR,Ed(T, (Xi)
n
i=1) with the

basic symbolization scheme

R =
{{

(x, y) ∈ R2 | y ≤ x
}
,
{

(x, y) ∈ R2 | y > x
}}

(3.13)

and the full timing (Ed)d∈N as given in (3.10). Thus the sequence (Pd,n)d,n∈N with
(3.13) and (3.10) is increasing (see Lemma 3.1). Let ω be an element of Ω. Since the
approach of Bandt and Pompe is based on the full timing, and therefore, involves
to arrange

Xi(ω), Xi(T (ω)), . . . , Xi(T
◦d(ω))

into an order, we call the approach strong ordinal approach and d ∈ N ordinal
order.

In the literature, the time pairs are often extended by a delay parameter τ ∈ N, i.e.
the sets

{(s, t) | s, t ∈ {0, τ, 2τ, . . . , dτ} with s < t} ; d ∈ N

are considered (see for instance Cao et al. [21], Keller et al. [53] and Zanin et al. [88]).
In this thesis, we confine ourselves to time pairs that are not extended by a delay pa-
rameter, however, the results can be adjusted to the extension. However, note here,
that delay parameters are interesting for practical purposes, for instance, they allow
more flexibility for later applications, and are used to detect complexity changes (see
for instance Riedl et al. [73], Unakafova [85] and Keller et al. [50]).

Note that the basic symbolization schemeR, as given in (3.13), regards a dependency
between two measurements by Xi. This yields a substantial difference between
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0 2 4 6 8 10 12 14 16 18 20

Sequence of ordinal patterns:

x < y

x ≥ y

Figure 3.3: A time series is transformed into a sequence of symbols the strong
ordinal way. Left: vectors of length 3 are transformed into ordinal patterns of
order 2. Right: two-dimensional view of the basic symbolization scheme (see
Section 3.2.2). This figure is published in Stolz and Keller [79].

classical and ordinal symbolic schemes which is shown by Antoniouk et al. [9]. The
authors state, for R as given in (3.13) and the full timing, the following:

If T is ergodic and X = (Xi)i∈N satisfies (3.5) or weaker (3.6), then
(Pd,n)d,n∈N is generating, hence

hKS
µ (T ) = lim

d,n→∞
hµ(T,Pd,n) = sup

d,n∈N
hµ(T,Pd,n).

(♠)

Note that Antoniouk et al. [9] worked with a finite random vector X = (Xi)
n
i=1, the

generalization of their results to infinitely many observables is given by Keller et
al. [49].

In conclusion, by choosing R as given in (3.13) and considering the full timing, we
obtain a generating sequence (Pd,n)d,n∈N (see Remark 3.2), regardless of whether

P1,n = PR,E1 (T, (Xi)
n
i=1)

is generating under T for some n ∈ N (compare to Section 3.2.1). In the next section,
we discuss for which R and (Ed)d∈N similar results are obtained.

3.3 Generating sequences

Does a symbolic scheme entail a generating sequence of finite partitions? In this sec-
tion, we look more closely at the choices of R and (Ed)d∈N for which the sequence
(Pd,n)d,n∈N of finite partitions preserves the information given by the observables

(see Equation (3.4)) or even the information given by the measuring process (see
Equation (3.3)). In fact, we show that not only the strong ordinal approach ful-
fills (3.4) or even (3.3), but also other symbolic-based techniques with symbolic
schemes (R, (Ed)d∈N).
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x < y

x ≥ y

!

Figure 3.4: Statement (♠) remains true if R is substituted by a refinement of
(3.13). This figure is published in Stolz and Keller [79].

The first theorem, we present here, motivates our general idea and our results. It is
a special case of Theorem 3.2 (see Section 3.3.1) and an extension of ordinal sym-
bolic analysis (compare to Figure 3.4). Since we want to include as many symbolic
schemes as possible, we deploy a map g : R←↩ in our considerations (compare also
to Section 3.3.1).

Theorem 3.1. Let Ω be a Borel subset of RN and Xi with i ∈ N be the i-th
coordinate projection. Moreover, let (Ed)d∈N be the full timing and R be the basic
symbolization scheme defined by

R =
{{

(x, y) ∈ R2 | y ≤ g(x)
}
,
{

(x, y) ∈ R2 | y > g(x)
}}

, (3.14)

or a refinement of (3.14), where g : R ←↩ is a one-to-one B(R)-B(R) measurable
map. If T is ergodic and µ(A) > 0 for all open non-empty subsets A of Ω, then
Statement (♠) is fulfilled for the tuple (R, (Ed)d∈N).

Note that (3.14) agrees with (3.13) for the special case that g coincides with the
identity map, and the coordinate projections entail that (3.6) is fulfilled (see Re-
mark 2.8). Moreover, it is worth noting that a basic symbolization scheme as given
in (3.14) regards a dependency between the value measured by g ◦Xi at some time
s ∈ N and the value measured by Xi at some time t ∈ N with s < t by construction.
This is true since{

Xi ◦ T ◦t ≤ g ◦Xi ◦ T ◦s
}
∈ σ((Pd,n)d,n∈N)

for all i ∈ N and s, t ∈ N0 with s < t. Note that the previous assertion is also
fulfilled if a basic symbolization scheme is considered that refines (3.14).

The requirements on g and on the open non-empty subsets of Ω, in Theorem 3.1,
are not immediately evident, however, are sufficient to avoid any information loss
by considering g ◦Xi and (Pd,n)d,n∈N, respectively (see Section 3.3.1).

3.3.1 Preserving the information given by observables

In this section, we study the question whether a symbolic-based analysis technique
with underlying symbolic scheme (R, (Ed)d∈N) preserves the information given by
the observables. In particular, we show that (3.4) is met if the considered symbolic
scheme retains, for every observable Xi of the sequence X = (Xi)i∈N and ω ∈ Ω,
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x < y

x ≥ y

?

Figure 3.5: The question arises whether Statement (♠) remains true if arbitrary
basic symbolization schemes are considered (see Section 3.3). This figure is
published in Stolz and Keller [79].

information on whether the graph of Xi(T
◦t(ω)) with respect to t ∈ N passes the

measured value Xi(ω). In order to do this, we utilize that, in the ergodic case, the
relative number of how often a measured value is passed over time coincides almost
surely with FXi ◦ Xi. The map FXi : R → [0, 1] is the distribution function of Xi

given by

FXi(a) := µ({ω ∈ Ω | Xi(ω) ≤ a})

for all a ∈ R. Moreover, we utilize that σ(Xi)
µ
⊂ σ(FXi ◦Xi).

Since we want to include as many symbolic schemes as possible, we deploy a self-
map g : R←↩ in our considerations. Thereby, we take symbolic schemes into ac-
count which only retain information on whether the graph of Xi(T

◦t(ω)) passes
the measured value g ◦ Xi(ω). In fact, as we are going to show in this section, if

σ(Xi)
µ
⊂ σ(g ◦Xi), then σ(Xi)

µ
⊂ σ

(
(Cr)r∈N

)
.

Definition 3.2. Let X : (Ω,A, µ) → (R,B(R)) be a random variable. We call a
map φ : R←↩ admissible with respect to X if

σ(X)
µ
⊂ σ(φ ◦X).

A map φ : R ←↩ is, for instance, admissible with respect to a random variable X
if it is a one-to-one B(R)-B(R) measurable map (see Remark 3.3). More general
conditions on φ are given in Lemma 3.4.

We present the following theorem in a very general form, i.e. we consider an arbitrary
sequence (Cr)r∈N of finite partitions, in order to emphasize the essentials. When we
have a certain symbolic scheme in mind, and thus a fixed sequence of finite partitions,
we replace (Cr)r∈N accordingly.

Theorem 3.2. Let T be ergodic, X an observable, FX the distribution function of
X and (Cr)r∈N be a sequence of finite partitions. If there exists a map g : R←↩ such
that

(i) g is admissible with respect to X,
(ii) FX is admissible with respect to g ◦X and
(iii)

{
X ◦ T ◦t ≤ g ◦X

}
∈ σ((Cr)r∈N) for all t ∈ N0,
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then

σ(X)
µ
⊂ σ((Cr)r∈N).

Note that Condition (i) and Condition (ii) are fulfilled if g is the identity map (see
the proof of Lemma 3.4 and Remark 3.3). Hence, if a symbolic scheme yields{

X ◦ T ◦t ≤ X
}
∈ σ((Cr)r∈N),

for all t ∈ N, then, by Theorem 3.2, the information given by the observable X is
preserved. This is for example the case if an ordinal approach with the basic sym-
bolization scheme as given in (3.13), or a refinement of (3.13), is considered. Recall
also that, in the case of classical symbolic schemes, Condition (iii) cannot be guar-
anteed, and therefore, Theorem 3.2 cannot be applied (compare to the deliberations
and examples in Section 3.2.1 and Section 3.2.2).

In order to prove Theorem 3.2, we generalize the results of Antoniouk et al. [9,
Lemmas 3.2, 3.3 and Corollary 3.4] by extending their proofs. For this purpose,
let X and Y be two observables and FX the distribution function of X. Note that
the relative number of how often the graph of X(T ◦t(ω)) passes the measured value
Y (ω) for some ω ∈ Ω up to a certain time point d ∈ N is given by the counting map
IX,Yd : Ω→ [0, 1] defined by

IX,Yd (ω) :=
1

d

d∑
t=1

1{X ◦T ◦t≤Y }(ω)

for all ω ∈ Ω. We have divided the proof of Theorem 3.2 into a sequence of lemmas.
In Lemma 3.2, we show the close linkage between IX,Yd and FX ◦ Y if T is ergodic.
Note that

FX(Y (ω)) := µ({ω∗ ∈ Ω | X(ω∗) ≤ Y (ω)})

for all ω ∈ Ω. Further, we show in Lemma 3.3 that no information is lost if (Cr)r∈N
is considered instead of FX ◦Y . Finally, we state in Lemma 3.4 sufficient conditions
on a map φ : R←↩ such that it is admissible with respect to X.

Lemma 3.2. Let X and Y be two observables, FX : R → [0, 1] the distribution
function of X and IX,Yd : Ω → [0, 1] be the counting map of X and Y . If T is
ergodic, then

lim
d→∞

IX,Yd = FX ◦ Y µ-almost everywhere.

