Aus der Klinik für Dermatologie und Allergologie des Klinikums Augsburg Chefärztin: Prof. Dr. med. Julia Welzel

Optische Kohärenztomographie von aktinischen Keratosen und Basalzellkarzinomen – morphologische Charakterisierung und Signalintensitäten im Gerätevergleich

Inauguraldissertation

zur

Erlangung der Doktorwürde

der Universität zu Lübeck

- Aus der Sektion Medizin -

vorgelegt von

Sandra Schuh

aus Augsburg

Lübeck 2017

- 1. Berichterstatterin: Prof. Dr. med. Julia Welzel
- 2. Berichterstatter: Prof. Dr. med. Eckard Gehrking
- 3. Berichterstatterin: Prof. Dr. med. Carola Berking

Tag der mündlichen Prüfung: 21.12.2017

Zum Druck genehmigt. Lübeck, den 21.12.2017

- Promotionskommission der Sektion Medizin -

Widmung

Für meine lieben Eltern und meine Schwester Anja

Inhaltsverzeichnis

Abkürzungsverzeichnis

1. Einleitung	1
1.1 Einführung	1
1.2 Aktinische Keratosen (aK) und Basalzellkarzinome (BCC)	1
1.2.1 Epidemiologie, Definition, Pathogenese, Risikofaktoren	1
1.2.2 Klassifikationen von aK und BCC	5
1.2.3 Diagnostische Methoden	6
1.2.3.1 Klinische, dermatoskopische und histologische Diagnosesicherung	6
1.2.3.2 Optische Kohärenztomographie (OCT)	10
1.2.4 Therapie und Verlauf	17
1.2.4.1 Operative Therapie	17
1.2.4.2 Lokaltherapie und andere Behandlungsoptionen	18
1.2.4.3 Entscheidungsprobleme bei der Therapie von superfiziellen BCC	21
1.2.5 Differentialdiagnosen	22
1.3 Zielsetzung der Doktorarbeit	23
2. Material und Methoden	24
2.1 Patienten	24
2.2 Studiendurchführung	24
2.3 Messgeräte	27
2.3.1 Optische Kohärenztomographie VivoSight®	27
2.3.2 Optische Kohärenztomographie Callisto®	29
2.3.3 Optische Kohärenztomographie Skintell®	30
2.3.4 Bildanalyse	32
2.3.5 Konfokale Lasermikroskopie VivaScope®	35
2.3.6 Histologie	37
2.4 Statistik	39
3. Ergebnisse	40
3.1 Optische Kohärenztomographie VivoSight [®]	40
3.1.1 Morphologische Beobachtungen	40
3.1.1.1 Vergleich der aK Klassifikationen von Klinik, Histologie und OCT	40
3.1.1.2 Vergleich der Signalintensitäten der BCC Subtypen	42

Inhaltsverzeichnis

3.1.1.3 Vergleich mit der konfokalen Lasermikroskopie VivaScope [®]	44
3.1.2 Diagnostik von BCC anhand von Signalintensität	46
3.1.3 Diagnostik von aK anhand von Signalintensität und Schichtdicke	48
3.1.4 Differenzierung von aK und BCC	50
3.1.5 Vergleich von VivoSight [®] mit der Histologie	51
3.1.5.1 Ergebnisse der histopathologisch bestätigten Subgruppe	51
3.1.5.2 Korrelation der Dicken von BCC und aK in der OCT und Histologie	e 54
3.1.6 Verlaufskontrolle von BCC anhand von Signalintensität	56
3.1.7 Verlaufskontrolle von aK anhand von Signalintensität und Schichtdicke	e 58
3.2 Vergleich von drei OCT Geräten VivoSight [®] , Callisto [®] und Skintell [®]	60
3.2.1 Diagnostik von BCC mit drei OCT Geräten	62
3.2.2 Diagnostik von aK mit drei OCT Geräten	64
3.2.3 Vergleich von drei OCT Geräten bzgl. der BCC Signalintensität	66
3.2.4 Vergleich von drei OCT Geräten bzgl. der aK Signalintensität und Dick	e 68
3.2.5 Vergleich von drei OCT Geräten mit der Histologie	72
3.2.5.1 Ergebnisse der histopathologisch bestätigten Subgruppe	72
3.2.5.2 Korrelation der BCC Tumordicke in der OCT mit der Histologie	76
4. Diskussion	77
5. Zusammenfassung	95
6. Literaturverzeichnis	97
7. Anhang	116
7.1 Ethikvotum	116
7.2 Originaldaten	117
7.3 Statistische Auswertung	169
7.4 Patienteninformation und Einverständniserklärung	223
7.5 Dokumentationsbögen	226
8. Danksagung	. 232
9. Lebenslauf	. 234
10. Publikationen	236

Abkürzungsverzeichnis

Abb. Abbildung

aK aktinische Keratose

BCC Basalzellkarzinom (basal cell carcinoma)

BG Blutgefäß

BMP Bitmap

CCD charge-coupled device

DEJ dermoepidermale Junktionszone

df Freiheitsgrade

DICOM Digital Imaging and Communications in Medicine

EN Europäische Norm

FD-OCT frequency domain optical coherence tomography

HD-OCT high-definition optical coherence tomography

HH hedgehog

KI Konfidenzintervall

KIN keratinocytic intraepidermal neoplasia

M Mittelwert

NMSC nicht-melanozytärer Hautkrebs (non-melanoma skin cancer)

OCT Optische Kohärenztomographie (optical coherence tomography)

PTCH patched-Gen

PUVA Psoralen plus UV-A

SCC Plattenepithelkarzinom (squamous cell carcinoma)

SD Standardabweichung

SD-OCT spectral domain optical coherence tomography

SE solare Elastose
SF Standardfehler
SI Signalintensität

SS-OCT swept-source optical coherence tomography

SS-FD-OCT swept-source frequency domain optical coherence tomography

T t-Wert

TD-OCT time domain optical coherence tomography

TD-HD-OCT time domain high-definition optical coherence tomography

TIFF tagged image file format

1. Einleitung

1.1 Einführung

Aktinische Keratosen (aK) und Basalzellkarzinome (BCC) sind weltweit die häufigsten Malignome des Menschen, insbesondere in der weißen Bevölkerung, und ihre Inzidenz ist in den letzten Jahrzehnten ständig gestiegen [16, 80]. Der nicht-melanozytäre Hautkrebs (NMSC), zu dem beide Entitäten gezählt werden, wird heute normalerweise nach der Exzision in der Histologie, dem Goldstandard, diagnostiziert. Die Biopsie ist jedoch invasiv, bei oftmals multiplen Läsionen für den Patienten nicht zumutbar sowie, ökonomisch gesehen, in manchen Fällen nicht sinnvoll [222]. Daher sind in diesen Situationen und auch aufgrund der notwendigen Verlaufskontrolle von den in den letzten Jahren neu entwickelten nichtinvasiven Therapieverfahren schmerzfreie bildgebende Methoden, wie die optische Kohärenztomographie (OCT), zur in vivo Darstellung der Hauttumoren erforderlich. Da jeder Mensch ein Lebenszeitrisiko von ungefähr 30 % hat, ein BCC zu entwickeln, und in der Zukunft der NMSC von größerer Bedeutung als alle anderen Krebsarten zusammen sein wird [117, 146, 245], ist es sehr wichtig, diese Krankheiten früh zu entdecken und noch im Anfangsstadium, wenn möglich nichtinvasiv, zu behandeln.

1.2 Aktinische Keratosen (aK) und Basalzellkarzinome (BCC)

1.2.1 Epidemiologie, Definition, Pathogenese, Risikofaktoren

Die Inzidenz von NMSC, wie BCC, und von aK, hat in den vergangenen Jahren rapide zugenommen. Wie Studien aus dem Jahr 2006 zeigen, litten 2,2 Millionen Menschen an NMSC mit 3,5 Millionen Läsionen in den USA [7, 246]. Eine 16%ige Zunahme in der Behandlung von NMSC wurde innerhalb von vier Jahren bis 2006 bemerkt [174]. NMSC beinhaltet vor allem BCC (80,6 %), Plattenepithelkarzinome (SCC) und ihre Vorläufer, wie aK (18,3 %), und andere (1,1 %) [54, 105]. Mit mehr als 58 Millionen betroffenen Amerikanern im Jahr 2005 ist die aK die häufigste

Präkanzerose bzw. *in situ* Karzinom, während das BCC den häufigsten Krebs der Menschheit mit 171 neuen Fällen per 100.000 Einwohner pro Jahr in Deutschland darstellt [21, 47, 52, 117, 120, 147, 194]. Patienten beider Geschlechter (mit einer gering höheren Prävalenz für BCC und einer deutlich höheren für aK bei den Männern), mit einem Alter zwischen 60-80 Jahren und vom Hauttyp I und II nach Fitzpatrick sind am häufigsten von aK und BCC betroffen [172, 179]. Zudem gilt die 30 % Regel bei BCC: Neben dem Lebenszeitrisiko in der hellhäutigen Bevölkerung von 30 % für ein BCC, besteht ein 30%iges Risiko, dass bei Erstdiagnose mindestens ein zusätzliches BCC vorliegt sowie dass 30 % der BCC Patienten mindestens ein weiteres BCC entwickeln [49].

Unter aK versteht man je nach Definition entweder eine auf die Epidermis begrenzte Präkanzerose, also eine intraepitheliale Dysplasie von Keratinozyten, oder ein frühes Stadium des Plattenepithelkarzinoms (SCC), das in situ SCC [1, 4, 63, 242]. Dieses besteht aus intraepidermal proliferierenden, neoplastisch veränderten Keratinozyten, die sich oberhalb der Basalmembran befinden und sich nach Überschreiten derselben zu einer invasiveren Form weiterentwickeln können [4, 63, 199, 242]. Synonym für aK werden die Begriffe "solare bzw. senile Keratose", "Keratosis actinica", "seniles Keratom", "keratinozytische intraepidermale Neoplasie (KIN)" und "in situ SCC Typ aK" gebraucht [199, 242]. Das BCC ist wiederum unter den Namen "Basaliom", "Epithelioma basocellulare", "Basalzellkrebs" und "Basalzellepitheliom" bekannt und wurde erstmals von Jacob 1827 beschrieben [49, 102, 172, 177]. Bei einem BCC handelt es sich um einen langsamen, lokal infiltrierend und destruierend wachsenden Tumor, der seinen Namen von Krompecher aufgrund der dem Stratum basale der Epidermis und der Haarfollikel ähnelnden basophilen Zellen erhielt [111, 172, 177, 192]. Da BCC nur sehr selten zur Metastasierung neigen, nennt man sie semimaligne [172].

Es existieren viele Gründe für die Entstehung von aK und BCC. Der wichtigste Risikofaktor jedoch ist die UV-Strahlung [172, 177, 199]. Insbesondere die chronische UV-Exposition mit Wellenlängen von 290-320 nm im UV-B-Bereich ist dafür verantwortlich, währenddessen durch UV-A (320-400 nm) hervorgerufener oxidativer Stress nur indirekt schädigenden Einfluss auf die DNA nimmt [63, 88, 172, 177, 199]. Die UV-B-Strahlung führt einerseits über die Bildung von Thyminbzw. Cytosindimeren in der DNA und RNA zu neoplastisch veränderten Keratinozyten und andererseits aufgrund der Verlagerung der Immunantwort in

Richtung der T_H2-Zellen, die eine eingeschränkte Abwehrreaktion von Antigen präsentierenden Zellen gegenüber Tumorzellen bedingen, zu einer Herabsetzung des Immunsystems [63, 172, 177, 199]. Daher zählen Menschen, die in Äguatornähe leben und die sich beruflich oder privat viel im Freien aufhalten, zu Patienten mit erhöhtem Risiko für NMSC [4]. Doch nicht nur natürliches UV-Licht, sondern auch bei Photo- und Photochemotherapien, wie mit Psoralen plus UV-A-Therapie (PUVA), und beim Sonnen in Sonnenstudios können bei kumulativer Exposition aK und BCC entstehen [38, 172, 177]. Bei aK äußert sich der UV-Einfluss aufgrund der durch den nicht reparablen DNA-Schaden unkontrollierten Proliferation der Keratinozyten in einer Verhornungsstörung mit klinisch rauer Oberfläche [199]. BCC hingegen gehen nach aktuellem Wissensstand auf die in der Wulst des Haarfollikels gelegenen epidermalen Stammzellen der äußeren Haarwurzelscheide zurück, die weiterhin zur Mitose fähig sind, aber nicht zur Keratinisierung [49, 172]. Dies ist die Begründung dafür, dass BCC sich nur auf behaarter Haut entwickeln [172]. Bis zum Auftreten von invasiven aK und von BCC vergehen ca. 10-20 Jahre, wobei lediglich 5-10 % der aK im Verlauf ein invasives Wachstum zeigen [82, 172, 199]. Darüber hinaus stellt die nach Organtransplantation übliche Immunsuppression einen weiteren Risikofaktor in der Pathogenese von NMSC dar und führt zu einer schnelleren Progredienz in ein invasives SCC [56, 172, 199, 203]. Ferner wird ein Zusammenhang mit dem Humanen Papillomavirus als Ko-Karzinogen bei der SCC Entstehung vermutet [202, 203]. Weitere Karzinogene sind Teer und Arsen, die nach 10-30 Jahren an von UV-Licht in der Regel bedeckten Körperstellen und in inneren Organen BCC verursachen, sowie ionisierende Strahlung, vor allem nach häufigen Sitzungen mit geringen Einzeldosen (bis 2 Gy) [4, 49, 172, 177]. Auch bei Patienten mit Ulzera oder traumatischen Narben, Radiodermatitis oder Lupus vulgaris ist das Risiko für BCC erhöht [50, 172]. Neben einer positiven Familienanamnese und der durch erhöhtes Lebensalter allgemein vermehrten UV-Exposition spielen Sonnenbrände in der Kindheit sowie die Entwicklung von BCC aus einem Nävus sebaceus nach der Pubertät bei der Pathogenese von BCC eine Rolle [103, 177]. Zudem scheint ein anfänglich am Stamm lokalisiertes BCC vom superfiziellen Subtyp ein gehäuftes Auftreten weiterer BCC zu prognostizieren [4, 95, 126, 177].

Da BCC am Rumpf meist weniger dem Sonnenlicht ausgesetzt sind, kann die Ursache dafür vermutlich an genetischen Polymorphismen in Genen für

Entgiftungsenzyme, wie die Glutathion S-Transferase und das Cytochrom P450-System, liegen [118, 119, 177]. Sowohl bei einem Teil der sporadischen BCC als auch in fast allen Fällen des Basalzellnävussyndroms wurde eine Mutation des patched-Gens (PTCH), eines Membranrezeptors, auf Chromosom 9g22.3 oder 1q32 festgestellt [49, 95, 172, 177]. So erfolgt eine Aktivierung des hedgehog (HH) Signalweges, was zu einer unkontrollierten Zellproliferation führt [95, 172, 177]. Der HH Signalweg ist für die Entwicklung des Neuralrohres sowie von Haut und Haarfollikeln während der Embryogenese zuständig und reguliert danach den Zellzyklus [172, 177]. Andere Mutationen in diesem Signalweg, wie die des sonic HH, des smoothened Proteins oder des Transkriptionsfaktors Gli1, verursachen die gleiche Reaktion [95, 177]. Es gibt einige genetische Störungen, die mit einem höheren Risiko einhergehen, multiple BCC bereits in jungen Jahren zu entwickeln. Dazu zählen das bereits erwähnte Basalzellnävussyndrom oder Gorlin-Goltz-Syndrom, das autosomal dominant vererbt wird und sich klinisch u.a. in multiplen BCC, odontogenen Kieferzysten sowie grübchenförmigen Einsenkungen an Handund Fußsohlen äußert [49, 147, 177]. Das Bazex-Dupré-Christol-Syndrom auf dem Chromosom Xq24-q27 hingegen wird x-chromosomal weitergegeben und zeigt ebenfalls die frühe Ausbildung zahlreicher BCC, eine Hypotrichose sowie follikuläre Atrophodermie und Hypo- bzw. Hyperhidrose [36, 147, 177]. Weiterhin weisen das Rasmussen-, Rombo-, Bloom-, Cockayne- und Rothmund-Thompson-Syndrom sowie der Albinismus ein höheres Risiko für NMSC auf [4, 63, 177]. Auch Patienten mit Xeroderma pigmentosum, einer autosomal-rezessiven Genodermatose, bei der der durch das UV-Licht entstandene DNA-Schaden aufgrund eines Defekts in der Reparatur der Nukleotidexzision nicht behoben werden kann, unterliegen einem sehr hohen Risiko, nicht nur an multiplen BCC und aK, sondern auch am malignen Melanom zu erkranken [95, 177]. In mehr als 50 % der BCC und auch in aK lassen sich durch UV-Strahlung verursachte Mutationen im Tumorsuppressorgen p53 nachweisen, das u.a. an der Einleitung der Apoptose und DNA-Reparatur beteiligt ist, sodass statt des Zelltods die Proliferation von UV-Licht geschädigten Keratinozyten induziert wird [4, 28, 63, 177, 214]. Bei aK wurde zudem eine Veränderung der Telomerase gefunden, die die Apoptose hinauszögert und so zu einer verlängerten Überlebenszeit der Zelle führt [40, 63]. Letztendlich kommt es durch all diese Mutationen zur neoplastischen Transformation der Zellen, hin zu aK und BCC.

1.2.2 Klassifikationen von aK und BCC

Zahlreiche Klassifikationen von aK wurden bereits aufgestellt. Klinisch hat sich am ehesten die Einteilung nach Olsen etabliert (siehe Kapitel 2.3.4), bei der eine leicht tastbare Läsion, die besser fühl- als sichtbar ist, als aK Typ I nach Olsen aufgefasst wird [162]. Unter einer aK Olsen II versteht man eine mäßig dicke aK mit etwas Hyperkeratose (= übermäßige Verhornung der Haut), die sowohl leicht fühl- als auch sichtbar ist, und eine aK Olsen III ist eine sehr dicke und deutliche aK [162]. Es existiert jedoch auch eine histologische Klassifikation nach Cockerell (siehe Kapitel 2.3.4), basierend auf der Annahme, dass sich eine aK in ein invasives SCC entwickeln kann. Es gibt drei Typen der keratinozytischen intraepidermalen Neoplasie (KIN). Bei KIN I handelt es sich um eine Atypie der Keratinozyten im unteren Drittel der Epidermis, bei KIN II in den unteren zwei Dritteln der Epidermis und bei KIN III ist die gesamte Epidermis betroffen und es liegt somit ein SCC in situ vor [8, 39, 63]. Analog der Hypothese, dass aK zu einer Progression hin zum SCC führen, vertraten Berhane et al. die Ansicht, dass aK eine Entwicklung von der asymptomatischen über die entzündete aK hin zum SCC durchmachen [8, 19]. Es wurde vermutet, dass es durch die Entzündung, die bei Berührung als schmerzhaft wahrgenommen wird und sich klinisch mit einem erythematösen Halo darstellt, bei Erfolg zu einer Regression der aK und beim Scheitern zu einem Fortschreiten in ein SCC kommt [8, 19]. Aufgrund der Kontroversen über die Einstufungen von aK wurde auch eine andere Theorie, die der proliferativen und nicht proliferativen aK, postuliert [83, 84]. Die proliferative aK präsentiert sich vergrößert und mit kleinen Ulzerationen, ist resistent gegen übliche Behandlungsformen und scheint mit höherer Wahrscheinlichkeit in ein invasives SCC überzugehen [83, 84]. Erstmals wurden von Goldberg et al. anaplastische Zellen an den Adnexen in einer Form der Infiltration festgestellt, die der eines umgekehrten Christbaumes ähnelt [8, 83, 84]. Die Aggressivität der proliferativen aK wurde aber bisher nur eingeschränkt bewiesen [8, 83, 206]. Eine aktuelle Studie zeigte, dass die Progression von aK in ein SCC nicht nur stufenweise, wie bisher angenommen, verläuft, sondern dass alle aK unabhängig von ihrem Grad die Fähigkeit besitzen, potenziell invasiv zu [59, 183]. Aber es existiert nicht nur eine Klassifikation von aK, bei den BCC werden mehrere Subtypen unterschieden. Am häufigsten wird das langsam wachsende,

noduläre, solide BCC diagnostiziert, das sich als glasige, kleine Papel mit Teleangiektasien und zentraler Einsenkung oder Ulzeration, umgeben von einem perlschnurartigen Randsaum, präsentiert [120, 226]. Es bestehen oft zystische Anteile als Zeichen der Nekrose. Beim nodulären BCC handelt es sich zudem um berührungsempfindliche, leicht blutende Läsionen, die zur Invasion tiefer gelegener Strukturen, wie in die Subkutis und das subkutane Fettgewebe, neigen [120, 226]. Beim ulzerierten BCC Subtyp, das vor allem am Kapillitium, Gesicht und Rumpf auftritt, differenziert man zwischen dem sich peripher vergrößernden, meist schmerzlosen Ulcus rodens und dem in die Tiefe wachsenden Ulcus terebrans [49, 172, 245]. Pigmentierte BCC, als Variante des nodulären oder mikronodulären Typs mit Pigmentierung, zeigen sich als durchscheinende Papel mit Teleangiektasien und zentral blau-schwarz-braunem Farbton [120, 226]. Das superfizielle BCC, auch multizentrisches oder Rumpfhaut-BCC genannt, das sich als eine scharf begrenzte, rötlichbraune, flache Plaque, versehen mit Schuppen, Krusten und einer fadenförmigen, bräunlichen Umrandung, darstellt, tritt hingegen vor allem in der Epidermis und oberflächlichen Dermis am Rumpf und an den Extremitäten auf [49, 120, 172, 245]. Die sklerodermiforme, fibrosierende oder infiltrative Form versteckt ihr aggressives Verhalten hinter einem diskreten, klinisch schwer beurteilbaren Aussehen als eine unscharf begrenzte, flache oder atrophe, narbig indurierte Plaque mit glasigen Knötchen, die sich häufig zentrofazial entwickelt [49, 120, 172, 226, 245]. Weiterhin kommen das hyperkeratotische, adenoide, zystische, polypoide, keloidale, fibroepitheliale, metatypische und Narben-BCC vor [49, 172].

1.2.3 Diagnostische Methoden

1.2.3.1 Klinische, dermatoskopische und histologische Diagnosesicherung

Prinzipiell wird die Diagnose einer aK klinisch durch Palpation gestellt. AK sind als raue, schuppige, hautfarbene bis rötlichbraune Makulae, Papeln oder Plaques erkenn- und fühlbar (s. Abbildung 1 A) [40, 88, 221]. Ihr Durchmesser beträgt ein Millimeter bis mehrere Zentimeter, vor allem auf chronisch sonnengeschädigter Haut, wie von Gesicht, Glatze, den Ohren, Hals, Dekolleté, den Unterarmen,

Handrücken und Unterschenkeln [40, 88, 221]. Auch wenn aK in der Regel asymptomatisch sind, können Blutungen, Juckreiz oder Schmerzen bei Berührung auftreten [4, 89, 199]. AKs kommen meist nicht als einzelne Läsionen vor, sondern werden häufig zahlreich im Sinne einer Feldkanzerisierung angetroffen [27, 88]. Klinisch unterscheidet man hyperkeratotische, atrophische oder erythematöse, verruköse, pigmentierte oder lichenoide aK und deren Mischformen sowie das Cornu cutaneum [4, 88, 250]. Das Cornu cutaneum, eine keratinisierte, erhabene, konische Hautwucherung, stellt die Maximalform der hyperkeratotischen aK dar [199]. Hyperkeratotische aK mit gelb-rot-braunen Hyperkeratosen, nach deren Entfernung kleine Punktblutungen und ein Erythem mit entzündetem Randsaum feststellbar sind, findet man häufigsten [199]. AK vom erythematösen oder atrophischen Typ sind aufgrund einer Entzündungsreaktion meist rötlich-livide und besitzen erweiterte Gefäße [199]. Die purpurne lichenoide aK befindet sich oft an der Unterarmaußenseite und der Brust und ist sowohl klinisch als auch histologisch dem Lichen ruber ähnlich [199]. Die hellbraune pigmentierte aK hingegen ist vor allem an Schläfen und Wangen sichtbar [199]. An der Lippe wird die aK als Cheilitis actinica bezeichnet, die häufiger eine invasive Tendenz zeigt und vor allem an der Unterlippe lokalisiert ist [4, 199]. Zudem kann die Umgebung Teleangiektasien, fleckige Debzw. Hyperpigmentierungen, Sommersprossen als Zeichen der Sonnenschädigung aufweisen [4, 51, 199].

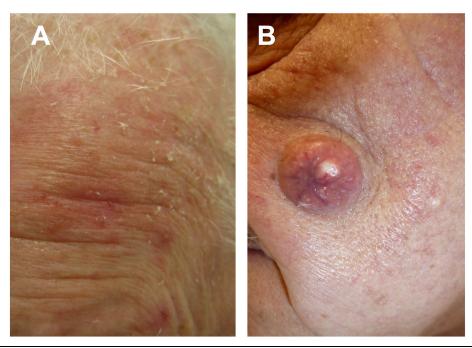


Abbildung 1 A, B. (A) Klinische Darstellung einer aK und (B) eines BCC.

BCC hingegen sind zu 80 % am Kopf und Hals sowie untergeordnet an Rumpf und Unterschenkeln zu finden [172, 245]. Initial ist das BCC häufig ein scharf begrenztes, kleines, durchscheinendes oder perlartiges Knötchen bzw. eine Gewebeverhärtung mit den typischen Teleangiektasien (s. Abbildung 1 B) [172, 245]. Klinisch fällt meist eine an der gleichen Lokalisation wiederkehrende Blutkruste auf [172]. BCC wachsen langsam, sie können sich aber bei Nichtbehandlung sowohl vertikal als auch horizontal ausbreiten und bis zur Knochendestruktion führen [245]. Ihre Metastasierungsrate ist mit 0,0028-0,55 % sehr gering [245].

Nichtpigmentierte aK zeigen dermatoskopisch ein Hintergrunderythem, das ein rotes Pseudonetzwerk, bestehend aus atypischen, gewellten Gefäßen und benachbart zwischen den Haarfollikeln, ist und "Erdbeermuster" genannt wird [167, 249]. Weiterhin sichtbar sind die mit einem weißen Hof umgebenden bzw. mit gelblich keratotischen Pfropfen am Eingang versehenen Follikelöffnungen sowie weiß-gelbliche Schuppen (s. Abbildung 2 A) [167, 249]. Pigmentierte aK weisen grau-braune Punkte und Globuli um die Follikelöffnungen auf, ein braun-graues Pseudonetzwerk und anulär-granuläre Strukturen auf [167].

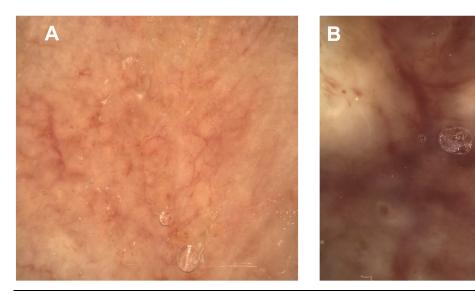
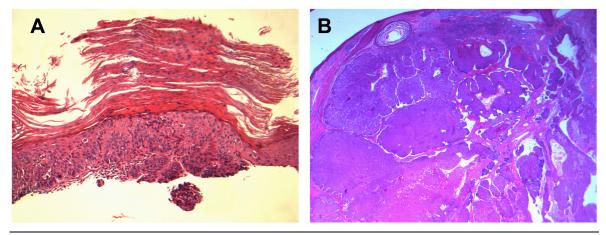


Abbildung 2 A, B. (A) Dermatoskopische Darstellung einer aK und (B) eines BCC.


Dermatoskopisch sind BCC neben der Abwesenheit eines Pigmentnetzes anhand mindestens eines der folgenden Merkmale zu diagnostizieren [169]. Bei BCC sieht man die sich horizontal baumartig verzweigenden Teleangiektasien von variabler Kaliberstärke (s. Abbildung 2 B) [49, 169]. Pigmentierte BCC sind u.a. an einer

braunen Pigmentierung in Form eines Ahornblattes zu erkennen [49]. Weitere Kriterien sind das Auftreten von großen, blaugrauen, ovoiden Nestern, multiplen blaugrauen Globuli, radspeichenartigen Gebilden und Ulzeration [169, 195, 243]. Nur mit der Polarisationsdermatoskopie können helle, weiße, lineare Streifen, sog. chrysalisartige Strukturen und Rosetten, gesehen werden [169].

AK werden, wie bereits erwähnt, primär klinisch diagnostiziert. Bei Zweifeln oder wenn eine bestimmte Therapie angestrebt wird, ist eine Biopsie sinnvoll. Denn bis heute ist die Histologie der Goldstandard für die Diagnosesicherung einer aK und eines BCC. AK sind histologisch durch das wechselnde Auftreten von regelrechter (= Orthokeratose) oder gestörter Verhornung (= Hyperparakeratose) bei atropher oder akanthotischer Epidermis, atypischen pleomorphen, auf die Epidermis begrenzten Keratinozyten, Dyskeratosen (= vorzeitige Keratinisierung der Zellen) sowie Schichtungsstörungen und Mitosen im Bereich des Stratum basale zu diagnostizieren (s. Abbildung 3 A) [107, 196, 199]. Ein entzündliches dermales Infiltrat sowie aktinische Elastose (= Verdickung der Kollagenfasern und Bildung von Falten) sind stets vorhanden [107, 196, 199]. Bei aK sind im Vergleich zum Morbus Bowen die Adnexstrukturen nicht betroffen [107, 196]. Sind atypische Keratinozyten in allen Epidermisschichten zu finden, handelt es sich um eine bowenoide aK, und bei nestartiger Ausbreitung um eine Borst-Jadasson-aK [199]. Ausgeprägte Hyperkeratose und Akanthose (= Verbreiterung des Stratum spinosum) sprechen für eine hypertrophe, eine geringe Hyperkeratose und Atrophie der Epidermis für eine atrophische aK [199]. Als akantholytische aK wird eine Spaltbildung oberhalb des Stratum basale mit Akantholyse (= Lösung des Keratinozytenverbundes im Stratum spinosum) bezeichnet [199]. Eingelagertes Melanin in der Basalzellschicht und im oberen Bereich der Dermis ist ein Hinweis auf eine pigmentierte aK [199]. Für das Auftreten von hellen, glykogenreichen, atypischen Keratinozyten verwendet man den Begriff Hellzell-aK [199]. Zudem lassen ein lichenoides Infiltrat, Parakeratose und epidermale atypische nekrotische Keratinozyten an eine lichenoide aK denken [199].

Um histologisch die Diagnose eines BCC zu stellen, sind typische Kriterien wie basaloide, scharf begrenzte, zellreiche Tumorzellproliferationen, die direkt mit der Epidermis verbunden sind, festzustellen (s. Abbildung 3 B) [108, 172, 197]. Darüber hinaus zeigen die Tumorzellen große, chromatindichte Kerne mit einem schmalen Zytoplasmasaum [108, 197]. Es finden sich häufig eine palisadenartige

Anordnung der Tumorzellen sowie peritumorale Spalten zwischen Epithel und Stroma [108, 172, 197]. Meist fällt eine atrophe, erodierte oder ulzerierte Epidermis über dem BCC auf [172]. Bei den BCC gibt es drei große histologische Subtypen: Das superfizielle BCC zeichnet sich durch an verschiedenen Orten gleichzeitig auftretende, basaloide Tumorzellknospen aus, die palisadenartig angeordnet sind, und bis in das Stratum papillare der Dermis reichen können [108, 172, 197]. Asymmetrische, knotige, scharf begrenzte Tumorzellverbände mit peripheren Palisadenstellungen, mitunter Spaltbildungen, eine peritumorale Stromareaktion sowie ein lymphoidzelliges Begleitinfiltrat sprechen für ein noduläres BCC [108, 172, 197]. Beim sklerodermiformen oder fibrosierenden BCC infiltrierend fallen kleine. hirschgeweihartig verzweigte, Tumorzellstränge von meist nur wenigen Zelllagen auf, die an den Rändern unscharf abzugrenzen und von einem dichten faserreichen Stroma umgeben sind [108, 172, 197].

Abbildung 3 A, B. (A) Histologische Darstellung einer aK in 10-facher Vergrößerung und (B) eines BCC in 1,6-facher Vergrößerung.

1.2.3.2 Optische Kohärenztomographie (OCT)

Wie zuvor erwähnt, wird die Diagnose NMSC mit einer Sensitivität von 56-90 % und Spezifität von 75-90 % üblicherweise klinisch gestellt [148]. Wenn dazu die Dermatoskopie hinzugezogen wird, kann eine höhere Präzision (von 65,8 % auf 76,2 %) erzielt werden, ein BCC zu diagnostizieren, und diese kann durch den Einsatz der OCT sogar auf 87,4 % gesteigert werden [219].

Die OCT ist ein schnelles, optisches bildgebendes Verfahren für die in vivo, in Echtzeit Darstellung von Gewebe. Analog zum Ultraschall, bei dem Schallwellen verwendet werden, sendet man bei der OCT Lichtstrahlen in das gewünschte Gewebe hinein [227]. Durch die Laufzeitdifferenzen der reflektierten Lichtanteile wird Wissen über den Gewebsaufbau gewonnen, das zur Generierung von zweidimensionalen Bildern im Tiefen-Querschnitt verwendet wird, die einen nichtinvasiven Überblick über die oberflächlichen Hautschichten liefern [125, 181]. Die OCT basiert auf den Prinzipien der Kohärenz und der Interferenz. Von Kohärenz spricht man, wenn Lichtwellen über eine definierte Wegstrecke oder Zeit die gleiche Frequenz besitzen und sie über eine feste Phasenbeziehung verfügen. Unter Interferenz hingegen versteht man eine Superposition von kohärenten Lichtwellen, sodass die Interferenz durch die Kohärenz bedingt wird. Daher ist die Kohärenzlänge die Differenz der Wegstrecken zweier Lichtwellen, die gerade noch dazu führt, dass es zu einer Interferenz kommt. Die Kohärenzlänge der Lichtquelle gibt die axiale Auflösung von 3-15 µm vor, während die laterale Auflösung von bis zu 15 µm durch das optische System der Linse bestimmt wird [231, 232, 239]. Als Lichtquelle verwendet die OCT zumeist eine Superlumineszenzdiode mit 800-1300 nm Wellenlänge [125]. Da der Aufbau der zu untersuchenden Gewebe nicht homogen ist, streuen, absorbieren und reflektieren die optisch ungleich brechenden Strukturen das Licht [125, 227]. Abhängig von der Wellenlänge und aufgrund der Lichtstreuung der Haut ist die Eindringtiefe auf 1-2 mm limitiert [125, 231]. Die Technik der OCT beruht auf dem Prinzip der Michelson-Interferometrie. Dabei wird das Licht durch einen Strahlteiler in einen Proben- und Referenzstrahl gespalten (s. Abbildung 4). Der Probenstrahl beleuchtet das Gewebe, das von Interesse ist, und der Referenzstrahl wird auf einen Referenzspiegel gelenkt. Durch die Rückkehr sowohl des reflektierten Lichts aus dem Gewebe als auch des zurückgestreuten Strahlenbündels vom Referenzspiegel zum Strahlteiler besteht die Möglichkeit der Interferenz. Diese tritt nur auf, wenn das Licht vom Referenzund Probenarm den gleichen optischen Weg zum Strahlteiler zurückgelegt hat und die beiden Weglängen innerhalb der Kohärenzlänge des Lichts übereinstimmen [232]. Durch laterales und mehrfaches Messen entstehen durch Zusammensetzung von axialen eindimensionalen Amplituden-Scans (A-Scan) 2Doder 3D-Schnittbilder (B- bzw. C-Scan), ähnlich den B-Bildern beim Ultraschall [239]. Die Intensität des Signals wird verstärkt und mit Hilfe einer logarithmischen

Grauwert- oder Falschfarbenskala als ein OCT-Bild visualisiert (s. Abbildung 5) [232]. Zur quantitativen Bestimmung der Dicke und Signalintensität wird der A-Scan des gewünschten OCT-Bildes verwendet, der die Tiefeninformation über die Amplitude des Einzelsignals liefert [228, 232]. Bei der Berechnung muss jedoch der Brechungsindex der Haut von 1,3-1,4 miteinbezogen werden [208, 232].

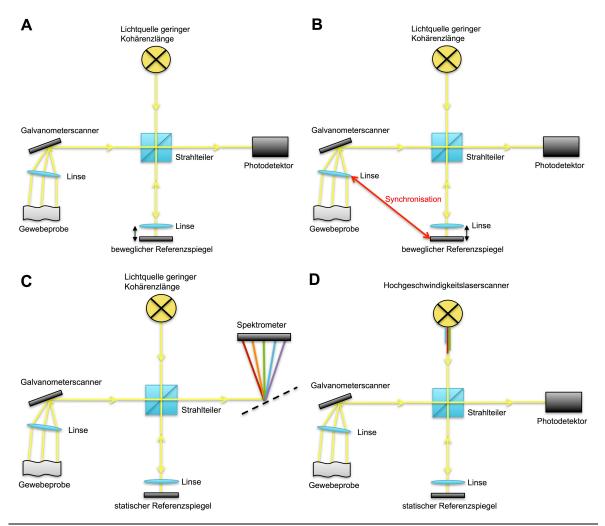


Abbildung 4 A, B, C, D. (A) TD-OCT mit beweglichem Referenzspiegel und Photodetektor, (B) TD-HD-OCT mit synchronisierter Bewegung von Linse und Referenzspiegel, (C) SD-OCT mit Spektrometer, Breitbandlichtquelle und statischem Referenzspiegel und (D) SS-OCT mit Photodetektor, statischem Referenzspiegel und durchstimmbarem schmalbandigem Hochgeschwindigkeitslaserscanner (modifiziert aus [66, 136]).