Proof. Let Aa = X−1((−∞, a]) for any a ∈ R. By Birkhoff’s ergodic theorem (see
Remark 2.1), there exists a set Na ⊂ Ω such that µ(Na) = 0 and

FX(a) = µ(Aa) = lim
d→∞

1

d

d∑
t=1

1{X ◦T ◦t ≤ a}(ω) (3.15)

for any a ∈ R and ω ∈ Ω \Na. Let B be a countable dense subset of R such that it
includes all a ∈ R for which FX is discontinuous. Further, let N =

⋃
a∈B Na. Then
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Chapter 3 A symbolic route to the Kolmogorov-Sinai entropy

µ(N) = 0 and (3.15) holds for each a ∈ B and ω ∈ Ω \N . Our next claim is that,
for all ω ∈ Ω \N , it holds

lim
d→∞

IX,Yd (ω) = FX(Y (ω)).

By (3.15), this is true if ω ∈ Ω \ N satisfies a := Y (ω) ∈ B. It is moreover true if
ω ∈ Ω \N and a := Y (ω) ∈ R \B, which we show in the following.

Let (bi)i∈N and (ci)i∈N be two sequences converging to a with

bi ∈ B ∩ (−∞, a) and ci ∈ B ∩ (a,∞)

for all i ∈ N. Since ω ∈ Ω \N , we have, for all i ∈ N, that

FX(bi) = lim
d→∞

1

d

d∑
t=1

1{X ◦T ◦t ≤ bi}(ω) and FX(ci) = lim
d→∞

1

d

d∑
t=1

1{X ◦T ◦t ≤ ci}(ω).

Moreover, bi < a < ci implies

d∑
t=1

1{X ◦T ◦t ≤ bi}(ω) ≤
d∑
t=1

1{X ◦T ◦t ≤ Y }(ω) ≤
d∑
t=1

1{X ◦T ◦t ≤ ci}(ω)

for all d ∈ N. Furthermore, since FX is continuous at a, we obtain

FX(a) = lim
i→∞

FX(bi) ≤ lim inf
d→∞

IX,Yd ≤ lim sup
d→∞

IX,Yd ≤ lim
i→∞

FX(ci) = FX(a).

Hence we can summarize that, for all ω ∈ Ω\N , it holds lim
d→∞

IX,Yd (ω) = FX(Y (ω)),

which is the desired conclusion.

Lemma 3.3. Let X and Y be two observables and (Cr)r∈N be a sequence of finite
partitions. If T is ergodic and

{X ◦ T ◦t ≤ Y } ∈ σ
(
(Cr)r∈N

)
for each t ∈ N0, then

σ (FX ◦ Y )
µ
⊂ σ

(
(Cr)r∈N

)
.

Proof. By assumption, IX,Yd is σ
(
(Cr)r∈N

)
-B([0, 1])-measurable for any d ∈ N (see

for instance Billingsley [13, Remarks on simple real functions in Section 13]). Hence

σ
((
IX,Yd

)
d∈N

)
⊂ σ

(
(Cr)r∈N

)
.

Moreover, the limit of IX,Yd as d approaches infinity exists for each ω ∈ Ω since

IX,Yd ≤ IX,Yd+1 and 0 ≤ IX,Yd ≤ 1, hence

σ

(
lim
d→∞

IX,Yd

)
⊂ σ

((
IX,Yd

)
d∈N

)
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(see for instance Billingsley [13, Theorem 13.4.(ii)]). Furthermore, by Lemma 3.2,
there exists a set N ⊂ Ω with µ(N) = 0 such that

lim
d→∞

IX,Yd (ω) = FX(Y (ω))

for all ω ∈ Ω \N . Hence, for any B ∈ B([0, 1]), it holds

µ

(
(FX ◦ Y )−1 (B)4

(
lim
d→∞

IX,Yd

)−1

(B)

)
≤ µ(N) = 0,

which gives

σ(FX ◦ Y )
µ
⊂ σ

((
IX,Yd

)
d∈N

)
,

and the lemma follows.

Lemma 3.4. Let X : (Ω,A, µ) → (R,B(R)) be a random variable, φ : R ←↩ a
B(R)-B(R) measurable map and G be a family of subsets of R that generates B(R).
If φ has the two properties

(i) φ(G) ∈ B(R) and
(ii) µ

(
X−1

((
φ−1φ(G)

)
\G
))

= 0

for all G ∈ G, then σ(X)
µ
⊂ σ(φ ◦X).

Proof. Since G generates B(R), it holds that σ(X) is generated by the sets X−1(G)
(see for instance Elstrodt [34, Chapter 1, Theorem 4.4]). Hence the lemma is proven
if for any G ∈ G, there exists some G′ ∈ σ(φ ◦X) such that µ

(
X−1(G)4G′

)
= 0.

In order to show this, choose

G′ = X−1
(
φ−1φ(G)

)
= (φ ◦X)−1φ(G).

By (i), it holds that G′ ∈ σ(φ ◦X), and by (ii), we see that

µ
(
X−1(G)4G′

)
= µ

(
X−1

((
φ−1φ(G)

)
\G
))

= 0,

which completes the proof.

We now prove Theorem 3.2 and Theorem 3.1, and close this section with remarks
to Lemma 3.4.

Proof of Theorem 3.2. By Condition (i) and Condition (ii), we obtain

σ(X)
µ
⊂ σ(g ◦X)

µ
⊂ σ(FX ◦ g ◦X)

(compare also to Lemma 3.4).

Moreover, by Condition (iii) and Lemma 3.3, we have that

σ(FX ◦ g ◦X)
µ
⊂ σ

(
(Cr)r∈N

)
.

Hence σ(X)
µ
⊂ σ

(
(Cr)r∈N

)
, which completes the proof.
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Proof of Theorem 3.1. In the following, we show that Theorem 3.1 follows by Theo-
rem 3.2. Firstly, since Ω is a Borel subset of Rn, Xi with i ∈ N is the i-th coordinate
projection and µ(A) > 0 for all open non-empty subsets A of Ω, it holds not only
(3.6), but also that each FXi is one-to-one. Hence

σ(g ◦Xi)
µ
⊂ σ(FXi ◦ g ◦Xi)

for all i ∈ N which complies with Condition (ii) of Theorem 3.2 (see the proof of
Lemma 3.4 and Remark 3.3).

Secondly, since R is given as in (3.14), or is a refinement of (3.14), with some
one-to-one map g : R←↩, it holds{

Xi ◦ T ◦t ≤ g ◦Xi

}
∈ σ

((
PR,Ed (T, (Xi)

n
i=1)

)
d,n∈N

)
for all t ∈ N0 and i ∈ N which complies with Condition (iii) of Theorem 3.2.
Moreover, since g is one-to-one, it holds

σ(Xi)
µ
⊂ σ(g ◦Xi)

for all i ∈ N which complies with Condition (i) of Theorem 3.2.

Thus, by the conditions of Theorem 3.1, we can apply Theorem 3.2 for all Xi which
gives

σ(X) =
∨
i∈N

σ(Xi)
µ
⊂
∨
i∈N

σ
((
PR,Ed(T,Xi)

)
d∈N

)
= σ((Pd,n)d,n∈N)

since the sub-σ-algebras σ
((
PR,Ed(T,Xi)

)
d∈N

)
generate the sub-σ-algebra

σ((Pd,n)d,n∈N) = σ
((
PR,Ed (T, (Xi)

n
i=1)

)
d,n∈N

)
(see Equation (2.2)). Hence Statement (♠) is fulfilled which is the desired conclusion.

Note that the timing (Ed)d∈N plays no part in the previous proof, since the ob-
servables have the strong property (3.6). Hence we can replace the full timing in
Theorem 3.1 by some arbitrary timing. For a fuller treatment of the case when (3.6)
is not met, see Section 3.3.2.

F Remark 3.3 (Lemma 3.4: one-to-one measurable maps and FX). Note that since
φ is a B(R)-B(R) measurable map in Lemma 3.4, the inclusion σ(X) ⊃ σ(φ ◦ X)
holds for any random variable X : (Ω,A, µ) → (R,B(R)). In order to see this, let
A ∈ σ(φ ◦X), then

A = (φ ◦ Y )−1(B) = X−1φ−1(B)

for some B ∈ B(R). Hence, by φ−1(B) ∈ B(R), it follows that A ∈ σ(X).

Figure 3.6 demonstrates that g has to be chosen reasonably with respect to the given
measurements. This is similar to the choice of thresholds when threshold crossings
are applied.
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Figure 3.6: On top: Graphs of the continuous observable Y : [0, 1) → R
given in Equation (2.14) and of the distribution function FY : R → [0, 1]. On
the bottom: Scatter plots of 500 pairs (Y (ω1), Y (ω2)) with (ω1, ω2) normally
distributed on [0, 1)2 with the respective graph of a map g : R ←↩ which is
admissible with respect to FY if the Lebesgue measure is considered.

Lemma 3.4 is evident if φ is a one-to-one B(R)-B(R) measurable map, because then(
φ−1φ(B)

)
\B = ∅

and φ(B) ∈ B(R) for all B ∈ B(R) (see for instance Cantón et al. [20], compare to
Lemma 2.4 as well). Nevertheless, Lemma 3.4 also includes self-maps such as the
distribution function FX of a random variable X (see Antoniouk et al. [9, Lemma
3.2]), which can be seen as follows.

Let G = {(−∞, a) | a ∈ R}. Since FX is increasing, it holds Lemma 3.4(i) for all
G ∈ G. Lemma 3.4(ii) is proven by Antoniouk et al. [9, Lemma 3.1(3)]. Firstly, the
authors show that

F−1
X FX((−∞, a)) \ (−∞, a)

coincides either with the interval [a, a∗] or with [a, a∗) for any a ∈ R, where

a∗ = sup
(
F−1
X FX(a)

)
.

Secondly, the authors prove that µ
(
X−1([a, a∗])

)
= 0. Hence

σ(X)
µ
⊂ σ(FX ◦X).