Es existieren verschiedene Arten von OCT. Die time domain OCT (TD-OCT) war die erste, die eingesetzt wurde (s. Abbildung 4 A). Diese verfügt über einen Photodetektor und beweglichen Referenzspiegel, der periodisch hin- und

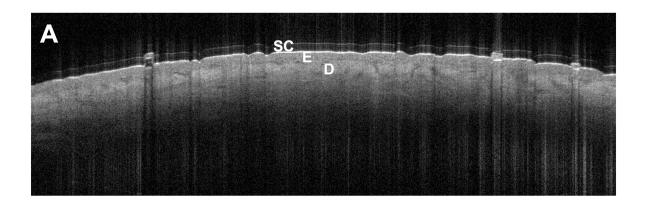
herpendelt. Damit wird das Signal in Abhängigkeit von der Zeit registriert [66]. Aufgrund der Mechanik des Referenzspiegels und der damit einhergehenden langsameren Bildgebung mit geringerer Qualität, wurde die TD-OCT zum TD-HD-OCT weiterentwickelt [244]. Dabei wird die Linse, mit der das Licht auf das Gewebe gebündelt wird, mit dem Referenzspiegel synchronisiert, sodass die hohe Auflösung über die gesamte Abbildungstiefe beibehalten werden kann (s. Abbildung 4 B) [66]. Bei dem in dieser Studie verwendeten OCT System Skintell® (s. Kapitel 2.3.3) handelt es sich um eine TD-HD-OCT. Verglichen mit der TD-OCT, bei der man die Interferenz über den Zeitunterschied erfasst, wird diese bei der frequency domain OCT (FD-OCT) über die Frequenzabweichung ermittelt [227]. Die mechanische Zeitdifferenzerfassung ist bei der FD-OCT nicht notwendig, sodass der Referenzspiegel hier unbeweglich ist [66]. Bei der FD-OCT gibt es zwei verschiedene Varianten, wobei die spektralen Informationen bei der spectral domain OCT (SD-OCT) räumlich und bei der swept source OCT (SS-OCT) zeitlich registriert werden [66, 136]. Wie in Abbildung 4 C dargestellt, erfasst die SD-OCT, zu der in dieser Arbeit das OCT Gerät Callisto® zählt (s. Kapitel 2.3.2), die spektralen Komponenten über ein Spektrometer [136]. Das Interferenzspektrum wird durch das Licht aus der Breitbandquelle, das nach der Rückkehr aus den Gewebetiefen mit dem aus dem Referenzarm interferiert, mit einer Frequenz moduliert, die in direktem Verhältnis zum Weglängenunterschied steht [66, 136]. Ein Tiefenprofil aus dem Amplitudensignal (A-Scan) kann dann durch eine Fourier-Transformation des detektierten Spektrums erstellt werden [66]. Die SS-OCT hingegen stimmt mit einem schmalbandigen Hochgeschwindigkeitslaser die Wellenlängen des Spektrums durch, um die Interferenzspektren über einen Zeitraum zu messen (s. Abbildung 4 D) [66]. Das OCT Gerät VivoSight® in dieser Studie ist eine SS-OCT (s. Kapitel 2.3.1), bei der ein Photodetektor, der eine Detektion in hoher Geschwindigkeit ermöglicht, verwendet wird [66].

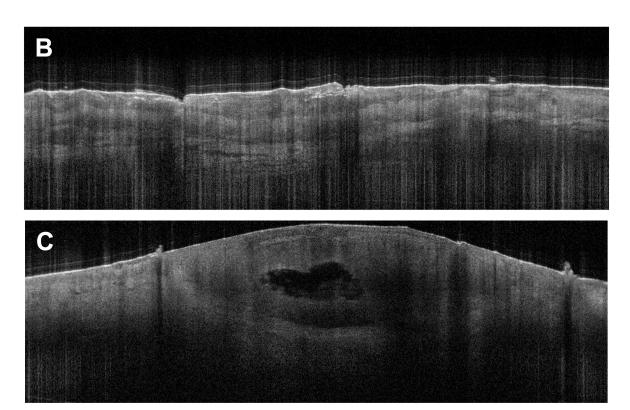
Der Einsatz der OCT wurde 1988 erstmals von Fercher et al. [58] und 1991 von Huang et al. [99] in der Augenheilkunde in vitro beschrieben. Die OCT eignet sich sehr gut für die Betrachtung des Auges, da es hier, anatomisch bedingt, nur zu einer geringen Absorption und Streuung des Lichts kommt [232]. Daher ist die OCT aus der Standarddiagnostik in der Augenheilkunde nicht mehr wegzudenken. Sie hat zahlreiche Anwendungsgebiete, wie z.B. bei Erkrankungen der Netzhaut,

Aderhaut, Makula, des Sehnervs (wie beim Glaukom), bei intraokulären Tumoren und zur Messung der Korneadicke [91, 92, 142, 168, 171, 186, 187].

Nicht nur in der Ophthalmologie, auch in der Gynäkologie, Neurologie, Pulmologie, Gastroenterologie, Kardiologie, Hals-Nasen-Ohrenheilkunde und vielen anderen Fachgebieten konnte durch die Kombination mit der Endoskopie sogar die Schleimhaut in experimentellen Studien visualisiert werden [13, 34, 125, 138, 154, 175, 198].

Wenige Jahre nach der ersten *in vivo* Applikation in der Augenheilkunde begann der Einsatz der OCT in der Dermatologie. Anders als das Auge ist die Haut eher lichtundurchlässig [232]. Der Grund dafür liegt darin, weil das Licht durch den hohen Melanin- und Hämoglobingehalt absorbiert wird und die verschiedenen Brechungsindizes der Gewebebestandteile zur Streuung beitragen [232]. Um die Absorption gering zu halten und ein tiefes Eindringen des Lichts in das Gewebe zu ermöglichen, sind Wellenlängen zwischen 700-1300 nm die erste Wahl [232].


So ist die gesunde Haut mit ihren drei Schichten (s. Abbildung 5 A) gut sichtbar. Es zeigt sich von oben nach unten die signalstarke Hornschicht, die echoärmere Epidermis und zuletzt die etwas hellere papilläre und dunklere retikuläre Dermis [144, 151, 228]. Die dermoepidermale Junktionszone (DEJ) demarkiert sich als schmale Linie zwischen Epidermis und Dermis [144, 151, 228, 232]. In der Dermis sind als signalarme, ovale oder längliche Formen die Gefäße und auch schräg angeschnittene, dunkle Haarfollikel erkennbar [144, 151, 228, 232].


Ebenso gut stellt sich die normale Nagelplatte sowie das Nagelbett dar [228]. Zudem können Erkrankungen des Nagels, wie die Onychomykose (als länglich streifige, hyperreflektive Veränderungen), der Befall der Nägel bei Psoriasis, Verrucae vulgares, subunguale Hämatome und Spaltbildungen mit der OCT beurteilt werden [180, 228]. Dennoch ist die OCT bei der Onychomykose trotz guter Sensitivität aufgrund der geringeren Auflösung weniger spezifisch als andere diagnostische Methoden [176].

Auch für inflammatorische Erkrankungen eignet sich die OCT. Blasenbildende Autoimmundermatosen können mit der OCT am Rand der signalfreien Blase anhand der sub- oder intraepidermalen Lokalisation differenziert werden [150, 232]. Die Kontaktdermatitis äußert sich hingegen in einer verdickten Epidermis und hyporeflektiven Dermis aufgrund der Ödembildung [66, 236]. Bei der akuten Kontaktdermatitis waren die OCT Ergebnisse mit den Reaktionen der Patch-Tests

vergleichbar [71]. Mit der OCT wurden sogar UV-induzierte Einflüsse festgestellt [67]. Die histologischen Merkmale entzündlicher Dermatosen lassen sich sowohl in der OCT als auch auf zellulärer Ebene in der HD-OCT finden [24, 155, 236]. In psoriatischer Haut zeigt sich die Hyperkeratose in einem unregelmäßig breiten, doppelten, sehr hellen Eintrittssignal, aber auch ausgeprägte Reteleisten und erweiterte dunkle Blutgefäße sind in der entzündungsbedingt signalärmeren Dermis und Epidermis mit Akanthose und Pusteln sichtbar [155, 228, 236]. Beim Lupus erythematodes korrelierten die pathologischen Charakteristika in der OCT gut mit der Histologie, auch wenn mit der OCT die zur Differenzialdiagnostik notwendigen Merkmale nicht ausreichend darstellbar sind [65].

Parasiteninfektionen, wie die Skabiesmilben, können in Form einer Mango in ihrem Bau in der OCT detektiert werden [11, 232, 238]. Eine Studie von Morsy et al. konnte auch die gangartigen Gebilde der Larva migrans nachweisen, die Larve selbst wurde jedoch nicht gefunden [156]. In der HD-OCT waren sogar bei Demodex-Follikulitis, Rosazea oder perioraler Dermatitis die kleinen Demodex-Milben als signalreiche Strukturen im echoarmen Haarfollikel zu sehen [132, 228]. Mit der OCT lassen sich auch Hauttumoren beurteilen. Aus früheren Studien sind morphologische Eigenschaften für die Diagnostik von aK und BCC in der OCT bekannt [14, 72, 149]. Mit der HD-OCT wurden weitere strukturelle Kriterien definiert, um u.a. die Subtypen von BCC sowie gesunde Haut, aK und SCC (durch die Invasion der DEJ) voneinander unterscheiden zu können [22, 23, 26, 129]. AK und BCC zeigen keine regelmäßige Schichtung der Haut, vor allem aK weisen eine stärkere Hornschicht- und Epidermisdicke auf (s. Abbildung 5 B) [14, 210]. AK sind in der oberen Epidermis als signalreiche Schuppen und Strähnen und in der Hornschicht als dunkle bandförmige Streifen in der OCT erkennbar [14, 110].

Abbildung 5 A, B, C. (A) Darstellung von gesunder Haut (SC = Stratum corneum, E = Epidermis, D = Dermis), (B) einer aK und (C) eines BCC in der OCT (VivoSight® 6 mm x 2 mm).

BCC fallen als ovale, hyporeflektive Gebilde mit einem dunklen Randsaum und teils signalfreien, zystischen Anteilen gegenüber dem umgebenden hellen Stroma auf oder sind der Epidermis zapfenartig angehängt (s. Abbildung 5 C) [23, 26, 72, 232]. Diese Erkenntnisse über die NMSC Darstellung wurden jeweils mit nur einem der OCT Systeme VivoSight[®], Callisto[®] oder Skintell[®] gewonnen, bisher ist jedoch kein Gerätevergleich erfolgt [41, 73, 129, 181, 209]. Dennoch ist die Abgrenzung von aK, BCC und den Differenzialdiagnosen manchmal schwer, sodass weitere quantitative Untersuchungen, wie von Gao et al., nötig sind [78, 104, 149].

Schwieriger fällt die Evaluation von melanozytären Läsionen in der OCT. Bei Nävi finden sich eine verdickte Epidermis und lang gezogene Reteleisten, in deren oberem Bereich sich die dunklen, typisch angeordneten Nävuszellnester befinden [66]. Kräftig pigmentierte Läsionen führen in der OCT zu einer stärkeren Streuung des Lichts und sind gegenüber gesunder Haut homogener in der Signalintensität [66, 232]. Die DEJ kann bei invasiven Melanomen nicht mehr sichtbar sein [66, 232]. Mit der OCT gelang es Gambichler et al., benigne von malignen melanozytären Tumoren zu unterscheiden [75]. Speziell bei den Melanomen

wurden eiszapfenartige Gebilde beobachtet [75]. Durch die technische Limitation der OCT kann die Eindringtiefe von malignen Melanomen nur bis zu einer Dicke von < 1 mm ermittelt werden, jedoch scheint die OCT genauer als der Hochfrequenzultraschall zur Dickenmessung von Hauttumoren zu sein [66, 94, 232]. Obwohl mit der HD-OCT zusätzlich die zelluläre Architektur von Melanomen und Nävi beurteilt werden kann, ergaben sich aufgrund vorhandener gemeinsamer Merkmale und fehlender verdächtiger Melanom-Kriterien einige Fehldiagnosen, sodass die konfokale Lasermikroskopie (KLM) der OCT in der Diagnostik von melanozytären Läsionen weiterhin überlegen ist [74, 76].

Zudem ist die OCT ein wichtiges Tool zum Monitoring von Lokal- oder Systemtherapien. Der Einfluss von mehreren topischen Wirkstoffen auf die Haut wurde demonstriert [240]. Vor allem die Steroidtherapie führte zu einer sichtbaren Hautatrophie [43, 163]. Aber auch die Auswirkungen einer Lasertherapie und die anschließende Wundheilung konnten quantifiziert werden [182]. Insbesondere aber eignet sich die OCT zum Therapiemonitoring des NMSC. Zur Diagnostik vor (um Invasionsausmaß und damit die Therapie zu bestimmen), während und nach der Behandlung kann die OCT verwendet werden [228]. Aktuelle OCT Studien stellen die veränderte Erscheinung von aK unter Therapie mit topischem 5-Fluorouracil 10%iger 0,5%igem und Salizylsäure, Ingenolmebutat-Gel, Kryotherapie, photodynamischer Therapie (PDT) und CO₂-Laserablation dar [130, 134, 189, 209]. OCT Verlaufskontrollen von BCC erfolgten unter Imiguimod, oralen Hedgehog-Signalweg-Inhibitoren und PDT [10, 131, 210]. Die OCT ist auch bei der präoperativen Bestimmung der Tumorgrenzen hilfreich [5, 229].

1.2.4 Therapie und Verlauf

1.2.4.1 Operative Therapie

Da zur Behandlung von BCC verschiedene Möglichkeiten bestehen, muss die Therapie, abhängig von Größe, Lokalisation und Subtyp, gemeinsam mit dem Patienten entschieden werden [172]. Prinzipiell strebt man bei einem BCC die komplette Exzision mit histologischer Begutachtung an [172]. Die Standardexzision erfolgt mit einem ausreichenden Sicherheitsabstand von 3-15

mm und hat eine Rezidivrate von 5-10 %, während diese bei mikrographisch kontrollierter Chirurgie ("Mohs micrographic surgery") bei 1-2 % liegt und nur 2-4 mm Sicherheitsabstand nötig sind [120, 172]. Mohs Chirurgie wird bei großen fazialen Tumoren > 2 cm, Rezidiven, sklerodermiformem Subtyp und BCC > 5 mm Durchmesser an schwierigen Lokalisationen wie Auge, Nase und Ohr angewandt [120, 172]. Indem die Tumorränder markiert werden (s. Kapitel 2.3.6 Abbildung 13) und davon eine Papierskizze angefertigt wird, können die Ränder lückenlos dreidimensional histologisch danach beurteilt werden, ob sie tumorfrei oder noch Restzellen vorhanden sind, sodass ggf. an entsprechender Stelle nachreseziert werden kann [172]. Der Nachteil der Exzision sind Infektionen, Nachblutungen oder Narben, der Vorteil die histologische Sicherung der Diagnose [245]. Nach einer bioptischen Sicherung können kleine, oberflächliche BCC auch kürettiert sowie das Gewebe mit Elektrodesikkation koaguliert und Blutungen gestillt werden [172, 245]. Der Nachteil liegt darin, dass keine Kontrolle des Gewebes auf in toto Resektion vorliegt [172, 245]. Bei ulzerierten BCC mit Invasion tieferer Strukturen kann ein interdisziplinärer, radikal chirurgischer Eingriff mit Kieferchirurgen, Hals-Nasen-Ohren- und Augenärzten notwendig sein [172].

Auch einzelne aK behandelt man durch Exzision, Kürettage, Dermabrasion oder Shave (= oberflächliche Abtragung mit dem Skalpell), vor allem, wenn eine Invasion vermutet wird, die Läsion sehr dick ist oder rezidiviert [42, 48, 55, 88, 199].

1.2.4.2 Lokaltherapie und andere Behandlungsoptionen

Neben der Exzision gibt es physikalische, chemische und immunmodulierende Therapiemöglichkeiten bei NMSC. Zusätzlich ist auf einen ausreichenden Lichtschutz zu achten und starke Sonnenexposition zu vermeiden [199].

Zu den physikalischen Verfahren gehört die Kryotherapie, die häufig bei einzelnen aK und gelegentlich bei oberflächlichen BCC angewandt wird [48, 172, 199]. Dabei werden die atypischen Tumorzellen mit flüssigem Stickstoff (-196 °C) durch offene Spray- oder Kontaktapplikation vereist [20, 88, 172, 199]. Zu den Nebenwirkungen zählen Rötungen, Schmerzen, Blasen, Krusten- und Ödembildung; die Therapie kann Narben sowie Pigmentverschiebungen hinterlassen [15, 20, 88]. Die Nachteile sind, dass es in 16-20 % zu Rezidiven

kommt, dass die histologische Kontrolle fehlt und die Durchführung nicht standardisiert ist [15, 20, 172, 199]. Das Gleiche gilt für ablative Methoden mit dem CO₂- oder Erbium-YAG Laser, die alternativ bei superfiziellen oder kleinen BCC und multiplen aK eingesetzt werden [20, 172, 199].

Bei höherem Alter, Inoperabilität oder unvollständiger Exzision ohne die Option einer Nachresektion kann bei BCC eine Strahlentherapie erfolgen [20, 172]. Bei der Hochvolttherapie verwendet man bei primären BCC Einzeldosen von 2-3 Gy bei einer Gesamtdosis von 50-70 Gy, die abhängig von der Dicke und dem Resektionsstatus variieren kann [20, 90, 172]. Aufgrund neuerer Methoden in der Bestrahlung können auch große und nur schwer zugängliche BCC mit der Radiotherapie erreicht werden [20, 172]. Als Spätfolgen der Strahlentherapie sind die Radiodermatitis und die Entwicklung von sekundären Tumoren zu nennen, sodass sie nicht bei jungen Patienten, bei denjenigen mit Basalzellnävussyndrom oder Xeroderma pigmentosum angewandt werden sollte [20, 172].

Eine weitere Behandlungsoption ist die photodynamische Therapie (PDT), die bei Feldkanzerisierung und superfiziellen BCC in Frage kommt [172, 199]. 5-Aminolävulinsäure (Ameluz®) oder der Methyl-5-amino-4-Methylester oxopentanoat (Metvix®), die Vorstufen des Protoporphyrins IX sind und vor allem in atypischen Zellen akkumulieren, werden als Creme oder Pflaster (Alacare®) auf die betroffenen Stellen appliziert und okklusiv für drei bis vier Stunden abgedeckt [9, 20, 80, 172, 199]. Währenddessen wird in den Tumorzellen verstärkt der Photosensibilisator Protoporphyrin IX produziert, der durch die Bestrahlung mit Rotlicht (z.B. Akilite®) reaktive Sauerstoffspezies bildet, die zur gezielten Zerstörung der Tumorzellen führen [9, 20, 172, 199]. Die Vorteile der PDT liegen in der hohen Ansprechrate für superfizielle BCC (92,2 %) und für aK (89 %) sowie dem guten kosmetischen Ergebnis (94,1 % für BCC, 90 % für aK) [165, 207]. Nachteile sind die geringe Eindringtiefe von Photosensibilisator und Licht von ca. 1 mm, therapiebedingte Schmerzen, höhere Photosensitivität und die ggf. länger anhaltenden Erosionen, Erytheme und Blasen [20, 49, 88, 157].

Das lokale Zytostaktikum 5-Fluorouracil, das durch Hemmung der DNA- und RNA-Synthese bei einzelnen und großflächigen Arealen von aK sowie superfiziellen BCC verwendet wird, gehört zu den chemischen Therapiemethoden [88, 172, 199]. Die in verschiedenen Konzentrationen (0,5-5 %) verfügbare Creme soll ein- bis zweimal täglich für zwei bis sechs Wochen aufgetragen werden [88, 127, 199]. Durch den Zusatz von Salicylsäure (Actikerall[®]), das bei hyperkeratotischen aK eine Keratolyse verursacht, zu 5-Fluorouracil gelangt das Zytostatikum besser an den Wirkungsort [200]. Mit 5-Fluorouracil konnten aK zu 43 % und oberflächliche BCC zu 80,1 % komplett entfernt werden [9, 127]. Meist kommt es an der behandelten Stelle zu Brennen, Schmerzen, auch Rötungen, Juckreiz, Erosionen bis Ulzerationen mit ggf. Narben und Pigmentverschiebungen sind möglich, sodass eine hohe Compliance der Patienten nötig ist [20, 88, 199].

Die Nebenwirkungen einer Behandlung von aK mit 3%igen Diclofenac-Natrium-Gel (in 2,5 % Hyaluronsäure) (Solaraze®) sind meist geringer ausgeprägt, obwohl die Behandlung zweimal täglich über drei Monate vorgesehen ist [51, 88, 199]. Hierbei handelt es sich um ein nichtsteroidales Antiphlogistikum, das die Cyclooxygenasen I und II, und damit die Zellproliferation und Angiogenese, hemmt [88]. Bei Therapie mit Diclofenac, das gut für große Areale von aK geeignet ist, kam es in 50 % gegenüber den 20 % der Placebogruppe zu einem kompletten Verschwinden der aK [88, 173, 199]. Auch für superfizielle BCC scheint die Therapie mit Diclofenac laut einer aktuellen Studie vielversprechend [29].

Die genaue Wirkung des seit 2013 zugelassenen Diterpen Ingenolmetbutat (Picato®) aus Euphorbia peplus ist noch unklar, aber zeigt prinzipiell eine zytotoxische und entzündliche Reaktion [60]. Ingenolmetbutat mit 0,015 % Konzentration wird einmal täglich für drei Tage an Gesicht und Haupt empfohlen, während das 0,05%ige Gel einmal täglich für zwei Tage an Stamm und Extremitäten anzuwenden ist [60]. Zu den häufigsten nach einem Tag auftretenden Nebenwirkungen zählen Schmerzen, Pruritus, Hautreizung und Infektionen, die nach 2-4 Wochen rückläufig sind [60]. Die Therapie ist zur Behandlung von aK zugelassen [60]. Für BCC gibt es bisher nur limitierte Studienergebnisse [193].

Großflächige aK wurden mit chemischen Peelings, wie Trichloressigsäure, um 75 % reduziert, jedoch können Schmerzen, Entzündung, Pigmentverschiebungen und Narbenbildung auftreten [88, 116, 199].

Ebenfalls zu starken systemischen Nebenwirkungen führt die intraläsionale Gabe von Interferonen bei kleinen knotigen oder superfiziellen BCC, wobei diese Behandlung zu den immunmodulierenden Therapien gehört [172].

Die umstrittene lebenslange Prophylaxe mit Retinoiden, einem Vitamin A Abkömmling mit antioxidierender Wirkung, kann Patienten mit

Basalzellnävussyndrom, Xeroderma pigmentosum, Transplantationen sowie mit multiplen rezidivierenden BCC, vor allem in Kombination mit anderen Tumoren, als Alternative aufgezeigt werden [88, 172]. Eine Schädigung der Leber, erhöhte Fettwerte im Serum und eine gesteigerte Photosensitivität zählen zu den Nebenwirkungen [88, 172].

Daher wird von den Immuntherapien für oberflächliche BCC, subklinische und klinische aK lieber Imiquimod, ein topischer Immunmodulator und Toll-like-Rezeptor-7-Agonist, eingesetzt, sodass bei Kontakt mit dem Rezeptor Zytokine produziert und die Tumorzellen in Apoptose versetzt werden [20, 88, 172, 199]. Die 5%ige Creme (Aldara®) verteilt man bei aK dreimal pro Woche für vier Wochen, bei BCC fünfmal pro Woche für sechs Wochen auf den betroffenen Stellen [20, 199]. Nach Therapieende und vier Wochen Abstand ist ein weiterer Zyklus möglich [199]. Imiquimod mit 3,75%iger Konzentration (Zyclara®) darf im Gesicht und am Haupt für zwei Wochen aufgetragen werden [170]. Nach zweiwöchigem therapiefreien Intervall erfolgt ein erneuter Zyklus [170]. In Studien betrug die Remissionsrate bei aK 84 % und bei BCC 80 %, dabei sind Rötung, Juckreiz, Brennen und Fieber mögliche Reaktionen [88, 185, 201].

Zur systemischen Therapie von metastasierten oder lokal fortgeschrittenen inoperablen BCC ist seit Juli 2013 der erste orale Hedgehog-Signalweg-Inhibitor Erivedge (Vismodegib[®]) mit einer Dosierung von 150 mg einmal täglich zugelassen [20]. In Studien zeigten sich Ansprechraten von 30 % beim metastasierten und von 43 % beim lokal fortgeschrittenen BCC, von denen bei 38 Krankheitsstabilisierung erzielt werden eine konnte [20, Haarausfall, Nebenwirkungen wie Muskelkrämpfe, Geschmacksstörungen, Gewichtsabfall und Fatigue sind häufig [191].

1.2.4.3 Entscheidungsprobleme bei der Therapie von superfiziellen BCC

Superfizielle BCC müssen, wie bereits erwähnt, nicht immer chirurgisch, sondern können auch topisch behandelt werden, wobei einige Nachteile zu bedenken sind. Denn bei allen Lokaltherapien fehlt die histologische Überprüfung, und es wird nur eine niedrige Penetrationstiefe erreicht mit dem damit verbundenen Risiko, dass Resttumorzellen in der Tiefe nicht behandelt werden und ein Rezidiv zu spät erkannt wird [20]. In Diagnostik und Monitoring kann somit die OCT schnell und

nichtinvasiv helfen, da mit der OCT *in vivo* identifizierte superfizielle BCC mit einer gemessenen Dicke von < 1 mm gute Behandlungserfolge mit Imiquimod und PDT aufweisen und eher subklinische Residuen erkannt werden [37, 141, 210]. Bei dickeren Tumoren und anderen Subtypen in der OCT sollte von einer topischen Therapie abgeraten werden.

1.2.5 Differentialdiagnosen

Hat man bei einer auffälligen Läsion die Verdachtsdiagnose einer aK gestellt, so sollten differentialdiagnostisch pigmentierte seborrhoische und andere Keratosen, Verrucae vulgares, diskoider Lupus erythematodes sowie weitere gutartige inflammatorische Erkrankungen, Pilzinfektionen, Morbus Bowen, Lentigo maligna, superfizielle BCC und andere Malignome erwogen werden [4, 51, 89, 188, 199]. Bei BCC muss an die Differenzialdiagnosen Trichoblastom und Trichoepitheliom gedacht werden [172]. Je nach Subtyp kommen seborrhoische und aktinische Keratosen, Morbus Bowen, Talgdrüsenhyperplasien, zystische oder solide Schweißdrüsentumoren, Melanoakanthome, SCC, Angiofibrome, Molluscum contagiosum und granulomatöse Reaktionen in Frage [117, 172, 245]. Auch das maligne Melanom, vor allem das amelanotische, sollte differentialdiagnostisch und nicht nur für pigmentierte BCC in Betracht gezogen werden [172]. Zudem ähneln pigmentierte BCC dem Nävus coeruleus, pigmentierten seborrhoischen Keratosen und Nävuszellnävi, Angiokeratomen und Hämangiomen [172]. Beim nodulären BCC ist differentialdiagnostisch an dermale melanozytäre Nävi, Keratoakanthome, Talgdrüsenhyperplasien und an Adnextumoren, die auch beim zystischen BCC in Betracht kommen, zu denken [172]. Superfizielle BCC werden häufiger mit nummulärem Ekzem, Tinea, Psoriasisplaque, Morbus Bowen oder Paget, seborrhoischen Keratosen und dem Regressionsbereich eines melanozytären Tumors verwechselt [36, 115, 172]. Beim sklerodermiformen BCC umfassen die Differentialdiagnosen Narben, die zirkumskripte Sklerodermie, desmoplastische Trichoepitheliome oder das Dermatofibrosarcoma protuberans [172].

1.3 Zielsetzung der Doktorarbeit

Heutzutage wird überwiegend die invasive Biopsie zur Diagnostik von Hauttumoren verwendet. Aufgrund der steigenden Inzidenz an aK und BCC nimmt der Bedarf an nichtinvasiven, *in vivo*, in Echtzeit bildgebenden Methoden, wie der OCT und KLM, zu. Da die Studien zur OCT bisher ihren Schwerpunkt auf der Visualisierung der Morphologie hatten, war das Ziel der vorliegenden Arbeit, erstmals quantitativ aK und BCC ergänzend zu Klinik und Dermatoskopie zu evaluieren. Zur quantitativen Auswertung wurden objektive Parameter, wie die Signalintensität und Schichtdicke von aK und BCC, herangezogen.

Dabei sollte vorrangig untersucht werden, ob mit der OCT zum einen die Diagnostik von aK und BCC gegenüber gesunder Haut möglich ist und zum anderen, ob damit die Differenzierung der zwei Entitäten gelingt. Weiterhin war von Interesse, ob im Rahmen von Verlaufskontrollen die Effekte einer topischen Therapie quantitativ erfasst werden können. Auch stand der Vergleich von drei verschiedenen OCT Geräten im Bezug auf mögliche Unterschiede in Auflösung und Eindringtiefe im Mittelpunkt der Untersuchung. Als Nebenhypothese sollte herausgefunden werden, ob ein Zusammenhang zwischen der in dieser Studie neu aufgestellten aK Klassifikation und der klinischen sowie histologischen Einteilung besteht. Außerdem sollten nebenbefundlich eventuelle Unterschiede bei der quantitativen Subtypbestimmung von BCC aufgezeigt werden. Ein kleiner Teil der Arbeit bestand darin, festzustellen, ob die Messungen von Schichtdicken bei aK und von BCC-Dicken in der OCT mit der Histologie korrelieren. Da in Zukunft vermutlich Kombination nichtinvasiver bildgebender Verfahren dermatologische Diagnostik prägen wird, sollte der deskriptive Vergleich der OCT mit der KLM, die eine Beurteilung von NMSC auf zellulärer Ebene ermöglicht, am Rande der Studie hinsichtlich des zusätzlichen Nutzens evaluiert werden.

2. Material und Methoden

2.1 Patienten

Von September 2011 bis März 2014 wurden in der Klinik für Dermatologie und Allergologie am Klinikum Augsburg Süd 125 Patienten in die Studie eingeschlossen, nachdem diese aufgeklärt worden waren und ihr schriftliches Einverständnis zur freiwilligen Teilnahme an der Studie gegeben hatten (Patienteninformation und Einverständniserklärung im Anhang). Darunter befanden sich 51 Frauen und 74 Männer zwischen 39 und 95 Jahren (der Altersmedian betrug 70,5 Jahre). Diese 125 Patienten wiesen 301 Läsionen auf, davon 113 aK und 188 BCC (s. Überblick Abbildung 6).

Mit in die Studie aufgenommen wurden Patienten über 18 Jahre, mit qualitativ guten OCT Aufnahmen sowie Probanden mit eindeutiger klinischer und dermatoskopischer Diagnose einer aK/eines BCC und benachbarter gesunder Haut als Kontrollstelle. Zu den Ausschlusskriterien zählten Infektionen, Hyper-Hypopigmentierung, Narben, Operationen oder Hautreizungen im oder generalisierte vorgesehenen Testareal. Hauterkrankungen, chronische Erkrankungen, Infektionskrankheiten, systemische Medikamente (wie Kortikosteroide, Antikoagulantien und Zytostatika) mit Auswirkungen auf die Haut sowie Durchblutungs- und Gerinnungsstörungen und Allergien gegen Inhaltsstoffe der topischen Therapeutika.

Da es sich um eine nicht-interventionelle Studie handelte, waren die Patienten über die Patientenversicherung des Klinikums Augsburg versichert, die für die Diagnostik und Behandlung der Patienten abgeschlossen wurde. Die ethischen Grundsätze der Deklaration von Helsinki und die internationalen Leitlinien im Bezug auf klinische Studien mit Patienten wurden zu jedem Zeitpunkt eingehalten.

2.2 Studiendurchführung

Die Studie wurde von der Ethikkommission der Ludwig-Maximilians-Universität München (Projekt-Nummer 221-11) und durch das Ethikvotum der Universität Lübeck vom 01.07.1997 genehmigt (Ethikvotum im Anhang).

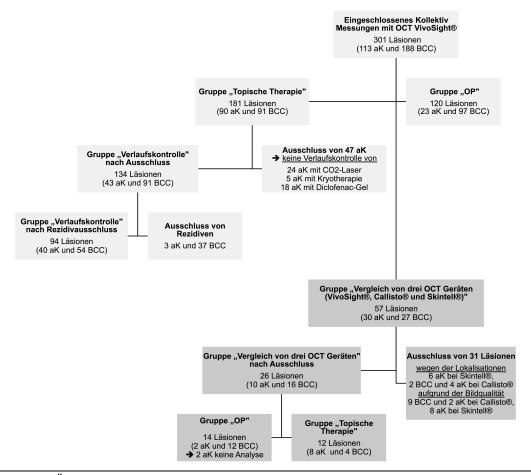


Abbildung 6. Überblick über die Studiendurchführung.

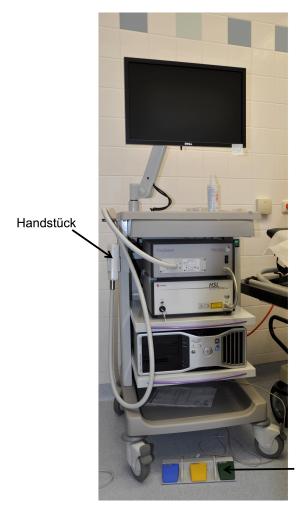
Ein Dermatologe untersuchte die Patienten klinisch und dermatoskopisch und stellte daraufhin die Diagnose. Bei den aK wurde auch die klinische Klassifikation nach Olsen festgelegt. Die Hauptlokalisationen des NMSC befanden sich vor allem in der Kopf-Halsregion (103 aK, 94 BCC), am Stamm (3 aK, 73 BCC) und an den Extremitäten (7 aK, 21 BCC). Palmoplantare Haut war nicht betroffen. Die Läsion wurde mit einer Panasonic Lumix DMC-TZ fotografiert und mit einem Stift umrandet, um die Messgeräte für die Aufnahme genau ausrichten zu können. Die OCT Messungen wurden als eine zusätzliche diagnostische Methode zur Evaluation von aK und BCC vor Therapiebeginn und auch zur Therapiekontrolle durchgeführt. Alle 301 Läsionen wurden mit dem OCT Gerät VivoSight[®] von Michelson Diagnostics gemessen.

Für die Verlaufskontrollmessungen vor und nach topischer Therapie wurde ebenfalls das OCT System VivoSight[®] von Michelson Diagnostics verwendet. Die Beobachtungen mittels des nichtinvasiven, optischen Verfahrens erfolgten direkt vor Therapie und bis zu vier Wochen nach Abschluss der Therapie bei aK und bei

BCC einmalig nach 12 Wochen. Die Messungen wurden an den ohnehin üblichen und erforderlichen Konsultationsterminen durchgeführt. 42 Patienten (19 Frauen, 23 Männer, zwischen 39 und 93 Jahren mit einem Altersmedian von 70,5 Jahren) mit 134 Läsionen (43 aK und 91 BCC) wurden mit nichtinvasiven, optischen Methoden nachkontrolliert (s. Überblick Abbildung 6). Diese Untergruppe wies NMSC mit Abstand am häufigsten in der Kopf-Halsgegend (37 aK, 36 BCC) auf, gefolgt vom Stamm (3 aK, 41 BCC) und den Extremitäten (3 aK, 14 BCC).

Zum Vergleich von drei verschiedenen OCT Geräten (VivoSight® von Michelson Diagnostics, Callisto® von Thorlabs AG und Skintell® von AGFA HealthCare) konnten 29 Patienten (7 Frauen, 22 Männer, zwischen 53 und 95 Jahren mit einem Altersmedian von 71,3 Jahren) mit 57 Läsionen (30 aK und 27 BCC) vor Therapie gewonnen werden (s. Überblick Abbildung 6). Auch bei dieser Patientensubgruppe befand sich der NMSC insbesondere im Kopf-Halsbereich (24 aK, 14 BCC), am Stamm (3 aK, 12 BCC) und an den Armen (3 aK, 1 BCC). In einzelnen Fällen wurden über die Studie hinaus auch ergänzend Messungen mit dem konfokalen Lasermikroskop (KLM) VivaScope® 1500 Multilaser der Firma Mavig GmbH (Hersteller: Lucid Inc, Rochester, NY, USA) vorgenommen.

Bei Mehrfachaufnahmen der Läsionsstelle fanden zunächst die Messungen mit den OCT Systemen VivoSight® und Callisto® statt, denn bei Skintell® war die Applikation von Skintell® optical gel sowie bei VivaScope® Immersionsöl zur Aufnahme nötig. Aus diesem Grund erfolgten die Messungen mit Skintell® und gegebenenfalls dem konfokalen Lasermikroskop VivaScope® zuletzt, um eventuelle Einflüsse auf die Bildqualität der ersten beiden Geräte zu vermeiden. Falls die betroffene Hautstelle größer als das messbare Areal des jeweiligen OCT Geräts war, wurde in der Mitte der Läsion gemessen. Jede Aufnahme wurde auf einem Dokumentationsbogen für aK und BCC festgehalten (s. Anhang).


Die Patienten wurden abhängig vom Befund und individuellem Patientenwunsch einer Therapie zugeführt. 120 Läsionen (23 aK, 97 BCC) wurden exzidiert und die Diagnose wurde histopathologisch von einem zertifizierten Dermatohistopathologen bestätigt. 181 Läsionen (90 aK, 91 BCC) wurden nicht biopsiert, sondern erhielten eine topische Behandlung. Hierzu zählten Diclofenac-Gel (bei aK, für 3 Monate), Imiquimod (3 x pro Woche für 4 Wochen bei aK, 5 x pro Woche für 6 Wochen bei BCC), PDT (mit Metvix®/Rotlicht der Wellenlänge 630 nm (Aktilite®)), Kryotherapie oder eine Behandlung mit CO₂-Laser.

2.3 Messgeräte

Im Studienzentrum der Abteilung Dermatologie im Klinikum Augsburg wurden die Untersuchungen mit drei verschiedenen OCT Geräten durchgeführt: einer multibeam swept-source frequency domain OCT (SS-FD-OCT), einer spectral domain OCT (SD-OCT) und einer time domain high-definition OCT (TD-HD-OCT). Bei allen drei Geräten erfolgten die Messungen *in vivo*, nichtinvasiv und damit für den Patienten vollkommen schmerzlos.

2.3.1 Optische Kohärenztomographie VivoSight®

Das OCT Gerät VivoSight[®] (Michelson Diagnostics, Kent, UK) ist eine multi-beam SS-FD-OCT, die aus einem Gerätewagen mit beweglichem Handstück und einem Fußschalter mit drei Bedienungsfeldern zusammengesetzt ist (s. Abbildung 7).

Fußschalter (blau = Multi, gelb = Free-Run, grün = En-Face)

Abbildung 7. OCT Gerät VivoSight® (Michelson Diagnostics, Kent, UK).

Das OCT System weist eine Eindringtiefe von 1-2 mm auf, hat eine axiale Auflösung von < 5 µm und eine laterale Auflösung von < 7,5 µm [143]. Aufgrund der Aufspaltung des Lichtstrahls in mehrere Strahlengänge, deren Fokus auf verschiedenen Tiefenebenen liegt, wird bei dieser Multi-beam Technik eine höhere laterale Auflösung erzielt [97]. Darüber hinaus ist mithilfe der Multi-slice Funktion eine dreidimensionale Darstellung der Bilder möglich [143]. Der Scanbereich des OCT Geräts VivoSight® liegt bei 6 mm x 6 mm [143]. Als Lichtquelle dient hierfür ein spezieller Laser (HSL 2000, Santec Corporation, Komaki, Japan), der über eine Wellenlänge von 1305 nm verfügt und auf dem Prinzip der Michelson Interferometrie basiert (s. Kapitel 1.2.3.2) [143]. Die Laserstrahlung ist für die Augen ungefährlich und unterliegt der Laserklassifikation 1 nach Europäischer Norm (EN) 60825-1 [143].