However, this also shows that the inclusion (compare to Theorem 3.2(ii))

σ(g ◦X)
µ
⊂ σ (FX ◦ g ◦X) ,

where g : R←↩ is a self-map, holds if we obtain

µ(X−1g−1([a, a∗])) = 0

for any a ∈ R. This is true if, for instance, either FX is one-to-one or g(ω) = ω for
all ω ∈ Ω where FX is not one-to-one (compare to Figure 3.5). F
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3.3.2 Preserving the information given by the measuring process

In this section, we study the question whether a symbolic-based analysis technique
with underlying symbolic scheme (R, (Ed)d∈N) preserves the information given by
the measuring process. In fact, we show that (3.3) is met if the timing (Ed)d∈N has
the following property.

Definition 3.3. Let (Ed)d∈N be a timing. If for each d ∈ N and time pair (u, v) ∈
Ed it holds that (u+ 1, v + 1) ∈ Ed+1, then we call (Ed)d∈N consistent.

For instance, the full timing (see Equation (3.10)) is consistent. However, the fol-
lowing timing

Ed = {(0, t) | t ∈ {0, 1, 2, . . . , d}} ; d ∈ N (3.16)

is not consistent (see Example 3.2 and compare to Section 3.5). Thus we call (3.16)
the weak timing in the following.

Proposition 3.1. Let X be an observable, R a basic symbolization scheme, (Ed)d∈N
a timing. If (Ed)d∈N is consistent, then

(Pd)t :=
t−1∨
s=0

PR,Ed(T,X ◦ T ◦s) ≺ PR,Ed+t−1(T,X) (3.17)

for all d ∈ N and t ∈ N.

Recall, that ((Pd)t)t∈N is the partition sequence of Pd under T . In sum, consistency
guarantees that the considered symbolic-based analysis technique delivers the same
result regardless where we start to observe the underlying system.

Proof of Proposition 3.1. Let us regard d as fixed. First observe that, in the case
of consistency, for any t ∈ N, the pairs (s + u, s + v) with s ∈ {0, 1, . . . , t − 1} and
(u, v) ∈ Ed are element of Ed+t−1 since Ed ⊂ Ed+1. Moreover, it holds(

X ◦ T ◦u+1, X ◦ T ◦v+1
)−1

(R) ≺ PR,Ed+1(T,X)

(compare to Remark 3.2). Hence

PR,Ed(T,X ◦ T ) ≺ PR,Ed+1(T,X).

In particular, it holds

PR,Ed(T,X ◦ T ◦t−1) ≺ PR,Ed+1(T,X ◦ T ◦t−2)

≺ PR,Ed+2(T,X ◦ T ◦t−3) ≺ · · · ≺ PR,Ed+t−1(T,X)

for all t ∈ N, which gives (3.17).
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♣ Example 3.2 (The weak timing). Note that a similar example is given in Keller
et al. [49]. Let Ω = [0, 1), T : Ω←↩ be the full tent map and R be as given in (3.13).
Define an observable Y by the staircase function

Y (ω) :=
4∑
l=1

l 1[ l−1
4 ,

l
4

)(ω)

for all ω ∈ Ω. By choosing ω1 = 1
4 and ω2 = 7

12 , we obtain(
Y
(
T ◦t(ω1)

))
t∈N0

= (2, 3, 1, 1, 1, 1, . . . ),

and (
Y
(
T ◦t(ω2)

))
t∈N0

= (3, 4, 2, 3, 3, 3, . . . ).

Hence ω1 and ω2 are separated by the partition (Y ◦T 2, Y ◦T 3)−1(R), and thus, by
the sequence of finite partitions entailed by the strong ordinal approach. However,
the time pair (2, 3) is not element of any Ed as given in (3.16), i.e. for all d ∈ N and
t ∈ N0, it holds

PR,Ed(T, Y ◦ T ◦2) 6≺ PR,Ed+t(T, Y ).

Consequently, the weak timing (Ed)d∈N is not consistent. Note, that we call the
approach based on (3.13) and the weak timing the weak ordinal approach in the
following. ♣

Let us now state our main result with respect to (3.3).

Theorem 3.3. Let X = (Xi)i∈N be a sequence of observables, R a basic symboliza-
tion scheme, (Ed)d∈N a timing, and (Pd,n)d,n∈N be the sequence of finite partitions
constructed by R and (Ed)d∈N. If

(i) σ(X)
µ
⊂ σ((Pd,n)d,n∈N) and

(ii) the timing (Ed)d∈N is consistent,

then

σ
((

X ◦ T ◦t
)
t∈N

) µ
⊂ σ((Pd,n)d,n∈N).

Proof. Compare to Antoniouk et al. [9, Corollary 3.5]. By (ii), it holds

PR,Ed(T,Xi ◦ T ) ≺ PR,Ed+1(T,Xi)

for all d and i ∈ N. These refinements imply

σ
((
PR,Ed

(
T,
(
Xi ◦ T ◦t

)n
i=1

))
d,n∈N

)
⊆ σ((Pd,n)d,n∈N)

= σ
((
PR,Ed (T, (Xi)

n
i=1)

)
d,n∈N

) (3.18)
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for all t ∈ N0 (see Proposition 3.1 and Walters [87, Section 4.1]). Moreover, by (i),
it holds

σ
(
X ◦ T ◦t

) µ
⊂ σ

((
PR,Ed

(
T,
(
Xi ◦ T ◦t

)n
i=1

))
d,n∈N

)
for all t ∈ N0. Hence

σ
((

X ◦ T ◦t
)
t∈N0

) µ
⊂ σ((Pd,n)d,n∈N),

which proves the theorem.

If the considered timing (Ed)d∈N is not consistent, the inclusion of Equation (3.18)
is not guaranteed, and therefore, Theorem 3.3 cannot be applied (compare to Sec-
tion 3.5 where we give a detailed example).

3.4 The non-ergodic case

The previous results depend on the assumption that T is ergodic, however, in the
following, we show that, in order to determine the KS entropy, this assumption can
be relaxed.

Theorem 3.4. Let (Ω,A, µ, T ) be a measure-preserving dynamical system where Ω
can be embedded into a compact metrizable space such that A = B(Ω). Moreover,
let X = (Xi)i∈N be a sequence of observables, R a basic symbolization scheme and
(Ed)d∈N a timing. If

A
µ
⊂ σ(X)

and Condition (i) to Condition (iii) of Theorem 3.2 are fulfilled for all Xi; i ∈ N,
or

A
µ
⊂ σ

((
X ◦ T ◦t

)
t∈N0

)
and the conditions of Theorem 3.3 are fulfilled, then

hKS
µ (T ) = lim

d,n→∞
hµ(T,Pd,n) = sup

d,n∈N
hµ(T,Pd,n)

with Pd,n := PR,Ed (T, (Xi)
n
i=1) for d, n ∈ N.

We prove Theorem 3.4 at the end of this section. Essential to the proof is the ergodic
decomposition theorem (see Remark 3.4). Recall that, in the ergodic case, the
assumptions of Theorem 3.4 ensure that the sequence (Pd,n)d,n∈N of finite partitions
is generating (see Section 3.3), and hence, by Lemma 2.3, the KS entropy can be
determined.

F Remark 3.4 (The ergodic decomposition). In the case that (Ω,A, µ, T ) is not
ergodic, there exists at least one element

A∗ ∈ A∗ :=
{
A ∈ A | T ◦−1(A) = A

}
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3.4 The non-ergodic case

for which 0 < µ(A∗) < 1. Thus it is straightforward to study the subsystems(
A∗,A|A∗ , 1

µ(A∗)µ|A∗ , T |A∗
)

and
(

Ω \A∗,A|Ω\A∗ , 1
µ(Ω\A∗)µ|Ω\A∗ , T |Ω\A∗

)
,

where A|A∗ and A|Ω\A∗ are trace σ-algebras of A∗ and Ω \A∗, µ|A∗ and µ|Ω\A∗ are
restrictions of µ to A|A∗ and A|Ω\A∗ and T |A∗ and T |Ω\A∗ are restrictions of T to
A∗ and Ω \A∗ (see Walters [87] and Appendix B.7). However, these subsystems do
not have to be ergodic as well.

♣ Example 3.3 (An ergodic decomposition of a finite measure-preserving dynam-
ical system). Let Ω be a finite set with |Ω| = n ∈ N, A the power set of Ω and µ be
the uniform measure on Ω, that is µ(ω) = 1

n for all ω ∈ Ω. Moreover, let T : Ω ←↩
be onto such that there exists a finite partition C =

{
C(1), C(2), . . . , C(q)

}
⊂ A with

2 ≤ q ≤ n and

T ◦−1
(
C(l)

)
= C(l) for all l ∈ {1, 2, . . . q},

and define nl :=
∣∣C(l)

∣∣. Note that
∑q

l=1
nl
n = 1. The map T is µ-preserving, however,

not ergodic, since for all l ∈ {1, 2, . . . q} it holds

0 < µ
(
C(l)

)
= nl

n < 1.

Nevertheless, with

µC(l)(ω) :=

{
1
nl

if ω ∈ C(l),

0 otherwise ,

the measure µ can be written as a convex combination for all A ∈ A, i.e.

µ(A) =

q∑
l=1

nl
n
µC(l)(A).

Furthermore, each µC(l) is ergodic with respect to T . One can easily imagine a
similar approach for rational rotations on the unit circle. ♣

The previous example shows that it is possible to decompose a given measure into
ergodic components. In general, this is true if Ω can be embedded into some compact
metrizable space such that A = B(Ω). For a deeper discussion and for the following
theorem, we refer the reader to Einsiedler and Ward [33], Einsiedler et al. [31],
Quas [72], Keller and Sinn [52] and the references therein.

Theorem 3.5 (The ergodic decomposition theorem). Let (Ω,A, µ, T ) be a measure-
preserving dynamical system where Ω can be embedded into some compact metrizable
space such that A = B(Ω). Then there exists a probability space (Ω∗,A∗, ν), and
each ω∗ ∈ Ω∗ can be associated to a probability measure µω∗ on (Ω,A) such that
the following is valid:

Ω∗ can be embedded into some compact metrizable space such that A = B(Ω∗), for
every essentially bounded measurable function f : Ω→ R the map

ω∗ ∈ Ω∗ →
∫

Ω∗
f dµω∗
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is A∗-B(R)-measurable, and for ν-a.e. each ω∗ ∈ Ω∗, the probability measure µω∗

is T -invariant and ergodic with respect to T . Moreover, µ can be decomposed such
that

µ =

∫
Ω∗
µω∗ dν(ω∗).