Zur Messung wurde ein relativ kleines, bewegliches Handstück verwendet, womit auch schwerer zugängliche Lokalisationen, wie z.B. der Augeninnenwinkel oder Nasenflügel, erreicht werden konnten. Das Handgerät wurde über unterschiedlich große, austauschbare und somit entsprechend anpassbare Abstandshalter auf die ausgewählte Hautstelle aufgesetzt. Mithilfe dieser Abstandhalter gelang es, die Hautoberfläche der Läsion in das Zentrum zu rücken. Über die korrekte, in der richtigen Ebene fokussierte Aufnahme konnte sich der Untersucher gemeinsam mit dem Patienten am Bildschirm in Echtzeit überzeugen. Mit dem Fußschalter wurde zwischen den Optionen Free-run, Multi und En-Face ausgewählt. Die Funktion Free-run mit vertikalen Bildaufnahmen der vergangenen 5-10 Sekunden diente zum Beispiel zur korrekten Positionierung des Handstücks. Mit dem Auslösen des blauen Schalters Multi (Multi 1 mit 60 Bildern und durch Klicken am Bildschirm auf Multi 2 mit 500 Bildern) wurden von der gewünschten Hautstelle vertikale Aufnahmen erstellt und gespeichert. Mit dem En-Face-Modus konnte eine horizontale Bilddarstellung erfolgen. Die durchschnittliche Scanzeit betrug etwa 30 Sekunden, wobei jedoch keine spezielle Vorbereitung der Haut oder die Applikation von Gel notwendig war. Die aufgenommenen Bilder wurden auf der lokalen Festplatte gespeichert und konnten sowohl im Tagged image file format (TIFF)- als auch im Digital Imaging and Communications in Medicine (DICOM)-Format für die weitere Bildanalyse exportiert werden [143]. Die Bildwiederholungsfrequenz bei VivoSight® ist abhängig von der Scanweite und liegt daher zwischen 6-35 Bildern pro Sekunde, während die Zeilenfrequenz,

definiert durch das Produkt aus der Bildwiederholungsfrequenz und der Zeilenanzahl, 10 kHz beträgt [143].

2.3.2 Optische Kohärenztomographie Callisto®

Das zweite verwendete OCT Gerät ist die SD-OCT Callisto[®] (Thorlabs AG, Lübeck, Deutschland), die aus einem Handstück, Tischgerät und einem Laptop besteht (s. Abbildung 8).

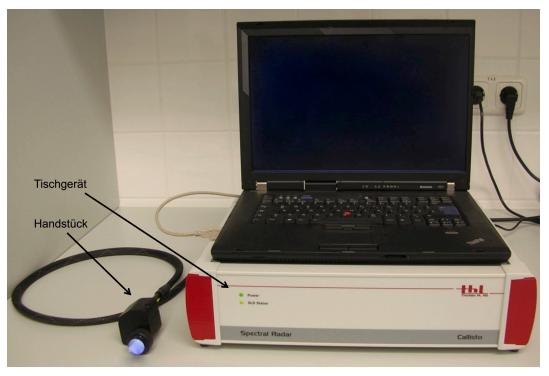


Abbildung 8. OCT Gerät Callisto® (Thorlabs AG, Lübeck, Deutschland).

Es hat in Luft eine axiale Auflösung von < 7 μm und im Gewebe kann eine axiale Auflösung von < 5 μm erreicht werden [212]. Die laterale Auflösung von Callisto[®] liegt bei > 8 μm mit einer Scanlänge von 4-10 mm [181, 213]. Mit diesem OCT System beträgt die Penetrationstiefe von der Oberfläche aus ca. 1,7 mm in Luft, während in Gewebe eine Eindringtiefe von 1,2-1,3 mm möglich ist, da dabei der Brechungsindex der Haut berücksichtigt werden muss [113, 212]. Callisto[®] ist ein FD-OCT-System, das über ein lineares charge-coupled device (CCD)-Array-Spektrometer und eine Superlumineszenzdiode als Lichtquelle mit 930 nm Wellenlänge verfügt, von der kurz kohärentes Breitband-Licht ausgesandt wird

[213]. Die Strahlung des Lasers entspricht der Laserklassifikation 1M nach EN 60825-1 und ist somit für das Auge ungefährlich, wenn keine optischen Instrumente, wie Lupen oder Ferngläser, verwendet werden [212]. Die CCD-Zeilenkamera arbeitet mit einer maximalen axialen Abtastrate von 1,2 kHz, was bedeutet, dass dadurch zwei Bilder pro Sekunde mit 512 Zeilen pro Scanvorgang entstehen [213]. Außerdem besitzt das OCT Gerät Callisto[®] eine Bandweite von 100 nm bei 3 dB und eine Sensitivität von 105 dB [113].

Um die Messung durchzuführen, sollte der Patient auf der Untersuchungsliege nehmen, um ruhige Messbedingungen zu gewährleisten. Vorbehandlung der Hautstelle durch Reinigung oder eine spezielle Anwendung von Öl oder Ultraschallgel war nicht nötig. Anschließend wurde das flexible Handstück des OCT Systems, unter Betrachtung des CCD-Kamerabildes am Bildschirm, senkrecht auf das entsprechende Hautareal aufgelegt. Sobald der Scanvorgang gestartet wurde, entstanden innerhalb von nur wenigen Sekunden axiale Schnittbilder. Die Fokusebene konnte durch eine Stellschraube am Handstück nachjustiert werden. War das Bild am Monitor des PCs scharf gestellt und die gewünschte Aufnahmeposition erreicht, konnten hiervon einzelne Bilder aufgenommen und auf der Festplatte des Laptops, z.B. im Bitmap (BMP)-Format, zur weiteren Analyse abgespeichert werden. Pro Läsion wurden mindestens zwei Einzelbilder gesichert, um die Hautstelle möglichst umfassend abzubilden.

2.3.3 Optische Kohärenztomographie Skintell®

Das letzte OCT Gerät, das in der Studie eingesetzt wurde, ist Skintell[®] (AGFA HealthCare, Mortsel, Belgien), ein TD-HD-OCT-System. Zum Aufbau dieses OCT Systems gehören ein kastenförmiger Gerätewagen mit einem Sondenkopf und Fußschalter (s. Abbildung 9). Skintell[®] weist eine axiale und laterale Auflösung von 3 µm auf, wobei die Größe der Hautzellen zwischen 10-20 µm liegt [2]. Die Auflösung ermöglicht somit im Vergleich zu den beiden anderen OCT Geräten eine zelluläre Auflösung. Durch die Funktion des "Dyamic-Focus-Tracking", die durch die synchronisierten Bewegungen von Linse und Referenzarm ermöglicht wird, kann bei der HD-OCT die hohe Auflösung in allen Ebenen konstant gehalten werden [128].

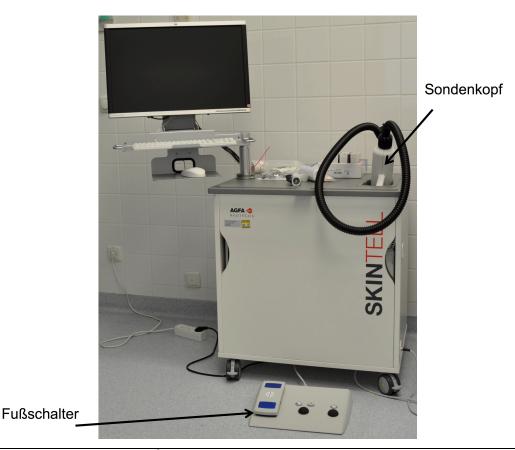


Abbildung 9. OCT Gerät Skintell® (AGFA HealthCare, Mortsel, Belgien).

Weiteren können mit diesem OCT Gerät 2D-Bilder Untersuchungsbereich von 1,8 mm x 1,5 mm (im En-Face-Modus) und mit einer Eindringtiefe von 570 µm bis maximal 1 mm aufgenommen werden [2, 228]. Bei der Lichtquelle von Skintell® handelt es sich um eine Halogenlampe mit einer Bandbreite im nahen Infrarotbereich, bei 1300 nm, in Kombination mit einem Gauß-Filter [2, 128, 228]. Die gesamte Laserenergie, die auf das Gewebe einwirkt, liegt bei < 3,5 mW [23]. Außerdem gibt es bei diesem OCT System drei verschiedene Bildgebungsmodi. Daher können sowohl vertikale Schnittbilder als auch horizontale En-Face Scans in Echtzeit aufgenommen und ferner 3D-Bilder generiert werden. Vor Untersuchungsbeginn sollte die betroffene Hautpartie desinfiziert werden. Gegebenenfalls konnte es notwendig sein, die Haare an dieser Stelle zu rasieren, um Artefakte zu vermeiden. Zur Optimierung der Bildqualität und Verbesserung der Eindringtiefe durch Anpassung Brechungsindizes wurden wenige µl eines Gels (Skintell® optical gel, AGFA HealthCare) mit einem Dispenser auf das Sensorfenster des Sondenkopfes oder direkt auf die Haut aufgetragen [2]. Daraufhin wurde der relativ große Sondenkopf,

falls nötig unter Verwendung einer Positionierhilfe, auf der Hautoberfläche platziert. Um das Gel gut zu verteilen, sollte der Sondenkopf leicht bewegt werden, bis ein klares Bild am Bildschirm zu sehen ist. Mit dem mittleren Fußschalter wurde innerhalb von ca. fünf Minuten ein Bild im Slice-Modus aufgenommen. Bei längerem Betätigen des Schalters konnte auch der Wechsel in den En-Face-Modus erfolgen. Ein 3D-Bild mit der Speicherkapazität von 1 GB wurde laut Herstellerangaben innerhalb von einer Sekunde über den rechten Fußschalter erstellt [2]. Zum Anpassen des OCT Systems an den jeweiligen Hauttyp wurde der linke Kippschalter im Schnittbildmodus nach vorne und hinten bewegt. Im En-Face-Modus konnte über diesen Schalter auch die Tiefe des Scans geregelt werden. Bei den mit Skintell[®] auf der integrierten Festplatte gespeicherten Bildern bestand die Möglichkeit, diese sowohl als TIFF- als auch als DICOM-Dateien zu exportieren. Die Bildwiederholungsfrequenz von Skintell[®] liegt im Slice-Modus bei einem Bild pro Sekunde, im En-Face-Modus hingegen bei fünf Bildern pro Sekunde [61].

2.3.4 Bildanalyse

Für die Auswertung mit dem Softwareprogramm Image J® wurden nur Bilder von klinisch und dermatoskopisch eindeutigen oder histopathologisch bestätigten Läsionen herangezogen. Die *in vivo*, in Echtzeit gemachte Aufnahme des NMSC und von benachbarter gesunder Haut ist als eine Abfolge von Bildern im Sinne eines Videos anzusehen. Bei dem OCT Gerät Skintell® besteht eine Aufzeichnung der Hautstelle aus einer Abfolge von 512 Bildern, bei VivoSight® je nach Einstellung aus 60 bzw. 500 Bildern. Nach Durchsicht aller Bilder einer Läsion wurde zur Analyse jedoch nur ein Bild repräsentativ für diese Stelle ausgewählt. Bei Callisto® hingegen wurde bereits bei der Aufnahme jeweils ein einzelnes Bild der Läsion gezielt abgespeichert und es standen zum Betrachten keine Videosequenzen zur Verfügung. Die Auswertung der Bilder erfolgte ohne vorherige Bildbearbeitung oder –optimierung, um die Signalintensitätsmessungen nicht zu beeinflussen. In jedem OCT Bild wurde die durchschnittliche Signalintensität auf der gleichen Höhe (z.B. an der Stelle des BCC und in derselben Tiefe die benachbarte Dermis) unter Verwendung der Polygon- und

Histogramm-Funktion des Programmes Image J[®] bestimmt. Mithilfe dieser Werkzeuge konnte ein beliebig großer und verschieden geformter polygonaler Bereich des Bildes manuell ausgewählt werden, über den man nach automatischer Verarbeitung in einem Histogramm die Statistik über alle enthaltenen Pixel erhielt, darunter auch den durchschnittlichen Grauwert ("Mean") (s. Abbildung 10).

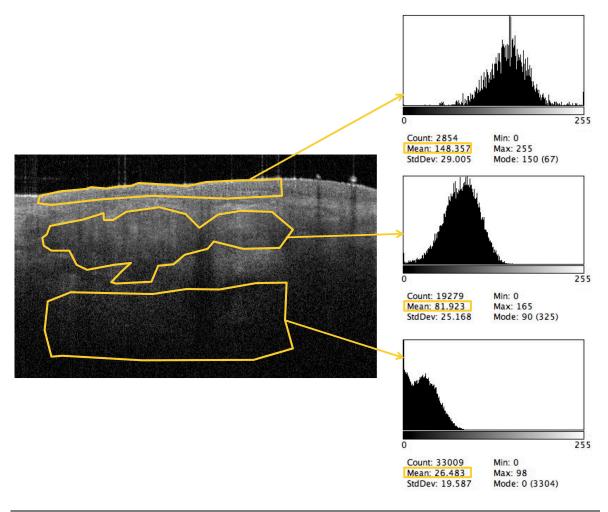


Abbildung 10. Epidermis über BCC, BCC, Dermis unter BCC mit entsprechendem Histogramm.

Die Grauwerte werden auf der x-Achse angezeigt und haben eine Skala von 0 (schwarz) bis 255 (weiß). Zum Beispiel bestand ein typischer selektierter Bildbereich von ca. 0,9 mm x 0,3 mm Größe aus über 13.000 Pixeln. Durch diese verwendete Methode, die gegenüber Störungen oder kleinen lokalen Schwankungen in der Signalstärke unempfindlich ist, konnte die Signalintensität des ausgewählten Bildausschnitts gut bestimmt werden und für den Vergleich mit anderen Gewebestrukturen heranzogen werden.

Auf diese Weise wurden mit Image J[®] die Tumordicke der BCC, die Dicke des Stratum corneum und der Epidermis von aK sowie der Epidermis über den BCC in Millimeter gemessen. Um die BCC Tumordicke sowohl in der Histologie am Mikroskop als auch im OCT Bild zu bestimmen, wurde stets rechtwinklig von der Hautoberfläche bis zum untersten Rand des Tumors gemessen. Das Gleiche galt auch für die Ermittlung der Dicke des Stratum corneum und der Epidermis in aK unter Berücksichtigung der jeweiligen Schichtgrenzen (s. Abbildung 11). Die Dicke der Epidermis reicht von der hellen Reflektion an der Hautoberfläche bis zur DEJ, die sich in einem ersten Signalabfall zeigt [68]. Das Stratum corneum bezeichnet hingegen ein schmales Band, das in normaler Haut unterhalb der starken Reflektion der Oberfläche zu sehen ist.

Abbildung 11. Messung der Dicke der Hornschicht (orange) und der Epidermis (grün).

Durch den Vergleich mit der Dicke der Schichten von gesunder Haut wurde die Dicke des Stratum corneum bei aK willkürlich in drei Klassen eingeteilt. AK I reicht somit von 0,050 mm-0,170 mm Hornschichtdicke, aK II von 0,171 mm-0,450 mm, während bei aK III das Stratum corneum mindestens 0,451 mm stark ist (s. Tabelle 1). Analog dazu konnte durch die Gegenüberstellung von normaler mit betroffener Epidermisdicke eine Graduierung der Epidermis bei aK vorgenommen werden. Für aK I beträgt die Stärke der Epidermis 0,120 mm-0,350 mm, für aK II 0,351-0,750 mm, für aK III ist eine Dicke ab 0,751 mm ausreichend (s. Tabelle 1).

In dem Fall, dass eine Übereinstimmung bezüglich des aK Schweregrades zwischen dem Stratum corneum und der Epidermis festgestellt werden konnte, wurde diese Gradeinteilung übernommen. Falls die Grade der Hornschicht und der Epidermis einander nicht entsprachen, fand eine Berechnung des Durchschnitts statt.

Tabelle 1. Vergleich der aK Klassifikationen von Klinik, Histologie und OCT

AK Klassifikation	Klinische Einteilung nach Olsen [162]	Histologische Einteilung nach Cockerell [39]	OCT Einteilung
AK I	Leicht tastbare aK = Olsen I	Atypie der Keratinozyten im unteren Drittel der Epidermis = KIN I	Stratum corneum: 0,050 mm-0,170 mm Epidermis: 0,120 mm-0,350 mm
AK II	Mäßig dicke aK mit etwas Hyperkeratose = Olsen II	Atypie der Keratinozyten in den unteren 2/3 der Epidermis = KIN II	Stratum corneum: 0,171 mm-0,450 mm Epidermis: 0,351 mm-0,750 mm
AK III	Sehr dicke und deutliche aK = Olsen III	Atypie der gesamten Epidermis = KIN III / Carcinoma <i>in situ</i>	Stratum corneum: 0,451 mm mm Epidermis: 0,751 mm mm

Anmerkungen. KIN, keratinocytic intraepithelial neoplasia.

2.3.5 Konfokale Lasermikroskopie VivaScope®

Zur ergänzenden Untersuchung erfolgten über die Studie hinaus in ausgewählten Fällen auch Messungen mit dem KLM VivaScope[®] 1500 Multilaser der Firma Mavig GmbH München (Hersteller: Lucid Inc, Rochester, NY, USA). Die KLM stellt eine nichtinvasive, hochauflösende Technik zur mikroskopischen Diagnostik von Oberflächenstrukturen der Haut *in vivo* und in Echtzeit dar. Hierbei gelangt das Laserlicht über den optischen Apparat und einen Strahlenteiler auf einen Punkt fokussiert in einen kleinen Hautbereich, der mit einem Rasterscanner horizontal untersucht wird [112]. Von diesem Hautareal wird das reflektierte Licht aus der

Fokusebene über den Strahlenteiler zum Detektor geführt, während die dazwischengeschaltete Lochblende das Eindringen von Licht aus anderen Ebenen verhindert [216]. Es kommt zu einer Projektion des Fokus der Beleuchtung und der Detektion übereinander – ein konfokales Bild entsteht [216].

Das KLM VivaScope® 1500 Multilaser ist aus einem Gerätewagen, einem PC mit Bildschirm, Schwenkarm mit Laserkopf und der VivaCam[®], einer digitalen Makrokamera, aufgebaut (s. Abbildung 12). Bei diesem KLM sind drei Laser der Wellenlänge 785 nm, 658 nm (Laserklasse 1M) und 445 nm eingebaut, die die Darstellung der Reflektion und Fluoreszenz ermöglichen [140, 241]. Für die Messungen im Reflektionsmodus wurde insbesondere der Laser mit 785 nm herangezogen. Die horizontalen Einzelbilder sind 500 µm x 500 µm groß und graukodiert [140, 247]. Für die Graustufen sind die Brechungsindizes und das Reflektionsverhalten der verschiedenen Bestandteile der Haut verantwortlich [241]. Das KLM verfügt über eine laterale Auflösung < 1,25 µm und eine vertikale Auflösung < 5 µm im zentralen Blickfeld [140]. Die Eindringtiefe liegt bei ca. 250 µm und reicht somit bis in die obere retikuläre Dermis [109, 217]. Die Aufnahme einer Ebene des Hautbereichs aus mehreren Einzelbildern im Sinne eines Mosaiks von maximal 8 mm x 8 mm bezeichnet man als VivaBlock® [109, 140]. Es wurden mindestens drei VivaBlöcke[®] pro Läsion auf Höhe des Stratum spinosum, der DEJ und des Stratum papillare der Dermis angefertigt. Bei Auffälligkeit eines VivaBlocks® kam an dieser Stelle die andere Möglichkeit der Aufzeichnung, der VivaStack® (mit der Einstellung von 21 Bildern im Abstand von 4,5 µm bis zu 100 µm Tiefe), zur Anwendung. Dieser stellt eine Art optische Biopsie durch den Scan von mehreren horizontalen Einzelschnitten auf verschiedenen Höhen dar. Mit der Echtzeitaufnahme der Bilder können auch dynamische Bewegungen, wie z.B. der kapilläre Blutfluss oder die Wanderung von Leukozyten bei BCC, per Video erfasst werden [79, 109].

Vor Beginn der Untersuchung sollte der Patient eine möglichst ruhige und bequeme Lage auf der Liege einnehmen, um Bewegungsartefakte zu minimieren. Nach Desinfektion der ausgewählten Stelle und Befestigung des beidseitig haftenden Klebefensters in dem Metallring wurde ein Tropfen Immersionsöl auf der zur Haut gewandten Seite aufgebracht und anschließend der Ring auf die Haut geklebt. Daraufhin generierte man mit der VivaCam[®] ein Einzelbild mit 10 mm x 10 mm Größe von der Läsion, um in diesem Areal navigieren zu können

[109, 241]. Um die eigentliche Messung zu starten, musste zuvor noch Ultraschallgel als Immersionsmedium zwischen dem Klebeplättchen mit Ring und dem Objektiv appliziert und der Laserkopf in den Gewebering magnetisch eingerastet werden. Die Speicherung der aufgenommenen Bilddateien erfolgte im Bitmap-Format.

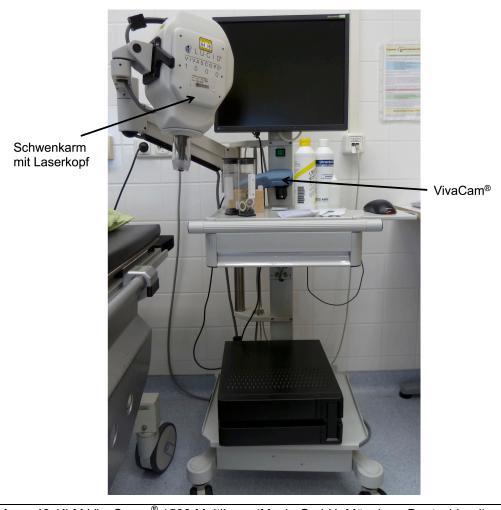


Abbildung 12. KLM VivaScope® 1500 Multilaser (Mavig GmbH, München, Deutschland).

2.3.6 Histologie

Alle Histologien in Hämatoxylin-Eosin-(HE)-Färbung wurden im Labor der Klinik für Dermatologie und Allergologie im Klinikum Augsburg Süd angefertigt und von einem zertifizierten Dermatohistopathologen unter dem Mikroskop befundet.

Das vom Operateur gewonnene Material wurde in wässrige, 4 % gepufferte Formalinlösung für mehrere Stunden zur Fixierung geben, abhängig von der

Größe des Gewebes. Nach makroskopischer Beurteilung, farblicher Markierung des Präparates (s. Abbildung 13) und Zuschneiden des Gewebes mit Aufteilung in die jeweiligen Einbettkassetten fand die Entwässerung im Entwässerungsautomaten mit einer aufsteigend konzentrierten Alkoholreihe (Ethanol 70 %, 80%, 96 %, 99% und 100%) über Nacht statt.

Abbildung 13. Farbliche Markierung des Präparats mit blau (kranial), weiß (kaudal), rot (rechts), gelb (links).

Im Rahmen dieses Prozesses erfolgten auch die Entfernung des Alkohols mit Hilfe von Xylol und die Durchsetzung des Gewebes mit flüssigem Paraffin. Anschließend wurde das Material an der Ausgießstation in heißem Paraffin eingeblockt und zum Abkühlen auf eine Kühlplatte mit –15 °C gelegt. Daraufhin konnten Paraffinschnitte in 1,5 µm Schnittstärke am Rotationsmikrotom hergestellt werden. Die hauchdünnen Paraffinschnitte wurden zur Entfaltung zunächst in ein Kaltwasserbad (20 °C) eingetaucht und dann in einem Warmwasserbad (50°C) in der gleichen Richtung gerade angeordnet, um sie leichter auf einen beschichteten Glasobjektträger glatt auszustreichen. Die aufgezogenen Schnitte wurden dann im Brutschrank bei 60° C für 20 Minuten getrocknet und mit der HE-Standardfärbung im Färbeautomaten für 50 Minuten gefärbt. Im Automaten fanden folgende Vorgänge zur HE-Färbung statt: die Entparaffinierung mit Xylol, die Wässerung mit einer absteigenden Alkoholreihe, die Spülung mit Aqua destillata, die jeweils fünfminütige Infiltration mit Mayers Hämalaun zur Blaufärbung der Kerne und Spülung mit Leitungswasser, die Rotfärbung des Zytoplasmas für zwei Minuten

mit Eosin sowie zur abschließenden Entwässerung die Überführung in eine aufsteigende Alkoholreihe und Xylol. Zuletzt wurden die Schnitte noch mit einem Eindeckmedium (= Entellan[®]) und einem Deckglas eingedeckt, um mikroskopiert werden zu können.

Beim Mikroskopieren der histologischen Präparate am Mikroskop Leica DM LB2 der Firma Leica Microsystems (Wetzlar, Deutschland) wurde in den meisten Fällen mit einem 5er oder 10er Objektiv zur Übersicht begonnen und für Details zur Diagnosesicherung eine stärkere Vergrößerung gewählt. Bei der Mikroskopie der BCC wurde u.a. auch der Subtyp festgelegt und bei den aK die histologische Einteilung anhand des Schweregrades nach Cockerell vorgenommen.

2.4 Statistik

Die Datensammlung und die Erstellung der statistischen Abbildungen erfolgten mit Microsoft® Excel® und Microsoft® PowerPoint® für Mac 2011 (Originaldaten s. Anhang). Die statistische Auswertung wurde mit IBM[®] SPSS[®] Statistics Software für Mac (SPSS 21.0, IBM Corp., Armonk, NY, USA) durchgeführt. Bei normalverteilten Daten (überprüft mit Kolmogorov-Smirnov-Test bzw. dem nach Lilliefors modifizierten Test, Shapiro-Wilk-Test und den Q-Q-Diagrammen) dienten t-Tests für verbundene Stichproben für intraindividuelle Vergleiche von BCC/aK und gesunder Haut. Bei nicht vorliegender Normalverteilung oder geringer Stichprobenanzahl bei Untergruppen wurde stattdessen Paardifferenztest verwendet. Für unverbundene Stichproben kam der Mann-Whitney-U-Test für den interindividuellen Vergleich von aK und BCC zur Anwendung. Mithilfe des Korrelationskoeffizienten nach Spearman (r_s) konnte der Zusammenhang zwischen verschiedenen Variablen überprüft werden, wie z.B. die Korrelation von OCT mit der Histologie. Bei Werten zwischen 0,2-0,5 nahm man eine geringe, zwischen 0,5-0,7 eine mittlere, zwischen 0,7-0,9 eine hohe und ab 0,9 eine sehr hohe Beziehung an [30]. Für den Vergleich der drei OCT Geräte fand eine Analyse mit dem Friedman-Test für mehrere Stichproben statt. Im Fall von signifikanten Ergebnissen wurden Wilcoxon-Tests durchgeführt und das Signifikanzniveau nach Bonferroni zur Reduktion der Alphafehler-Kumulierung korrigiert. P-Werte < 0,05 wurden als statistisch signifikant, P-Werte < 0,01 als sehr signifikant und P-Werte < 0,001 als höchst signifikant betrachtet [31].

3. Ergebnisse

3.1 Optische Kohärenztomographie VivoSight®

3.1.1 Morphologische Beobachtungen

Im Rahmen der Studie wurden drei Nebenhypothesen untersucht: Erstens, ob die Einstufung von aK in drei Klassen durch die Dickenmessung des Stratum corneum und der Epidermis in der OCT mit der histologischen und klinischen Klassifikation korreliert. Und zweitens, ob Unterschiede in den BCC Subtypen anhand der Bestimmung der Signalintensitäten in der OCT bestehen. Denn klinisch sind die Untergruppen der BCC, insbesondere die superfiziellen BCC, mitunter schwerer von anderen Tumoren und ihren Differentialdiagnosen abzugrenzen. Außerdem ist bekannt, dass die klinische Einstufung der aK nach Olsen und die histologische Einordnung nach Cockerell einander nur wenig entsprechen. Daher sollte überprüft werden, ob die aK Klassifikation in der OCT mit einer der beiden Einteilungen korreliert. Als drittes wurden VivoSight[®] Aufnahmen mit denen des KLM VivaScope[®] anhand von Fallbeispielen verglichen, um darzustellen, wie gut sich die verschiedenen Untersuchungsmethoden ergänzen.

3.1.1.1 Vergleich der aK Klassifikationen von Klinik, Histologie und OCT

Für den Vergleich der drei Klassifikationen bei aK (s. Kapitel 2.3.4 Tabelle 1) wurde eine Subgruppe der Studie mit 120 histologisch bestätigten Läsionen (23 aK, 97 BCC) von 88 Patienten (32 Frauen, 56 Männer, zwischen 39 und 95 Jahren mit einem Altersmedian von 70,5) herangezogen (s. Überblick Abbildung 6). Der NMSC befand sich in der Kopf-Hals-Region (21 aK, 58 BCC), am Stamm (32 BCC) und an den Extremitäten (2 aK, 7 BCC). Bei 23 aK wurden die klinische, histologische und die in der OCT ermittelte Einteilung gegenübergestellt (s. Abbildung 14, Originaldaten s. *Anhang Tabelle 1*). Dabei zeigten sich kaum Unterschiede zwischen der klinischen (M = 1,7; SD = 0,6), histologischen (M = 1,6; SD = 0,5) und OCT Klassifikation (M = 1,5; SD = 0,5) von aK (s. Abbildung 15).

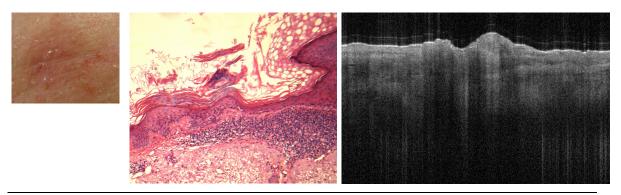
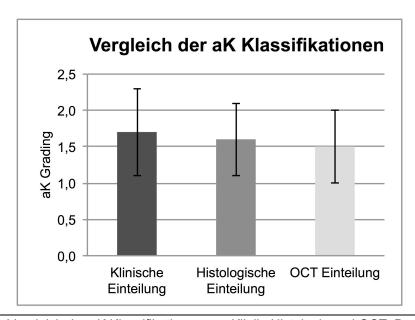
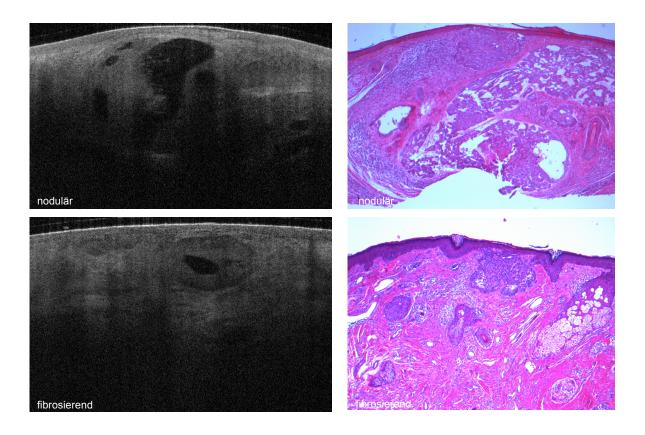
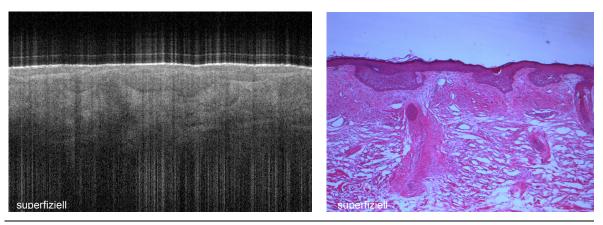



Abbildung 14. Gegenüberstellung der Klassifikationen von Klinik, Histologie und OCT bei einer aK.

Abbildung 15. Vergleich der aK Klassifikationen von Klinik, Histologie und OCT. Dargestellt sind Mittelwerte und Standardabweichungen; n = 23.

Mit der Rangkorrelationsanalyse nach Spearman konnte gezeigt werden, dass eine statistisch signifikant positive, aber geringe Beziehung zwischen der klinischen Einteilung von aK nach Olsen und der histologischen Klassifikation nach Cockerell bestand ($r_s(21) = 0.470$; P = 0.024; s. Tabelle 2). Außerdem wurde ein mittlerer positiver Zusammenhang zwischen der klinischen aK Einordnung und der Einstufung von aK in der OCT verzeichnet, der statistisch sehr signifikant war ($r_s(21) = 0.556$; P = 0.006; s. Tabelle 2). Allerdings korrelierten die aK Klassifizierung in der Histologie und die in der OCT nicht signifikant miteinander ($r_s(21) = 0.141$; P = 0.520; s. Tabelle 2).


Tabelle 2. Ergebnisse der Korrelation der aK Klassifikationen von OCT, Histologie und Klinik


		ОСТ	Histologie	Klinik
ОСТ	Spearman-Rho (r _s)	1,000	0,141	0,556**
OCI	Signifikanz (2-seitig)		0,520	0,006
Lictologic	Spearman-Rho (r_s)	0,141	1,000	0,470*
Histologie	Signifikanz (2-seitig)	0,520		0,024
Klinik	Spearman-Rho (r _s)	0,556**	0,470*	1,000
MIIIIK	Signifikanz (2-seitig)	0,006	0,024	

Anmerkungen. * Die Korrelation ist signifikant auf einem Niveau von 0,05 (2-seitig); **Die Korrelation ist signifikant auf einem Niveau von 0,01 (2-seitig); n = 23.

3.1.1.2 Vergleich der Signalintensitäten der BCC Subtypen

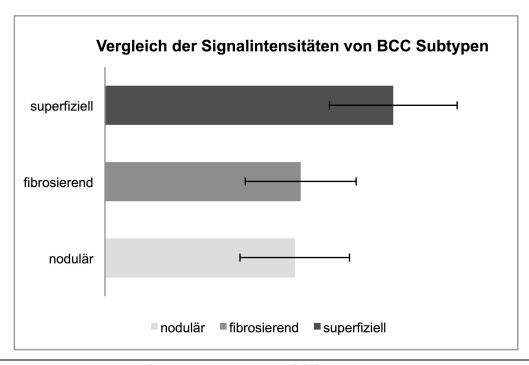

Von der gleichen Untergruppe der Studie wie im vorangegangenen Kapitel 3.1.1.1 wurden zwei BCC ausgeschlossen, da keine Subtypbestimmung möglich war (s. Überblick Abbildung 6). Die Ergebnisse der histologischen Untersuchung zeigten, dass bei 46 BCC ein nodulärer Subtyp vorlag, 21 wiesen eine fibrosierende und 28 eine superfizielle Form des BCC auf (Beispiele s. Abbildung 16).

Abbildung 16. 3 BCC Subtypen (nodulär, fibrosierend, superfiziell) in der OCT und in der Histologie. Histologie in HE-Färbung, 5-fache Vergrößerung.

Wenn man die mit der Polygon- und Histogramm-Funktion des Programms Image J^{\otimes} ermittelten OCT Signalintensitäten der BCC Subtypen (Originaldaten s. *Anhang Tabelle 2*) miteinander vergleicht, fiel bei den superfiziellen BCC eine höhere durchschnittliche Signalstärke auf (M = 87.5; SD = 19.4) als es bei den fibrosierenden (M = 59.4; SD = 16.9) oder nodulären BCC (M = 57.7; SD = 16.7) der Fall war (s. Abbildung 17).

Abbildung 17. Vergleich der Signalintensitäten von BCC Subtypen. Dargestellt sind Mittelwerte und Standardabweichungen; n (BCC superfiziell) = 28, n (BCC fibrosierend) = 21, n (BCC nodulär) = 46.

3.1.1.3 Vergleich mit der konfokalen Lasermikroskopie VivaScope®

In diesem Kapitel wird die weitere Nebenbeobachtung näher erläutert, dass durch die Kombination von unterschiedlichen nichtinvasiven Methoden zusätzliches Wissen und somit ein besseres Verständnis für den NMSC gewonnen wurden. Das OCT System gibt dem Untersucher durch vertikale Schnittbilder einen Überblick über das Ausmaß und die Gestalt des gesamten NMSC bis in große Teile der Dermis, während mit dem KLM hochauflösende, horizontale Schnittbilder von aK und BCC auf zellulärer Ebene bis maximal in die papilläre Dermis beurteilt werden können. Im Folgenden werden das OCT Gerät VivoSight[®] mit dem KLM VivaScope[®], ergänzend zur Klinik und der standardmäßig durchgeführten Dermatoskopie, an zwei ausgewählten Fallbeispielen von BCC und aK verglichen.

Beispiel für BCC (s. Abbildung 18):

78-jähriger Mann mit einem BCC retroaurikulär rechts

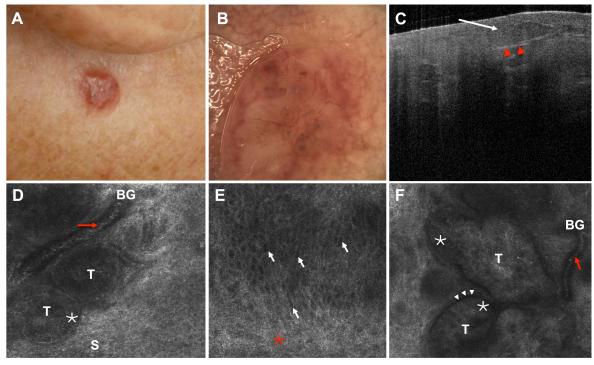


Abbildung 18 A, B, C, D, E, F. Vergleich von Klinik, Dermatoskopie, OCT und KLM anhand eines BCC. (A) Klinisches Bild des BCC eines 78-jährigen Mannes (Foto mit Panasonic Lumix DMC-TZ):

solitäre, scharf begrenzte, rund-ovale, zentral glasige, hautfarbene Papel mit rotbraunem, erhabenem Randsaum retroaurikulär rechts; (B) Dermatoskopie des BCC (VivaCam® 10 mm x 10 mm): baumartig verzweigte Gefäße mit Kaliberschwankungen sowie solitäre grau-blaue Nester; (C) OCT VivoSight® (6 mm x 2 mm): Übersichtsdarstellung eines nodulären BCC (weißer Pfeil) mit Tumorzellnestern im Tiefenschnitt; die weniger reflektierende, dunklere Grenze um die Zellnester entspricht analog zu den KLM Aufnahmen dem erhöhten Zellumsatz sowie den pleomorphen Kernen der peripheren Palisadenstellung; die stark reflektierenden Bereiche zwischen den Nestern weisen auf komprimiertes Kollagen hin (rote Pfeilspitzen); die Tumordicke beträgt 1 mm in der OCT; (D, E, F) Aufnahme mit KLM VivaScope® (jeweils 500 µm x 500 µm): (E) auf Höhe des Stratum granulosum/oberen Stratum spinosum sieht man vergrößerte, monomorphe, elongierte Zellkerne (weiße Pfeile), von denen manche entlang einer Achse angeordnet sind sowie einen Verlust des typischen Honigwabenmusters im unteren Bildbereich (rotes Sternchen), (D) und (F) zeigen auf Ebene der Dermis Detailaufnahmen der Tumorzellverbände (T) mit einer peripheren Palisadenstellung der Zellkerne (weiße Sternchen) umgeben von Stroma (S) sowie Ausschnitte der erweiterten Blutgefäße (BG) mit hell reflektierenden Entzündungszellen (rote Pfeile) und eine peritumorale, dunkle Spaltbildung (weiße Pfeilspitze).

Beispiel für aK (s. Abbildung 19):

79-jähriger Mann mit einer aK an der Stirn rechts

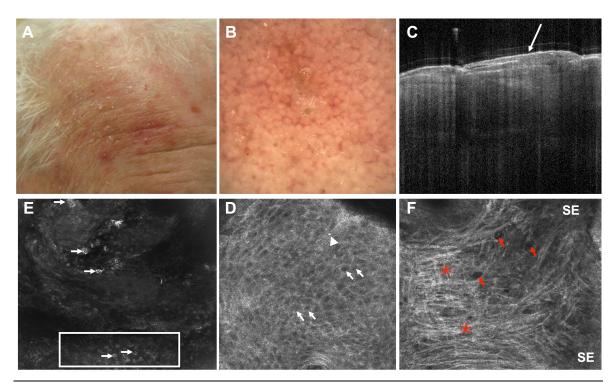
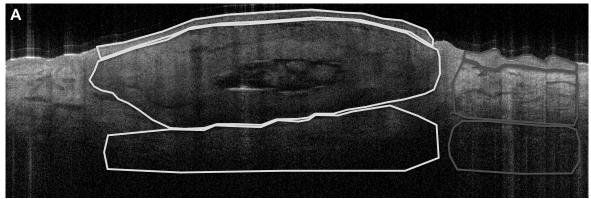


Abbildung 19 A, B, C, D, E, F. Vergleich von Klinik, Dermatoskopie, OCT und KLM anhand einer aK. (A) Klinisches Bild der aK eines 79-jährigen Mannes (Foto mit Panasonic Lumix DMC-TZ):


wenige Zentimeter große, unregelmäßige, scharf begrenzte, entzündlich gerötete Plaques von rauer, horniger Oberfläche mit Teleangiektasien und weißlichen, oberflächlichen Schuppen; (B) Dermatoskopie der aK (VivaCam® 10 mm x 10 mm): feine gewellte und gewundene Gefäße, mit graubraunen Punkten um die Follikelöffnungen in einem rot-braun-grauen Pseudonetzwerk; (C) OCT VivoSight® (6 mm x 2 mm): Darstellung der aK in der Übersicht mit Akanthose (= Verbreiterung des Stratum spinosum) und Hyperkeratose der Epidermis, vor allem des Stratum corneum (weißer Pfeil); (D, E, F) Aufnahme mit KLM VivaScope[®] (jeweils 500 µm x 500 µm): (D) zu sehen sind einzelne, abgelöste, polygonale, hell reflektierende Korneozyten (weiße Pfeile), die ein Anzeichen für die Auflösung des Stratum corneum darstellen; im unteren weiß markierten Bildausschnitt weisen die Korneozyten zentral runde, scharf abgrenzbare, dunkle Bereiche auf, im Sinne einer Parakeratose (= Beibehaltung von Zellkernen bis in die Hornschicht); (E) auf Höhe des Stratum granulosum und spinosum findet sich im Vergleich zu gesunder Haut ein verändertes, helleres und dickeres Honigwabenmuster im Sinne einer Spongiose (= interzelluläres Ödem); man erkennt verschieden große Zellkerne (= Pleomorphismus) (weiße Pfeile) als Zeichen der Atypie der Keratinozyten sowie einzelne, runde, sehr helle Entzündungszellen (weiße Pfeilspitze); (F) in der oberen Dermis zeigen sich erweiterte, kleine Blutgefäße (rote Pfeile), deutlich hell reflektierendes, gebündeltes Kollagen (rote Sternchen) sowie solare Elastose (SE), die als verflochtenes, mäßig reflektierendes, amorphes Material am Rande des Bildausschnitts sichtbar ist.

3.1.2 Diagnostik von BCC anhand von Signalintensität

Neben in den vorangegangenen Kapiteln bereits beschriebenen Nebenhypothesen lag eines der Hauptziele der Studie darin, herauszufinden, ob BCC objektiv gegenüber gesunder Haut durch die standardisierte Messung von Signalintensitäten diagnostiziert werden können. Aus diesem Grund wurden bei 188 BCC jeweils die durchschnittliche Signaldichte des Tumors, der Epidermis über den BCC und die der Dermis unter den BCC immer im Vergleich zur periläsionalen normalen Hautschicht ermittelt (s. Abbildung 20 A, Originaldaten s. Anhang Tabelle 3). Es konnte hierbei insgesamt ein Abfall der lokalen Signalstärke in allen von den BCC betroffenen Hautschichten verglichen mit der benachbarten gesunden Haut festgestellt werden, was in Abbildung 20 B zu sehen ist. Denn die Signalkraft bei der Epidermis über den BCC (M = 129,5; SD = 19,1) war sehr viel geringer als bei der angrenzenden normalen Epidermis (M = 155,5; SD = 15,0). Auch ließ sich eine niedrigere Signalintensität der BCC (M = 71,5; SD= 21,0) im Kontrast zur anliegenden gesunden Dermis (M = 103,4; SD = 18,9) beobachten. In Abbildung 20 B ist eine Abnahme der Signaldichte der Dermis

unter den BCC (M = 31,2; SD = 14,5) gegenüber der von normaler Dermis in der entsprechenden Tiefe (M = 45,7; SD = 14,7) dargestellt.

Die Wilcoxon-Tests für abhängige Stichproben (s. *Anhang Tabellen 40 und 42*) ergaben eine höchst signifikant geringere Signalkraft der Epidermis über den BCC sowie von der Dermis unter den BCC verglichen mit der normalen Haut in korrespondierenden Höhen (für beide: z(n = 188) = -11,89; P < 0,0001; s. Abbildung 20 B). Mit dem t-Test für verbundene Stichproben (s. *Anhang Tabelle 41*) ließ sich auch insbesondere eine höchst signifikante Abnahme der Signalstärke der BCC gegenüber der angrenzenden gesunden Dermis erkennen (t(187) = -31,05; P < 0,0001; s. Abbildung 20 B).

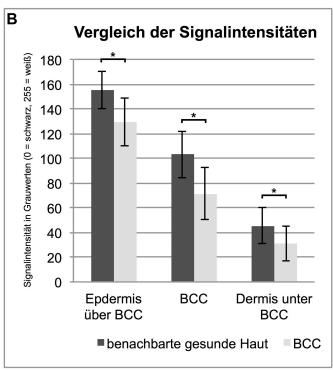
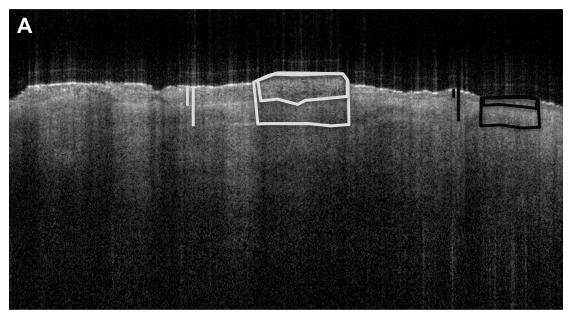
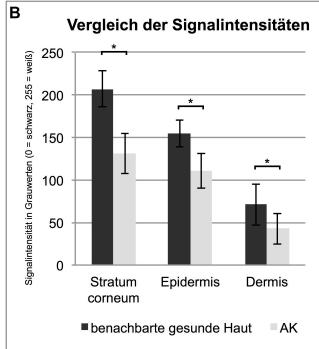


Abbildung 20 A, B. Vergleich der Signalintensitäten von BCC und gesunder Haut. (A) Markierung der Areale mit den ermittelten Signalstärken am Beispiel eines BCC (weiß) und von dessen

anliegender normaler Haut (grau); (B) Darstellung der gemessenen Mittelwerte und Standardabweichungen der Signalintensitäten von BCC und deren benachbarter gesunder Haut; n = 188; * höchst signifikanter Unterschied zur benachbarten gesunden Haut (P < 0,0001), Wilcoxon-Tests s. *Anhang Tabellen 40 und 42* und *t*-Test s. *Anhang Tabelle 41*.

3.1.3 Diagnostik von aK anhand von Signalintensität und Schichtdicke


Es wurde nicht nur untersucht, ob BCC gegenüber normaler Haut in der OCT anhand von Signalintensitäten objektiv differenziert werden können, sondern auch, ob mithilfe der Bestimmung von Signalstärken und Schichtdicken die Abgrenzung von aK im Kontrast zu gesunden Hautschichten in der OCT möglich ist.


Bei 113 aK ermittelte ich die Dicke und Signalkraft der Hornschicht sowie der Epidermis und die Signalintensität der Dermis jeweils im Vergleich zur nicht betroffenen Haut (s. Abbildung 21 A, Originaldaten s. *Anhang Tabellen 4 und 5*). Wie in Abbildung 21 B dargestellt zeigte sich ein Signalabfall bei den aK in allen Schichten, verglichen mit denen in normaler Haut. Bei genauer Betrachtung stellte man eine geringere Signaldichte des Stratum corneum bei aK (M = 131,2; SD = 23,5) im Gegensatz zur periläsionalen gesunden Hornschicht (M = 207,4; SD = 21,8) fest. Ebenso fand sich nicht nur eine niedrigere Signalintensität der Epidermis von aK (M = 111,2; SD = 20,7) gemessen an normaler Epidermis (M = 154,2; SD = 15,8), sondern auch eine reduzierte Signalstärke der Dermis bei aK (M = 42,9; SD = 18,2) im Vergleich mit der von gesunder Dermis (M = 70,9; SD = 23,9).

Darüber hinaus ist in Abbildung 21 C ein starker Anstieg der Dicke des Stratum corneum (M = 0.193; SD = 0.119 mm) und der Epidermis (M = 0.355; SD = 0.181 mm) bei aK gegenüber den Schichten in normaler Haut (Stratum corneum: M = 0.017; SD = 0.006 mm, Epidermis: M = 0.089; SD = 0.025 mm) zu beobachten.

Für die drei Hautebenen, Hornschicht, Epidermis und Dermis, konnte eine höchst signifikante Abnahme der Signaldichte bei aK im Gegensatz zur periläsionalen normalen Haut nachgewiesen werden (für alle drei: z(n = 113) = -9,23; P < 0,0001; s. Abbildung 21 B und s. Wilcoxon-Tests *Anhang Tabellen 43, 44 und 45*).

Bei der Dickenmessung des Stratum corneum und der Epidermis fiel eine höchst signifikante Zunahme der Stärke dieser Hautschichten bei von aK betroffener Haut im Verhältnis zu gesunder auf (bei beiden: z(n = 113) = -9,23; P < 0,0001; s. Abbildung 21 C und s. Wilcoxon-Tests *Anhang Tabellen 46 und 47*).

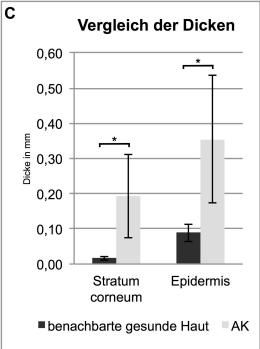
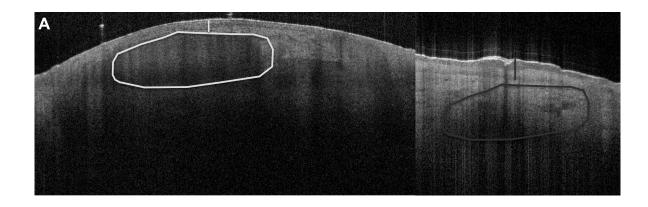
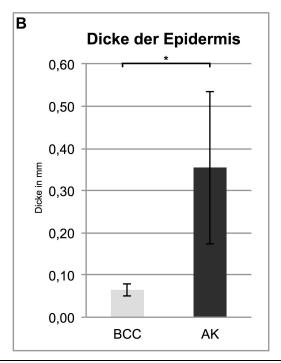


Abbildung 21 A, B, C. Vergleich der Signalintensitäten und Dicken von aK und gesunder Haut. (A) Markierung der Areale mit den ermittelten Signalstärken und Dicken am Beispiel einer aK (weiß) und von dessen angrenzender normaler Haut (schwarz); (B) Darstellung der gemessenen Mittelwerte und Standardabweichungen der Signalintensitäten und (C) der Dicken von aK und deren benachbarter gesunder Haut; n = 113; * höchst signifikanter Unterschied zur benachbarten gesunden Haut (P < 0,0001), Wilcoxon-Tests s. Anhang Tabellen 43, 44, 45, 46 und 47.


3.1.4 Differenzierung von aK und BCC


Nachdem aK und BCC in vorangegangenen Studien morphologisch nicht eindeutig voneinander abzugrenzen waren, bestand ein Ziel der Studie darin, dies mit objektiven Parametern, wie Dicke und Signalintensität, zu untersuchen.

Um aK von BCC zu unterscheiden, wurde die Dicke der Epidermis von 113 aK und von 188 BCC gemessen (s. Abbildung 22 A, Originaldaten s. *Anhang Tabelle* 6). Als ein weiteres Kriterium zur Differenzierung fand eine Bestimmung der Signalstärke der Dermis von 113 aK im Kontrast zu 188 BCC statt (s. Abbildung 22 A, Originaldaten s. *Anhang Tabelle* 6).

In der OCT ließ sich eine deutlich dickere Epidermis bei aK (M = 0.355; SD = 0.181 mm; Median = 0.313 mm) im Gegensatz zu der über BCC (M = 0.065; SD = 0.015 mm; Median = 0.065 mm) beobachten, was in Abbildung 22 B zu sehen ist. Weiterhin konnte man eine Abnahme der Signaldichte in der Dermis bei aK (M = 42.9; SD = 18.2; Median = 37.5) gegenüber der Signalintensität bei BCC (M = 71.5; SD = 21.0; Median = 71.4) registrieren (s. Abbildung 22 C).

Da in diesem Fall zwei unverbundene Stichproben miteinander verglichen wurden, kam der Mann-Whitney-U-Test zur Darstellung der Unterschiede von aK und BCC zur Anwendung. Damit konnte nachgewiesen werden, dass aK eine höchst signifikant stärkere Epidermis, gemessen an der über den BCC, aufwiesen (z(113, 188) = -14,54; P < 0,0001; s. Abbildung 22 B und s. Mann-Whitney-U-Test Anhang Tabelle 48). Jedoch zeigten aK einen höchst signifikanten Signalabfall in der Dermis auf Höhe der BCC im Vergleich mit den Tumoren (z(113, 188) = -10,25; P < 0,0001; s. Abbildung 22 C und s. Mann-Whitney-U-Test Anhang Tabelle 49).

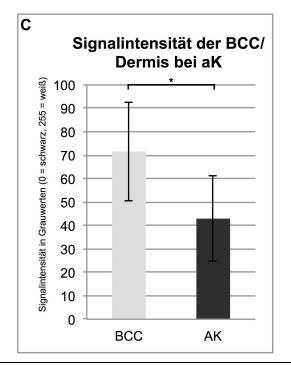


Abbildung 22 A, B, C. Differenzierung von aK und BCC. (A) Markierung der Areale mit den ermittelten Signalstärken und Dicken am Beispiel einer aK (schwarz) und eines BCC (weiß); (B) Darstellung der gemessenen Mittelwerte und Standardabweichungen der Epidermisdicken von aK und über den BCC sowie (C) der Signalintensitäten von BCC/Dermis bei aK; n (aK) = 113, n (BCC) = 188; * höchst signifikanter Unterschied zwischen aK und BCC (P < 0,0001), Mann-Whitney-U-Tests s. Anhang Tabellen 48 und 49.

3.1.5 Vergleich von VivoSight® mit der Histologie

3.1.5.1 Ergebnisse der histopathologisch bestätigten Subgruppe

Da nicht alle Läsionen biopsiert wurden und somit nicht mit dem Goldstandard, der Histologie, vergleichbar waren, wurde die histopathologisch bestätigte Subgruppe, bestehend aus 88 Patienten (32 Frauen, 56 Männern, zwischen 39 und 95 Jahren mit einem Altersmedian von 70,5) mit 97 BCC und 23 aK von der gesamten Studienpopulation (mit den operierten und den topisch behandelten Läsionen) getrennt analysiert (s. Überblick Abbildung 6). Die im Folgenden aufgeführte, ergänzende statistische Auswertung ergab die gleichen Ergebnisse wie die gesamte Probandengruppe. Analog zum kompletten Patientenkollektiv zeigten sich bei der BCC Gruppe vor OP geringere Werte in der Signalintensität in allen von den BCC betroffenen Hautebenen im Vergleich mit der angrenzenden normalen Haut (Originaldaten s. *Anhang Tabelle 7* und s. Tabelle 3).

Mithilfe der t-Tests für abhängige Stichproben (s. *Anhang Tabellen 50 und 51*) fand man auch bei der operierten Untergruppe eine höchst signifikante Abnahme der Signalkraft von der Epidermis über den BCC (t(96) = 16,31; P < 0,0001; s. Tabelle 3) sowie von den BCC (t(96) = 22,23; P < 0,0001; s. Tabelle 3) gegenüber den entsprechenden gesunden Hautlevels. Mit dem Wilcoxon-Test für verbundene Stichproben (s. *Anhang Tabelle 52*) konnte in der BCC Gruppe vor OP ebenfalls ein höchst signifikanter Signalabfall der Dermis unter den BCC, verglichen mit der benachbarten normalen Hautschicht nachgewiesen werden (z(n = 97) = -8,55; P < 0,0001; s. Tabelle 3).

Tabelle 3. Vergleich der Signalintensitäten der BCC und von benachbarter gesunder Haut vor OP

		Signalintensität	
	Benachbarte gesunde Haut	BCC vor OP	
Epidermis über BCC	153,3 ± 14,5	126,8 ± 19,2*	
BCC	100,2 ± 20,4	66,9 ± 21,8*	
Dermis unter BCC	44,4 ± 14,4	29,7 ± 13,7*	

Anmerkungen. Die dargestellten Parameter sind Mittelwerte \pm Standardabweichung; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); n = 97; *höchst signifikanter Unterschied zur benachbarten gesunden Haut (P < 0,0001), t-Tests s. Anhang Tabellen 50 und 51 und Wilcoxon-Test s. Anhang Tabelle 52.

Bei den operierten aK ließ sich genauso wie bei den aK der gesamten Gruppe eine verringerte Signalstärke in allen Hautebenen bei aK im Gegensatz zu denen in gesunder Haut feststellen (Originaldaten s. *Anhang Tabelle 8* und s. Tabelle 4). Analog zum Kollektiv waren stärkere Hornschicht- und Epidermisdicken bei aK vor OP gemessen an den normalen Hautschichtdicken zu erkennen (Originaldaten s. *Anhang Tabelle 9* und s. Tabelle 4).

Darüber hinaus bemerkte man in der histologisch bestätigten aK Subgruppe gleichermaßen eine höchst signifikante Abnahme in der Signaldichte von Stratum corneum, Epidermis und Dermis bei aK im Kontrast zur angrenzenden gesunden Haut (für alle drei: z(n = 23) = -4,20; P < 0,0001; s. Tabelle 4 und s. Wilcoxon-Tests *Anhang Tabellen 53, 54 und 55*).

Außerdem konnte in der aK Gruppe vor OP, übereinstimmend mit dem gesamten Studienkollektiv, ein höchst signifikanter Anstieg der Hornschicht- und

Epidermisdicke bei aK im Vergleich zu periläsionaler normaler Haut registriert werden (bei beiden: z(n = 23) = -4,20; P < 0,0001; s. Tabelle 4 und s. Wilcoxon-Tests *Anhang Tabellen 56 und 57*).

Tabelle 4. Vergleich der Signalintensitäten und Dicken der aK und von normaler Haut vor OP

	Signalintensität		Dicke		
	benachbarte gesunde Haut	aK vor OP	benachbarte gesunde Haut	aK vor OP	
Stratum corneum	206,5 ± 21,5	124,6 ± 23,9*	0,018 ± 0,007	0,201 ± 0,112*	
Epidermis	153,8 ± 15,7	105,1 ± 20,3*	0,086 ± 0,018	$0,397 \pm 0,172*$	
Dermis	59,0 ± 16,8	35,6 ± 11,8*			

Anmerkungen. Die dargestellten Parameter sind Mittelwerte \pm Standardabweichung; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); Dicke in mm; n = 23; * höchst signifikanter Unterschied zur benachbarten gesunden Haut (P < 0,0001), Wilcoxon-Tests s. Anhang Tabellen 53, 54, 55, 56 und 57.

Des Weiteren wurden aK von BCC nicht nur in der gesamten Studienpopulation, sondern auch in der operierten Gruppe durch eine messbar stärkere mittlere Epidermis bei aK im Verhältnis zu der über BCC voneinander unterschieden (Originaldaten s. *Anhang Tabelle 10* und Tabelle 5). Zudem fand sich eine reduzierte Signalkraft in der Dermis bei aK gegenüber der Signalstärke bei BCC auch in der OP Gruppe (Originaldaten s. *Anhang Tabelle 10* und Tabelle 5).

Tabelle 5. Ergebnisse der Differenzierung von aK und BCC vor OP

	Dic	ke der Ep	idermis v	or OP		gnalinten Dermis be		
•	Median	М	SD	<i>P</i> -Wert	Median	М	SD	P-Wert
ВСС	0,069	0,068	0,015	*P < 0.0001	66,4	66,9	21,8	*P < 0,0001
AK	0,332	0,397	0,172	F < 0,000 i	36,4	35,6	11,8	F < 0,000 I

Anmerkungen. Die dargestellten Parameter sind Mediane, Mittelwerte (M), Standardabweichungen (SD) und P-Werte. Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); Dicke in mm; *höchst signifikanter Unterschied zwischen aK und BCC (P < 0,0001); n (aK) = 23, n (BCC) = 97; Mann-Whitney-U-Tests s. Anhang Tabellen 58 und 59.

Somit konnte auch in der operierten Subgruppe eine höchst signifikant stärkere Epidermis bei aK, verglichen mit der über den BCC, als Differenzierungsmerkmal

verwendet werden (z(23, 97) = -7,46; P < 0,0001; s. Tabelle 5 und s. Mann-Whitney-*U*-Test *Anhang Tabelle 58*). Ebenso wies die OP Gruppe einen höchst signifikanten Signalabfall der Dermis bei aK gegenüber den BCC auf (z(23, 97) = -5,84; P < 0,0001; s. Tabelle 5 und s. Mann-Whitney-*U*-Test *Anhang Tabelle 59*).

3.1.5.2 Korrelation der Dicken von BCC und aK in der OCT und Histologie

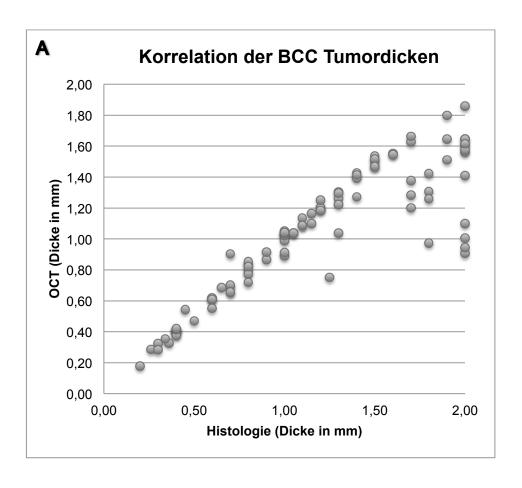
Da die Histologie der Goldstandard der Diagnostik ist, sollten als weitere Nebenhypothesen überprüft werden, ob die Histologie andere Messwerte der BCC Tumordicken und der Schichtdicken bei aK als in der OCT angibt. Außerdem sollte festgestellt werden, ob ein Zusammenhang zwischen den Dickenmessungen in der OCT und der Histologie besteht.

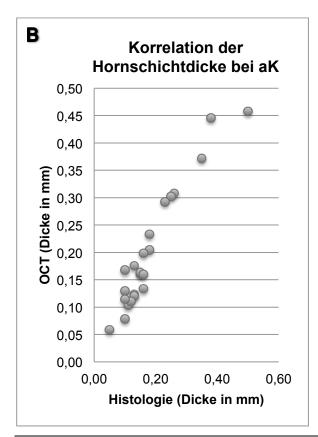
Von 97 BCC wurden drei von dem Vergleich der Tumordicken ausgeschlossen, weil keine Ausmessung der BCC in der Histologie möglich war. Die restlichen 94 BCC und 23 aK wurden zum Vergleich von OCT mit der Histologie und zur Prüfung ihres Zusammenhangs herangezogen (Originaldaten s. *Anhang Tabellen 11 und 12*). Darunter befanden sich auch die Tumoren, die die Eindringtiefe von > 2 mm in der OCT überschritten.

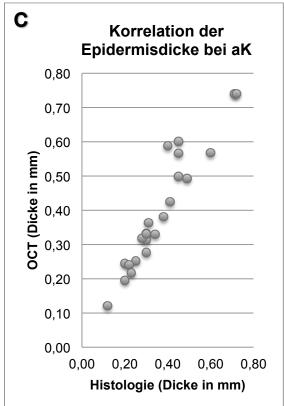
Die durchschnittliche Tumordicke für 94 BCC fiel bei der Messung mit dem OCT Gerät VivoSight[®] geringer aus als bei der Bestimmung in der Histologie (s. Tabelle 6). Es ergab sich ein statistisch höchst signifikanter Unterschied zwischen den beiden Messmethoden in der Ermittlung der Tumordicken (z(n = 94) = -4,07; P < 0,0001; s. Tabelle 6 und s. Wilcoxon-Test *Anhang Tabelle 60*).

Tabelle 6. Vergleich der BCC Tumor- und aK Schichtdicken in der OCT und in der Histologie

	OCT Dicke	Histologie Dicke	
	M ± SD	M ± SD	P-Werte
BCC Tumordicke	1,037 ± 0,419	1,352 ± 1,232	*P < 0,0001
aK Hornschichtdicke	0,201 ± 0,112	0,182 ± 0,106	*P = 0,013
aK Epidermisdicke	$0,397 \pm 0,172$	$0,366 \pm 0,156$	*P = 0,005

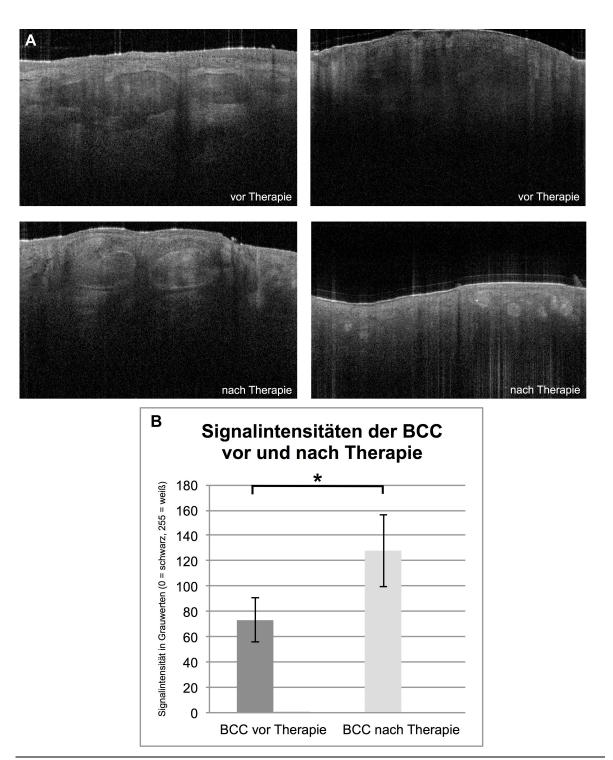

Anmerkungen. Die dargestellten Parameter sind Mittelwerte ± Standardabweichung sowie *P*-Werte; Dicke in mm; n (aK) = 23, n (BCC) = 94;*signifikanter Unterschied zwischen OCT und Histologie, Wilcoxon-Tests s. *Anhang Tabellen 60, 61 und 62*.


Weiterhin konnte nachgewiesen werden, dass ein höchst signifikanter, hoch positiver Zusammenhang zwischen der in der OCT und in der Histologie bestimmten Tumordicke bestand ($r_s(92) = 0.879$; P < 0.0001; s. *Anhang Tabelle* 63). Dies galt insbesondere für Tumoren, die < 1 mm dick waren, was in Abbildung 23 A als Punktewolke verdeutlicht wird.


Bei 23 aK wurden in der OCT eine durchschnittlich dickere Hornschicht und Epidermis gemessen, während die Werte in der Histologie für das Stratum corneum und für die Epidermis etwas niedriger lagen (s. Tabelle 6).

Bei der histologisch bestimmten Hornschicht ergab sich eine signifikant niedrigere Dicke als in der OCT (z(n = 23) = -2,49; P = 0,013; s. Tabelle 6 und s. Wilcoxon-Test *Anhang Tabelle 61*). Ebenso wie die Hornschicht wies auch die Epidermis bei aK in der Histologie sehr signifikant geringere Messwerte auf als in der OCT (z(n = 23) = -2,80; P = 0,005; s. Tabelle 6 und s. Wilcoxon-Test *Anhang Tabelle 62*).

Außerdem korrelierten OCT und Histologie hoch positiv miteinander bezüglich der Hornschicht- ($r_s(21) = 0.894$; P < 0.0001 s. *Anhang Tabelle 63*) und sehr hoch bezüglich der Epidermisdicken ($r_s(21) = 0.951$; P < 0.0001 s. *Anhang Tabelle 63*), was in Abbildung 23 B und C dargestellt ist.


Abbildung 23 A, B, C. Punktewolken zur Darstellung der Korrelationen von OCT und Histologie bei (A) BCC Tumordicken und bezüglich (B) Hornschicht- sowie (C) Epidermisdicken bei aK. (A) 2 mm beinhalten alle Tumoren mit einer Dicke > 2 mm; n (aK) = 23, n (BCC) = 94.

3.1.6 Verlaufskontrolle von BCC anhand von Signalintensität

Um festzustellen, ob die Effekte einer topischen Behandlung quantifizierbar sind, wurden die Signalintensitäten der BCC vor und nach Therapie gemessen.

In der Subgruppe "Verlaufskontrolle" befanden sich 42 Patienten (19 Frauen, 23 Männer, zwischen 39 und 93 Jahren mit einem Altersmedian von 70,5 Jahren) mit 134 Läsionen, darunter 43 aK und 91 BCC, die mit dem OCT Gerät VivoSight[®] vor und nach Behandlung untersucht wurden (s. Überblick Abbildung 6). Der NMSC trat in dieser Untergruppe am häufigsten im Kopf-Halsbereich (37 aK, 36 BCC) auf, gefolgt vom Stamm (3 aK, 41 BCC) und den Extremitäten (3 aK, 14 BCC). Von den mit Imiquimod therapierten 91 BCC wurden zur Evaluation lediglich 54 BCC (Originaldaten s. *Anhang Tabelle 13*) herangezogen, da es bei den restlichen BCC zu Rezidiven kam, sodass diese von der Auswertung ausgeschlossen wurden.

In Abbildung 24 A und B ist zu sehen, dass die Signaldichte bei den BCC nach Therapie (M = 128,0; SD = 28,4) sehr viel höher war als bei den BCC vor Therapie (M = 73,1; SD = 17,5).

Abbildung 24 A, B. Vergleich der BCC Signalintensitäten vor und nach Therapie. (A) Zwei ausgewählte BCC vor und nach Behandlung; (B) Darstellung der Mittelwerte und Standardabweichungen der BCC Signalintensitäten vor und nach Therapie; n = 54; *signifikanter Unterschied zwischen vor und nach Therapie (*P* < 0,0001), *t*-Test s. *Anhang Tabelle 64*.

Vergleicht man die Signalintensitäten der BCC vor und nach Behandlung, so ließ sich bei in dieser Subgruppe vorliegenden normalverteilten Daten mit dem t-Test für verbundene Stichproben (s. *Anhang Tabelle 64*) eine höchst signifikante Zunahme der Signalstärke der BCC nach Therapie gegenüber der deutlich geringeren Signalkraft bei den BCC vor Therapie nachweisen (t(53) = -13,68; P < 0,0001; s. Abbildung 24 B).

3.1.7 Verlaufskontrolle von aK anhand von Signalintensität und Schichtdicke

Ähnlich wie bei der Nachbeobachtung der BCC ermittelte ich die Signalintensitäten und Schichtdicken am Beispiel der Hornschicht von aK vor und nach Therapie, um die Behandlungserfolge lokaler Therapeutika quantitativ zu bestimmen.

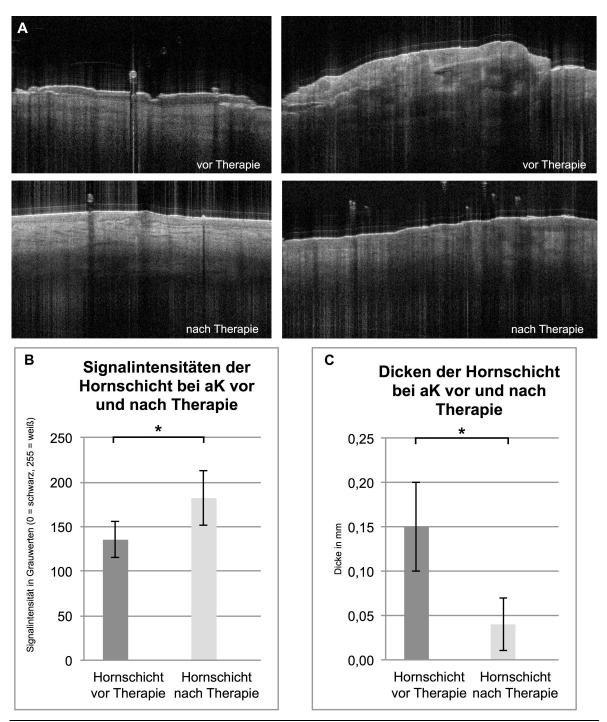
Die bereits in Kapitel 3.1.6 beschriebene Subgruppe "Verlaufskontrolle" bestand aus 42 Patienten (19 Frauen, 23 Männer, zwischen 39 und 93 Jahren mit einem Altersmedian von 70,5 Jahren) mit 91 BCC und 43 aK (s. Überblick Abbildung 6). Diese 43 aK wurden mit verschiedenen topischen Medikamenten (s. Kapitel 2.2) behandelt und zu Therapiebeginn und am Ende mit dem OCT Gerät VivoSight[®] gemessen. Da bei drei aK Rezidive aufgetreten waren, blieben 40 von 43 aK (Originaldaten s. *Anhang Tabellen 14 und 15*) für die Auswertung übrig.

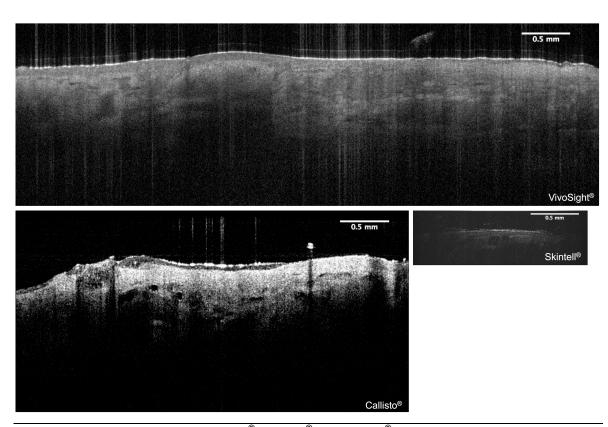
Betrachtet man Abbildung 25 A und B, so konnte ein deutlicher Anstieg der Signaldichte im Stratum corneum bei aK nach Therapie (M = 182,0; SD = 30,4) im Verhältnis zur Signalkraft der Hornschicht bei aK vor Therapie (M = 135,3; SD = 19,9) beobachtet werden.

Nach der Behandlung war eine stark reduzierte Hornschichtdicke bei aK (M = 0.038; SD = 0.035 mm), verglichen mit der vor der Behandlung (M = 0.151; SD = 0.053 mm), zu erkennen (s. Abbildung 25 A und C).

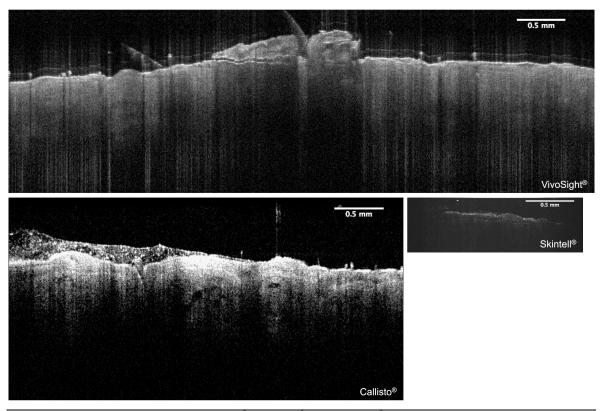
Aufgrund von normalverteilten Daten der Signalstärken der Hornschicht prä- und posttherapeutisch kam der t-Test für verbundene Stichproben (s. *Anhang Tabelle 65*) zur Anwendung. Dieser zeigte, dass die Signalintensität des Stratum corneum nach Therapie im Gegensatz zu der vor Therapie höchst signifikant an Signalkraft zunahm (t(39) = -8,84; P < 0,0001; s. Abbildung 25 B).

Da die Hornschichtdicken vor und nach Behandlung keine Normalverteilung aufwiesen, wurde der Wilcoxon-Test (s. *Anhang Tabelle 66*) verwendet. Es ergab sich für die Hornschicht nach Therapie eine höchst signifikant geringere Dicke als zuvor (z(n = 40) = -5,51; P < 0,0001; s. Abbildung 25 C).