As a consequence of the previous theorem, the KS entropy hKS
µ (T ) and the entropy

rate hµ(T, C) with respect to any finite partition C ⊂ A of (Ω,A) can be written as
the integral of the entropies with respect to the ergodic decomposition (see Einsiedler
et al. [31, Theorem 5.24. and Exercise 5.4.1.]).

Theorem 3.6. Let (Ω,A, µ, T ) be a measure-preserving dynamical system. If The-
orem 3.5 holds, then the KS entropy hKS

µ (T ) can be determined by

hKS
µ (T ) =

∫
Ω∗
hKS
µω∗

(T ) dν(ω∗), (3.19)

and the entropy rate by

hµ(T, C) =

∫
Ω∗
hµω∗ (T, C) dν(ω∗) (3.20)

for each finite partition C ⊂ A of (Ω,A). F

Proof of Theorem 3.4. Let (nj)j∈N and (dj)j∈N be strictly increasing sequences of
natural numbers, then, by the ergodic decomposition theorem (see Remark 3.4), it
holds

hKS
µ (T )

(3.19)
=

∫
Ω∗
hKS
µω∗

(T ) dν(ω∗)

=

∫
Ω∗

lim
j→∞

hµω∗ (T,P
R,Edj (T, (Xi)

nj
i=1)) dν(ω∗)

= lim
j→∞

∫
Ω∗
hµω∗ (T,P

R,Edj (T, (Xi)
nj
i=1)) dν(ω∗)

(3.20)
= lim

j→∞
hµ(T,PR,Edj (T, (Xi)

nj
i=1))

= lim
j→∞

hµ(T,Pdj ,nj ).

We apply Lemma 2.3 in step two and the monotone convergence theorem in step
three (see for instance Billingsley [13, Theorem 16.2]).
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3.5 The non-consistent case

In this section, we show that the sequence (Pd,n)d,n∈N :=
(
PR,Ed (T, (Xi)

n
i=1)

)
d,n∈N

is in general not generating if only (3.5) is fulfilled and (Ed)d∈N is not consistent.
For this purpose, let R be the basic symbolization scheme as given in (3.13), i.e.

R =
{{

(x, y) ∈ R2 | y ≤ x
}
,
{

(x, y) ∈ R2 | y > x
}}

,

and (Ed)d∈N be the weak timing, i.e. Ed = {(0, t) | t ∈ {0, 1, 2, . . . , d}} for all d ∈ N
(compare to Section 3.3.2). Recall, that (Ed)d∈N is not consistent in general (see
Example 3.2), i.e.

σ
((
PR,Ed

(
T,
(
Xi ◦ T ◦t

)n
i=1

))
d,n∈N

)
⊂ σ((Pd,n)d,n∈N)

cannot be guaranteed. Further, note that Theorem 3.2 holds for all observables of
the sequence X = (Xi)i∈N with g : R←↩ being the identity map, hence

σ(X)
µ
⊂ σ((Pd,n)d,n∈N)

(see Remark 3.3.1). Moreover, if (3.6) holds, then (Pd,n)d,n∈N is generating.

Further, consider the dynamical system ([0, 1),B(([0, 1)), λ, Ta) with the irrational
rotation Ta, and equip [0, 1) with the metric d (see Appendix A.3) given by

d(ω, ω∗) = min(|ω − ω∗|, 1− |ω − ω∗|)

for all ω, ω∗ ∈ Ω. Recall, that the irrational rotation Ta is ergodic and has dense
orbits (see Example 2.3). Moreover, Ta is an isometry, i.e. the map is injective and
distance preserving, that is

d(Ta(ω), Ta(ω
∗)) = d(ω, ω∗)

for all ω, ω∗ ∈ Ω.

Definition 3.4. Let [a, b) ⊂ [0, 1) with a < b. We say an observable X : Ω→ R has
an increasing tendency on [a, b) if X(a) < X(ω) for all ω ∈ (a, b) and a decreasing
tendency on [a, b) if X(a) > X(ω) for all ω ∈ (a, b), respectively. Moreover, we say
an observable X : Ω → R is nice on Ω if for every ω ∈ Ω there exists some ε > 0
such that either X has an increasing or decreasing tendency on [ω, ω + ε).

From a geometrical point of view, a continuous observable is, for example, nice if its
graph has a non-vertical tangent line at each ω ∈ Ω. So, all differentiable nowhere
constant observables are nice.

Proposition 3.2. Let X be a continuous and nice observable on the dynamical
system ([0, 1),B([0, 1)), λ, Ta) with lim

ω→1
X(ω) = X(0). Further, let R be as given

in (3.13), or an refinement of (3.13), and (Ed)d∈N be the weak timing, or a timing
that includes the time pairs of the weak timing. Moreover, let [ω1, ω2) ⊂ [0, 1) with
ω1 < ω2, and either X has an increasing or decreasing tendency on [ω1, ω2), then
(Pd,n)d,n∈N separates ω1 and ω2 (see Definition 2.9).
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Proof. We give the proof only for the case that X has an increasing tendency on
[ω1, ω2), the decreasing case can be handled in much the same way. We start by
defining a set Ωω2 ⊂ Ω by

Ωω2 := {ω ∈ Ω | X(ω) = X(ω2) and there exists some ε > 0 such that

X has a decreasing tendency on [ω, ω + ε)}.

We claim that Ωω2 6= ∅. This is true since lim
ω→1

X(ω) = X(0), X is nice and has an

increasing tendency on [ω1, ω2). Thus X yields intervals of decreasing tendencies,
which cover at least the range [X(ω2), X(ω1)). Especially, if there exists some ε such
that X has a decreasing tendency on [ω2, ω2 + ε), then ω2 ∈ Ωω2 . This is entirely in
the spirit of—what goes up must come down.

Now, for the proof it is natural to distinguish between the case that the intersection
Ωω2 ∩ [ω2, 1) is not empty and the case that it is empty.

In the case that Ωω2 ∩ [ω2, 1) 6= ∅, we first choose the element ω̂ ∈ Ωω2 such that
ω̂ ≥ ω2 and d(ω̂, ω2) is minimal for all elements of Ωω2∩ [ω2, 1). Then X(ω) ≥ X(ω2)
for all ω ∈ [ω2, ω̂). Secondly, we choose a δ > 0 such that for a point t ∈ N it holds

T ◦ta (ω2) ∈ (ω̂, ω̂ + δ) and T ◦ta (ω1) ∈ (ω1, ω̂) = (ω1, ω2) ∪ [ω2, ω̂).

Clearly, δ < d(ω1, ω2). Note that, for all ω ∈ (ω1, ω2), it holds X(ω) > X(ω1),
and on [ω2, ω̂) the observable X is bounded from below by X(ω2). So, X(ω1) <
X(T ◦ta (ω1)) and X(ω2) > X(T ◦ta (ω2)).

In the case that Ωω2 ∩ [ω2, 1) = ∅, it holds ω < ω2 for all ω ∈ Ωω2 . We choose the
element ω̂ = min(Ωω2). Then X(ω) ≥ X(ω2) for all ω ∈ [0, ω̂) ∪ [ω2, 1). Moreover,
we choose a δ > 0 such that for a point t ∈ N it holds

T ◦ta (ω2) ∈ (ω̂, ω̂ + δ) and T ◦ta (ω1) ∈ [0, ω̂) ∪ (ω1, ω2) ∪ [ω2, 1).

Note as above that δ < d(ω1, ω2), and, for all ω ∈ (ω1, ω2), it holds X(ω) > X(ω1),
and on [0, ω̂) ∪ [ω2, 1) the observable X is bounded from below by X(ω2). So we
have again, X(ω1) < X(T ◦ta (ω1)) and X(ω2) > X(T ◦ta (ω2)).

This completes the proof since for each time point t ∈ N there exists some d ∈ N
such that (0, t) ∈ Ed.

Up to now, we have omitted observables which are locally constant. In fact, these
constant parts play a key role to show the difference between a symbolic-based
analysis technique which is based on (3.13) and the weak timing and, for example,
an approach which entails the same timing but the basic symbolization scheme given
by

R :=
{{

(x, y) ∈ R2 | y < x
}
,
{

(x, y) ∈ R2 | y > x
}
,{

(x, y) ∈ R2 | x = y
}} (3.21)

(see Example 3.4).
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♣ Example 3.4 (A nice observable). By Definition 3.4 the observable as given in
(2.14), i.e.

Y (ω) =


0 if ω ∈

[
0, 1

2

)
,

1
2 − ω if ω ∈

[
1
2 ,

3
4

)
,

ω − 1 if ω ∈
[

3
4 , 1
)
,

is nice on
[

1
2 , 1
)

(see Figure 2.6 and Figure 3.6).

(i) We first examine the basic symbolization scheme (3.13) together with the weak
timing. We claim that (PR,Ed(T, Y ))d∈N separates any two states ω1 6= ω2 of
the interval

[
1
2 , 1
)
, however, fails to separate any two different elements of the

interval
[
0, 1

2

)
.

In order to show the former case, let ω1 < ω2. If ω1 <
3
4 and ω2 ≥ 3

4 , pick a
point t ∈ N such that T ◦ta (ω1) is close to and greater than ω1 and T ◦ta (ω2) is
close to and greater than ω2. Then

Y (ω1) ≥ Y (T ◦ta (ω1)) and Y (ω2) < Y (T ◦ta (ω2)).

If ω1 6= ω2 are elements of
[

1
2 ,

3
4

)
or of

[
3
4 , 1
)
, the separation follows by applying

Proposition 3.2. However, there is no separation of the elements ω ∈
[
0, 1

2

)
,

since for any t ∈ N it holds

{ω ∈ Ω | Y (ω) ≥ Y (T ◦ta (ω))} = [0, 1
2) ∪ {ω ∈ [1

2 , 1) | Y (ω) ≥ Y (T ◦ta (ω))}.

(ii) We now turn to the case where we consider the same timing but a different
partition R, namely the one given in (3.21). In this setting, (PR,Ed(T, Y ))d∈N
separates any two states ω1 6= ω2 of Ω, which can be seen as follows.
The separation of points ω ∈

[
1
2 , 1
)

follows from the deliberations in (i).
Moreover, in order to separate the states ω1 < ω2 of the interval

[
0, 1

2

)
, we

pick a point t ∈ N such that T ◦ta (ω1) ∈
[
0, 1

2

)
and T ◦ta (ω2) ∈

(
1
2 , 1
)
. Then

Y (ω1) = Y (T ◦sa (ω1)) and either Y (ω2) > Y (T ◦sa (ω2)) or Y (ω2) < Y (T ◦sa (ω2)).
♣

Note that if an observable X is constant on an interval [a, b) ⊂ [0, 1) with a < b,
then (PR,Ed(T,X))d∈N with R as given in (3.21) separates any two different states
ω1, ω2 ∈ [a, b) as long as there exists at least one interval [c, d) ⊂ [0, 1) with c < d
where X has an increasing or a decreasing tendency.

Also, it is obvious that there exists neither a separation with respect to the measuring
process (X ◦ T ◦t)t∈N0 nor to (PR,Ed(T,X))d∈N with R and (Ed)d∈N freely chosen if
X is a constant observable on [0, 1).
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3.6 Remarks

In this chapter, we discussed symbolic routes to the KS entropy by studying different
symbolic schemes at once (see Figure 3.7 for an overview). We included commonly
known approaches (see Section 3.2.1, Section 3.2.2 and Section 3.5). At first glance
our approach seems rather involved. However, through it, we show that under
relatively weak assumptions, symbolic schemes that regard a dependency between
two measured values, in contrast to, for instance, threshold crossings, provide a route
to the KS entropy. This is, in particular, engaging if the KS entropy cannot directly
be characterized.

Both from the theoretical and the practical point of view, it is interesting to study
the speed of convergence in (3.2), for instance, in order to generally compare the
efficiency of basic symbolization schemes and to estimate entropies, respectively. One
of the main objectives is to find a symbolic-based analysis technique that preserves,
in finitely many steps, as much information of the original system as possible.

Moreover, a careful weighing of the advantages and disadvantages is necessary; in-
cluding questions such as which schemes allow simple interpretations and efficient
algorithms. In the next chapter, we give an overview over the topic, however, entrust
details to further studies.
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Chapter 4

Entropy measures based on symbolic
schemes

From our results in Chapter 3 we know that symbolic-based analysis techniques
with symbolic schemes (R, (Ed)d∈N) exploit the information of the original system
with varying degrees of success depending on the properties of R and (Ed)d∈N,
respectively.

In this chapter, we extend our results by evaluating the information content of
symbolic-based analysis techniques. In order to do this, we study and apply entropy
measures that are based on a basic symbolization scheme R and a timing (Ed)d∈N.
This chapter is organized as follows. Firstly, we examine the relationship of the
entropy measures based on R and (Ed)d∈N to the KS entropy. Secondly, we estimate
different entropy measures and study their asymptotic behavior in dependence on the
orbit length. Note that some of the results presented in this chapter are published
in Keller et al. [50].

4.1 Relationship to the Kolmogorov-Sinai entropy

There are many possibilities to define an entropy measure based on a basic symbol-
ization scheme R and a timing (Ed)d∈N (compare to Section 2.2.3). Let X = (Xi)i∈N
be a sequence of observables. Here, we study entropy measures hR,Edµ (T,X) defined
by

hR,Edµ (T,X) := lim
n→∞

lim sup
d→∞

1

d
Hµ

(
PR,Ed(T, (Xi)

n
i=1)

)
.

We consider hR,Edµ (T,X) since it includes the popular Permutation entropy that is
based on the ordinal idea and has a close relationship to the KS entropy hKS

µ (T )
(see Bandt and Pompe [11], Bandt et al. [10] and Example 4.1). It is an open
question for which basic symbolization schemes R and timings (Ed)d∈N the entropy
hR,Edµ (T,X) coincides with the KS entropy; also for the Permutation entropy this
question is not yet answered (see for instance Keller et al. [55, 49] and Antoniouk et
al. [9]). However, the following general statements provide further insight into the
relationship of hR,Edµ (T,X) and the KS entropy.

Firstly, let R and R′ be two different basic symbolization schemes and (Ed)d∈N
and (E′d)d∈N be two different timings. If PR′,E′d(T, (Xi)

n
i=1) is a refinement of
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Chapter 4 Entropy measures based on symbolic schemes

PR,Ed(T, (Xi)
n
i=1) for all d ∈ N and n ∈ N, then

Hµ(PR′,E′d(T, (Xi)
n
i=1)) ≥ Hµ(PR,Ed(T, (Xi)

n
i=1))

for all d ∈ N and n ∈ N, which gives

h
R′,E′d
µ (T,X) ≥ hR,Edµ (T,X)

(see Remark 2.5). Hence, in particular, if

hKS
µ (T ) = hR,Edµ (T,X), then hKS

µ (T ) = h
R′,E′d
µ (T,X).

Secondly, Keller et al. show in [55] that

lim sup
d→∞

1

d
Hµ(Cd) ≥ lim

d→∞
hµ(T, Cd)

if (Cd)d∈N is an increasing sequence of finite partitions and Cd+t−1 is finer than (Cd)t
for all d ∈ N and t ∈ N with t > 2. Recall that ((Cd)t)t∈N is the partition sequence
of Cd under T (see Section 2.2.1). In terms of our formalization of symbolic-based
analysis techniques the result of Keller et al. [55] reads as follows.

Proposition 4.1. Let X be an observable, R a basic symbolization scheme, (Ed)d∈N
a consistent timing and Pd := PR,Ed(T,X). Then

hR,Edµ (T,X) := lim sup
d→∞

1

d
Hµ(Pd) ≥ lim

d→∞
hµ(T,Pd). (4.1)

In particular, if hKS
µ (T ) = limd→∞ hµ (T,Pd), then

hR,Edµ (T,X) ≥ hKS
µ (T ).

We repeat the proof of Keller et al. [55, Lemma 9] for the sake of completeness in
the following.

Proof of Proposition 4.1. In order to shorten notation, let h := lim
d→∞

hµ(T,Pd). Our

proof starts with the following two observations. Firstly, since (Ed)d∈N is consistent,
it holds that

(Pd)t :=

t−1∨
s=0

PR,Ed(T,X ◦ T ◦s) ≺ Pd+t−1

for all d ∈ N and t ∈ N (see Section 3.3.2), which gives

Hµ (Pd+t−1) ≥ Hµ ((Pd)t)

for all d ∈ N and t ∈ N. Secondly, if h > c for some c > 0, then there exists some
d ∈ N and some td ∈ N with 1

tHµ ((Pd)t) > c for all t ≥ td, since

h = lim
d→∞

hµ(T,Pd) = lim
d→∞

lim
t→∞

1

t
Hµ((Pd)t) = lim

d→∞
lim
t→∞

1

t+ d− 1
Hµ((Pd)t).
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4.1 Relationship to the Kolmogorov-Sinai entropy

By the definition of the Shannon entropy, it is evident that (4.1) is true if h =
0. Therefore, assume that h > 0. The main idea of the proof is to show that
hR,Edµ (T,X) ≥ h − ε for every ε > 0 which gives (4.1). For this purpose, regard
ε > 0 as fixed, and choose c > 1 such that h > c(h− ε) still holds. By our previous
deliberation, there exists some d ∈ N and some td ∈ N with 1

tHµ ((Pd)t) > c(h− ε)
for all t ≥ td. It follows that

1

d+ t− 1
Hµ (Pd+t−1) ≥ 1

d+ t− 1
Hµ ((Pd)t)

≥ 1

(c− 1)t+ t− 1
Hµ ((Pd)t) >

1

ct
Hµ ((Pd)t) > h− ε

for all t ≥ max
{
td,

d
c−1

}
. Hence,

hR,Edµ (T,X) = lim sup
d→∞

1

d+ t− 1
Hµ(Pd+t−1) ≥ h− ε,

which completes the proof.

In the next corollary, we study the case of infinitely many observables.

Corollary 4.1. Let X = (Xi)i∈N be a sequence of observables, R a basic symbol-
ization scheme, (Ed)d∈N a consistent timing and Pd,n := PR,Ed(T, (Xi)

n
i=1). Then

lim
n→∞

lim sup
d→∞

H(Pd,n)

d
≥ lim

d,n→∞
hµ(T,Pd,n).

In particular, if hKS
µ (T ) = limd,n→∞ hµ (T,Pd,n), then

hR,Edµ (T,X) ≥ hKS
µ (T ).

Proof. This follows directly from Proposition 4.1 (compare to Keller et al. [49]).

♣ Example 4.1 (The Permutation entropy). The ordinal symbolic approach pro-
vides interesting entropy measures that are used for data analysis in various applica-
tions (see Amigó et al. [7], Zanin et al. [88], Keller et al. [50], the special topic [6], the
special issue [65] and the references given therein). A popular entropy measure that
is based on the strong ordinal approach is the Permutation entropy hR,Edµ (T,X), i.e.

R =
{{

(x, y) ∈ R2 | y ≤ x
}
,
{

(x, y) ∈ R2 | y > x
}}

(4.2)

and

Ed = {(s, t) | s, t ∈ {0, 1, 2, . . . , d} with s < t} ; d ∈ N

(see Section 3.2.2). The definition goes back to Bandt and Pompe [11] and Bandt et
al. [10], and is justified by their discovery that the Permutation entropy has a close
relationship to the KS entropy. In fact, the authors show, in the case that Ω is a
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Chapter 4 Entropy measures based on symbolic schemes

real interval, A = B(Ω), T : Ω←↩ is a piecewise continuous and monotone map and
X(ω) = ω for all ω ∈ Ω, that

hKS
µ (T ) = hR,Edµ (T,X). (4.3)

Therefore, in the same setting, if a symbolic-based analysis technique is considered
that entails the full timing and a refinement of (4.2), then (4.3) is also fulfilled.
However, as we already mentioned, it is an open question whether the KS entropy
hKS
µ (T ) and the Permutation entropy hR,Edµ (T,X) generally coincide.