Abbildung 25 A, B, C. Vergleich der Signalintensitäten und Schichtdicken der Hornschicht bei aK vor und nach Therapie. (A) Zwei ausgewählte aK vor und nach Behandlung; (B) Darstellung der Mittelwerte und Standardabweichungen der Signalintensitäten (B) und Dicken (C) der Hornschicht

bei aK vor und nach Therapie; n = 40; * höchst signifikanter Unterschied zwischen vor und nach Therapie (P < 0,0001), t-Test s. Anhang Tabelle 65 und Wilcoxon-Test s. Anhang Tabelle 66.


3.2 Vergleich von drei OCT Geräten VivoSight®, Callisto® und Skintell®

Vorab unterschieden sich die Bilder der drei OCT Systeme VivoSight[®], Callisto[®] und Skintell[®] formal hinsichtlich der Bilddimension, der Detailgenauigkeit, der Auflösung und Eindringtiefe (s. Abbildungen 26 und 27).

VivoSight[®] wies den größten Bildausschnitt mit 6 mm x 2 mm auf, bei Callisto[®] betrug dieser 4 mm x 2 mm und bei Skintell[®] 1,8 mm x 1 mm. Die Eindringtiefe von Callisto[®] war annähernd vergleichbar mit der des OCT Geräts VivoSight[®], das über die höchste Eindringtiefe verfügte. Die Bilder von Callisto[®] erschienen insgesamt heller, jedoch von mehr granulärer Struktur. Skintell[®] hingegen besaß die größte Auflösung bei einem deutlich kleineren Bildausschnitt als bei den anderen zwei OCT Systemen.

Abbildung 26. Vergleich von VivoSight[®], Callisto[®] und Skintell[®] hinsichtlich Detailgenauigkeit, Auflösung und Eindringtiefe am Beispiel eines BCC.

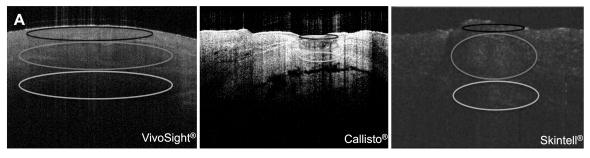


Abbildung 27. Vergleich von VivoSight[®], Callisto[®] und Skintell[®] hinsichtlich Detailgenauigkeit, Auflösung und Eindringtiefe am Beispiel einer aK.

Für den Vergleich von VivoSight®, Callisto® und Skintell® wurde eine Subgruppe mit 29 Patienten (7 Frauen, 22 Männer, zwischen 53 und 95 Jahren und einem Altersmedian von 71,3) und 57 Läsionen (30 aK, 27 BCC) gewonnen (s. Überblick Abbildung 6). Der NMSC befand sich hierbei insbesondere in der Kopf-Halsgegend (24 aK, 14 BCC), am Stamm (3 aK, 12 BCC) und an den Armen (3 aK, 1 BCC). Da der NMSC an bestimmten den Messungen schlecht zugänglichen Lokalisationen (wie z.B. an der Ohrmuschel oder dem Augeninnenwinkel) auftrat, konnten sechs aK nicht mit Skintell® aufgenommen werden. Aus demselben Grund war die Messung von zwei BCC und vier aK mit Callisto[®] nicht möglich. Aufgrund von schlechter Bildqualität wurden die Bilder von neun BCC und zwei aK nach Untersuchung mit Callisto® ausgeschlossen. Das Gleiche galt für acht aK, die mit Skintell® gemessen wurden. So ergab sich letztendlich für den Vergleich von drei OCT Systemen ein Datensatz mit 18 Patienten (3 Frauen, 15 Männer, zwischen 53 und 85 Jahren mit einem Altersmedian von 72,1) und 26 Läsionen (10 aK, 16 BCC), der für die Auswertung verwendet wurde (s. Überblick Abbildung 6).

3.2.1 Diagnostik von BCC mit drei OCT Geräten

Bevor der Vergleich zwischen VivoSight[®], Callisto[®] und Skintell[®] angestellt werden konnte, sollte gezeigt werden, dass die BCC mit allen drei OCT Systemen diagnostiziert werden können. Bei 16 BCC wurde die Signalintensität der Tumoren, die der Epidermis über den BCC und die der Dermis unter den BCC sowie jeweils die benachbarte gesunde Haut mit allen drei OCT Geräten gemessen (s. Abbildung 28 A, Originaldaten s. *Anhang Tabellen 16, 17 und 18*).

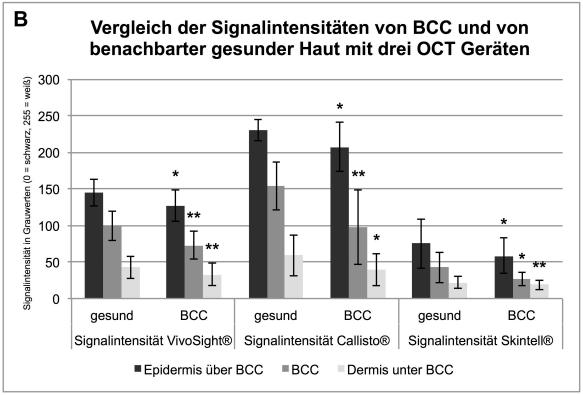


Abbildung 28 A, B. Vergleich der Signalintensitäten von BCC und gesunder Haut mit VivoSight[®], Callisto[®] und Skintell[®]. (A) Markierung der Areale mit den gemessenen Signalintensitäten am Beispiel eines mit allen drei OCT Geräten untersuchten BCC; Epidermis über BCC (schwarz), BCC (grau), Dermis unter BCC (weiß). (B) Darstellung der ermittelten Mittelwerte und Standardabweichungen der Signalintensitäten von durch BCC betroffener und von periläsionaler

normaler Haut mit drei OCT Systemen; n = 16; *, ** sehr signifikanter Unterschied (*P = 0.002; **P = 0.001) von BCC zur benachbarten gesunden Haut, für $M \pm SD$ und P-Werte vgl. auch Anhang Tabelle 67 und Wilcoxon-Tests s. Anhang Tabellen 68, 69, 70, 71, 72, 73, 74, 75 und 76.

Betrachtet man Abbildung 28 B, so war bei VivoSight[®], Callisto[®] und Skintell[®] eine geringere Signaldichte in allen von BCC betroffenen Hautebenen gegenüber denen von normaler Haut zu sehen (vgl. auch *Anhang Tabelle 67*).

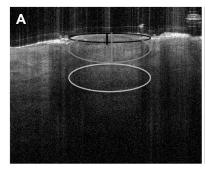
Für das OCT System VivoSight® bestätigten die Wilcoxon-Tests für abhängige kleine Stichproben nicht nur eine sehr signifikant geringere Signalstärke der Epidermis über den BCC im Vergleich mit der normalen Haut (z(n = 16) = -3,15; P = 0,002; s. *Anhang Tabelle 67* und s. Wilcoxon-Test *Anhang Tabelle 68*), sondern auch eine sehr signifikant niedrigere Signalkraft für die BCC im Kontrast zur nicht betroffenen Dermis (z(n = 16) = -3,26; P = 0,001; s. *Anhang Tabelle 67* und s. Wilcoxon-Test *Anhang Tabelle 69*). Mit VivoSight® konnte auch ein sehr signifikanter Signalabfall der Dermis unter den BCC im Gegensatz zur gleichen Höhe in gesunder Haut festgestellt werden (z(n = 16) = -3,21; P = 0,001; s. *Anhang Tabelle 67* und s. Wilcoxon-Test *Anhang Tabelle 70*).

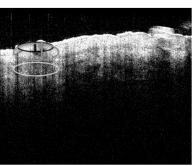
Bei dem OCT Gerät Callisto[®] fanden sich ebenfalls sehr signifikante Abnahmen in der Signaldichte der Epidermis über den BCC sowie von der Dermis unter den BCC gegenüber den angrenzenden normalen Hautschichten (für beide: z(n = 16) = -3,10; P = 0,002; s. *Anhang Tabelle 67* und s. Wilcoxon-Tests *Anhang Tabellen 71 und 73*). Der Wilcoxon-Test (s. *Anhang Tabelle 72*) für Callisto[®] ergab eine sehr signifikant verringerte Signalkraft der BCC, verglichen mit der in benachbarter gesunder Dermis (z(n = 16) = -3,36; P = 0,001; s. *Anhang Tabelle 67*).

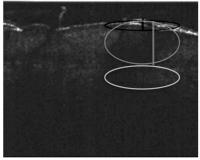
Auch bei dem OCT System Skintell[®] ließen sich für die Epidermis über den BCC und die BCC selbst sehr signifikant geringere Signalstärken im Vergleich mit normaler periläsionaler Haut erkennen (für beide: z(n = 16) = -3,05; P = 0,002; s. *Anhang Tabelle 67* und s. Wilcoxon-Tests *Anhang Tabellen 74 und 75*). Zudem folgte aus dem Wilcoxon-Test (s. *Anhang Tabelle 76*), dass auch bei Messung mit Skintell[®] eine sehr signifikant niedrigere Signalkraft der Dermis unter den BCC, gemessen an der von normaler Haut, bestand (z(n = 16) = -3,36; P = 0,001; s. *Anhang Tabelle 67*).

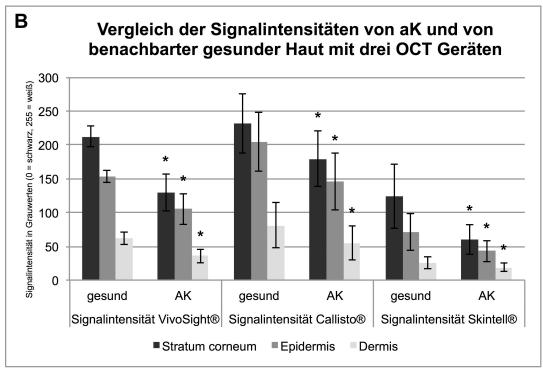
Zusammenfassend konnte nachgewiesen werden, dass alle OCT Geräte sehr signifikante Unterschiede zwischen der Signalintensität von der Epidermis über

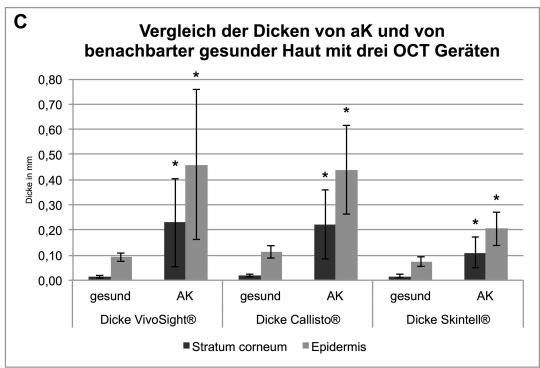
den BCC, den BCC selbst, genauso wie von der Dermis unter den BCC und der jeweiligen periläsionalen gesunden Hautebene feststellen konnten.


3.2.2 Diagnostik von aK mit drei OCT Geräten


Ebenso wie bei den BCC sollte dargestellt werden, dass die Diagnostik von aK gegenüber normaler Haut mit allen drei OCT Geräten VivoSight[®], Callisto[®] und Skintell[®] anhand von Signalintensitäten und Schichtdicken möglich ist.


Mit diesen drei Systemen untersuchte man bei 10 aK die Dicke und Signaldichte der Hornschicht sowie der Epidermis und die Signalkraft der Dermis jeweils im Kontrast zur gesunden Hautschicht (s. Abbildung 29 A, Originaldaten s. *Anhang Tabellen 19, 20, 21, 22, 23 und 24*). In Abbildung 29 B ist bei den drei OCT Geräten eine Reduktion der Signalstärke in allen Hautebenen bei aK im Vergleich mit denen in normaler Haut zu sehen (vgl. auch *Anhang Tabelle 77*). Bei VivoSight[®], Callisto[®] und Skintell[®] zeigten sich eine Erhöhung des Stratum corneum und der Epidermis gemessen an gesunder Haut (s. Abbildung 29 C und vgl. auch *Anhang Tabelle 77*).


Für die drei OCT Systeme ergab sich in allen Hautschichten Hornschicht, Epidermis und Dermis ein sehr signifikanter Signalabfall bei aK, verglichen mit der angrenzenden nicht betroffenen Haut (jeweils für alle drei OCT Geräte und die drei Hautebenen: z(n = 10) = -2,80; P = 0,005; s. *Anhang Tabelle 77* und s. Wilcoxon-Tests *Anhang Tabellen 78, 79, 80, 81, 82, 83, 84, 85 und 86*).


VivoSight[®], Callisto[®] und Skintell[®] wiesen sehr signifikant stärkere Hornschichtund Epidermisdicken bei aK im Gegensatz zur normalen Haut auf (jeweils beide Schichten für alle drei OCT Geräte: z(n = 10) = -2,80; P = 0,005; s. Anhang Tabelle 77 und s. Wilcoxon-Tests Anhang Tabellen 87, 88, 89, 90, 91 und 92).

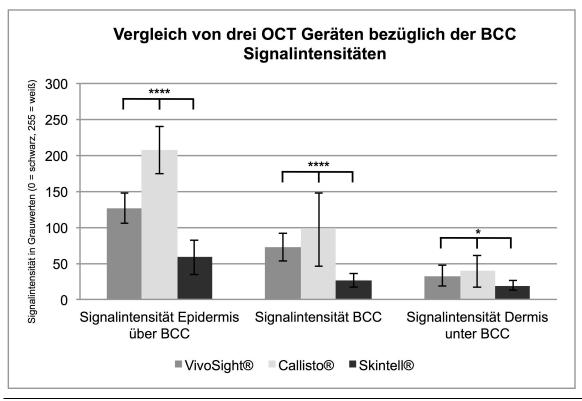


Abbildung 29 A, B, C. Vergleich der Signalintensitäten und Dicken von aK und gesunder Haut mit VivoSight[®], Callisto[®] und Skintell[®]. (A) Markierung der Areale mit den ermittelten Signalintensitäten und Dicken am Beispiel einer mit allen drei OCT Systemen untersuchten aK; Stratum corneum (schwarz), Epidermis (grau), Dermis (weiß). (B) Darstellung der gemessenen Mittelwerte und Standardabweichungen der Signalintensitäten und (C) Dicken von aK und deren benachbarter gesunder Haut mit drei OCT Geräten; n = 10; * sehr signifikanter Unterschied von aK zur benachbarten gesunden Haut (P = 0.005), für $M \pm SD$, P-Werte vgl. auch Anhang Tabelle 77 sowie Wilcoxon-Tests s. Anhang Tabellen 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 und 92.

3.2.3 Vergleich von drei OCT Geräten bzgl. der BCC Signalintensität

16 BCC wurden hinsichtlich der Signaldichte der Epidermis über den BCC, der Tumoren selbst und der Dermis unter den BCC mit den OCT Systemen VivoSight[®], Callisto[®] und Skintell[®] gegenübergestellt (s. Abbildung 30, Originaldaten s. *Anhang Tabellen 25, 26 und 27*). Es ist in Abbildung 30 eine geringere durchschnittliche Signalstärke in allen von den BCC betroffenen Hautebenen bei Messung mit dem OCT Gerät Skintell[®] im Vergleich mit den anderen zwei OCT Systemen zu beobachten (vgl. auch Tabelle 7). Ebenso konnte man eine höhere Signalkraft bei Callisto[®], verglichen mit VivoSight[®], erkennen (s. Abbildung 30, vgl. auch Tabelle 7).

Abbildung 30. Vergleich von drei OCT Geräten bezüglich der BCC Signalintensitäten. Dargestellt sind Mittelwerte und Standardabweichungen von den mit BCC betroffenen Hautschichten; n = 16; (*P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001) signifikanter Unterschied zwischen den drei OCT Geräten; Friedman-Tests s. *Anhang Tabellen 93, 97 und 101.*

Da mehr als zwei Stichproben miteinander verglichen werden sollten, in diesem Fall die Signalintensitäten von drei OCT Geräten, wurde der Friedman-Test für kleine, nicht-normalverteilte, abhängige Stichproben verwendet. Der Friedman-

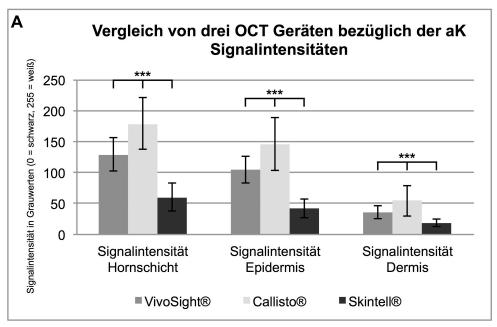
Test (s. *Anhang Tabelle 93*) zeigte einen höchst signifikanten Unterschied zwischen den drei OCT Systemen für die Signaldichte der Epidermis über den BCC ($\chi^2(2, n = 16) = 32,00$; P < 0,0001; s. Abbildung 30). Die als Post-hoc-Tests verwendeten Wilcoxon-Tests mit Bonferroni korrigiertem Signifikanzniveau (s. *Anhang Tabellen 94 und 96*) ergaben eine sehr signifikant geringere Signalkraft der Epidermis über den BCC bei Skintell[®] als bei den anderen zwei OCT Geräten (für beide: z(n = 16) = -3,52; P = 0,0012; s. Tabelle 7 und Abbildung 30). Mit Callisto[®] beobachtete man eine sehr signifikant höhere Signalstärke der Epidermis über den BCC verglichen mit VivoSight[®] (z(n = 16) = -3,52; P = 0,0012; s. Tabelle 7, Abbildung 30 und Post-hoc-Test *s. Anhang Tabelle 95*).

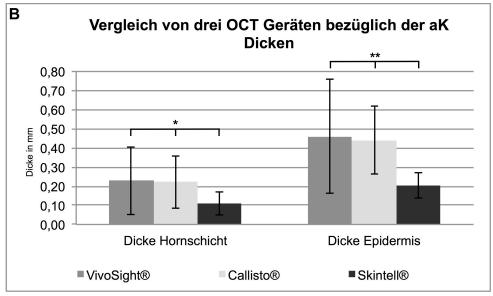
Tabelle 7. Vergleich von drei OCT Geräten bezüglich der BCC Signalintensitäten

	Signalintensität			
	VivoSight [®]	Callisto [®]	Skintell [®]	
	M ± SD	$M \pm SD$	M ± SD	<i>P</i> -Wert
SI VivoSight [®] - Skintell [®]	-			
Epidermis über BCC	126,7 ± 21,1		$58,4 \pm 23,8$	*P = 0,0012
BCC	73,0 ± 19,6		26.8 ± 9.8	*P = 0,0012
Dermis unter BCC	32,8 ± 15,0		$18,7 \pm 6,8$	P = 0,006
SI VivoSight [®] - Callisto [®]				
Epidermis über BCC	126,7 ± 21,1	$207,3 \pm 33,5$		*P = 0,0012
BCC	73,0 ± 19,6	$96,9 \pm 50,8$		P = 0.090
Dermis unter BCC	32,8 ± 15,0	$39,0 \pm 22,0$		P = 0.702
SI Callisto [®] - Skintell [®]				
Epidermis über BCC	_	207,3 ± 33,5	58,4 ± 23,8	*P = 0,0012
BCC		96,9 ± 50,8	26,8 ± 9,8	*P = 0,003
Dermis unter BCC		39,0 ± 22,0	18,7 ± 6,8	*P = 0,012

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (*M*) ± Standardabweichung (*SD*) sowie *P*-Werte; SI, Signalintensität; n = 16; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß);*signifikanter Unterschied zwischen den zwei OCT Geräten der jeweiligen Zeile (Bonferroni korrigiert), Post-hoc-Tests Wilcoxon-Tests s. *Anhang Tabellen 94*, 95, 96, 98, 99, 100, 102, 103 und 104.

Mit dem Friedman-Test (s. *Anhang Tabelle 97*) ließ sich ein höchst signifikanter Unterschied zwischen den drei OCT Systemen hinsichtlich der Signalintensität der BCC feststellen ($\chi^2(2, n = 16) = 21,88$; P = 0,00002; s. Abbildung 30). Die


Ergebnisse der Post-hoc-Tests (s. Anhang Tabellen 98 und 100) wiesen eine sehr signifikant niedrigere Signaldichte der BCC bei Messung mit Skintell® gegenüber VivoSight[®] (z(n = 16) = -3.52; P = 0.0012; s. Tabelle 7 und Abbildung 30) als auch gegenüber Callisto[®] (z(n = 16) = -3,46; P = 0,003; s. Tabelle 7 und Abbildung 30) nach. Im Gegensatz dazu war kein signifikanter Unterschied zwischen VivoSight® und Callisto[®] im Bezug auf die Signalkraft der BCC vorhanden (z(n = 16) = -2.17): P = 0,090; s. Tabelle 7, Abbildung 30 und Post-hoc-Test s. Anhang Tabelle 99). Für die Signalstärke der Dermis unter den BCC lieferte der Friedman-Test (s. Anhang Tabelle 101) einen signifikanten Unterschied zwischen den OCT Geräten $(\chi^2(2, n = 16) = 9,13; P = 0,01; s. Abbildung 30)$. In den Post-hoc-Tests (s. Anhang Tabelle 102 und 104) fiel eine sehr signifikante Abnahme der Signalintensität der Dermis unter den BCC mit Skintell[®] im Vergleich zu VivoSight[®] (z(n = 16) = -3.10; P = 0.006; s. Tabelle 7 und Abbildung 30) sowie zu Callisto[®] (z(n = 16) = -2.90; P= 0.012; s. Tabelle 7 und Abbildung 30) auf. Zwischen VivoSight® und Callisto® war die Signaldichte von der Dermis unter den BCC jedoch nicht signifikant unterschiedlich (z(n = 16) = -1.19; P = 0.702; s. Tabelle 7, Abbildung 30 und Posthoc-Test s. Anhang Tabelle 103).


Insgesamt wurde in diesem Kapitel gezeigt, dass mit Skintell[®] die Signalstärke aller von BCC betroffenen Hautschichten signifikant geringer war als mit den anderen zwei OCT Systemen. Währenddessen wichen die Messungen mit VivoSight[®] und Callisto[®] nicht signifikant voneinander ab, bis auf die Unterschiede in der Signalkraft der Epidermis über den BCC.

3.2.4 Vergleich von drei OCT Geräten bzgl. der aK Signalintensität und Dicke

Mit jedem der OCT Geräte VivoSight[®], Callisto[®] und Skintell[®] wurden bei 10 aK die Dicke und Signalintensität von der Hornschicht und Epidermis sowie die Signaldichte der Dermis untersucht (Originaldaten s. *Anhang Tabellen 28, 29, 30, 31 und 32*). Aus Abbildung 31 A geht hervor, dass Skintell[®] eine geringere und Callisto[®] eine höhere Signalstärke in den von aK betroffenen Hautschichten als VivoSight[®] besaßen. Im Vergleich zu Callisto[®] wurde mit Skintell[®] eine noch geringere Signalkraft der aK Hautebenen gemessen (s. Abbildung 31 A). Die unter Skintell[®] bestimmten Hornschicht- und Epidermisdicken lagen deutlich unter den

Werten von VivoSight[®] und Callisto[®] (s. Abbildung 31 B). Die zuletzt genannten OCT Systeme zeigten hingegen ähnliche Messergebnisse (s. Abbildung 31 B).

Abbildung 31 A, B. Vergleich von drei OCT Geräten bezüglich der aK (A) Signalintensitäten und (B) Dicken. Dargestellt sind Mittelwerte und Standardabweichungen von den mit aK betroffenen Hautschichten; n = 10; (*P < 0.05, **P < 0.01, ***P < 0.001) signifikanter Unterschied zwischen den drei OCT Geräten; Friedman-Tests s. *Anhang Tabellen 105, 109, 113, 117 und 121*.

Der Friedman-Test (s. *Anhang Tabelle 105*) ergab einen höchst signifikanten Unterschied zwischen den drei OCT Geräten für die Signalintensität der Hornschicht bei aK ($\chi^2(2, n = 10) = 18,20$; P = 0,0001; s. Abbildung 31 A). Bei den

Post-hoc-Tests (s. *Anhang Tabellen 106 und 108*) fand sich eine signifikant niedrigere Signaldichte des Stratum corneum bei aK mit Skintell[®] als bei den anderen zwei OCT Systemen (z(n = 10) = -2,80; P = 0,015; s. Tabelle 8 und Abbildung 31 A). Gegenüber VivoSight[®] wies Callisto[®] eine signifikant höhere Signalstärke der Hornschicht bei aK auf (z(n = 10) = -2,60; P = 0,027; s. Tabelle 8, Abbildung 31 A und Post-hoc-Test s. *Anhang Tabelle 107*).

Bezüglich der Signalkraft der Epidermis bei aK war anhand des Friedman-Tests (s. *Anhang Tabelle 109*) ein höchst signifikanter Unterschied zwischen den drei OCT Geräten zu erkennen ($\chi^2(2, n = 10) = 18,20$; P = 0,0001; s. Abbildung 31 A). Im Speziellen ließ sich eine signifikant geringere Signalintensität der Epidermis bei aK unter Skintell[®], verglichen mit VivoSight[®] und auch mit Callisto[®], feststellen (für beide: z(n = 10) = -2,80; P = 0,015; s. Tabelle 8, Abbildung 31 A und Post-hoc-Test s. *Anhang Tabellen 110 und 112*). Allerdings war kein signifikanter Unterschied zwischen VivoSight[®] und Callisto[®] hinsichtlich der Signaldichte der Epidermis bei aK sichtbar (z(n = 10) = -2,40; P = 0,051; s. Tabelle 8, Abbildung 31 A und Post-hoc-Test s. *Anhang Tabelle 111*).

Tabelle 8. Vergleich von drei OCT Geräten bezüglich der Signalintensitäten von aK

	Signalintensität			
	VivoSight [®]	Callisto [®]	Skintell [®]	
	M ± SD	$M \pm SD$	M ± SD	<i>P</i> -Wert
SI VivoSight [®] - Skintell [®]				
Stratum corneum	129,2 ± 26,9		60,2 ± 22,3	*P = 0,015
Epidermis	$104,9 \pm 22,5$		42,8 ± 15,5	*P = 0,015
Dermis	35,8 ± 10,2		$18,7 \pm 5,8$	*P = 0,015
SI VivoSight [®] - Callisto [®]				
Stratum corneum	129,2 ± 26,9	179,3 ± 41,4		*P = 0,027
Epidermis	104,9 ± 22,5	146,1 ± 42,5		<i>P</i> = 0,051
Dermis	35,8 ± 10,2	$54,6 \pm 24,7$		P = 0.084
SI Callisto [®] - Skintell [®]				
Stratum corneum		179,3 ± 41,4	60,2 ± 22,3	*P = 0,015
Epidermis		146,1 ± 42,5	42,8 ± 15,5	*P = 0,015
Dermis		54,6 ± 24,7	$18,7 \pm 5,8$	*P = 0,015

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (M) ± Standardabweichung (SD) sowie P-Werte; SI, Signalintensität; n = 10; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß);*signifikanter Unterschied zwischen den zwei OCT Geräten der jeweiligen Zeile (Bonferroni

korrigiert), Post-hoc-Tests Wilcoxon-Tests s. *Anhang Tabellen 106, 107, 108, 110, 111, 112, 114, 115 und 116.*

Der Friedman-Test (s. *Anhang Tabelle 113*) für die Signalstärke der Dermis bei aK wies einen höchst signifikanten Unterschied zwischen den OCT Systemen nach $(\chi^2(2, n = 10) = 15,80; P = 0,0004; s.$ Abbildung 31 A). Aus den Post-hoc-Tests (s. *Anhang Tabellen 114 und 116*) war ein signifikanter Abfall in der Signalkraft der Dermis bei aK unter Messung mit Skintell[®] verglichen mit den anderen zwei OCT Geräten ersichtlich (z(n = 10) = -2,80; P = 0,015; s. Tabelle 8 und Abbildung 31 A). Allerdings unterschieden sich VivoSight[®] und Callisto[®] nicht signifikant im Bezug auf die Signalintensität der Dermis bei aK (z(n = 10) = -2,19; P = 0,084; s. Tabelle 8, Abbildung 31 A und Post-hoc-Test *s. Anhang Tabelle 115*).

Der Friedman-Test (s. *Anhang Tabelle 117*) konnte auch für die Hornschichtdicke bei aK einen signifikanten Unterschied zwischen den OCT Systemen aufzeigen ($\chi^2(2, n = 10) = 7,40$; P = 0,025; s. Abbildung 31 B). Mit Skintell[®] fiel eine signifikant reduzierte Hornschichtdicke bei aK im Vergleich mit der bei VivoSight[®] (z(n = 10) = -2,50; P = 0,039; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 118*) als auch bei Callisto[®] auf (z(n = 10) = -2,70; P = 0,021; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 120*). Zwischen VivoSight[®] und Callisto[®] war die Dicke des Stratum corneum bei aK jedoch nicht signifikant unterschiedlich (z(n = 10) = -0,05; P = 1,000; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 119*).

Bezüglich der Epidermisdicke bei aK ließ sich mit dem Friedman-Test (s. *Anhang Tabelle 121*) ein sehr signifikanter Unterschied zwischen den OCT Geräten nachweisen ($\chi^2(2, n = 10) = 13,40$; P = 0,001; s. Abbildung 31 B). Eine signifikant verringerte Dicke der Epidermis bei aK zeigte sich insbesondere bei Skintell[®] gegenüber VivoSight[®] (z(n = 10) = -2,70; P = 0,021; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 122*), aber auch von Skintell[®] gemessen an Callisto[®] (z(n = 10) = -2,80; P = 0,015; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 124*). Darüber hinaus unterschieden sich VivoSight[®] und Callisto[®] im Bezug auf die Epidermisdicke bei aK nicht signifikant voneinander (z(n = 10) = -1,07; P = 0,855; s. Tabelle 9, Abbildung 31 B und Post-hoc-Test s. *Anhang Tabelle 123*).

Tabelle 9. Vergleich von drei OCT Geräten bezüglich der Dicken von aK

	Dicke			
	VivoSight [®]	Callisto [®]	Skintell [®]	
	M ± SD	M ± SD	M ± SD	<i>P</i> -Wert
Dicke VivoSight [®] - Skintell [®]				
Stratum corneum	0,229 ± 0,177		0,110 ± 0,060	*P = 0,039
Epidermis	$0,460 \pm 0,299$		0,205 ± 0,067	*P = 0,021
Dicke VivoSight [®] - Callisto [®]				
Stratum corneum	0,229 ± 0,177	0,221 ± 0,136		P = 1,000
Epidermis	$0,460 \pm 0,299$	0,440 ± 0,177		P = 0.855
Dicke Callisto [®] - Skintell [®]				
Stratum corneum	•	0,221 ± 0,136	0,110 ± 0,060	*P = 0,021
Epidermis		$0,440 \pm 0,177$	$0,205 \pm 0,067$	*P = 0,015

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (*M*) ± Standardabweichung (*SD*) sowie *P*-Werte; n = 10; Dicke in mm; *signifikanter Unterschied zwischen den zwei OCT Geräten der jeweiligen Zeile (Bonferroni korrigiert), Post-hoc-Tests Wilcoxon-Tests s. *Anhang Tabellen 118*, 119, 120, 121, 123 und 124.

Zusammenfassend fanden sich signifikante Unterschiede zwischen VivoSight® und Skintell® als auch zwischen Callisto® und Skintell® in der Signalintensität der von aK betroffenen Hautschichten. VivoSight® und Callisto® waren im Bezug auf die Signalintensität der Epidermis und Dermis bei aK nicht signifikant unterschiedlich, aber jedoch im Hinblick auf das Stratum corneum. Es bestanden weiterhin keine signifikanten Unterschiede in den Hornschicht- und Epidermisdicken bei aK zwischen VivoSight® und Callisto®. Dennoch waren diese Hautschichten bei Skintell® signifikant verringert gemessen an VivoSight® und Callisto®.

3.2.5 Vergleich von drei OCT Geräten mit der Histologie

3.2.5.1 Ergebnisse der histopathologisch bestätigten Subgruppe

Da vier BCC und acht der zehn aK aus der Gruppe für den Vergleich mit drei OCT Geräten topisch behandelt wurden, standen diese somit nicht für eine Gegenüberstellung mit der Histologie zur Verfügung. Es wurden somit nur zwei aK

biopsiert, weshalb für diese keine statistische Analyse durchgeführt wurde. Die deskriptive Statistik zeigte jedoch ähnliche Ergebnisse für die zwei aK wie die gesamte aK Gruppe für den Vergleich mit drei OCT Systemen. Somit wurde die operierte Subgruppe mit 12 BCC von 11 Patienten (1 Frau, 10 Männer, zwischen 53 und 85 Jahren mit einem Altersmedian von 71,3) noch separat von der kompletten BCC Gruppe, die für den Vergleich mit drei OCT Geräten herangezogen wurde, analysiert (s. Überblick Abbildung 6). Im Folgenden wird die zusätzliche statistische Auswertung für die 12 operierten BCC erläutert (Originaldaten s. *Anhang Tabellen 33, 34, 35, 36, 37 und 38*). Diese lieferte die gleichen Ergebnisse, bis auf einen nicht signifikanten Unterschied in der Signaldichte für die Dermis unter den BCC zwischen Callisto[®] und Skintell[®]. Denn genauso wie in dem gesamten BCC Kollektiv für den Vergleich von drei OCT Systemen fielen bei der operierten BCC Gruppe geringere Signalintensitäten in allen von den BCC betroffenen Hautschichten als in der periläsionalen gesunden Haut auf (s. Tabelle 10).

Mithilfe der Wilcoxon-Tests für kleine verbundene Stichproben (s. *Anhang Tabellen 125, 126 und 127*) konnte man auch bei der operierten BCC Untergruppe für das OCT Gerät VivoSight[®] einen sehr signifikanten Abfall der Signalstärken von der Epidermis über den BCC, den BCC sowie von der Dermis unter den BCC gegenüber den korrespondierenden gesunden Hautebenen (z(n = 12) = -3,06; P = 0,002; s. Tabelle 10) feststellen.

Für das OCT System Callisto[®] fanden sich auch bei der BCC Subgruppe vor OP nicht nur sehr signifikante Abnahmen in der Signalkraft für die Epidermis über den BCC, sondern auch eine für die BCC selbst sowie für die Dermis unter den BCC im Vergleich mit den entsprechenden normalen Hautlevels (z(n = 12) = -3,06; P = 0,002; s. Wilcoxon-Tests *Anhang Tabellen 128, 129 und 130* und Tabelle 10)

Die Wilcoxon-Tests (s. Anhang Tabellen 131, 132 und 133) für die BCC Untergruppe vor OP mit Skintell[®] ergaben ebenfalls sehr signifikant verringerte Signaldichten von BCC betroffenen Hautebenen verglichen mit denen in gesunder Haut in den jeweiligen Tiefen (z(n = 12) = -3,06; P = 0,002; s. Tabelle 10).

Im Bezug auf die operierte BCC Untergruppe ließ sich mit dem Friedman-Test (s. *Anhang Tabelle 134*) ein höchst signifikanter Unterschied zwischen den drei OCT Systemen für die Signalintensität der Epidermis über den BCC ($\chi^2(2, n = 12) = 24,00$; P < 0,0001) nachweisen. Die Post-hoc-Tests (s. *Anhang Tabellen 135, 136*

und 137) bestätigten eine sehr signifikant geringere Signalstärke der Epidermis über den BCC bei Skintell[®] als bei den anderen zwei OCT Geräten, sowie eine sehr signifikant höhere Signalkraft der Epidermis über den BCC von Callisto[®] im Vergleich mit VivoSight[®] (für alle drei: z(n = 12) = -3,06; P = 0,006; s. Tabelle 11).

Tabelle 10. Vergleich von drei OCT Geräten bezüglich der Signalintensitäten von BCC und benachbarter gesunder Haut vor OP

	Signalintensität		
	Benachbarte gesunde Haut	всс	
	M ± SD	M ± SD	<i>P</i> -Wert
VivoSight [®]			
Epidermis über BCC	143,6 ± 17,1	120,0 ± 19,3	*P = 0,002
BCC	96,7 ± 17,7	65,5 ± 11,0	P = 0.002
Dermis unter BCC	44,2 ± 15,8	$32,4 \pm 16,6$	P = 0.002
Callisto [®]			
Epidermis über BCC	226,5 ± 15,7	196,2 ± 31,3	*P = 0,002
BCC	143,1 ± 26,9	$76,7 \pm 36,1$	P = 0.002
Dermis unter BCC	53.8 ± 29.5	31,4 ± 18,5	$^*P = 0,002$
Skintell [®]			
Epidermis über BCC	72,1 ± 33,2	52,6 ± 22,9	$^*P = 0,002$
BCC	41,6 ± 22,7	$24,6 \pm 8,5$	$^*P = 0,002$
Dermis unter BCC	$22,4 \pm 8,4$	19,1 ± 7,3	$^*P = 0,002$

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (*M*) ± Standardabweichung (*SD*) sowie *P*-Werte; n = 12; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); *sehr signifikanter Unterschied von BCC zur benachbarten gesunden Haut, Wilcoxon-Tests s. *Anhang Tabellen 125, 126, 127, 128, 129, 130, 131, 132 und 133*.

Der Friedman-Test (s. *Anhang Tabelle 138*) lieferte für die operierte BCC Subgruppe einen sehr signifikanten Unterschied zwischen den drei OCT Systemen bezüglich der Signaldichte der BCC ($\chi^2(2, n = 12) = 15,17$; P = 0,001). Gegenüber der gesamten Gruppe fiel auch in der BCC Untergruppe vor OP anhand der Post-hoc-Tests (s. *Anhang Tabellen 139 und 141*) eine sehr signifikant niedrigere Signalintensität der BCC bei Skintell[®] verglichen mit VivoSight[®] (z(n = 12) = -3,06; P = 0,006; s. Tabelle 11) als auch mit Callisto[®] auf (z(n = 12) = -2,98; P = 0,009; s. Tabelle 11). Dennoch war kein signifikanter Unterschied zwischen

VivoSight[®] und Callisto[®] im Bezug auf die Signalstärke der BCC vorhanden (z(n = 12) = -1,10; P = 0,816; s. Tabelle 11 und Post-hoc-Test s. Anhang Tabelle 140).