Note that there exist many modifications of the Permutation entropy, including con-
ditional variants and variants using some additional metric information. Moreover,
sometimes the Shannon entropy is replaced by other entropies. For a deeper dis-
cussion about different variants of the Permutation entropy, we refer the reader to
Keller et al. [50] and the references given therein. ♣

4.2 Empirical entropy measures in dependence on the orbit
length

The results of the previous chapters provide an interesting insight into the theory
behind symbolic-based techniques in time series and system analysis. In closing this
thesis, we compare different basic symbolization schemes R and timings (Ed)d∈N by
analyzing simulated orbits of ergodic systems. In difference to Chapter 1 where we
emphasized possible applications of symbolic-based analysis techniques, for instance,
in order to detect complexity changes in a time series and to classify or to cluster data
sets, we now study the asymptotic behavior of symbolic-based analysis techniques
and their potential to approximate the KS entropy. We also discuss statistical
problems that are common for any kind of time series analysis. In this section,
we proceed as follows.

• In Section 4.2.1, we compare the entropies

Hµ((Pd)t+1)−Hµ((Pd)t) and
1

d
Hµ((Pd)t)

for different word lengths t ∈ N and ordinal orders d ∈ N by applying the strong
ordinal approach to a simulated orbit of the logistic map T4. In particular,
this section is interesting in order to understand Figure 2.5(b) from a practical
point of view, i.e. approximating the KS entropy by a conditional entropy.

• Section 4.2.2 is devoted to the study of different basic symbolization schemes.
We compare threshold crossings with the strong ordinal idea by analyzing a
simulated orbit of the logistic map T4 in dependence on the orbit length.

• In difference to Section 4.2.2, we consider, in Section 4.2.3, the basic sym-
bolization scheme entailed by the strong ordinal approach but with varying
timings. We analyze a simulated orbit of Arnold’s cat map (see for instance
Andries et al. [8] and Remark 4.3) in dependence on the orbit length.
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4.2 Empirical entropy measures

Note that, in the following, we estimate approximations of the KS entropy since we
fix d ∈ N and t ∈ N. These estimates are consistent by Birkhoff’s ergodic theorem
(see Section 2.1) and show similar behavior in dependence on the orbit length. All
curves level off for long orbits, i.e. the relative distribution of symbol words is stable.
However, for a short orbit length the estimates are quite bad since not all symbol
words, that are substantial to understand the underlying dynamics, can be observed
sufficiently. These undersampling problems increase the interest in symbolic-based
analysis techniques that entail a small number of symbols for large values of d ∈ N
and t ∈ N since, in general, it is a compromise between the computational costs and
the information loss (see Li and Ray [63]).

Our algorithms to decode simulated orbits into sequences of symbols are imple-
mented straightforwardly and not efficiently, i.e. we neglect statements about time
and memory. For a deeper discussion of efficient algorithms that transform a time
series into a sequence of ordinal patterns, and to compute the empirical Permuta-
tion entropy of an ordinal order d ∈ N and variants of it, consult Riedl et al. [73],
Unakafova and Keller [84] and Unakafova [85]. Here, we restrict ourselves mainly
to a description of the results, and touch on only a few aspects of the algorithms
applied. For a thorough treatment, we refer the reader to Kurths et al. [60] and
Keller et al. [53].

F Remark 4.1 (Simulated data). In this section, we assume that measurements
directly provide the state of the considered system (see Remark 2.2), and hence we
analyze orbits of different dynamics T directly.

We are aware that numerical simulations actually require an analysis of stability and
round-off errors, in particular, if dynamics T on a metric space (Ω, d) are considered
that are sensitive to initial conditions, i.e. there exists some δ > 0 such that for each
ω ∈ Ω and each ε > 0 there exists some ω′ ∈ Ω and some t ∈ N0 with

d(ω, ω′) < ε and d
(
T ◦t(ω), T ◦t(ω′)

)
> δ.

Since we study, in this section, different symbolic schemes, and consider systems with
known KS entropies, we neglect the study of quality or reliability of our simulated
data in the following. For a deeper discussion and further ideas on the topic see, for
instance, Hammel [41], Peitgen et al. [71], Sprott [77] and Buzzi [19].

Moreover, note that we choose the non-causal perspective in our algorithms in order
to be consistent with the preceding chapters and for convenience of simpler nota-
tion. However, in truth, just glances at the past are possible, and therefore, most
implementations are the other way around (compare to Unakafova and Keller [84]
and Unakafova [85]). F

4.2.1 Empirical conditional entropy measures

Let C ⊂ A be a finite partition of Ω. In Section 2.2, we introduced in (2.4) and (2.7)
two equivalent definitions of the entropy rate hµ(T, C), whereby the conditional
entropy is less or equal to the Shannon entropy divided by t ∈ N, i.e.

Hµ((C)t+1)−Hµ((C)t) ≤
1

t
Hµ((C)t).
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Chapter 4 Entropy measures based on symbolic schemes
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(a) Estimates of the ordinal Conditional entropy for d ∈ {2, 3, . . . , 7} (purple, green,
light blue, blue dotted, red dotted, yellow dotted).
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(b) Estimates of Hµ((P7)t+1)−Hµ((P7)t) for t ∈ {1, 2, . . . , 9} (from left to right) based
on the strong ordinal approach.
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(c) Estimates of the ordinal Conditional entropy (dotted lines) and of the Permutation
entropy (blue, red, yellow) for d ∈ {5, 6, 7}.

Figure 4.1: Different estimates of the KS entropy (black line: ln(2)) of the
logistic map T4(ω) = 4ω(1 − ω) with ω ∈ [0, 1) in dependence on the orbit
length.

The inequality is, in particular, interesting for applications, and motivates the or-
dinal Conditional entropy (see Unakafov and Keller [83] and Unakafov [82]) as an
alternative to the Permutation entropy. These entropies are defined as follows.

Let R be the basic symbolization scheme as given in (4.2) and (Ed)d∈N be the full
timing (see Example 4.1). We call 1

dHµ(Pd) and Hµ((Pd)2)−Hµ((Pd)1), respectively,
the Permutation entropy and the ordinal Conditional entropy for some order d ∈
N. In fact, the ordinal Conditional entropy often shows better results than the
Permutation entropy in practice, as we also underline in the following (compare
to the results of Unakafov and Keller [83] and Unakafov [82]). In order to give a
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4.2 Empirical entropy measures

perspective on the matter, as a first step we simulated an orbit (xs)
T
s=0 with T ∈ N

of the logistic map T4 (see Example 2.1), i.e.

xs+1 = 4xs(1− xs)

for all s ∈ {0, 1, . . . , T − 1} and some randomly chosen x0. As a second step, we de-
coded (xs)

T
s=0 into a sequence of symbols by applying the strong ordinal approach for

different orders d ∈ N. Subsequently, we fixed a word length t ∈ N, and naively esti-
mated 1

dHµ(Pd) and Hµ((Pd)t+1)−Hµ((Pd)t) in dependence on the orbit length T
by replacing the probabilities by relative frequencies of symbol word occurrences.

Note that the logistic map T4 is ergodic with respect to µ4 (see for instance Chan
and Tong [22]). Further, the KS entropy of T4 is ln(2) (see for instance Grass-
berger [37] and Unakafov [82] and the references given therein) which we indicate by
the horizontal black line in Figure 4.1. Logistic maps are often considered in order
to test and to compare ordinal complexity measures (see for instance Amigó [5], the
special topic [6], Amigó et al. [7] and the references given therein). Moreover, note
that the following elaboration, in particular Figure 4.1, are derivatives from Keller
et al. [50].

As we already remarked in Section 2.2.3, asymptotics can be very slow, in particular,
if the considered system is complex. In such a case, one should pick high values of
the order d ∈ N and the word length t ∈ N. However, it is not surprising that in this
case one needs long-term measurements in order to obtain a reliable estimation, as
shown in Figure 4.1.

Estimates of Hµ((Pd)2) − Hµ((Pd)1) for orders d ∈ {2, 3, . . . , 7} in dependence on
the orbit length T between 102 and 106 are presented in Figure 4.1(a). It seems that
the approximation of the ordinal Conditional entropy, or rather the KS entropy, is
reasonable for d ∈ {5, 6, 7} once the orbit is long enough. However, in general, the
higher the order d ∈ N, the more time is needed to stabilize the estimation. The
same problem is also apparent in Figure 4.1(b). Here, we present naive estimates of
Hµ((P7)t+1) − Hµ((P7)t) for t ∈ {1, 2, . . . , 9}. Observe, that the approximation of
the KS entropy is still rather bad if, for instance, t ∈ {7, 8, 9} and the orbit length
is T = 105.

Figure 4.1(c) shows a comparison of the naive estimates of

1

d
Hµ(Pd) and Hµ((Pd)2)−Hµ((Pd)1)

for orders d ∈ {5, 6, 7}. By the result of Bandt et al. [10], estimates of the Permu-
tation entropy for very high ordinal orders d ∈ N must be close to the KS entropy.
However, for a fixed order d ∈ N, the ordinal Conditional entropy seems to be a bet-
ter choice than the Permutation entropy. This coincides with the results of Unakafov
and Keller [83] and Unakafov [82].

F Remark 4.2 (Estimating the Shannon entropy). Estimating the Shannon en-
tropy is not as straightforward as it may seem. In fact, for each data set, one has
to find the most suitable compromise between bias reduction and statistical error.
For a good overview and deeper discussion, we refer to Paninski [69] and Bonachela
et al. [16] and the references therein. The literature provides many proposals and

69



Chapter 4 Entropy measures based on symbolic schemes

remarks on how to correct the naive estimator, or whether a different estimator is
more reasonable (see for instance Roulston [74], Grassberger [38], Schürmann [76]
and the references given therein). F

4.2.2 Different basic symbolization schemes

In this section, we compare different basic symbolization schemes. In particular, we
highlight the problem of threshold crossings if a partition is considered that is not
generating under the dynamics. We decoded an orbit of the logistic map T4 into
a sequence of symbols. Subsequently, we fixed a word length t ∈ N, and naively
estimated the difference Hµ((Pd)t+1) −Hµ((Pd)t) by replacing the probabilities by
relative frequencies of symbol word occurrences.

The results are shown in Figure 4.2(a) for different word lengths t ∈ N and different
basic symbolization schemes in dependence on the orbit length T between 102 and
106. The blue, red and yellow curves are due to threshold crossings with the parti-
tion {[0, 0.5), [0.5, 1)} that is generating under T4 and with the misplaced partitions
{[0, 0.9), [0.9, 1)}, {[0, 0.4), [0.4, 1)} for d = 1 and t = 8, i.e. they are non-generating
under T4 (compare to Example 3.1 where we considered the full tent map). More-
over, the purple, green and light blue curves are due to threshold crossings also
non-generating under T4 with

• {[0, 0.45), [0.45, 0.55), [0.55, 1)},

• {[0, 0.05), [0.05, 0.1), [0.1, 0.15), [0.15, 0.2), [0.2, 1)}, and

• {[0, 0.05), [0.05, 0.95), [0.95, 1)}.

The curves underline not only our assertions of Section 4.2.1, i.e. the parameters
have to be chosen reasonably in regard to the orbit length, but also confirm that the
threshold crossings technique based on the partition {[0, 0.5), [0.5, 1)} delivers, in
contrast to misplaced partitions, the best results. Unfortunately, as we discussed in
detail in Chapter 2 and Chapter 3, it is very unrealistic, if not impossible, to choose
such a partition for a threshold crossings technique if the dynamics are unknown.

In Figure 4.2(b), the dashed curves are due to the strong ordinal approach for
(d, t) ∈ {(3, 4), (6, 5), (8, 2)} (blue, red and yellow). By contrast, we also applied
a symbolic-based analysis technique that entails the full timing and the following
basic symbolization scheme for some ε > 0:

R = { {(x, y) ∈ R× R | x− ε ≤ y ≤ x+ ε} , {(x, y) ∈ R× R | y > x+ ε}
{(x, y) ∈ R× R | y < x− ε} } .

(4.4)

The results are shown in Figure 4.2(b), whereby the purple curve is due to the
parameters ε = 0.05, d = 3 and t = 4, the green curve is due to ε = 0.05, d = 6
and t = 5 and the light blue curve is based on ε = 0.01, d = 6 and t = 5. At
this point, we do not want to discuss which choices of ε are reasonable, but want
to call attention to the diversity of possible complexity measures brought together
by our unifying way to formalize symbolic schemes. Note that, for a fixed d ∈ N
and t ∈ N, symbolic schemes with (4.4) entail, in general, more symbols and symbol
words than symbolic schemes based on the strong ordinal approach. Thus they have
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4.2 Empirical entropy measures

102 103 104 105 106
0

0.2

0.4

0.6

0.8

(a) The classical symbolic scheme with different initial partitions for d = 1 and t = 8
(for more details on the thresholds, we refer the reader to Section 4.2.2).
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(b) Strong ordinal approach for (d, t) ∈ {(3, 4), (6, 5), (8, 2)} (dashed curves: blue, red
and yellow) and a symbolic-based technique where (Ed)d∈N is the full timing and R
is characterized by some ε-tube for (d, t, ε) ∈ {(3, 4, 0.05), (6, 5, 0.05), (6, 5, 0.01)} (solid
curves: purple, green, light blue).

Figure 4.2: Different estimates of the KS entropy (black line: ln(2)) of the
logistic map T4 (see Example 2.1) in dependence on the orbit length by naively
estimating Hµ((Pd)t+1)−Hµ((Pd)t).

a greater potential of disclosing encapsulated information. However, the larger the
number of symbols or symbol words are, the greater the risk of undersampling. Both
phenomena, the accurate evaluation of encapsulated information and the problem
of undersampling, are observable in Figure 4.2(b).

4.2.3 Different timings

In this section, we compare the weak ordinal approach and the strong ordinal ap-
proach, or rather the weak timing, i.e.

Ed = {(0, t) | t ∈ {0, 1, 2, . . . , d}} ; d ∈ N,

and the full timing, i.e.

Ed = {(s, t) | s, t ∈ {0, 1, 2, . . . , d} with s < t} ; d ∈ N

(see Section 3.2.2 and Section 3.3.2) with respect to the ordinal idea. Hence, in the
following, let R be the basic symbolization scheme as given in (4.2). In order to
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(a) The ordinal approach for word length t = 2 and d ∈ {3, 5, 7} (blue, red, yellow).
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(b) The ordinal approach for d = 3 and word length t ∈ {3, 4, 6, 7} (blue, red, yellow,
purple).

Figure 4.3: Comparing the weak (solid lines) and the full timing (dashed lines)
by naively estimating Hµ((Pd,2)t+1)−Hµ((Pd,2)t) for orbits of Arnold’s cat map

in dependence on the orbit length. The KS entropy is ln
(

3+
√

5
2

)
(black line).

compare the two timings, we simulated an orbit (xs, ys)s∈N0 of Arnold’s cat map T
(see Remark 4.3), i.e.

(xs+1, ys+1) = (2xs + ys, xs + ys) mod 1

for all s ∈ N0 and some randomly chosen (x0, y0). We decoded (xs)s∈N and (ys)s∈N
into sequences of symbols (rs)s∈N0 and (us)s∈N0 using the strong as well as the weak
ordinal approach (see Keller and Sinn [51]), and subsequently, assigned a new unique
symbol to all pairs (rs, us)s∈N0 with the same values. In this way, we obtained a
new sequence of symbols in accordance with the two-dimensional setting. Again, we
fixed a word length t ∈ N, and naively estimated the difference

Hµ((Pd,2)t+1)−Hµ((Pd,2)t) (4.5)

by replacing the probabilities by relative frequencies of symbol word occurrences.
The results are shown in Figure 4.3 for different word lengths t ∈ N and orders d ∈ N
in dependence on the orbit length T between 102 and 106. The curves show that (4.5)
is not yet a good approximation of the KS entropy if the word length t ∈ N is small.
Moreover, the curves reflect that (4.5) decreases to the entropy rate hµ(T,Pd,2) for
an increasing word length t ∈ N, and that (hµ(T,Pd,2))d∈N increases. Further, since
the full timing is consistent and entails all time pairs of the weak timing, it is evident
that the strong ordinal approach provides better estimates of (4.5) as long as the
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. . . . . .
T T ◦5 T ◦6

. . . . . .
T ◦95 T ◦96 T ◦191 T ◦192

Figure 4.4: Visualization of Arnold’s cat map T with the help of a 768× 768
image of Bubi, i.e. we partition Ω into 589824 pixels and determine the t-th
iterate of each pixel under T . It holds that for t = 192 each pixel is back at
its place of origin. The picture of Bubi was taken by Dagmar Weigl in October
2017 and kindly provided for this thesis.

orbit length is high. However, for small orbit lengths the undersampling problem is
somewhat less pronounced for the weak ordinal approach. This is an advantage of
symbolic schemes (R, (Ed)d∈N) where (Ed)d∈N is the weak and not the full timing.
Since less comparison steps are needed and thus less symbols and symbol words, the
weak ordinal approach has, in general, better statistical properties. Particularly,
if d ∈ N and t ∈ N are large, i.e. the symbols and symbol words are observed
sufficiently. In fact, we have

|(Pd,n)t| ≤
(

(d+ 1)! (d+ 1)t−1
)n

and |Pd+t−1,n| ≤ ((d+ t)!)n

if the full timing is entailed (see Unakafova [85, Lemma 6]), and

|(Pd,n)t| ≤
((

2d
)t)n

and |Pd+t−1,n| ≤
(

2d+t−1
)n

if the weak timing is entailed. Note that, in the case of the strong ordinal approach,
successive words contain almost the same information. This overlapping gives the
formula for the upper bound of |(Pd,n)t|, and is exploited by the fast algorithms for
the computation of empirical Permutation and ordinal Conditional entropy (see for
instance Unakafova and Keller [84] and Unakafova [85]). Moreover, in Figure 4.3(b),
it is recognizable that the curves, in particular, the purple curve obtained by applying
the weak ordinal approach, get closer to the ones obtained by applying the strong
ordinal approach for an increasing word length t ∈ N. Therefore, it is worth to
consider the weak ordinal approach since, in general, less memory is needed, and
hence larger values of d ∈ N and t ∈ N are possible.

F Remark 4.3 (Arnold’s cat map). Let Ω = [0, 1)× [0, 1) and consider the trans-
formation Ta : ([0, 1)× [0, 1))←↩ defined by

T (ω) = T (ω1, ω2) = (2ω1 + ω2, ω1 + ω1) mod 1
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for all ω = (ω1, ω2) ∈ Ω. In literature, T is called Arnold’s cat map. If the opposite
sides of the unit square are identified with each other (see Brin and Stuck [17]), then
T is an automorphism on the two-dimensional torus induced by

A =

(
1 1
2 1

)
(see Denker et al. [29, Section 24]). Moreover, the eigenvalues of A are 3±

√
5

2 , hence

T is ergodic and the KS entropy is ln
(

3+
√

5
2

)
(see Denker et al. [29, Section 24]).

For a deeper discussion of Arnold’s cat map, we refer also to Andries et al. [8], Katok
and Hasselblatt [46], Collet and Eckemann [24] and the references given therein. A
visualization of T is given in Figure 4.4. F

4.2.4 Remarks

In this chapter, we not only shed new light on the different symbolic schemes used
in literature (see Amigó et al. [7], Daw et al. [27], Kurths et al. [60] and Zanin
et al. [88]), but also on the use of the conditional entropy (compare to Keller et
al. [50]). In doing so, we emphasized that it is interesting and worth comparing
different schemes due to their different asymptotic behavior.

Clearly, common problems of time series analyses have to be faced. These problems
are due to the finite nature of the considered time series and due to the approximate
calculation of a processing system. In general, it is a trade-off between computa-
tional capacity and accuracy that includes undersampling problems, the choice of
parameters, stationarity assumptions, and so forth (see for instance Keller et al. [50]).
We are convinced that the relatively new ordinal approach is going to benefit from
results achieved in the analysis of measured data with classical symbolic techniques,
for instance, in order to estimate a good basic symbolization scheme (see Steuer et
al. [78], Letellier [62], Li and Ray [63] and the references given therein).
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Appendix

In the following, we recall some facts and properties on topology (A.) and measure
theory (B.) that are relevant in our discussions. For a deeper discussion of the
theory, we refer the reader to Billingsley [13], Fremlin [35], Munkres [68], Brin and
Struck [17], Bogachev [14], and the references given therein.