Tabelle 11. Vergleich von drei OCT Geräten bezüglich der BCC Signalintensitäten vor OP

	Signalintensität			
	VivoSight [®]	Callisto [®]	Skintell [®]	
	M ± SD	M ± SD	M ± SD	<i>P</i> -Wert
SI VivoSight [®] - Skintell [®]				
Epidermis über BCC	120,0 ± 19,3		52,6 ± 22,9	*P = 0,006
BCC	65,5 ± 11,0		$24,6 \pm 8,5$	$^*P = 0,006$
Dermis unter BCC	32,4 ± 16,6		19,1 ± 7,3	*P = 0,015
SI VivoSight [®] - Callisto [®]				
Epidermis über BCC	120,0 ± 19,3	196,2 ± 31,3		$^*P = 0,006$
BCC	65,5 ± 11,0	76,7 ± 36,1		<i>P</i> = 0,816
Dermis unter BCC	32,4 ± 16,6	31,4 ± 18,5		<i>P</i> = 1,000
SI Callisto [®] - Skintell [®]				
Epidermis über BCC	_	196,2 ± 31,3	52,6 ± 22,9	*P = 0,006
BCC		76,7 ± 36,1	$24,6 \pm 8,5$	*P = 0,009
Dermis unter BCC		31,4 ± 18,5	19,1 ± 7,3	<i>P</i> = 0,084

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (*M*) ± Standardabweichung (*SD*) sowie *P*-Werte; SI, Signalintensität; n = 12; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); *signifikanter Unterschied zwischen den zwei OCT Geräten der jeweiligen Zeile (Bonferroni korrigiert), Post-hoc-Tests Wilcoxon-Tests s. *Anhang Tabellen 135, 136, 137, 139, 140, 141, 143, 144 und 145*.

Im Gegensatz zum Kollektiv ergab sich in der operierten BCC Subgruppe für die Signalkraft der Dermis unter den BCC im Friedman-Test (s. *Anhang Tabelle 142*) kein signifikanter Unterschied zwischen den OCT Geräten ($\chi^2(2, n = 12) = 4,67$; P = 0,097). Man konnte lediglich eine signifikant geringere Signalintensität der Dermis unter den BCC bei Skintell[®] im Vergleich zu VivoSight[®] beobachten (z(n = 12) = -2,82; P = 0,015; s. Tabelle 11 und Post-hoc-Test s. *Anhang Tabelle 143*). Bei der BCC Untergruppe vor OP waren keine signifikanten Unterschiede in der Signaldichte der Dermis unter den BCC zwischen Callisto[®] und Skintell[®] (z(n = 12) = -2,20; P = 0,084; s. Tabelle 11 und Post-hoc-Test s. *Anhang Tabelle 145*) und auch nicht zwischen Callisto[®] und VivoSight[®] (z(n = 12) = -0,31; P = 1,000; s. Tabelle 11 und Post-hoc-Test s. *Anhang Tabelle 144*) sichtbar.

3.2.5.2 Korrelation der BCC Tumordicke in der OCT mit der Histologie

Abschließend sollte geprüft werden, ob ein Zusammenhang zwischen der gemessenen Tumordicke in den drei OCT Geräten und in der Histologie besteht. Zur Rangkorrelationsanalyse nach Spearman standen die 12 BCC aus Kapitel 3.2.5.1 zur Verfügung (Originaldaten s. Anhang Tabelle 39), wobei einige von diesen die Eindringtiefe von > 2 mm in der OCT überschritten. Es konnte gezeigt werden, dass lediglich ein höchst signifikant hoch positiver Zusammenhang zwischen der in VivoSight® und in Callisto® bestimmten Tumordicke bestand $(r_s(10) = 0.979; P < 0.0001; s. Anhang Tabelle 146), wie in Abbildung 32 zu sehen$ ist. Im Bezug auf die BCC Dicke korrelierten VivoSight[®] und die Histologie (r_s (10) = 0,070; P = 0.828; s. Anhang Tabelle 146) sowie VivoSight[®] und Skintell[®] ($r_s(10)$ = 0,350; P = 0,265; s. Anhang Tabelle 146) nicht signifikant miteinander. Zudem ergaben sich nicht signifikante Korrelationen zwischen der Histologie und Skintell® $(r_s(10) = 0.196; P = 0.540; s. Anhang Tabelle 146)$ und zwischen der Histologie und Callisto[®] ($r_s(10) = 0.112$; P = 0.728; s. Anhang Tabelle 146). Auch zwischen Skintell[®] und Callisto[®] bestand keine signifikante Korrelation ($r_s(10) = 0.357$; P =0,255; s. Anhang Tabelle 146).

Abbildung 32. Korrelation der Tumordicken von VivoSight[®], Callisto[®], Skintell[®] und Histologie bei 12 BCC. 2 mm = alle Tumoren ≥ 2 mm.

4. Diskussion

In vorliegenden Arbeit wurden aktinische Keratosen (aK) und Basalzellkarzinome (BCC) mit der nichtinvasiven bildgebenden Methode der optischen Kohärenztomographie (OCT) als Ergänzung zu Klinik und Dermatoskopie untersucht. Zu den Hauptzielen der Studie zählten, ob die OCT die Diagnostik von aK und BCC sowie ihre Differenzierung ermöglicht und ob die Effekte einer topischen Therapie bei Verlaufskontrollen quantifizierbar sind. Dafür wurden objektive Parameter, wie die Signalintensität und Schichtdicke von aK und BCC, verwendet. Außerdem wurden für die Messungen drei verschiedene OCT Geräte herangezogen, um diese im Hinblick auf ihre Auflösung und Eindringtiefe zu vergleichen.

Bei dieser experimentell-klinischen Studie wurden zur Diagnostik von aK und BCC 125 Patienten mit 301 von epithelialen Neoplasien (NMSC) betroffenen Läsionen (113 aK, 188 BCC) sowie benachbarte gesunde Haut als Kontrollstelle mit dem OCT Gerät VivoSight[®] gemessen (s. Überblick Abbildung 6). Davon konnten 42 Patienten mit 134 NMSC (43 aK, 91 BCC) nach Lokaltherapie kontrolliert werden. 29 Patienten mit 57 Läsionen (30 aK, 27 BCC) standen für den Vergleich von drei OCT Systemen zur Verfügung. Bei den 120 operierten Läsionen (23 aK, 97 BCC) diente die Histologie als Goldstandard der Diagnostik zur Bestätigung der Diagnose und zur Korrelation mit den in der OCT bestimmten Dicken.

Da BCC und aK insbesondere bei älteren Menschen auftreten, befanden sich die 125 Patienten dieser Studie mit einem Altersmedian von 70,5 Jahren (zwischen 39 und 95 Jahren) in einem für NMSC typischen Altersbereich, wie aus anderen Arbeiten ersichtlich ist [153, 177, 210, 219]. Auch die Geschlechterverteilung dieser Studienpopulation mit 51 Frauen und 74 Männern stimmte mit der Erkenntnis von mehreren Studien überein, dass mit einem Verhältnis von 1,5-2:1 mehr Männer als Frauen an aK und BCC erkranken [177, 179, 214]. Bei den Lokalisationen des NMSC fiel passend zu anderen Untersuchungen auf, dass vor allem die Kopf-Halsgegend (103 aK, 94 BCC) sowie der Stamm (3 aK, 73 BCC) und schließlich die Extremitäten (7 aK, 21 BCC) betroffen waren [63, 72, 120]. Als

Kontrolle zu diesen Läsionen wurde stets die benachbarte gesunde Haut mituntersucht. Diese ist jedoch bei jedem Patienten individuell unterschiedlich, sodass keine normale Haut als allgemeine Referenzstelle für Hauterkrankungen existiert. Zudem muss berücksichtigt werden, dass Patienten mit einem großen Altersspektrum und von beiden Geschlechtern untersucht wurden, was einen Einfluss auf die Anatomie der Haut und ihre optische Eigenschaften hat [14, 121]. Dennoch stellten die Patienten dieser Studie anhand von Alter, Geschlecht und Lokalisationen von aK und BCC typische Vertreter dieser Hautkrankheiten dar, wie es in den zuvor erwähnten Studien beschrieben wurde.

Warum wurde gerade die OCT als Methode für diese Studie ausgewählt? Die OCT ist nichtinvasiv und generiert in vivo, in Echtzeit, innerhalb von Sekunden, Aufnahmen von aK und BCC, wie es bisher kaum ein anderes Verfahren kann. Diese Tatsache insbesondere wird im Gegensatz zur Lasermikroskopie (KLM) deutlich. Denn die Aufnahme mit der KLM nimmt mehr Zeit in Anspruch, was die Diagnostik von multiplen aK bei Feldkanzerisierung erschwert und durch ihre begrenzte Eindringtiefe von ca. 250 µm, bis maximal in die obere retikuläre Dermis, kann keine Darstellung tiefer gelegener BCC erfolgen [109, 164, 218]. Wenn die Oberfläche nicht glatt bzw. eben genug ist, wie es bei Hyperkeratosen der Fall ist oder an anatomischen Stellen wie Nase, Ohr oder Augeninnenwinkel, an denen NMSC häufig auftritt, kann die Messung mit dem großen Kontaktring erschwert bis unmöglich sein [98, 164]. Dies stellt insbesondere deshalb ein Problem dar, da aK von hyperkeratotischem oder hypertrophem Charakter eher zur malignen Transformation neigen [3]. Zuletzt verfügt die OCT bei geringerer Auflösung über ein größeres Blickfeld der Läsion und die Eindringtiefe ist siebenmal so groß wie bei der KLM [151]. Auch der Hochfrequenzultraschall, eine weitere nichtinvasive Methode, ist laut Mogensen et al. der OCT unterlegen [152]. Dies äußert sich zum einen darin, dass in der OCT die Dickenmessungen von aK und BCC von höherer Genauigkeit waren als im Hochfrequenzultraschall, mit dem darüber hinaus keine Unterscheidung zwischen aK und BCC und ihrer Subtypen aufgrund der jeweils gleich vorhandenen Hypoechogenität möglich war [152, 222]. Zum anderen beträgt die Auflösung der OCT gegenüber dem Hochfrequenzultraschall das 50-fache mit dem Nachteil einer geringeren Eindringtiefe [151]. Mithilfe des technischen Fortschritts und

durch Hilfsmittel, wie kleinere Kontaktringe und andere Immersionsmedien, wird in Zukunft möglicherweise eine Verbesserung von Auflösung und Eindringtiefe erreicht werden.

Wie anhand des Vergleichs mit zwei exemplarischen nichtinvasiven Methoden zu sehen ist, wurde die OCT aufgrund zahlreicher erwiesener Vorteile anderen Techniken als Methode für diese Studie zur Diagnostik von aK und BCC vorgezogen.

Warum ist für die Diagnostik von aK und BCC die OCT sinnvoll? Dies liegt zum einen daran, weil durch den starken Anstieg von NMSC die Nachfrage nach einem schnellen und schmerzfreien Gerät zur Diagnostik steigt. Zum anderen eignet sich die OCT u.a. aufgrund ihrer Präzision bei der Abgrenzung zur gesunden Haut und ihrer Eindringtiefe sehr gut für die Diagnostik bzw. Früherkennung von BCC und aK sowie für die Beurteilung ihrer Invasivität, wie zahlreiche Studien belegen [14, 22, 129, 135, 149, 160, 219]. Zudem ermöglicht die OCT die Ermittlung der Dicke, des Ausmaßes und ggf. des Subtyps des Tumors, um mit diesen Informationen die richtige Therapie auszuwählen [93, 161]. Für die Darstellung einzelner Zellen und bei einer Entfernung von mehr als 1,25 mm von der Oberfläche lässt die Auflösung der konventionellen OCT jedoch zu wünschen übrig [86]. Die OCT kann außerdem für das Monitoring von nichtinvasiven Behandlungen angewendet werden. Mehrere Autoren stellten fest, dass dadurch Rezidive von NMSC nach PDT Behandlung, Kryotherapie und Imiquimod Therapie frühzeitig erfolgreich mit der OCT in vivo entdeckt wurden, auch wenn sich klinisch noch keine Auffälligkeiten zeigten [10, 209, 210]. Die aktuelle systematische Studie von Ulrich et al. bewies eine signifikante Erhöhung der Spezifität in der BCC Diagnostik durch die Verwendung der OCT, ergänzend zu Klinik und Dermatoskopie [219]. In der neuesten Studie von Markowitz et al. waren eine signifikant verbesserte Sensitivität und Spezifität unter Hinzunahme der OCT gegenüber den Standardmethoden nachweisbar, sodass 48 % mehr BCC mit der OCT als klinisch diagnostiziert wurden [135]. Markowitz et al. fanden auch heraus, dass mit dem Einsatz der OCT die diagnostische Präzision um 50 % anstieg und sich die Treffsicherheit, ein BCC richtig zu diagnostizieren, gegenüber der klinischen Diagnose vervierfachte [135]. Weiterhin zeigte diese Studie, dass mit der OCT Biopsien um 36 % und somit Wunden und Narben vermieden werden [135]. Dies

wird insbesondere bei dem Auftreten von weißem Hautkrebs im Gesicht zu einer höheren Patientenzufriedenheit führen [135].

Die zahlreichen Vorteile der OCT bei der Anwendung in der Diagnostik von aK und BCC sowie die aktuellen systematischen Arbeiten erklären, weshalb diese Methode für die Ziele dieser Studie sehr geeignet war.

In vorangegangenen Untersuchungen wurde bereits demonstriert, dass aK und BCC in der OCT durch morphologische Kriterien diagnostiziert werden können [14, 17, 22, 72, 110, 160, 219, 232]. Der Zweck der vorliegenden Arbeit bestand jedoch darin, aK und BCC stattdessen mit quantifizierbaren, objektiven Parametern zu identifizieren, wie z.B. die Messung der Signalintensität von BCC anhand von Grauwerten oder die Bestimmung der Schichtdicke von aK verglichen mit der von gesunder Haut. Bereits in einigen früheren Studien wurde beschrieben, dass die Ermittlung der Tumor-, der Hornschicht- und der Epidermisdicke in der OCT in gesunder und kranker Haut eine quantitativ bestimmbare Messgröße darstellt [14, 68, 151, 152, 161, 215]. Die Studien von Greaves et al. [86, 87] bestätigten, dass mit dem durchschnittlichen Grauwert eine quantifizierbare Methode zur Charakterisierung von Gewebe, in diesem Fall als Maß für die Fibrose, zur Verfügung steht. Denn für die durchschnittlich hohen Grauwerte als Zeichen der Hyperreflektivität von fibrotischem Material in der OCT konnten Zusammenhänge mit der Histologie und auch der Immunhistochemie nachgewiesen werden [86, 87]. Der mittlere Grauwert ist somit das Ergebnis der Lichtstreuungseigenschaften der Gewebe, die sich wiederum durch das Verhältnis der Brechungsindizes von Streuzentren (wie Zellbestandteilen) zu interstitieller Flüssigkeit ergeben [70]. Bei anderen Erkrankungen wurde der mittlere Grauwert als quantitative Methode in der OCT bereits eingesetzt, wie folgende Beispiele zeigen. Für die Beurteilung des Therapieerfolgs von lokalem Brimonidin-Gel 0,33 % (Mirvaso®) bei Rosazea wurde der im Vergleich zu vor der Behandlung erhöhte mittlere Grauwert als Maß für die Abnahme der dermalen Hyporeflektivität und somit für die Reduktion des dermalen Ödems herangezogen [224]. Darüber hinaus half die Ermittlung des Grauwertes der Dermis bei Sklerodermie in der HD-OCT zum Monitoring der Bade-PUVA-Therapie [205]. Ex vivo Untersuchungen von Gao et al. bestätigten zudem den Nutzen der Bestimmung von objektiven Parametern, wie der Signalintensität, in der OCT anhand von Geweben mit Basalzellkarzinomen und pigmentierten Nävi zur Abgrenzung gegenüber

Melanomen [78]. Dennoch erwies es sich in der vorliegenden Studie bei den OCT Bildern als schwierig, insbesondere sehr große Tumoren im Ganzen abzugrenzen, da nur einzelne Bilder für die Messung ausgewählt werden konnten. Dadurch war es möglich, dass sich Differenzen in den Grauwerten der Signalintensität oder in den Schichtdicken von NMSC zwischen der ausgewählten und der tatsächlichen kompletten Läsion ergeben haben. Abweichungen in den Messungen könnten auch durch die ansteigende Lernkurve des Untersuchers entstanden sein, da die Bildinterpretation analog zu Ultraschall erlernt werden musste. Prinzipiell besteht bei der Bildanalyse mit der OCT das Problem der Interobserver-Variabilität, die u.a. durch die unterschiedlichen Kenntnisse der Untersucher hervorgerufen wird. Um diese personenbezogenen Hindernisse bei der OCT Analyse zu umgehen, könnte die automatisierte standardisierte Messung eine Lösung sein, wie es z.B. bereits anhand von Epidermisdicken in Studien gezeigt werden konnte [45, 230]. wird diese Technik vermutlich auch künftig Trotzdem nicht das Gesamtinterpretation des OCT Bildes notwendige Wissen eines Dermatologen ersetzen. Jedoch könnten die Werkzeuge zur Bildanalyse (wie Signalintensitätsund Dickenmessung), wenn sie zu der bereits vorhandenen Software von kommerziell erwerbbaren OCT Geräten hinzugefügt werden würden, dem Hautarzt im Alltag von großem Nutzen sein.

Warum sollten drei OCT Geräte miteinander verglichen werden? Es gibt bereits einige Studien zum Vergleich von OCT und Hochfrequenzultraschall im Bezug auf die Haut, aber Arbeiten, ähnlich denen in der Ophthalmologie, die verschiedene OCT Systeme miteinander vergleichen, fehlten bisher in der Dermatologie [93, 139, 152, 159]. Der Sinn, OCT Geräte gegenüberzustellen, liegt darin, dass diese als Vertreter von drei verschiedenen OCT Varianten Unterschiede in der eingebauten Lichtquelle, im Fokus und Linsensystem aufweisen (s. Abbildung 4). Aufgrund ihrer technischen Eigenschaften weisen die OCT Systeme daher verschiedene Auflösungen und Eindringtiefen auf. Dies wird im Folgenden näher ausgeführt: Die TD-OCT verwendet einen beweglichen Referenzspiegel und einen Photodetektor, um die erforderliche Zeit, die für die Reflektion des rückkehrenden Lichts benötigt wird, in der Tiefe (z-Achse) zu messen [244]. Da es sich hierbei um eine langsame, mechanische Bewegung des Referenzspiegels handelt, verfügt die TD-OCT deshalb über eine eingeschränkte Bildqualität und Datenmenge,

insbesondere in der transversalen Richtung [244]. Mit der speziellen Funktion der TD-HD-OCT Skintell[®], dem "Continuous-focus-tracking", einer synchronisierten Bewegung des Referenzarms und der Linse, kann dennoch eine höhere laterale Auflösung in allen Ebenen auf Kosten einer geringeren Eindringtiefe als bei der FD-OCT erreicht werden [2, 227]. Bei der FD-OCT gibt es zwei Ausführungen, einmal die SD-OCT und die SS-OCT [66]. Beide weisen jedoch im Gegensatz zur TD-OCT statt eines beweglichen Referenzspiegels einen statischen auf [66, 244]. Unter Verwendung des statischen Referenzspiegels und eines Spektrometers (als Ersatz für den Photodetektor in der TD-OCT) analysiert die SD-OCT die Wellenlängen des reflektierten Lichts gleichzeitig über ein Spektrum [244]. Dadurch besitzt die FD-OCT eine höhere Sensitivität und auch Geschwindigkeit, Bilder aufzunehmen, als die TD-OCT [181]. Diese Vorteile gehen jedoch mit einem Verarbeitungsaufwand Datenmenge, höheren der einem geringeren Dynamikbereich, einer Signalabnahme bei weiterer Entfernung von dem durch die Referenzlänge bestimmten Nullpunkt und einer höheren Signalvielfalt einher [123, 136]. Dennoch arbeitet die SD-OCT Callisto[®] mit einer Lichtquelle geringerer Wellenlänge als die SS-OCT VivoSight® (930 nm vs. 1305 nm) und da die Eindringtiefe in direkter Abhängigkeit zur Wellenlänge steht, ist die Eindringtiefe bei der SD-OCT niedriger (1,2-1,3 mm vs. 1-2 mm) [57, 113, 143, 212, 213]. Da wiederum normalerweise die Eindringtiefe umgekehrt proportional zur Auflösung ist, würde daraus theoretisch eine höhere Auflösung bei Callisto[®] gegenüber VivoSight® resultieren [181, 232]. Dies wäre der Fall, wenn die SS-OCT VivoSight® über ein Einzelstrahlsystem verfügen würde, aber dank der speziellen bei VivoSight® verwendeten Multi-beam-Technik wird eine höhere laterale Auflösung als bei Callisto[®] erreicht (Callisto[®]: 8 µm vs. VivoSight[®] < 7,5 µm) [97, 143, 181, 212, 213]. Ohne die Erfindung der Multi-beam-OCT, die das Problem der nicht möglichen dynamischen Fokussierung der normalen FD-OCT durch vier gleichzeitig auf verschiedene Tiefen fokussierte Lichtstrahlen behebt, wäre daher die TD-OCT der FD-OCT erst recht bezüglich der hohen lateralen Auflösung über der gesamten Scantiefe überlegen gewesen [66, 96, 97]. Beide, TD- und SD-OCT, SS-OCT verwenden Breitbandlichtquellen, während die auf einem Hochgeschwindigkeitslaser mit einer schmalen Linienbreite basiert, der die Wellenlängen des Spektrums über ein Zeitintervall erfasst [66, 181]. Im Vergleich SD-OCT wird bei der SS-OCT das Spektrometer durch einen zur

Hochgeschwindigkeitsphotodetektor ersetzt [66]. Durch die Weiterentwicklung der OCT, wie z.B. zur dynamischen OCT bzw. "speckle-variance-OCT", erhofft man sich zusätzliche Informationen für die Diagnostik durch die Darstellung der Blutgefäßversorgung von Tumoren *in vivo* und in Echtzeit [235]. Es werden dabei durch sehr schnelle wiederholte Bildaufnahmen bewegte Pixel erfasst, die den in Blutgefäßen fließenden Blutzellen entsprechen [235]. In einem Fallbericht konnten damit bereits mikroskopische Gefäßveränderungen beim Übergang eines Nävus zu einem *in situ* Melanom nachgewiesen werden [44]. Möglicherweise eröffnen sich damit neue Wege für die Diagnostik und das Monitoring von NMSC, inflammatorischen Erkrankungen und der Wundheilung [12, 32, 145, 223].

Warum wurde trotz klinischer Untersuchung, Dermatoskopie und OCT zur Diagnosesicherung die Histologie als Methode hinzugezogen? Der Grund dafür war, dass die Histopathologie bis heute den Goldstandard der Diagnostik darstellt [86, 128, 133, 158, 181]. Ein Schwachpunkt der Studie liegt daher darin, dass lediglich 120 Läsionen biopsiert bzw. operiert wurden und somit nur für diese 23 aK und 97 BCC eine histologische Bestätigung vorlag. So bestand keine absolute Gewissheit, dass bei den restlichen topisch behandelten 181 Läsionen die korrekte Diagnose BCC bzw. aK gestellt wurde. Deshalb wurde die operierte Subgruppe noch getrennt vom gesamten Studienkollektiv analysiert, um gegebenenfalls entstandene Unterschiede zwischen den Gruppen aufzuzeigen. Eine weitere Begründung für die Wahl der Histologie als Methode lag darin, dass diese bereits in einigen Studien als Maßstab für die Präzision und Evaluation der OCT herangezogen wurde [17, 23, 25, 41, 86, 153]. Greaves et al. zeigten, dass charakteristische histologische Veränderungen in den Phasen der Wundheilung auch in der OCT festgestellt werden konnten [86]. Ebenso konnten Boone et al. im KLM und in der Histopathologie etablierte Kriterien auf die HD-OCT zur Diagnostik von BCC und aK anwenden und so den Nutzen der OCT für diagnostische Zwecke belegen [23, 25]. Es verwundert daher nicht, wie in einem aktuellen Artikel von Thomas Dworetzky gemutmaßt wird, dass sich das Standardverfahren zur Diagnostik von BCC vielleicht bald von der Biopsie hin zur OCT verändern wird [53]. auch in der Histologie das entnommene Gewebe durch Schrumpfungen nicht exakt abgebildet wird [17, 99]. Dennoch soll die OCT künftig weder die Histologie noch die klinische Untersuchung oder die Dermatoskopie

ersetzen, wie Ulrich et al. betonten, vielmehr soll eine Kombination der Methoden zur Klärung unklarer Läsionen verhelfen [219]. Denn aufgrund der Einschränkungen, die die OCT mit sich bringt, ist in bestimmten Situationen eine Biopsie nicht wegzudenken. Dies ist insbesondere dann der Fall, wenn die Größe des Tumors für eine nichtinvasive Behandlung nicht geeignet war. Trotzdem kann auch hier, wie Alawi et al. und Wang et al. demonstrierten, die OCT zusätzliche Informationen über den Tumorrand und seine Eindringtiefe präoperativ beitragen, um den Bereich des zu exzidierenden Gewebes zu minimieren [5, 229].

Bei den morphologischen Beobachtungen fanden sich keine großen Differenzen zwischen der klinischen, histologischen und der OCT Klassifikation von aK. Zwischen der aK Einstufung in der Histologie und in der OCT konnte kein signifikanter Zusammenhang nachgewiesen werden. Im Gegensatz dazu konnten Boone et al. eine gute Korrelation zwischen der Histopathologie und den vertikalen Schnittbildern der HD-OCT bei aK nachweisen [25]. Dies mag daran gelegen haben, dass Boone et al. histopathologische morphologische Kriterien auf die HD-OCT anwendeten, während man in der vorliegenden Arbeit lediglich die Hornschicht- und Epidermisdicken in der OCT für die Korrelation der Klassifikationen verwendete [25]. Es wurden bereits mehrere histologische Einteilungen (die inflammatorische aK von Berhane [19], die proliferative aK von Goldberg [83, 84] und die detaillierteste Einordnung, KIN I-III, von Cockerell [39]) postuliert, und aufgrund einiger Kritikpunkte führten die Bemühungen, die klinischen und histologischen Eigenschaften in Einklang zu bringen, zu keiner endgültigen Lösung [8, 33, 178, 190]. In diesem Rahmen lässt sich der in der vorliegenden Studie festgestellte, nur geringe Zusammenhang zwischen der klinischen und histologischen aK Einstufung [183]. Weiterhin schien die aK Einteilung in OCT und Klinik infolge ihrer sehr signifikanten, mittleren positiven Beziehung am ehesten zusammenzuhängen. Diese Tatsache sollte in weiteren Studien überprüft werden, da die vorliegende Arbeit, nach aktuellem Wissensstand, als erste zu dieser Erkenntnis gelangt ist. Denn ein einfaches, schnelles Klassifikationssystem für aK wäre im klinischen Alltag ideal [8].

Für die Therapiewahl bei BCC ist u.a. der Subtyp relevant. Es herrschen jedoch Unstimmigkeiten zwischen verschiedenen Autoren, ob BCC Unterformen in der OCT bzw. HD-OCT überhaupt differenziert werden können und wenn dies für

möglich erachtet wurde, fand bisher nur eine Beschreibung der histomorphologischen Charakteristika von BCC statt [23, 26, 72, 73, 128, 160]. In der vorliegenden Studie untersuchte man die BCC Subtypen erstmals quantitativ und beobachtete bei den superfiziellen BCC eine höhere Signalintensität als bei den fibrosierenden oder nodulären BCC. Dieses Ergebnis könnte u.a. im Zusammenhang mit der Gefäßversorgung stehen, die auch in der Dermatoskopie zur Diagnostik von BCC genutzt wird [115, 124]. Longo et al. [124] fanden bei superfiziellen **BCC** dermatoskopisch vermehrt oberflächliche, dünne Teleangiektasien, die für die höhere Signalintensität verantwortlich sein könnten. Verzweigte, dickere Gefäße traten dagegen insbesondere beim nodulären BCC auf [124], dem Subtyp mit der geringsten Signalintensität, während die dazu etwas höhere Signalstärke beim fibrosierenden, infiltrierenden BCC sich möglicherweise durch das Vorherrschen beider Gefäßtypen oder durch das ausgeprägt fibrosierte Stroma dieses Subtyps erklären ließ [124]. Denn auch Strasswimmer et al. äußerten in ihrer Arbeit die Vermutung, dass die in der OCT sichtbaren, lobulierten Gebilde (deren Signalintensität in der vorliegenden Studie bestimmt wurde) nicht den eigentlichen ovoiden Tumorstrukturen entsprächen, sondern vielmehr einem Netzwerk aus mikrovaskulären Tumorblutgefäßen [204]. Die Autoren begründeten ihre Spekulation damit, dass die geringe Signalintensität der Gebilde der von horizontal angeordneten Blutgefäßen in der Dermis ähnlich wäre [204]. Weitere Studien mit dem speckle-variance-OCT könnten diese Hypothese untersuchen und ggf. zur Unterscheidung der BCC Subtypen in der OCT beitragen.

Durch die Kombination von OCT und KLM ergaben sich eine andere Sichtweise und ein Wissensgewinn hinsichtlich des NMSC, auf den bereits andere Arbeiten aufmerksam machten [114, 130, 134, 181, 184]. In vertikaler Richtung, tief in einen Großteil der Dermis hinein, lieferte die OCT einen Gesamteindruck von dem NMSC. Mit der OCT konnten Hornschicht- und Epidermisdicken gemessen und die Signalintensitäten von aK und BCC bestimmt werden. Auf horizontaler Ebene ermöglichte die KLM durch typische zelluläre Eigenschaften, wie die Veränderung des Honigwabenmusters oder von markanten Blutgefäßen, die Diagnostik von aK und BCC bis in die papilläre Dermis. Die Verknüpfung von nichtinvasiven Methoden, wie der OCT und KLM, wird daher die dermatologische Diagnostik in Zukunft prägen und so auf objektive, standardisierte Weise anhand von entwickelten Scores sowie Dicken- und Signalintensitätsmessungen zur

Beurteilung von Veränderungen der Haut bei Krankheit oder beim Monitoring von Therapien beitragen können [100, 101].

Das Hauptaugenmerk dieser Studie lag jedoch nicht auf den morphologischen Beobachtungen, sondern vor allem auf den quantifizierbaren Ergebnissen. Hierzu zählte, dass alle drei von BCC betroffenen Hautschichten eine höchst signifikant geringere Signalintensität im Vergleich mit der benachbarten gesunden Haut aufwiesen. Dies bestätigten Yücel et al. nachträglich für BCC mit aufgehobener DEJ, jedoch nicht für noduläre BCC [248]. Die Ursache ist vermutlich die starre Messmethode, wodurch signalreiche Gewebebestandteile und normale Haut mitgemessen wurden [248]. Diese Erkenntnisse, wie die niedrigere Signalstärke der BCC im Kontrast zur gesunden Haut, stellen womöglich das objektive Korrelat zu den morphologischen BCC Beschreibungen dar. Bereits in früheren Arbeiten mit dem Schwerpunkt auf morphologischen Aspekten fielen BCC als homogene, oval-runde, signalarme Strukturen gegenüber der signalreicheren, normalen Haut auf [6, 23, 160, 232]. Eine qualitative und quantitative Unterscheidung von BCC und gesunder Haut gelang Strasswimmer et al. durch den Wegfall der Doppelbrechung in der Polarisations-sensitiven OCT, die zur Steigerung der Bildqualität die Doppelbrechung von Kollagen heranzieht [204]. Eine Polarisationssensitive OCT ist aber nicht zwingend notwendig, da die OCT der vorliegenden Studie und die ggf. in Zukunft integrierten Tools zur Signalintensitätsmessung BCC von normaler Haut schnell und in vivo abgrenzen können.

Außerdem konnten Korde et al. aK von normaler Haut mit einer Sensitivität von 86 % und einer Spezifität von 83 % durch das Vorhandensein eines schwarzen Bandes in der Epidermis unterscheiden [110]. Aber zum ersten Mal wurden Differenzen in der Signalintensität und Dicke zwischen dem inneren Oberarm (als gesunde Haut), sonnengeschädigter Haut und aK in der OCT von Barton et al. beschrieben [14]. Ein Unterschied zwischen der Signalintensität des Stratum corneum am Oberarm innen und bei den aK am Unterarm außen wurde jedoch nicht verzeichnet [14]. Somit ergab sich ein anderes Ergebnis als in der vorliegenden Arbeit, in der ein höchst signifikanter Signalabfall bei aK in allen drei Hautebenen, Hornschicht, Epidermis und Dermis, im Gegensatz zur periläsionalen gesunden Haut festgestellt wurde (P < 0,0001). Der Grund dafür könnte darin liegen, dass bei Barton et al. der Oberarm innen als Kontrollgruppe verwendet wurde [14]. Denn die Anatomie der Haut zwischen innerer Oberarmseite und

sonnengeschädigter Außenseite des Unterarms ist verschieden. Dennoch wiesen die Ergebnisse von Barton et al. die gleiche Tendenz wie die vorliegende Studie auf, denn aK zeigten eine geringere Signalintensität als die Haut am Oberarm innen und die sonnengeschädigte Haut [14]. Forsea et al. registrierten bei aK ebenfalls eine dunklere Epidermis, für die sie den erhöhten Gehalt an Keratin verantwortlich machten [62]. Die Ursache für die signalärmere Hornschicht im Vergleich mit der von gesunder Haut könnte in der Hyperkeratose liegen [14, 62]. Zu bedenken ist jedoch, dass, ähnlich wie beim KLM, gelegentlich höhere Signalstärken durch den Einschluss von Luft (insbesondere im Skintell[®] optical gel für die HD-OCT) oder durch Hyperkeratose entstanden sein könnten und nachfolgend durch die Schattenbildung und somit Signalabschwächung tiefer gelegener Strukturen diese fälschlicherweise dunkler dargestellt wurden [14]. Glyzerin, keratolytische Substanzen oder auch leichte Kürettage der Schuppen können zur Verbesserung der Bildqualität beitragen [14, 220, 225, 240]. Außerdem erwähnten Barton et al., dass zu den typischen Kriterien einer aK in der OCT eine verdickte Hornschicht zählt [14]. In der vorliegenden Studie zeigten sich bei aK hingegen nicht nur höchst signifikant stärkere Dicken der Hornschicht wie bei Barton et al., sondern auch der Epidermis im Vergleich mit normaler Haut [14]. Dies stellt womöglich das quantitative Korrelat für die morphologischen Beobachtungen einer verdickten Epidermis bei aK in der OCT dar [62, 209, 227]. Einige Arbeiten beschäftigten sich damit, herauszufinden, wie und ob aK von BCC in der OCT unterschieden werden könnten. Bisher war die Differenzierung unter morphologischen Gesichtspunkten in der OCT mit dem bloßen Auge nicht immer gelungen [26, 104, 149]. Denn bei Mogensen et al. ergab sich eine Fehlerquote von 50-52 % bei der Unterscheidung von aK und BCC in der OCT [149]. Boone et al. hingegen beschrieben die Differenzierung von aK und BCC in der HD-OCT als einfach, weil aK über keine für BCC typische, lobuläre Formen verfügen [26]. Währenddessen zeigten Jørgensen et al., dass mithilfe von maschineller Analyse Berücksichtigung von 14 verschiedenen Kriterien (darunter auch Schichtdicken) aK zu 73 % und BCC zu 81 % in der OCT korrekt klassifiziert werden können [104]. Die vorliegende Studie war daher die erste, die anhand von nur zwei typischen, aber quantifizierbaren Parametern, wie Dicke und Signalintensität, Unterschiede in der OCT zwischen aK und BCC darstellte. Bei aK konnte eine höchst signifikant stärkere Epidermis als über den BCC gemessen

werden. Dies wurde bereits morphologisch von Banzhaf et al. festgestellt, aber bisher nicht quantitativ bestätigt [10]. Ein anderes Differenzierungsmerkmal war der höchst signifikante Signalabfall in der Dermis bei aK auf Höhe der BCC gegenüber den Tumoren. Möglicherweise lässt sich die Abnahme in der Signalintensität bei aK, trotz der wie im KLM und in der HD-OCT auffallenden signalreichen Bündel an solarer Elastose, durch die überwiegenden großen, signalarmen Gefäße erklären, da die Gefäßversorgung neoplastisch bedingt erhöht ist [129, 220]. Eine weitere Erklärung könnte in der Keratose bei aK im Gegensatz zu meist nicht keratotisch veränderten BCC liegen, die einen Signalschatten verursacht. In Zukunft sollten ergänzende Studien durchgeführt werden, um weitere Differenzialdiagnosen zu BCC und aK durch Signalintensitätsund Dickenmessungen auszuschließen, da diese im klinischen Alltag einfach mit den entsprechenden Tools bestimmt werden können.

Wie in der klinischen Praxis üblich, wurden nicht alle aK und BCC biopsiert. Trotz dieses Schwachpunktes ergaben sich die gleichen Ergebnisse in der histologisch bestätigten Subgruppe wie bei allen untersuchten Patienten (siehe Tabellen 3,4 und 5). Gegenüber der Histologie fiel die durchschnittliche Tumordicke im OCT Gerät VivoSight® bei 94 BCC geringer aus, ähnlich den Ergebnissen anderer Studien [41, 93, 161, 166]. Ein höchst signifikanter Unterschied zwischen beiden Messmethoden konnte im Bezug auf die Bestimmung der Tumordicken nachgewiesen werden. Der Grund für die geringeren Messwerte in der OCT könnte sein, dass die maximale Eindringtiefe in der OCT bei 2 mm liegt. Daher war die vollständige Ermittlung von Tumordurchmessern > 2 mm in der OCT nicht möglich. Die Vermutung, dass deshalb die Korrelation zwischen OCT und Histologie noch deutlich stärker für Tumoren mit einer Dicke < 2 mm sein könnte, bestätigte das Ergebnis der vorliegenden Arbeit. Denn zwischen den Tumordicken in der OCT und in der Histologie fand sich ein höchst signifikanter, hoher positiver Zusammenhang, wobei vor allem Tumoren mit einer Dicke < 1 mm sehr gut mit der Histologie korrelierten (siehe Abbildung 23 A). Auch Olmedo et al. und Coleman et al. gelangten zu dieser Erkenntnis, in deren Studien alle Tumoren < 1,0-1,2 mm eine gute Korrelation zwischen OCT und Histologie zeigten [41, 161]. Dies ist von hoher klinischer Relevanz, da schließlich die Grenze für einen Behandlungserfolg mit Imiquimod bei < 0,4 mm und mit der PDT bei einer

Eindringtiefe von < 1 mm liegt [37, 141]. Wie es bereits in vorangegangenen Studien beobachtet werden konnte, zeigten in vivo Dickenmessungen, auch von aK, eine gute Korrelation mit der Histologie trotz der Überschätzung in der OCT [77, 152]. Dies steht im Einklang mit den Ergebnissen der vorliegenden Arbeit, da die histologisch bestimmten Dicken der Hornschicht signifikant niedrigere, die der Epidermis sehr signifikant niedrigere Werte als in der OCT aufwiesen. Das kann auf den Schrumpfungsprozess der Gewebe im Rahmen der histologischen Aufbereitung zurückgeführt werden [77, 152]. Außerdem wurde ein hoch positiver Zusammenhang zwischen OCT und Histologie bezüglich der Hornschicht- und ein sehr hoher bezüglich der Epidermisdicken festgestellt, der beide Male höchst signifikant war. Ein Kritikpunkt der vorliegenden Studie ist, wie auch Gambichler et al. anführten, dass durch die Verarbeitung mit herkömmlichem Paraffin die Hornschicht deformiert sein kann [77]. Dennoch wurde diese in der vorliegenden Studie in der Histologie zum besseren Vergleich mit der in der OCT gemessenen Hornschicht bei aK bestimmt. Gambichler et al. kamen daher zu dem Schluss, dass Kryostatschnitte das Ausmaß der Hautschichten besser konservieren als das Einblocken in Paraffin und dass für künftige Studien zur Messung der Dicken Kryostatschnitte als neuer Goldstandard herangezogen werden sollten [69, 77].