A.1 A non-empty set Ω is topological if there exists a family Υ of subsets of Ω
satisfying the following axioms:
(i) The empty set ∅ and Ω belong to Υ.
(ii) If U1, U2, . . . ∈ Υ, then

⋃∞
n=1 Un ∈ Υ (closed under countable unions).

(iii) If U1 and U2 ∈ Υ, then U1 ∩ U2 ∈ Υ (closed under finite intersections).
We call (Ω,Υ) a topological space, the elements of Υ open subsets and Υ a
topology.

A.2 Let (Ω,Υ) and (Ω∗,Υ∗) be two topological spaces. A map φ : Ω → Ω∗ is
continuous if φ−1(U) ∈ Υ holds for all sets U ∈ Υ∗.

A.3 A non-empty set Ω is said to be metrical if there exists a non-negative map
d : Ω×Ω→ [0,∞) satisfying the following axioms for any ω1, ω2 and ω3 ∈ Ω:
(i) d(ω1, ω2) = 0⇔ ω1 = ω2 (identity of indiscernibles),
(ii) d(ω1, ω2) = d(ω2, ω1) (symmetry) and
(iii) d(ω1, ω2) ≤ d(ω1, ω3) + d(ω3, ω2) (triangle inequality).
In this case, d is called metric and (Ω, d) a metric space.

A.4 Let (Ω, d) be a metric space. The metric d yields for any ε > 0 and ω ∈ Ω an
open neighborhood in Ω given by

Uω,ε := {ω∗ ∈ Ω | d(ω, ω∗) < ε}.

A subset V ⊆ Ω is open if every ω ∈ V has an open neighborhood in V . A
subset V ⊆ Ω is closed if its complement Ω \ V is open. In fact, the family of
open subsets of (Ω, d) is a topology.

A.5 A topological space (Ω,Υ) is compact if each open cover of Ω, i.e. Ω =
⋃
i∈I Ui

with Ui ∈ Υ for some index set I, has a finite subcover, i.e.

Ω =

n⋃
k=1

Uik with ik ∈ I.

A.6 A topological space (Ω,Υ) is homeomorphic to a topological space (Ω∗,Υ∗) if
there exists a function φ : Ω→ Ω∗ with the following properties:
(i) φ is a bijection,
(ii) φ and φ−1 are continuous.
The map φ is called a homeomorphism between Ω and Ω∗. If φ is a map
between Ω and Ω∗ and a homeomorphism between Ω and φ(Ω), then φ is
called an embedding, i.e. Ω can be embedded into Ω∗.
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A.7 Let (Ω,Υ) be a topological space. If there exists a sequence (ωi)i∈N with ωi ∈ Ω
such that every open non-empty subset U of Ω contains at least one ωi, then
(Ω,Υ) is called separable.

A.8 A topological space (Ω,Υ) is called a Hausdorff space if for any two states
ω1 6= ω2 of Ω there exist two disjoint open subsets U , V ∈ Υ with ω1 ∈ U and
ω2 ∈ V .

A.9 Let (Ω, d) be a metric space and (ωi)i∈N with ωi ∈ Ω a Cauchy sequence, i.e.
for every ε > 0 there exists some Nε ∈ N such that d(ωn, ωm) < ε for n,
m ≥ Nε. The space (Ω, d) is complete if every Cauchy sequence converges in
Ω. A topological space (Ω,Υ) is metrizable if it is homeomorphic to a metric
space, and completly metrizable if it is homeomorphic to a complete metric
space.

We consider the Cartesian product ΩN := {(ω1, ω2, . . . ) | ωi ∈ Ω for all i ∈ N}
endowed with the product topology, i.e. the coarsest topology such that all canonical
projections

pi : ΩN → Ω

are continuous. In particular, we are interested in RN×RN0 = RN×N0 . Note that by
the countability of N× N0, we restrict theoretical discussions to RN.

B.1 A measurable space (Ω,A) is a non-empty set Ω equipped with a σ-algebra A,
i.e. a collection of subsets of Ω satisfying the following axioms:
(i) The empty set ∅ belongs to A.
(ii) If A ∈ A, then Ω \A ∈ A (closed under complements).
(iii) If A1, A2, . . . ∈ A, then

⋃∞
n=1An ∈ A (closed under countable unions).

A set A ⊆ Ω is called measurable if A ∈ A. A σ-algebra F ⊂ A is called a
sub-σ-algebra of A.

B.2 Let (Ω,A) be a measurable space. A map µ : A → R is countable additive if

µ(
∞⋃
n=1

An) =
∞∑
i=1

µ(An)

for all pairwise disjoint sets A1, A2, . . . ∈ A. A measure space (Ω,A, µ) is a
measurable space (Ω,A) equipped with a measure µ : A → R, i.e. µ is non-
negative and countable additive. A set A ∈ A is a null set if µ(A) = 0. An
atom is an one-point subset with positive measure. A measure space (Ω,A, µ)
is complete if every subset B of any null set A ∈ A is measurable. In this case,
µ is called complete.

B.3 A probability space (Ω,A, µ) is a measure space for which µ : A → [0, 1] with
µ(∅) = 0 and µ(Ω) = 1. In this case, µ is called a probability measure.

B.4 Let (Ω,A) and (Ω∗,A∗) be two measurable spaces. A map φ : Ω→ Ω∗ is A-A∗
measurable if

φ−1(A∗) := {ω ∈ Ω | φ(ω) ∈ A∗} ∈ A

for all A∗ ∈ A∗. In the case of measurability, we write: φ : (Ω,A)→ (Ω∗,A∗).
If we consider a probability space as a domain, then a function

X : (Ω,A, µ)→ (Ω∗,A∗)

is called random variable.
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B.5 Let (Ω,A) be a non-empty measurable space and M an arbitrary family of
subsets of Ω. The sub-σ-algebra generated by M is given by the smallest
σ-algebra of Ω containing M, that is

σ(M) :=
⋂

F⊂A is σ-algebra
and M⊂F

F .

The family M generates A if σ(M) = A. Let (Fr)r∈N be a sequence of σ-
algebras of Ω. The join

∨
r∈N
Fr := σ

(⋃
r∈N
Fr

)
⊂ A

is the minimal σ-algebra containing all Fr. In the case of two σ-algebras, we
write F1 ∨ F1 :=

∨2
r=1Fr.

B.6 Let (Ω,A, µ) be a probability space and let µ∗ : 2Ω → R (where 2Ω denotes
the power set of Ω) be defined by

µ∗(B) := inf{µ(A) | A ∈ A, B ⊆ A}

for all B ⊆ Ω. Then
(i) for any B ⊆ Ω there exists a measurable set A such that B ⊆ A and

µ∗(B) = µ(A) (A is called a measurable envelope of B),
(ii) µ∗(B) ≤ µ∗(C) for any B ⊆ C ⊆ Ω,
(iii) µ∗ is countable subadditive, i.e. µ∗(

⋃
i∈N) ≤

∑
i∈N µ

∗(Bi) for any family
(Bi)i∈N with Bi ⊆ Ω,

(iv) µ∗(A) = µ(A) for any A ∈ A, i.e. 0 = µ∗(∅) ≤ µ∗(B) ≤ µ∗(Ω) = 1
(see for instance Fremlin [35, Chapter 13]). The map µ∗ is called the outer
measure with respect to µ.

B.7 Let (Ω,A, µ) be a probability space and B ⊂ Ω. The trace σ-algebra A|B of
the space B is given by

A|B := {A ∩B | A ∈ A}.

The restriction of µ to A|B is defined by

µ|B(A ∩B) = µ(A ∩ B̃); A ∈ A,

where B̃ is an arbitrary measurable envelope of B. Let M be an arbitrary
family of subsets of Ω such that σ(M) = A, then σ(M ∩ B) = A|B (see
Billingsley [13, Theorem 10.1.]).

B.8 Let (Ω,Υ) be a topological space. The σ-algebra B(Ω) := σ(Υ) is called the
Borel σ-algebra of Ω. The elements B ∈ B(Ω) are called Borel sets, and a
measure µ on B(Ω) is called a Borel measure on Ω. Mostly, we are interested
in the Borel σ-algebra B(RN), for which B

(
RN) = B(R)⊗N := σ(Z) (see for

instance Bogachev [14, Lemma 6.4.2]), where Z = (Zn)n∈N is the family of
cylinder sets

Zn(B1, B2, . . . , Bn) =
{

(xt)t∈N ∈ RN | xi ∈ Bi, i ∈ {1, 2, . . . , n}
}

with n ∈ N and Bi ∈ B(R) for all i ∈ {1, 2, . . . , n}.
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Let X = (Xi)i∈N : (Ω,A, µ)→
(
RN,B(RN)

)
be a sequence of random variables

Xi : (Ω,A, µ)→ (R,B(R)) and σ(X) be the sub-σ-algebra of X given by

σ(X) :=
∨
i∈N

σ(Xi) =
∨
i∈N

{
X−1
i (B) | B ∈ B(R)

}
⊂ A.

Since Z generates B
(
RN), it holds that σ

(
X−1(Z)

)
= X−1(σ(Z)) (see for

instance Elstrodt [34, Chapter 1, Theorem 4.4]), i.e. X−1(F ) ∈ σ
(
X−1(Z)

)
for all F ∈ B

(
RN). Further,

X−1(Zn(B1, B2, . . . , Bn)) =

n⋂
i=1

X−1
i (Bi) ∈

n∨
i=1

σ(Xi)

for all n ∈ N and Bi ∈ B(R) with i ∈ {1, 2, . . . , n}, i.e. X−1(F ) ∈ σ(X) for all
F ∈ B

(
RN).
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Entropy and optimal partition for data analysis. The European Physical Journal
B - Condensed Matter and Complex Systems 19, 2 (2001), 265–269. https:

//doi.org/10.1007%2Fs100510170335.

[79] Stolz, I., and Keller, K. A general symbolic approach to Kolmogorov-Sinai
entropy. Entropy 19, 12 (2017), 675. https://doi.org/10.3390%2Fe19120675,
licensed under CC BY 4.0.

[80] Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems
and Turbulence, Warwick 1980, D. Rand and L. Young, Eds., Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1981, pp. 366–381. https://doi.org/

10.1007%2Fbfb0091924.

[81] Trzeciak, J. Writing Mathematical Papers in English. A practical guide.
European Mathematical Society Publishing House, Zürich, 2005. https://
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