Neben der operativen Behandlung des NMSC wurden zahlreiche topische Therapien entwickelt, wie PDT oder Imiquimod, deren Erfolg mit der OCT kontrolliert werden kann. Im Vergleich mit der Histologie, bei der nur ein kleiner Ausschnitt des weißen Hautkrebses erfasst wird, kann mit der OCT die komplette Läsion an wiederholten Nachkontrollterminen beliebig oft gescannt und somit überwacht werden [228].

Im Rahmen des Monitoring von nichtinvasiven Therapien wurden in der vorliegenden Studie erstmals quantitativ die Signalintensitäten der BCC vor und nach Behandlung mit Imiquimod verglichen. Dabei konnte man einen höchst signifikanten Anstieg der Signalkraft der BCC nach Therapie gegenüber der geringeren Signaldichte bei den BCC vor Therapie beobachten. Die signalreichere Darstellung der BCC nach Behandlung entspricht vermutlich den ovalen, weißen, zystenähnlichen Strukturen nach Rückbildung der BCC in der OCT, die mittig signalarm und umgeben von einem weißen Halo sind [10]. Diese wurden so bereits morphologisch von Banzhaf et al. beschrieben und erwiesen sich

histologisch als Epidermoidzysten, vermutlich als Zeichen der Immunantwort [10, 137]. Pseudozysten als Zeichen der BCC Abheilung bemerkten außerdem Maier et al. in der HD-OCT und der KLM bei der Kontrolle von BCC, die mit oralen Hedgehog-Signalweg-Inhibitoren behandelt wurden [131]. Die Entdeckung dieser Gebilde in der Dermis nach Therapie ist von klinischer Relevanz, da sie mit bloßem Auge klinisch zumeist nicht feststellbar sind [10]. Erstmals zeigten Goulart et al., dass sich die OCT mithilfe von standardisierten Messungen, wie dem optischen Schwächungskoeffizienten, gut zum Monitoring von chemisch induzierten Neoplasien in Mäusen nach PDT Therapie eignet [85]. Aber auch am Menschen in vivo wurde eine Studie durchgeführt: Themstrup et al. erkannten anhand von morphologischen, nicht standardisierten Kriterien, dass mit der OCT 29 % mehr BCC Rezidive nach PDT Therapie als bei klinischer Untersuchung festgestellt wurden [210]. Der objektive Nachweis der subklinischen Residuen durch den Vergleich der Signalintensitäten mit den ursprünglichen BCC fehlt bisher und könnte in weiteren Untersuchungen überprüft werden. Da aus anderen Studien bereits bekannt war, dass durch die Effekte von Imiguimod (Inflammation, Hyperkeratose, Ulzera- und Krustenbildung) die Bildqualität eingeschränkt ist, wurde deshalb auf eine Kontrollmessung während der Behandlung verzichtet [10, 153, 210]. Die praktische Konsequenz ist, dass mit der Feststellung des Therapieerfolgs oder von subklinischen Residuen in der OCT eine bessere Therapieplanung für den Patienten erzielt werden kann [210]. Dies äußert sich in einer geringeren Behandlungsanzahl in nur noch den übrig gebliebenen betroffenen Bereichen bei einer geringeren Schmerz- und Gesamtbelastung [210].

In der vorliegenden Arbeit wurde bei aK eine höchst signifikante Zunahme der Signalstärke im Stratum corneum nach topischer Behandlung, verglichen mit vor der Behandlung, festgestellt. Dies ist womöglich ein Indiz dafür, dass durch die Reduktion der Hyperkeratose, die ein signalarmes Stratum corneum in der OCT verursacht [10, 14], eine Annäherung an die normale Schichtung und damit der ursprünglichen, hellen Signalintensität der gesunden Haut erreicht wird. Therapieeffekte, wie subepidermale und dermale Vesikel-Blasenbildung unter Kryotherapie oder auch Ingenolmebutat-Gel (Picato®) konnten in der vorliegenden Studie nicht beobachtet werden, da keine OCT Messung während der Behandlung vorgenommen wurde [130, 209]. Eine Quantifizierung dieser Ereignisse anhand

von Signalintensitätsbestimmungen könnte in weiteren Arbeiten untersucht werden.

Nach Therapie fiel außerdem in der vorliegenden Studie eine höchst signifikant reduzierte Dicke des Stratum corneum bei aK, verglichen mit der vor der Therapie, auf. Auch Banzhaf et al. fanden eine signifikante Abnahme der Hyperkeratose bei aK nach Behandlung mit Imiquimod [10]. Die Ergebnisse der vorliegenden Arbeit stimmten mit denen aus der aktuellen Studie von Malvehy et al. überein und bestätigten den objektiv messbaren Therapieerfolg [134]. Nach Therapie mit 0,5 % 5-Fluorouracil und 10 % Salizylsäure (Actikerall®) waren in aK und subklinischen aK signifikant geringere Hornschicht- und Epidermisdicken in der HD-OCT auffällig und typische aK Merkmale im KLM Score zeigten sich rückläufig [134]. Scola et al. wiesen ebenso eine signifikante Reduktion der Epidermisdicke bei aK nach PDT und der CO2-Laserablation nach, bei nicht signifikanter, aber deskriptiv stärker verminderter Epidermis nach PDT als bei CO2-Laserablation [189]. Die Autoren stellten dabei die Behandlung von multiplen aK mit PDT und CO2-Laser gegenüber, wobei u.a. die OCT zum Monitoring verwendet wurde [189]. In der vorliegenden Studie wurde auf einen Vergleich zwischen den Effekten topischer Therapien verzichtet. Dies könnte jedoch zukünftig Ziel weiterer Studien sein. Eine kürzlich veröffentlichte Untersuchung von Themstrup et al. über in vivo mikromorphologische Gefäßveränderungen bei der Anwendung von topischem Brimonidin mit der dynamischen OCT verspricht, dass möglicherweise damit in Zukunft die Auswirkungen von topischen Therapien oder Laserbehandlungen auf die Blutgefäße, auch bei NMSC, beobachtet werden können [211].

Doch in der vorliegenden Arbeit sollte es nicht nur um die Diagnostik und Verlaufskontrolle von aK und BCC mit einem OCT Gerät gehen, sondern auch um den Vergleich dreier verschiedener OCT Geräte miteinander. Wie erwartet, fand sich trotz technischer Unterschiede bei VivoSight[®], Callisto[®] und Skintell[®] eine sehr signifikant geringere Signalintensität in von BCC und auch von aK betroffenen Hautschichten gegenüber denen von gesunder Haut. Mit allen drei OCT Systemen war die Unterscheidung von aK und normaler Haut auch durch sehr signifikant stärkere Hornschicht- und Epidermisdicken bei aK, gemessen an normaler Haut, möglich. Denn auch vorangegangene Studien zogen die drei OCT Geräte zur in vivo Diagnostik von aK und BCC heran, wenn auch anhand von

morphologischen Merkmalen und meist nur unter Verwendung eines der drei OCT Systeme: aK wurden einmal mit Callisto[®] [233] oder mit VivoSight[®] [130, 181, 209, 227] und/oder ein anderes Mal mit Skintell® [22, 25, 129, 134, 227] diagnostiziert. Beispielsweise demonstrierten Sattler et al., dass BCC sowohl mit VivoSight® als auch mit Callisto[®] und Skintell[®] dargestellt werden können [181]. Als es um den Vergleich der OCT Geräte bei den Messungen ging, fiel auf, dass mit Skintell® sowohl die Signaldichte der Hautebenen bei BCC und aK als auch die Hornschicht- und Epidermisdicken bei aK signifikant geringer waren als mit den anderen zwei OCT Systemen. Zum einen könnte der Grund dafür in der höheren Auflösung von Skintell® liegen, da z.B. so eine verbesserte und genauere Darstellung der Konturen zwischen den einzelnen Schichten für die Dickenmessungen geboten wird als in der konventionellen OCT. Zum anderen wäre denkbar, dass vielleicht mit den anderen zwei OCT Geräten die Reflektion der Hautoberfläche anstatt oder zusätzlich zu der jeweiligen Hautschicht gemessen wurde. Weiterhin wäre es möglich, dass dieser Effekt dadurch zustande kam, weil für die Messung mit Skintell[®] Gel verwendet wurde, wodurch ein dünneres Eingangssignal hervorgerufen wurde. Außerdem sollte man bedenken, dass die Dickenmessungen rechnerisch mit dem Brechungsindex der Haut korrigiert werden müssen, der dem von Wasser entspricht und bei 1,33 liegt [208, 237, 238]. Es wäre daher auch vorstellbar, dass der Kalibrierungsfaktor zwischen den Geräten verschieden ist. Allerdings wichen die Signalintensitätsund Dickenmessungen mit VivoSight[®] und Callisto[®] nicht signifikant voneinander ab, bis auf die Unterschiede in der Signalkraft der Epidermis über den BCC und im Hinblick auf das Stratum corneum bei aK. Ein Grund für die größtenteils ähnlichen Ergebnisse könnte darin liegen, dass beide FD-OCT sind. Wenn also bei beiden Geräten die gleichen Frequenzen eingestellt werden, ergibt sich das gleiche Signal aus der Überlagerung der verschiedenen Frequenzanteile. Unterschiede in den oberen Hautschichten sind womöglich durch verschiedenen Lichtquellen und die höhere Auflösung aufgrund der Multi-beam-Technik bei VivoSight® gegenüber Callisto® zu erklären [97]. Bei Callisto® ist außerdem anzunehmen, dass es u.a. durch die geringere Wellenlänge und den damit einhergehenden vermehrten Streuverlust sowie durch die geringere Auflösung zum Bildrauschen und einer körnigeren Darstellung kommt, da bei der Wellenlänge und Streuung ein indirekt proportionaler Zusammenhang vorliegt [18].

Auch in der "Vergleichsgruppe mit den drei OCT Geräten" fand eine getrennte Analyse für die operierte Subgruppe statt. Diese lieferte für die 12 operierten BCC die gleichen Ergebnisse, bis auf einen nicht signifikanten Unterschied in der Signaldichte für die Dermis unter den BCC zwischen Callisto® und Skintell® (s. Tabelle 10 und 11). Eventuell ist daher das Ergebnis der gesamten Gruppe für die Signalintensität der Dermis unter den BCC als nicht so signifikant verschieden zwischen den drei OCT Systemen anzusehen, wie es aufgrund der höheren Patientenzahl anzunehmen war. Auch die Tatsache, dass bei VivoSight[®] vier Lichtquellen und bei Callisto[®] und Skintell[®] jeweils nur ein Einzelstrahl verwendet wurden, scheinen zu keinem großen Unterschied in der Signalstärke der Dermis unter den BCC, basierend auf der destruktiven und konstruktiven Interferenz, zu führen [198, 228]. In diesem Fall wäre eher die destruktive Interferenz zur Anwendung gekommen, die bedeutet, dass die Amplituden des Laserstrahls und des Referenzstrahls nicht übereinstimmen und die Wegdifferenz zwischen diesen beiden Strahlen außerhalb der Kohärenzlänge liegt [125, 186]. Je mehr sich der Wegunterschied von der Kohärenzlänge unterscheidet, desto mehr nimmt die Signalintensität ab, bis letztlich kein Signal mehr vorhanden ist. Daher führten die OCT Geräte, da sie aufgrund der Wellenlängen in ihrer Eindringtiefe begrenzt sind, in weiter vom einfallenden Licht entfernten Schichten, wie der Dermis, bereits früher zum Signalverlust bzw. zur Bildung von Schatten aufgrund von großen Gefäßen, als es in höheren Hautschichten der Fall war [64, 81].

Eine Unzulänglichkeit der Studie stellte dar, dass die histologisch bestätigten aK aus der OCT Vergleichsgruppe nicht statistisch analysiert werden konnten, da nur zwei von den aK biopsiert wurden. Diese Situation ergab sich entweder dadurch, dass Läsionen aufgrund schlechter OCT Bildqualität ausgeschlossen werden mussten oder, weil die aK infolge ihrer ungünstigen Lokalisation von vorneherein nicht mit allen OCT Geräten gemessen werden konnten.

Im Bezug auf die BCC Tumordicke bestand lediglich eine hoch positive Korrelation zwischen VivoSight[®] und Callisto[®], jedoch in keinster Weise für Skintell[®] und auch nicht für die Histologie. Die Ursache dafür, dass kein Zusammenhang mit der Histologie nachweisbar war, könnte möglicherweise darin liegen, dass von 12 BCC nur zwei < 1,2 mm dick waren. Dies ist nämlich die oft zitierte Grenze für die Korrelation von OCT und Histologie [161]. Eine Schwäche der vorliegenden Arbeit

ist die für diesen Gesichtspunkt unter Umständen geringe Fallzahl, sodass eine Korrelation der OCT Geräte mit der Histologie an einer größeren Anzahl an Patienten in zukünftigen Studien untersucht werden sollte.

Insgesamt lässt sich somit feststellen, dass sich die OCT sehr gut mit Hilfe von standardisierten Parametern zur Diagnostik von aK und BCC gegenüber gesunder Haut eignet, was die Haupthypothesen der Arbeit bestätigt. Im Bezug auf den Gerätevergleich ist ersichtlich, dass Skintell® über eine geringere Eindringtiefe mit weniger als 700 µm gegenüber den anderen zwei OCT Geräten verfügt. Diese sind miteinander vergleichbar, was die Penetrationstiefe des Signals in die Haut betrifft. Daher ist Skintell® sowohl im Bezug auf die Abbildung des unteren Tumorrandes bei BCC unterlegen als auch was die Bestimmung der Eindringtiefe anbelangt. Das ist von großer Bedeutung für die praktische Entscheidung des Dermatologen, ob eine topische Behandlung, wie die PDT oder Imiguimod, zum Erfolg führt oder ob eine Operation veranlasst werden muss. Wie es in dieser Arbeit gezeigt wurde, birgt außerdem die Kombination verschiedener nichtinvasiver Methoden große Vorteile, sodass die Integration von KLM und OCT in einem Gerät, wie es aktuelle Studien vorschlagen, die Zukunft sein könnte [100, 101]. Ex vivo wurde die Verknüpfung der Techniken bereits zur Diagnostik von BCC und zur Abgrenzung der Tumorränder verwendet [101]. Auch der Einsatz tragbarer OCT-Handgeräte mit eingebautem Dermatoskop und Kamera für die Diagnostik in der Praxis, wie von NITID[®] der Firma DermaLumics, steht nicht mehr in weiter Ferne, sondern könnte bald zum dermatologischen Alltag gehören [35, 46, 227]. Selbst wenn das Problem der geringen Eindringtiefe durch eine Erhöhung derselben nicht ohne Verlust der Auflösung lösbar ist, so lässt die weitere Entwicklung der Laserbandbreiten jedoch auf eine zukünftig noch bessere Auflösung hoffen [35]. Neben der Optimierung von Bildbearbeitungs- und Analysesoftware werden nunmehr multifunktionale OCT Geräte, u.a. mit Doppler-, Polarisations-, Angiographie- und 3D-Funktion, auch für die BCC Diagnostik einen immer größeren Platz einnehmen [35, 122, 204]. Insbesondere im Hinblick auf die steigende Inzidenz von Hautkrebs und unter wirtschaftlichen Aspekten durch die hohen Kosten von Biopsien wird der praktische Stellenwert der OCT durch die Weiterentwicklung quantitativer Maße zur Verbesserung der diagnostischen Genauigkeit noch weiter steigen [106].

5. Zusammenfassung

Aktinische Keratosen (aK) und Basalzellkarzinome (BCC) stellen die häufigsten malignen Tumoren des Menschen dar, und wegen steigender Inzidenzraten wird die Bedeutung der Hautkrebsvorsorge weiter zunehmen. Zur Diagnostik dieser Tumoren ist die Histologie der Goldstandard. Neben der Exzision existieren neue nichtchirurgische Behandlungsmöglichkeiten, wie die photodynamische Therapie, Kryotherapie, CO₂-Laserablation und topische Therapeutika wie Imiquimod, 5-Fluorouracil, Diclofenac- und Ingenolmebutat-Gel. Durch den daher zunehmenden Bedarf an nichtinvasiver Bildgebung wurden Geräte entwickelt, um große Areale schnell und schmerzfrei zu untersuchen, nicht-melanozytären Hautkrebs (NMSC) unter Lokaltherapie zu kontrollieren und zu entscheiden, ob bei oberflächlicher Lage eine topische Therapie oder die Exzision nötig ist. Zu diesen Geräten zählen die Dermatoskopie, der Hochfrequenzultraschall, die konfokale Lasermikroskopie (KLM) und die optische Kohärenztomographie (OCT). Während die KLM eine zelluläre Beurteilung des NMSC erlaubte, lag der Fokus der OCT bisher auf der nichtinvasiven, in vivo, in Echtzeit Darstellung der architektonischen Morphologie und nicht, wie in dieser Arbeit, auf quantitativer Evaluation. Von besonderem Interesse war hierbei der Vergleich aktuell verfügbarer OCT Geräte, wie der multibeam swept-source frequency domain OCT VivoSight®, der spectral domain OCT Callisto® und der time domain high-definition OCT Skintell®, da sie Unterschiede in Auflösung und Eindringtiefe aufwiesen.

In der vorliegenden experimentell-klinischen Studie wurden aK und BCC mit der OCT ergänzend zu Klinik und Dermatoskopie untersucht. 125 Patienten mit 301 von NMSC betroffenen Läsionen (113 aK, 188 BCC) sowie benachbarte gesunde Haut als Kontrollstelle wurden mit dem OCT System VivoSight[®] gemessen, um zu überprüfen, ob die OCT eine quantifizierbare Diagnostik von aK und BCC sowie ihre Differenzierung erlaubt. Als objektive Parameter wurden die Signalintensität und Schichtdicke von aK und BCC bestimmt. Auch bei 42 Patienten mit 134 NMSC (43 aK, 91 BCC) ermittelte man so quantitativ die Effekte vor und nach lokaler Therapie. 29 Patienten mit 57 Läsionen (30 aK, 27 BCC) konnten für den Vergleich der drei OCT Systeme untersucht werden. Bei 120 operierten Läsionen

(23 aK, 97 BCC) diente die Histologie zum Diagnosenachweis und wurde zur Korrelation mit den in der OCT bestimmten Dicken herangezogen.

Mit allen drei OCT Geräten konnten aK und BCC durch signifikant stärkere Schichtdicken bei aK und geringere Signalstärken bei aK und BCC gegenüber gesunder Haut diagnostiziert werden. AK ließen sich von BCC mithilfe einer signifikant dickeren Epidermis und einem signifikanten Signalabfall in der Dermis bei aK mit der OCT VivoSight® differenzieren. Die histologischen Subgruppen bestätigten diese Ergebnisse. Es wurde ein signifikanter, hoch positiver Zusammenhang für die BCC- sowie Hornschicht- und Epidermisdicken bei aK in der OCT und in der Histologie festgestellt. Bei der Verlaufskontrolle ergaben sich ein signifikanter Anstieg der Signaldichte bei den BCC und in der Hornschicht bei aK sowie eine signifikant geringere Hornschichtdicke bei aK nach Therapie als zuvor. Als Nebenbefund zeigte sich ein mittlerer signifikanter Zusammenhang zwischen der in der OCT in dieser Studie erstmals aufgestellten aK Klassifikation mit der klinischen Einteilung. Bei der quantitativen Subtypbestimmung fand man zudem eine höhere Signalkraft der superfiziellen BCC als bei den fibrosierenden oder nodulären BCC. Beim Vergleich der OCT Systeme kamen insbesondere VivoSight® und Callisto® zu ähnlichen Ergebnissen und sie korrelierten hoch positiv bezüglich der BCC Dicke im Gegensatz zu Skintell[®] und der Histologie. An Unterschieden fiel vor allem die geringere Eindringtiefe bei Skintell[®] verglichen mit den anderen zwei OCT Systemen auf, da mit Skintell® signifikant niedrigere Hornschicht- und Epidermisdicken bei aK und reduzierte Signaldichten bei aK und BCC beobachtet wurden. Somit ist Skintell® bei der Abbildung des unteren Tumorrandes und der Eindringtiefe unterlegen, was praktische Konsequenzen hat. Wie in dieser Arbeit nebenbefundlich gezeigt wurde, ist die Kombination verschiedener nichtinvasiver Methoden sehr hilfreich, sodass die Verbindung von KLM und OCT in einem Gerät die Zukunft sein könnte. Die OCT und demnächst die dynamische OCT zur Darstellung des Blutflusses liefern nichtinvasiv zusätzliche Informationen zur Diagnostik und zum Therapiemonitoring von NMSC. Signalintensität und Schichtdicke stellten sich als diagnostisch nützliche und anerkannte Parameter heraus, die die Sensitivität und Spezifität der OCT Diagnostik, die bisher auf reiner Bildmorphologie basiert, erhöhen könnten. Daher sollten diese Werkzeuge zur Bildanalyse in die bereits vorhandene Software von kommerziell erwerbbaren OCT Geräten integriert werden.

6. Literaturverzeichnis

- 1. Ackerman AB, Mones JM (2006) Solar (actinic) keratosis is squamous cell carcinoma. Br J Dermatol 155, 9–22.
- 2. AGFA HealthCare (2013) Skintell Datasheet. http://www.agfahealthcare.com/global/en/he/library/libraryopen?ID=34711786 (14.09.2015).
- 3. Aghassi D, Anderson RR, González S (2000) Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J Am Acad Dermatol 43, 42–48.
- 4. Alam M (2006) Actinic keratoses: prevalence, pathogenesis, presentation, and prevention. Adv Stud Med 6, 785–790.
- 5. Alawi SA, Kuck M, Wahrlich C, Batz S, McKenzie G, Fluhr JW, Lademann J, Ulrich M (2013) Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer a practical approach. Exp Dermatol 22, 547–551.
- 6. Alex A, Weingast J, Hofer B, Eibl M, Binder M, Pehamberger H, Drexler W, Považay B (2011) 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers. Imaging Med 3, 653–674.
- 7. American Cancer Society (2015) Cancer Facts & Figures 2015. Atlanta: American Cancer Society. http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf (31.05.2015).
- 8. Anwar J, Wrone DA, Kimyai-Asadi A, Alam M (2004) The development of actinic keratosis into invasive squamous cell carcinoma: evidence and evolving classification schemes. Clin Dermatol 22, 189–196.
- 9. Arits AHMM, Mosterd K, Essers BAB, Spoorenberg E, Sommer A, de Rooij MJM, van Pelt HPA, Quaedvlieg PJF, Krekels GAM, van Neer PAFA, Rijzewijk JJ, van Geest AJ, Steijlen PM, Nelemans PJ, Kelleners-Smeets NWJ (2013) Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. Lancet Oncol 14, 647–654.
- 10. Banzhaf CA, Themstrup L, Ring HC, Mogensen M, Jemec GBE (2014) Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res Technol 20, 170–176.
- 11. Banzhaf CA, Themstrup L, Ring HC, Welzel J, Mogensen M, Jemec GBE (2013) In vivo imaging of sarcoptes scabiei infestation using optical coherence tomography. Case Rep Dermatol 5, 156–162.
- 12. Baran U, Choi WJ, Wang RK (2016) Potential use of OCT-based microangiography in clinical dermatology. Skin Res Technol 22, 238–246.
- 13. Baran U, Wang RK (2016) Application of optical coherence tomography based microangiography for cerebral imaging. Proc SPIE 9690, Clinical and Translational Neurophotonics; Neural Imaging and Sensing; and Optogenetics and Optical Manipulation, 96900J.

- 14. Barton JK, Gossage KW, Xu W, Ranger-Moore JR, Saboda K, Brooks CA, Duckett LD, Salasche SJ, Warneke JA, Alberts DS (2003) Investigating sundamaged skin and actinic keratosis with optical coherence tomography: a pilot study. Technol Cancer Res Treat 2, 525–535.
- 15. Basset-Seguin N, Ibbotson SH, Emtestam L, Tarstedt M, Morton C, Maroti M, Calzavara-Pinton P, Varma S, Roelandts R, Wolf P (2008) Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol 18, 547–553.
- 16. Bath-Hextall FJ, Perkins W, Bong J, Williams HC (2007) Interventions for basal cell carcinoma of the skin. Cochrane Database Syst Rev (1), 1–27, CD003412, (DOI: 10.1002/14651858.CD003412.pub2).
- 17. Bechara FG, Gambichler T, Stücker M, Orlikov A, Rotterdam S, Altmeyer P, Hoffmann K (2004) Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol 10, 169–173.
- 18. Bennett HE (1978) Scattering characteristics of optical materials. Opt Eng 17, 175480.
- 19. Berhane T, Halliday GM, Cooke B, Barnetson RSC (2002) Inflammation is associated with progression of actinic keratoses to squamous cell carcinomas in humans. Br J Dermatol 146, 810–815.
- 20. Berking C, Hauschild A, Kölbl O, Mast G, Gutzmer R (2014) Basal cell carcinoma treatments for the commonest skin cancer. Dtsch Arztebl Int 111, 389–395.
- 21. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, Gould C, Gemmen E, Dall T (2006) The burden of skin diseases: 2004 A joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 55, 490–500.
- 22. Boone MALM, Marneffe A, Suppa M, Miyamoto M, Alarcón I, Hofmann-Wellenhof R, Malvehy J, Pellacani G, Del Marmol V (2015) High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma. J Eur Acad Dermatol Venereol 29, 1606–1615.
- 23. Boone MALM, Norrenberg S, Jemec GBE, Del Marmol V (2012) Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. A pilot study. Br J Dermatol 167, 856–864.
- 24. Boone MALM, Norrenberg S, Jemec GBE, Del Marmol V (2013) High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study. Arch Dermatol Res 305, 283–297.
- 25. Boone MALM, Norrenberg S, Jemec GBE, Del Marmol V (2013) Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation: a pilot study. Exp Dermatol 22, 93–97.
- 26. Boone MALM, Suppa M, Pellacani G, Marneffe A, Miyamoto M, Alarcón I, Ruini C, Hofmann-Wellenhof R, Malvehy J, Jemec GBE, Del Marmol V (2015) High-definition optical coherence tomography algorithm for discrimination of basal

- cell carcinoma from clinical BCC imitators and differentiation between common subtypes. J Eur Acad Dermatol Venereol 29, 1771–1780.
- 27. Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res 63, 1727–1730.
- 28. Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ (1996) Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J Investig Dermatol Symp Proc 1, 136–142.
- 29. Brinkhuizen T, Frencken KJA, Nelemans PJ, Hoff MLS, Kelleners-Smeets NWJ, zur Hausen A, van der Horst MPJ, Rennspiess D, Winnepenninckx VJL, van Steensel MAM, Mosterd K (2016) The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial. J Am Acad Dermatol 75, 126–134.
- 30. Bühl A (2008) SPSS 16: Einführung in die moderne Datenanalyse: 14 Korrelationen. 11., überarb. und erw. Aufl., 346, Pearson Studium, München.
- 31. Bühl A (2008) SPSS 16: Einführung in die moderne Datenanalyse: 4.3 Die Irrtumswahrscheinlichkeit p. 11., überarb. und erw. Aufl., 121, Pearson Studium, München.
- 32. Byers RA, Tozer G, Brown NJ, Matcher SJ (2016) High-resolution label-free vascular imaging using a commercial, clinically approved dermatological OCT scanner. Proc SPIE 9689, Photonic Therapeutics and Diagnostics XII, 96890M.
- 33. Carag HR, Prieto VG, Yballe LS, Shea CR (2000) Utility of step sections: demonstration of additional pathological findings in biopsy samples initially diagnosed as actinic keratosis. Arch Dermatol 136, 471–475.
- 34. Chen Y, Ding M, Guan W-J, Wang W, Luo W-Z, Zhong C-H, Jiang M, Jiang J-H, Gu Y-Y, Li S-Y, Zhong N-S (2015) Validation of human small airway measurements using endobronchial optical coherence tomography. Respir Med 109, 1446–1453.
- 35. Cheng HM, Guitera P (2015) Systematic review of optical coherence tomography usage in the diagnosis and management of basal cell carcinoma. Br J Dermatol 173, 1371–1380.
- 36. Chinem VP, Miot HA (2011) Epidemiologia do carcinoma basocelular. An Bras Dermatol 86, 292–305.
- 37. Christensen E, Mørk C, Skogvoll E (2012) High and sustained efficacy after two sessions of topical 5-aminolaevulinic acid photodynamic therapy for basal cell carcinoma: a prospective, clinical and histological 10-year follow-up study. Br J Dermatol 166, 1342–1348.
- 38. Chuang TY, Heinrich LA, Schultz MD, Reizner GT, Kumm RC, Cripps DJ (1992) PUVA and skin cancer. A historical cohort study on 492 patients. J Am Acad Dermatol 26, 173–177.
- 39. Cockerell CJ (2000) Histopathology of incipient intraepidermal squamous cell carcinoma ("actinic keratosis"). J Am Acad Dermatol 42, 11–17.

- 40. Cockerell CJ (2003) Pathology and pathobiology of the actinic (solar) keratosis. Br J Dermatol 149, 34–36.
- 41. Coleman AJ, Richardson TJ, Orchard G, Uddin A, Choi MJ, Lacy KE (2013) Histological correlates of optical coherence tomography in non-melanoma skin cancer. Skin Res Technol 19, 10–19.
- 42. Coleman WP, Yarborough JM, Mandy SH (1996) Dermabrasion for prophylaxis and treatment of actinic keratoses. Dermatol Surg 22, 17–21.
- 43. Coßmann M, Welzel J (2006) Evaluation of the atrophogenic potential of different glucocorticoids using optical coherence tomography, 20-MHz ultrasound and profilometry; a double-blind, placebo-controlled trial. Br J Dermatol 155, 700–706.
- 44. De Carvalho N, Ciardo S, Cesinaro AM, Jemec GBE, Ulrich M, Welzel J, Holmes J, Pellacani G (2016) In vivo micro-angiography by means of speckle-variance optical coherence tomography (SV-OCT) is able to detect microscopic vascular changes in naevus to melanoma transition. J Eur Acad Dermatol Venereol 30, e67-e68.
- 45. Delacruz J, Weissman J, Gossage K (2010) Automated measurement of epidermal thickness from optical coherence tomography images using line region growing. Proc SPIE 7548, Photonic Therapeutics and Diagnostics VI, 75480E-1-75480E-12.
- 46. DermaLumics (2015) NITID enlightening skincare. www.dermalumics.com/wp-content/uploads/2015/10/NITID_Brochure.pdf (28.03.16).
- 47. Deutsche Krebshilfe (2011) Hautkrebs- Umdenken! Dem Krebs aktiv vorbeugen. http://www.krebshilfe.de/gesundheitsfoerderung-hautkrebs.html (18.04.2015).
- 48. Dinehart SM (2000) The treatment of actinic keratoses. J Am Acad Dermatol 42, 25–28.
- 49. Dissemond J, Grabbe S (2004) Basalzellkarzinome Ein Überblick. Dtsch Med Wochenschr 129, 2255–2260.
- 50. DIX CR (1960) Occupational trauma and skin cancer. Plast Reconstr Surg Transplant Bull 26, 546–554.
- 51. Dréno B, Amici JM, Basset-Seguin N, Cribier B, Claudel JP, Richard MA (2014) Management of actinic keratosis: a practical report and treatment algorithm from AKTeam™ expert clinicians. J Eur Acad Dermatol Venereol 28, 1141–1149.
- 52. Dummer R, Beyeler M, Morcinek J, Burg G (2003) Neoplasien der Haut. Praxis (Bern 1994) 92, 1470–1478.
- 53. Dworetzky T (2016) Optical coherence tomography scanner a boon to basalcell diagnosis. http://www.dotmed.com/news/story/29056 (21.02.2016).
- 54. Eisemann N, Waldmann A, Geller AC, Weinstock MA, Volkmer B, Greinert R, Breitbart EW, Katalinic A (2014) Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence. J Invest Dermatol 134, 43–50.
- 55. Emmett AJ, Broadbent GD (1987) Shave excision of superficial solar skin lesions. Plast Reconstr Surg 80, 47–54.

- 56. Euvrard S, Kanitakis J, Pouteil-Noble C, Dureau G, Touraine JL, Faure M, Claudy A, Thivolet J (1995) Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J Am Acad Dermatol 33, 222–229.
- 57. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography principles and applications. Rep Prog Phys 66, 239–303.
- 58. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13, 186–188.
- 59. Fernández-Figueras MT, Carrato C, Sáenz X, Puig L, Musulen E, Ferrándiz C, Ariza A (2015) Actinic keratosis with atypical basal cells (AK I) is the most common lesion associated with invasive squamous cell carcinoma of the skin. J Eur Acad Dermatol Venereol 29, 991–997.
- 60. Fidler B, Goldberg T (2014) Ingenol mebutate gel (picato): a novel agent for the treatment of actinic keratoses. P & T 39, 40–46.
- 61. Food and Drug Administration (2016) Agfa Skintell Optical coherence tomography (OCT) system.
- http://www.accessdata.fda.gov/cdrh_docs/pdf13/K132800.pdf (09.01.2016).
- 62. Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G (2010) Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life 3, 381–389.
- 63. Fu W, Cockerell CJ (2003) The actinic (solar) keratosis: a 21st-century perspective. Arch Dermatol 139, 66–70.
- 64. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25.
- 65. Gambichler T, Hyun J, Moussa G, Tomi NS, Boms S, Altmeyer P, Hoffmann K, Kreuter A (2007) Optical coherence tomography of cutaneous lupus erythematosus correlates with histopathology. Lupus 16, 35–38.
- 66. Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303, 457–473.
- 67. Gambichler T, Künzlberger B, Paech V, Kreuter A, Boms S, Bader A, Moussa G, Sand M, Altmeyer P, Hoffmann K (2005) UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study. Clin Exp Dermatol 30, 79–82.
- 68. Gambichler T, Matip R, Moussa G, Altmeyer P, Hoffmann K (2006) In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J Dermatol Sci 44, 145–152.
- 69. Gambichler T, Moussa G, Regeniter P, Kasseck C, Hofmann MR, Bechara FG, Sand M, Altmeyer P, Hoffmann K (2007) Validation of optical coherence tomography in vivo using cryostat histology. Phys Med Biol 52, N75-N85.
- 70. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K (2005) Applications of optical coherence tomography in dermatology. J Dermatol Sci 40, 85–94.

- 71. Gambichler T, Moussa G, Sand M, Sand D, Orlikov A, Altmeyer P, Hoffmann K (2005) Correlation between clinical scoring of allergic patch test reactions and optical coherence tomography. J Biomed Opt 10, 064030.
- 72. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stücker M, Altmeyer P, Bechara FG (2007) In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci 45, 167–173.
- 73. Gambichler T, Plura I, Kampilafkos P, Valavanis K, Sand M, Bechara FG, Stücker M (2014) Histopathological correlates of basal cell carcinoma in the slice and en face imaging modes of high-definition optical coherence tomography. Br J Dermatol 170, 1358–1361.
- 74. Gambichler T, Plura I, Schmid-Wendtner M-H, Valavanis K, Kulichova D, Stücker M, Pljakic A, Berking C, Maier T (2015) High-definition optical coherence tomography of melanocytic skin lesions. J Biophotonics 8, 681–686.
- 75. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stücker M, Altmeyer P, Hoffmann K (2007) Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol 57, 629–637.
- 76. Gambichler T, Schmid-Wendtner M-H, Plura I, Kampilafkos P, Stücker M, Berking C, Maier T (2015) A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi. J Eur Acad Dermatol Venereol 29, 537–541.
- 77. Gambichler T, Valavanis K, Plura I, Georgas D, Kampilafkos P, Stücker M (2014) In vivo determination of epidermal thickness using high-definition optical coherence tomography. Br J Dermatol 170, 737–739.
- 78. Gao W, Zakharov VP, Myakinin OO, Bratchenko IA, Artemyev DN, Kornilin DV (2016) Medical images classification for skin cancer using quantitative image features with optical coherence tomography. J Innov Opt Health Sci 9, 1650003-1 1650003-9.
- 79. Gareau DS, Patel YG, Rajadhyaksha M (2008) Basic principles of reflectance confocal microscopy. In: González S, Gill M, Halpern AC, (Hrsg.) Reflectance confocal microscopy of cutaneous tumors: an atlas with clinical, dermoscopic, and histological correlations. 1–3. Informa Healthcare, London.
- 80. Gaus MB, Anliker DM (2012) Maligne Hauttumoren aus der Sicht des Dermatologen: Aktinische Keratosen, Basalzellkarzinom, malignes Melanom. Schweiz Zeitsch Onkol 4, 5–10.
- 81. Girard MJA, Strouthidis NG, Ethier CR, Mari JM (2011) Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci 52, 7738–7748.
- 82. Glogau RG (2000) The risk of progression to invasive disease. J Am Acad Dermatol 42, 23–24.
- 83. Goldberg LH, Chang JR, Baer S, Schmidt JD (2000) Proliferative actinic keratosis: three representative cases. Dermatol Surg 26, 65–69.
- 84. Goldberg LH, Joseph AK, Tschen JA (1994) Proliferative actinic keratosis. Int J Dermatol 33, 341–345.

- 85. Goulart VP, dos Santos MO, Latrive A, de Freitas AZ, Correa L, Zezell DM (2015) Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography. J Biomed Opt 20, 051007-1 051007-7.
- 86. Greaves NS, Benatar B, Whiteside S, Alonso-Rasgado T, Baguneid M, Bayat A (2014) Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin? Br J Dermatol 170, 840–850.
- 87. Greaves NS, Iqbal SA, Hodgkinson T, Morris J, Benatar B, Alonso-Rasgado T, Baguneid M, Bayat A (2015) Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen 23, 483–494.
- 88. Guideline Subcommittee of the European Dermatology Forum (o. J.) EDF Guidelines for the management of actinic keratoses. http://www.meda.ee/fileadmin/uploads/Meda_Estonia/PDF/guideline_Management _Actinic_Keratoses.pdf (8.06.15).
- 89. Gupta AK, Paquet M, Villanueva E, Brintnell W (2012) Interventions for actinic keratoses. Cochrane Database Syst Rev (12), 1–79, CD004415, (DOI: 10.1002/14651858.CD004415.pub2).
- 90. Hausschild A, Breuninger H, Kaufmann R, Kortmann RD, Klein M, Werner J, Reifenberger J, Dirschka T, Garbe C (2013) Brief S2k guidelines Basal cell carcinoma of the skin. J Dtsch Dermatol Ges 11, 10–15.
- 91. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113, 325–332.
- 92. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG (1995) Optical coherence tomography of macular holes. Ophthalmology 102, 748–756.
- 93. Hinz T, Ehler L-K, Hornung T, Voth H, Fortmeier I, Maier T, Höller T, Schmid-Wendtner M-H (2012) Preoperative characterization of basal cell carcinoma comparing tumour thickness measurement by optical coherence tomography, 20-MHz ultrasound and histopathology. Acta Derm Venereol 92, 132–137.
- 94. Hinz T, Ehler L-K, Voth H, Fortmeier I, Hoeller T, Hornung T, Schmid-Wendtner M-H (2011) Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology. Dermatology (Basel) 223, 161–168.
- 95. Hoban PR, Ramachandran S, Strange RC (2002) Environment, phenotype and genetics: risk factors associated with BCC of the skin. Expert Rev Anticancer Ther 2, 570–579.
- 96. Holmes J, Hattersley S (2009) Image blending and speckle noise reduction in multi-beam OCT. Proc SPIE 7168, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, 71681N-1 71681N-8.
- 97. Holmes J, Hattersley S, Stone N, Bazant-Hegemark F, Barr H (2008) Multichannel Fourier domain OCT system with superior lateral resolution for biomedical

- applications. Proc SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 68470O-1 68470O-9.
- 98. Horn M, Gerger A, Ahlgrimm-Siess V, Weger W, Koller S, Kerl H, Samonigg H, Smolle J, Hofmann-Wellenhof R (2008) Discrimination of actinic keratoses from normal skin with reflectance mode confocal microscopy. Dermatol Surg 34, 620–625.
- 99. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254, 1178–1181.
- 100. Iftimia N, Ferguson RD, Mujat M, Patel AH, Zhang EZ, Fox W, Rajadhyaksha M (2013) Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment. Biomed Opt Express 4, 680–695.
- 101. Iftimia N, Peterson G, Chang EW, Maguluri G, Fox W, Rajadhyaksha M (2016) Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study. J Biomed Opt 21, 016006.
- 102. Jacob A (1827) Observations respecting an ulcer of peculiar character, which attacks the eyelids and other parts of the face. Dublin Hospital Rep 4, 232–239.
- 103. Jones EW, Heyl T (1970) Naevus sebaceus. A report of 140 cases with special regard to the development of secondary malignant tumours. Br J Dermatol 82, 99–117.
- 104. Jørgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14, 364–369.
- 105. Katalinic A, Kunze U, Schäfer T (2003) Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br J Dermatol 149, 1200–1206.
- 106. Kelloff GJ, Sullivan DC, Baker H, Clarke LP, Nordstrom R, Tatum JL, Dorfman GS, Jacobs P, Berg CD, Pomper MG, Birrer MJ, Tempero M, Higley HR, Petty BG, Sigman CC, Maley C, Sharma P, Wax A, Ginsberg GG, Dannenberg AJ, Hawk ET, Messing EM, Grossman HB, Harisinghani M, Bigio IJ, Griebel D, Henson DE, Fabian CJ, Ferrara K, Fantini S, Schnall MD, Zujewski JA, Hayes W, Klein EA, DeMarzo A, Ocak I, Ketterling JA, Tempany C, Shtern F, Parnes HL, Gomez J, Srivastava S, Szabo E, Lam S, Seibel EJ, Massion P, McLennan G, Cleary K, Suh R, Burt RW, Pfeiffer RM, Hoffman JM, Roy HK, Wang T, Limburg PJ, El-Deiry WS, Papadimitrakopoulou V, Hittelman WN, MacAulay C, Veltri RW, Solomon D, Jeronimo J, Richards-Kortum R, Johnson KA, Viner JL, Stratton SP, Rajadhyaksha M, Dhawan A (2007) Workshop on imaging science development for cancer prevention and preemption. Cancer Biomark 3, 1–33.
- 107. Kempf W, Hantschke M, Kutzner H, Burgdorf WHC (2011) Dermatopathologie: 4.1. Epidermale Hamartome und Neoplasien, 4.1.6 Aktinische Keratose. 2. erg. Aufl., 170-171, Springer, Berlin, Heidelberg.

- 108. Kempf W, Hantschke M, Kutzner H, Burgdorf WHC (2011) Dermatopathologie: 4.3 Adnextumoren, 4.3.12 Basalzellkarzinom. 2. erg. Aufl., 230-233, Springer, Berlin, Heidelberg.
- 109. Kolm I, Braun RB (2012) How reflectance confocal microscopy works. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP, (Hrsg.) Reflectance confocal microscopy for skin diseases. 1. Aufl., 7–10, Springer, Berlin, Heidelberg.
- 110. Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore JR, Saboda K, Slayton LD, Salasche SJ, Warneke JA, Alberts DS, Barton JK (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Lasers Surg Med 39, 687–695.
- 111. Krompecher E (1903) Der Basalzellkrebs. Fischer, Jena.
- 112. Kuck M, Schanzer S, Ulrich M, Garcia Bartels N, Meinke MC, Fluhr JW, Krah M, Blume-Peytavi U, Stockfleth E, Lademann J (2012) Analysis of the efficiency of hair removal by different optical methods: comparison of Trichoscan, reflectance confocal microscopy, and optical coherence tomography. J Biomed Opt 17, 101504-1 101504-5.
- 113. Kuck M, Strese H, Alawi SA, Meinke MC, Fluhr JW, Burbach GJ, Krah M, Sterry W, Lademann J (2014) Evaluation of optical coherence tomography as a non-invasive diagnostic tool in cutaneous wound healing. Skin Res Technol 20, 1–7.
- 114. Lademann J, Otberg N, Richter H, Meyer LE, Audring H, Teichmann A, Thomas S, Knüttel A, Sterry W (2007) Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis. Skin Res Technol 13, 119–132.
- 115. Lallas A, Tzellos T, Kyrgidis A, Apalla Z, Zalaudek I, Karatolias A, Ferrara G, Piana S, Longo C, Moscarella E, Stratigos AJ, Argenziano G (2014) Accuracy of dermoscopic criteria for discriminating superficial from other subtypes of basal cell carcinoma. J Am Acad Dermatol 70, 303–311.
- 116. Lawrence N, Cox SE, Cockerell CJ, Freeman RG, Cruz PD (1995) A comparison of the efficacy and safety of Jessner's solution and 35% trichloroacetic acid vs 5% fluorouracil in the treatment of widespread facial actinic keratoses. Arch Dermatol 131, 176–181.
- 117. Lear JT, Smith AG (1997) Basal cell carcinoma. Postgrad Med J 73, 538–542.
- 118. Lear JT, Smith AG, Bowers B, Heagearty AH, Jones PW, Gilford J, Alldersea J, Strange RC, Fryer AA (1997) Truncal tumor site is associated with high risk of multiple basal cell carcinoma and is influenced by glutathione S-transferase, GSTT1, and cytochrome P450, CYP1A1 genotypes, and their interaction. J Invest Dermatol 108, 519–522.
- 119. Lear JT, Smith AG, Strange RC, Fryer AA (2000) Detoxifying enzyme genotypes and susceptibility to cutaneous malignancy. Br J Dermatol 142, 8–15.
- 120. Lee PK (2004) Common skin cancers. Minn Med 87, 44-47.
- 121. Lévěque JL, Corcuff P, de Rigal J, Agache P (1984) In vivo studies of the evolution of physical properties of the human skin with age. Int J Dermatol 23, 322–329.

- 122. Li E, Makita S, Hong Y-J, Kasaragod DK, Sasaoka T, Yamanari M, Sugiyama S, Yasuno Y (2016) Three-dimensional multifunctional optical coherence tomography for skin imaging. Proc SPIE 9689, Photonic Therapeutics and Diagnostics XII, 96890N.
- 123. Liu B, Brezinski ME (2007) Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt 12, 044007.
- 124. Longo C, Lallas A, Kyrgidis A, Rabinovitz H, Moscarella E, Ciardo S, Zalaudek I, Oliviero M, Losi A, González S, Guitera P, Piana S, Argenziano G, Pellacani G (2014) Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J Am Acad Dermatol 71, 716–724.
- 125. Löning M, Lankenau EM, Diddens H, Krokowski M, Diedrich K, Hüttmann G (2007) Optische Kohärenztomographie in der Gynäkologie. Gynäkologe 40, 343–348.
- 126. Lovatt TJ, Lear JT, Bastrilles J, Wong C, Griffiths CEM, Samarasinghe V, Roebuck J, Ramachandran S, Smith AG, Jones PW, Fryer AA, Strange RC (2005) Associations between ultraviolet radiation, basal cell carcinoma site and histology, host characteristics, and rate of development of further tumors. J Am Acad Dermatol 52, 468–473.
- 127. Loven K, Stein L, Furst K, Levy S (2002) Evaluation of the efficacy and tolerability of 0.5% fluorouracil cream and 5% fluorouracil cream applied to each side of the face in patients with actinic keratosis. Clin Ther 24, 990–1000.
- 128. Maier T, Braun-Falco M, Hinz T, Schmid-Wendtner M-H, Ruzicka T, Berking C (2013) Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J Eur Acad Dermatol Venereol 27, e97-e104.
- 129. Maier T, Braun-Falco M, Laubender RP, Ruzicka T, Berking C (2013) Actinic keratosis in the en-face and slice imaging mode of high-definition optical coherence tomography and comparison with histology. Br J Dermatol 168, 120–128.
- 130. Maier T, Cekovic D, Ruzicka T, Sattler EC, Berking C (2015) Treatment monitoring of topical ingenol mebutate in actinic keratoses with the combination of optical coherence tomography and reflectance confocal microscopy: a case series. Br J Dermatol 172, 816–818.
- 131. Maier T, Kulichova D, Ruzicka T, Berking C (2014) Noninvasive monitoring of basal cell carcinomas treated with systemic hedgehog inhibitors: pseudocysts as a sign of tumor regression. J Am Acad Dermatol 71, 725–730.
- 132. Maier T, Sattler EC, Braun-Falco M, Ruzicka T, Berking C (2012) High-definition optical coherence tomography for the in vivo detection of demodex mites. Dermatology (Basel) 225, 271–276.
- 133. Malvehy J (2015) A new vision of actinic keratosis beyond visible clinical lesions. J Eur Acad Dermatol Venereol 29, 3–8.
- 134. Malvehy J, Alarcón I, Montoya J, Rodríguez-Azeredo R, Puig S (2016) Treatment monitoring of 0.5% 5-fluorouracil and 10% salicylic acid in clinical and

- subclinical actinic keratoses with the combination of optical coherence tomography and reflectance confocal microscopy. J Eur Acad Dermatol Venereol 30, 258–265.
- 135. Markowitz O, Schwartz M, Feldman E, Bienenfeld A, Kalowitz Bieber A, Ellis J, Alapati U, Lebwohl MG, Siegel DM (2015) Evaluation of optical coherence tomography as a means of identifying earlier stage basal cell carcinomas while reducing the use of diagnostic biopsy. J Clin Aesthet Dermatol 8, 14–20.
- 136. Marschall S, Sander B, Mogensen M, Jørgensen TM, Andersen PE (2011) Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem 400, 2699–2720.
- 137. Marty CL, Randle HW, Walsh JS (2005) Eruptive epidermoid cysts resulting from treatment with imiguimod. Dermatol Surg 31, 780–782.
- 138. Matsuo Y, Kubo T, Akasaka T (2016) The use of optical coherence tomography in acute coronary syndrome. Expert Rev Cardiovasc Ther 14, 649–657.
- 139. Matt G, Sacu S, Buehl W, Ahlers C, Dunavoelgyi R, Pruente C, Schmidt-Erfurth U (2011) Comparison of retinal thickness values and segmentation performance of different OCT devices in acute branch retinal vein occlusion. Eye (Lond) 25, 511–518.
- 140. MAVIG GmbH VivaScope Systems (2011) VivaScope® 1500 Multilaser. http://www.vivascope.de/fileadmin/user_upload/Downloads/DB_1500_Multi_DEUT SCH 04 2011.pdf (10.01.2016).
- 141. McKay KM, Sambrano BL, Fox PS, Bassett RL, Chon S, Prieto VG (2013) Thickness of superficial basal cell carcinoma (sBCC) predicts imiquimod efficacy: a proposal for a thickness-based definition of sBCC. Br J Dermatol 169, 549–554.
- 142. Medina CA, Plesec T, Singh AD (2014) Optical coherence tomography imaging of ocular and periocular tumours. Br J Ophthalmol 98, ii40-ii46.
- 143. Michelson Diagnostics (o. J.) VivoSight OCT scanner technical specification. http://www.vivosight.com/wp-content/uploads/2013/02/1003.SP_.638-Issue-1-VivoSight-Technical-Specification.pdf (18.06.2015).
- 144. Michelson Diagnostics (2013) VivoSight OCT presentation of the skin reference manual. http://www.vivosight.com/wp-content/uploads/2012/11/PDF-OCT-Manual-Release-1.6-1056.DO .19-lssue-3.pdf (06.06.2015).
- 145. Michelson Diagnostics (2014) Michelson Diagnostics targets malignant melanoma using OCT imaging with €2.3M EU funding. http://www.octnews.org/articles/5140208/michelson-diagnostics-targets-malignant-melanoma-u/ (20.02.2016).
- 146. Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: Incidence. J Am Acad Dermatol 30, 774–778.
- 147. Miller SJ (1995) Etiology and pathogenesis of basal cell carcinoma. Clin Dermatol 13, 527–536.
- 148. Mogensen M, Jemec GBE (2007) Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatol Surg 33, 1158–1174.

- 149. Mogensen M, Jørgensen TM, Nurnberg BM, Morsy H, Thomsen JB, Thrane L, Jemec GBE (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35, 965–972.
- 150. Mogensen M, Morsy H, Nurnberg BM, Jemec GBE (2008) Optical coherence tomography imaging of bullous diseases. J Eur Acad Dermatol Venereol 22, 1458–1464.
- 151. Mogensen M, Morsy H, Thrane L, Jemec GBE (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217, 14–20.
- 152. Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GBE (2009) In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol 160, 1026–1033.
- 153. Mogensen M, Nurnberg BM, Thrane L, Jørgensen TM, Andersen PE, Jemec GBE (2011) How histological features of basal cell carcinomas influence image quality in optical coherence tomography. J Biophotonics 4, 544–551.
- 154. Monroy GL, Pande P, Shelton RL, Nolan RM, Spillman DR, Porter RG, Novak MA, Boppart SA (2016) Non-invasive optical assessment of viscosity of middle ear effusions in otitis media. J Biophotonics, 1-10 (DOI: 10.1002/jbio.201500313 [Epub ahead of print]).
- 155. Morsy H, Kamp S, Thrane L, Behrendt N, Saunder B, Zayan H, Elmagid EA, Jemec GBE (2010) Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Arch Dermatol Res 302, 105–111.
- 156. Morsy H, Mogensen M, Thomsen JB, Thrane L, Andersen PE, Jemec GBE (2007) Imaging of cutaneous larva migrans by optical coherence tomography. Travel Med Infect Dis 5, 243–246.
- 157. Morton CA (2004) Photodynamic therapy for nonmelanoma skin cancer—and more? Arch Dermatol 140, 116–120.
- 158. Müller CSL (2014) Histology of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 810, 141–159.
- 159. Mylonas G, Ahlers C, Malamos P, Golbaz I, Deak G, Schuetze C, Sacu S, Schmidt-Erfurth U (2009) Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Br J Ophthalmol 93, 1453–1460.
- 160. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol 55, 408–412.
- 161. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2007) Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol Surg 33, 421–425.
- 162. Olsen EA, Abernethy LM, Kulp-Shorten C, Callen JP, Glazer SD, Huntley A, McCray M, Monroe AB, Tschen E, Wolf JE (1991) A double-blind, vehicle-

- controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J Am Acad Dermatol 24, 738–743.
- 163. Pagnoni A, Knüttel A, Welker P, Rist M, Stoudemayer T, Kolbe L, Sadiq I, Kligman AM (1999) Optical coherence tomography in dermatology. Skin Res Technol 5, 83–87.
- 164. Pan Z-Y, Lin J-R, Cheng T-T, Wu J-Q, Wu W-Y (2012) In vivo reflectance confocal microscopy of basal cell carcinoma: feasibility of preoperative mapping of cancer margins. Dermatol Surg 38, 1945–1950.
- 165. Pariser DM, Lowe NJ, Stewart DM, Jarratt MT, Lucky AW, Pariser RJ, Yamauchi PS (2003) Photodynamic therapy with topical methyl aminolevulinate for actinic keratosis: results of a prospective randomized multicenter trial. J Am Acad Dermatol 48, 227–232.
- 166. Pelosini L, Smith HB, Schofield JB, Meekings A, Dhital A, Khandwala M (2013) In vivo optical coherence tomography (OCT) in periocular basal cell carcinoma: correlations between in vivo OCT images and postoperative histology. Br J Ophthalmol 97, 890–894.
- 167. Peris K, Micantonio T, Piccolo D, Fargnoli MC (2007) Dermoscopic features of actinic keratosis. J Dtsch Dermatol Ges 5, 970–976.
- 168. Prospero Ponce CM, Rocha KM, Smith SD, Krueger RR (2009) Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. J Cataract Refract Surg 35, 1055–1062.
- 169. Puig S, Cecilia N, Malvehy J (2012) Dermoscopic criteria and basal cell carcinoma. G Ital Dermatol Venereol 147, 135–140.
- 170. Quist SR, Gollnick HP (2011) Imiquimod 3.75% cream (Zyclara) for the treatment of actinic keratoses. Expert Opin Pharmacother 12, 451–461.
- 171. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 32, 563–568.
- 172. Reifenberger J (2012) Basalzellkarzinom. In: Plewig G, Braun-Falco O, (Hrsg.) Braun-Falco's Dermatologie, Venerologie und Allergologie. 6 Aufl., 1633–1644, Springer, Berlin.
- 173. Rivers JK, Arlette J, Shear N, Guenther L, Carey W, Poulin Y (2002) Topical treatment of actinic keratoses with 3.0% diclofenac in 2.5% hyaluronan gel. Br J Dermatol 146, 94–100.
- 174. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146, 283–287.
- 175. Rollins AM, Sivak MV, Radhakrishnan S, Lass JH, Huang D, Cooper KD, Izatt JA (2002) Emerging clinical applications of optical coherence tomography. Opt Photonics News 13, 36–41.
- 176. Rothmund G, Sattler EC, Kästle R, Fischer C, Haas CJ, Starz H, Welzel J (2013) Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis comparison of six diagnostic methods. Mycoses 56, 47–55.

- 177. Röwert-Huber J, Lange-Asschenfeldt B, Stockfleth E, Kerl H (2007) Epidemiology and aetiology of basal cell carcinoma. Br J Dermatol 157, 47–51.
- 178. Röwert-Huber J, Patel MJ, Forschner T, Ulrich C, Eberle J, Kerl H, Sterry W, Stockfleth E (2007) Actinic keratosis is an early in situ squamous cell carcinoma: a proposal for reclassification. Br J Dermatol 156, 8–12.
- 179. Salasche SJ (2000) Epidemiology of actinic keratoses and squamous cell carcinoma. J Am Acad Dermatol 42, 4–7.
- 180. Sattler EC, Kästle R, Rothmund G, Welzel J (2012) Confocal laser scanning microscopy, optical coherence tomography and transonychial water loss for in vivo investigation of nails. Br J Dermatol 166, 740–746.
- 181. Sattler EC, Kästle R, Welzel J (2013) Optical coherence tomography in dermatology. J Biomed Opt 18, 061224-1 061224-6.
- 182. Sattler EC, Poloczek K, Kästle R, Welzel J (2013) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69, e165-e173.
- 183. Schmitz L, Kahl P, Majores M, Bierhoff E, Stockfleth E, Dirschka T (2016) Actinic keratosis: correlation between clinical and histological classification systems. J Eur Acad Dermatol Venereol 30, 1303–1307.
- 184. Schmitz L, Reinhold U, Bierhoff E, Dirschka T (2013) Optical coherence tomography: its role in daily dermatological practice. J Dtsch Dermatol Ges 11, 499–507.
- 185. Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrándiz C, Garcia Diez A, Tebbs V, McRae S (2005) Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol 152, 939–947.
- 186. Schuman JS (2008) Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc 106, 426–458.
- 187. Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113, 586–596.
- 188. Schwartz RA (1997) The actinic keratosis a perspective and update. Dermatol Surg 23, 1009–1019.
- 189. Scola N, Terras S, Georgas D, Othlinghaus N, Matip R, Pantelaki I, Möllenhoff K, Stücker M, Altmeyer P, Kreuter A, Gambichler T (2012) A randomized, half-side comparative study of aminolaevulinate photodynamic therapy vs. CO₂ laser ablation in immunocompetent patients with multiple actinic keratoses. Br J Dermatol 167, 1366–1373.
- 190. Scurry J (2001) Grading of actinic keratoses. J Am Acad Dermatol 44, 1052–1053.
- 191. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, Marmur E, Rudin CM, Chang ALS, Low JA, Mackey HM, Yauch RL, Graham RA, Reddy JC, Hauschild A (2012) Efficacy and

- safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366, 2171–2179.
- 192. Sellheyer K (2011) Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol 164, 696–711.
- 193. Siller G, Rosen R, Freeman M, Welburn P, Katsamas J, Ogbourne SM (2010) PEP005 (ingenol mebutate) gel for the topical treatment of superficial basal cell carcinoma: results of a randomized phase IIa trial. Australas J Dermatol 51, 99–105.
- 194. Society for Investigative Dermatology and the American Academy of Dermatology Association (2005) The burden of skin diseases 2005. http://www.lewin.com/~/media/lewin/site_sections/publications/april2005skindisease (06.06.2015).
- 195. Soyer HP, Argenziano G, Hofmann-Wellenhof R, Zalaudek I (2011) Dermoscopy: The Essentials, Pattern analysis. 2. Aufl., 107-108, Elsevier Saunders.
- 196. Stadler R, Hartig C (2003) Epidermale Tumoren: 26.10 Aktinische Keratose. In: Kerl H, Garbe C, Cerroni L, Wolff HH, (Hrsg.) Histopathologie der Haut. 1. Aufl., 567–569, Springer, Berlin.
- 197. Stadler R, Hartig C (2003) Epidermale Tumoren: 26.9 Basalzellkarzinom. In: Kerl H, Garbe C, Cerroni L, Wolff HH, (Hrsg.) Histopathologie der Haut. 1. Aufl., 560–567, Springer, Berlin.
- 198. Standish BA, Lee KKC, Mariampillai A, Munce NR, Leung MKK, Yang VXD, Vitkin IA (2010) In vivo endoscopic multi-beam optical coherence tomography. Phys Med Biol 55, 615–622.
- 199. Sterry W, Stockfleth E (2012) Maligne epitheliale Tumoren. In: Plewig G, Braun-Falco O, (Hrsg.) Braun-Falco's Dermatologie, Venerologie und Allergologie. 6. Aufl., 1645–1649, Springer, Berlin.
- 200. Stockfleth E, Kerl H, Zwingers T, Willers C (2011) Low-dose 5-fluorouracil in combination with salicylic acid as a new lesion-directed option to treat topically actinic keratoses: histological and clinical study results. Br J Dermatol 165, 1101–1108.
- 201. Stockfleth E, Meyer T, Benninghoff B, Salasche S, Papadopoulos L, Ulrich C, Christophers E (2002) A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch Dermatol 138, 1498–1502.
- 202. Stockfleth E, Nindl I, Sterry W, Ulrich C, Schmook T, Meyer T (2004) Human papillomaviruses in transplant-associated skin cancers. Dermatol Surg 30, 604–609.
- 203. Stockfleth E, Ulrich C, Meyer T, Christophers E (2002) Epithelial malignancies in organ transplant patients: clinical presentation and new methods of treatment. Recent Results Cancer Res 160, 251–258.
- 204. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF (2004) Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 9, 292–298.

- 205. Su P, Cao T, Tang MBY, Tey HL (2015) In vivo high-definition optical coherence tomography: a bedside diagnostic aid for morphea. JAMA Dermatol 151, 234–235.
- 206. Suchniak JM, Baer S, Goldberg LH (1997) High rate of malignant transformation in hyperkeratotic actinic keratoses. J Am Acad Dermatol 37, 392–394.
- 207. Szeimies RM, Ibbotson S, Murrell DF, Rubel D, Frambach Y, de Berker D, Dummer R, Kerrouche N, Villemagne H (2008) A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 22, 1302–1311.
- 208. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Hee MR, Fujimoto JG (1995) Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt Lett 20, 2258–2260.
- 209. Themstrup L, Banzhaf CA, Mogensen M, Jemec GBE (2012) Cryosurgery treatment of actinic keratoses monitored by optical coherence tomography: a pilot study. Dermatology (Basel) 225, 242–247.
- 210. Themstrup L, Banzhaf CA, Mogensen M, Jemec GBE (2014) Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions. Photodiagnosis Photodyn Ther 11, 7–12.
- 211. Themstrup L, Ciardo S, Manfredi M, Ulrich M, Pellacani G, Welzel J, Jemec GBE (2016) In vivo micro-morphological vascular changes induced by topical brimonidine studied by dynamic optical coherence tomography. J Eur Acad Dermatol Venereol 30, 974–979.
- 212. Thorlabs GmbH (2011) Callisto spectral domain OCT system: operating manual. https://www.thorlabs.com/drawings/25f1be0bf7333616-F2DE649C-5056-0103-79B1A363B69A13FD/CALLISTO-Manual.pdf (06.06.2015).
- 213. Thorlabs GmbH (2016) Callisto 930 nm OCT imaging system. http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3779 (14.12.2016).
- 214. Tran H, Chen K, Shumack S (2003) Epidemiology and aetiology of basal cell carcinoma. Br J Dermatol 149, 50–52.
- 215. Trojahn C, Dobos G, Richter C, Blume-Peytavi U, Kottner J (2015) Measuring skin aging using optical coherence tomography in vivo: a validation study. J Biomed Opt 20, 045003-1 045003-7.
- 216. Try C, Nicod L, Humbert P (2010) Skin care products for normal, dry, and greasy skin. In: Maibach HI, Baran R, (Hrsg.) Textbook of cosmetic dermatology. 4. Aufl., 180–187, Informa Healthcare, New York.
- 217. Ulrich M, Astner S, Stockfleth E, Röwert-Huber J (2008) Noninvasive diagnosis of non-melanoma skin cancer: focus on reflectance confocal microscopy. Expert Rev Dermatol 3, 557–567.
- 218. Ulrich M, Krueger-Corcoran D, Röwert-Huber J, Sterry W, Stockfleth E, Astner S (2010) Reflectance confocal microscopy for noninvasive monitoring of therapy and detection of subclinical actinic keratoses. Dermatology (Basel) 220, 15–24.

- 219. Ulrich M, Maier T, Kurzen H, Dirschka T, Kellner C, Sattler EC, Berking C, Welzel J, Reinhold U (2015) The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study. Br J Dermatol 173, 428–435.
- 220. Ulrich M, Maltusch A, Rius-Diaz F, Röwert-Huber J, González S, Sterry W, Stockfleth E, Astner S (2008) Clinical applicability of in vivo reflectance confocal microscopy for the diagnosis of actinic keratoses. Dermatol Surg 34, 610–619.
- 221. Ulrich M, Maltusch A, Röwert-Huber J, González S, Sterry W, Stockfleth E, Astner S (2007) Actinic keratoses: non-invasive diagnosis for field cancerisation. Br J Dermatol 156, 13–17.
- 222. Ulrich M, Stockfleth E, Röwert-Huber J, Astner S (2007) Noninvasive diagnostic tools for nonmelanoma skin cancer. Br J Dermatol 157, 56–58.
- 223. Ulrich M, Themstrup L, de Carvalho N, Manfredi M, Grana C, Ciardo S, Kästle R, Holmes J, Whitehead R, Jemec GBE, Pellacani G, Welzel J (2016) Dynamic optical coherence tomography in dermatology. Dermatology 232, 298–311.
- 224. Urban J, Siripunvarapon AH, Meekings A, Kalowitz A, Markowitz O (2014) Optical coherence tomography imaging of erythematotelangiectatic rosacea during treatment with brimonidine topical gel 0.33%: a potential method for treatment outcome assessment. J Drugs Dermatol 13, 821–826.
- 225. Vargas G, Chan EK, Barton JK, Rylander HG, Welch AJ (1999) Use of an agent to reduce scattering in skin. Lasers Surg Med 24, 133–141.
- 226. Vargo N (2003) Basal cell and squamous cell carcinoma. Semin Oncol Nurs 19, 12–21.
- 227. von Braunmühl T (2015) Optische Kohärenztomographie. Hautarzt 66, 499–503.
- 228. von Braunmühl T (2016) Optische Kohärenztomographie. In: Welzel J, Sattler EC, (Hrsg.) Nichtinvasive physikalische Diagnostik in der Dermatologie, 50–62, Springer, Berlin, Heidelberg.
- 229. Wang KX, Meekings A, Fluhr JW, McKenzie G, Lee DA, Fisher J, Markowitz O, Siegel DM (2013) Optical coherence tomography-based optimization of mohs micrographic surgery of basal cell carcinoma: a pilot study. Dermatol Surg 39, 627–633.
- 230. Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express 12, 5760–5769.
- 231. Welzel J (2000) Einsatz der optischen Kohärenztomographie in der Dermatologie. Biomed Tech 45, 309–310.
- 232. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7, 1–9.
- 233. Welzel J (2010) Optische Kohärenztomographie. Hautarzt 61, 416–420.
- 234. Welzel J (2015) Dermatologie ist schön! Akt Dermatol 41, 451.

- 235. Welzel J (2015) Moderne Bildgebung in der Dermatologie. Akt Dermatol 41, 478–488.
- 236. Welzel J, Bruhns M, Wolff HH (2003) Optical coherence tomography in contact dermatitis and psoriasis. Arch Dermatol Res 295, 50–55.
- 237. Welzel J, Lankenau EM, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37, 958–963.
- 238. Welzel J, Lankenau EM, Birngruber R, Engelhardt R (1998) Optical coherence tomography of the skin. In: Elsner P, Barel AO, Berardesca E, Gabard B, Serup J, (Hrsg.) Skin bioengineering: Techniques and applications in dermatology and cosmetology, Current problems in dermatology. 26, 27–37, Karger, Basel.
- 239. Welzel J, Lankenau EM, Engelhardt R (1998) Optische Kohärenztomographie als ein neues Verfahren zur Darstellung oberflächennaher Strukturen der Haut. In: Garbe C, Rassner G, (Hrsg.) Dermatologie: Leitlinien und Qualitätssicherung für Diagnostik und Therapie Berichte von der 39. Tagung der Deutschen Dermatologischen Gesellschaft, 9–12, Springer, Berlin, Heidelberg.
- 240. Welzel J, Reinhardt C, Lankenau EM, Winter C, Wolff HH (2004) Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol 150, 220–225.
- 241. Welzel J, Ulrich M, Lange-Asschenfeldt S, Hohenleutner U (2011) Konfokale Lasermikroskopie. http://www.awmf.org/uploads/tx_szleitlinien/013-076l_S1_Konfokale_Lasermikroskopie_2011-abgelaufen.pdf (15.12.16).
- 242. Werner RN, Stockfleth E, Connolly SM, Correia O, Erdmann R, Foley P, Gupta AK, Jacobs A, Kerl H, Lim HW, Martin G, Paquet M, Pariser DM, Rosumeck S, Röwert-Huber J, Sahota A, Sangueza OP, Shumack S, Sporbeck B, Swanson NA, Torezan L, Nast A (2015) Evidence- and consensus-based (S3) Guidelines for the Treatment of Actinic Keratosis International League of Dermatological Societies in cooperation with the European Dermatology Forum Short version. J Eur Acad Dermatol Venereol 29, 2069–2079.
- 243. Westerhoff K, Menzies S (2003) Pigmentierte Basalzellkarzinome. In: Blum A, Kreusch JF, Bauer J, Garbe C, (Hrsg.) Dermatoskopie von Hauttumoren: Auflichtmikroskopie Dermatoskopie Digitale Bildanalyse, 57–58, Steinkopff Verlag, Darmstadt.
- 244. Wijeisnghe REH, Cho NH, Park K, Shin Y, Kim J (2013) Wavelength-filter based spectral calibrated wave number linearization in 1.3 mm spectral domain optical coherence. Int J Eng Adv Technol 3, 336–340.
- 245. Wong CSM, Strange RC, Lear JT (2003) Basal cell carcinoma. Brit Med J 327, 794–798.
- 246. World Health Organization, Skin cancers: How common is skin cancer? http://www.who.int/uv/faq/skincancer/en/index1.html (12.04.15).
- 247. Wurm EM, Soyer HP (2012) The confocal story. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP, (Hrsg.) Reflectance confocal microscopy for skin diseases. 1. Aufl., 3–5, Springer, Berlin, Heidelberg.

- 248. Yücel D, Themstrup L, Manfredi M, Jemec GBE (2016) Optical coherence tomography of basal cell carcinoma: density and signal attenuation. Skin Res Technol 22, 497–504.
- 249. Zalaudek I, Giacomel J, Argenziano G, Hofmann-Wellenhof R, Micantonio T, Di Stefani A, Oliviero M, Rabinovitz H, Soyer HP, Peris K (2006) Dermoscopy of facial nonpigmented actinic keratosis. Br J Dermatol 155, 951–956.
- 250. Zalaudek I, Piana S, Moscarella E, Longo C, Zendri E, Castagnetti F, Pellacani G, Lallas A, Argenziano G (2014) Morphologic grading and treatment of facial actinic keratosis. Clin Dermatol 32, 80–87.

7. Anhang

7.1 Ethikvotum

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

ETHIKKOMMISSION BEI DER LMU MÜNCHEN

Ethikkommission ·Pettenkoferstr. 8 · 80336 Müncher

Frau Prof. Dr. J. Welzel Klinik f. Dermatologie u. Allergologie Sauerbruchstr. 6 86179 Augsburg Vorsitzender: Prof. Dr. W. Eisenmenger Telefon+49 (0)89 5160 - 5191 Telefax+49 (0)89 5160 - 5192 Ethikkommission@ med.uni-muenchen.de

www.ethikkommission.med.unimuenchen.de

Postanschrift: Pettenkoferstr. 8a D-80336 München

Hausanschrift: Pettenkoferstr. 8 D-80336 München München, 06.06.2011 EM /sc

Titel:	Evaluierung der optischen Kohärenztomographie zur Diagnostik und Verlaufskontrolle von aktinischen Keratosen
Antragsteller:	Prof. Dr. J. Welzel, R. Kästle
	221-11

Sehr geehrte Frau Kollegin Welzel,

die Ethikkommission der Med. Fakultät der LMU München bestätigt den Eingang des o. g. Antrags, mit dem Ihre Mitwirkung angezeigt wird.

Durch das zustimmende Votum der für den Leiter der Klinischen Prüfung zuständigen Ethikkommission (Univ. Lübeck) vom 01.07.1997) ist den berufsrechtlichen Erfordernissen Rechnung getragen.

Gerne können wir Ihnen bestätigen, dass gegen Ihre Mitwirkung und das Ihrer Institution keine Bedenken bestehen.

Die EK bittet allerdings, die Patienteninformation und Einwilligungserklärung in folgenden Punkten zu verbessern:

- 1. Sie ist mit Angabe der Gesamtseitenzahl zu paginieren.
- 2. Begriffe wie: "nicht- invasiv", "topisch", "Läsionen", "intraindividuell" sind laienverständlich zu erklären bzw. zu umschreiben.
- Im Datenschutzpassus ist darüber zu informieren, wie lange die Proben und Daten aufbewahrt werden. Außerdem ist er drucktechnisch hervorzuheben.
- Es ist darüber aufzuklären, dass keine Studienversicherung (verschuldensunabhängig) abgeschlossen wurde und warum dies nicht geschah.
- Da die Pat. Info und die Einwilligungserklärung bisher als zwei Dokumente geführt werden, ist die Pat. Info auch mit einer Unterschriftszeile für den Arzt und den Patienten abzuschließen (sie bescheinigen damit die erfolgte Aufklärung).

Mit freundlichen Grüßen

Prof. Dr. W. Eisenmenger Vorsitzender der Ethikkommission

Prof. Dr. W. Eisenmenger (Vorsitzender), Prof. Dr. E. Held (stellv. Vorsitzender), Prof. Dr. G. Paumgartner (stellv. Vorsitzender), PD Dr. Th. Beinert, Prof. Dr. H. U. Gallwas, Prof. Dr. D. Kunze, Dr. V. Mönch, Prof. Dr. R. Penning, Prof. Dr. K. Hahn, Prof. Dr. K. Pfeiter, Dr. Ch. Zeit

7.2 Originaldaten

Anhang Tabelle 1. AK Klassifikationen von OCT, Histologie und Klinik

Patient	OCT Klassifikation	Histologische Klassifikation	Klinische Klassifikation
HF260928	1	2,5	2
MG091134	1	1	1
MG091134	1	1	1
HW130939	2	2	2
HW130939	2	2	2
HW111147	2	1	2
HD080541	1	2	1
HT110939	2	1	2
FG270646	1	2	2
CW110835	1	2	1
RS210251	1	1	1
EH020839	2	2	1
GW240125	2	2	2,5
EK120633	1	2	2
GH280545	1	1	1
GH280545	1	1	1
GH280545	1	1	1
VS201138	2	2	2
VS201138	2	1	2
WM210545	1,5	2	3
WM210545	2	2	2
WM210545	1	2	2
BW250237	2	2	2

Anhang Tabelle 2. OCT Signalintensitäten der BCC Subtypen mit VivoSight $^{\otimes}$

	SI M:		SI M:		SI M:
Patient	noduläres	Patient	fibrosierendes	Patient	superfizielles
	ВСС		ВСС		ВСС
JK170352	63,960	RH230117	94,721	SH301247	37,716
WG040349	67,006	WW120937	62,281	SH301247	96,391
JS291130	48,025	US190256	56,186	SH301247	84,320
BB310534	78,122	HW260154	64,681	MS310346	127,648
JL170269	78,436	HS160742	64,939	MB130438	109,299
MO200333	59,969	IS230852	61,960	IH260343	71,396

Patient	SI M: noduläres BCC	Patient	SI M: fibrosierendes BCC	Patient	SI M: superfizielles BCC
RA270742	55,957	GB221244	30,208	AC260643	91,927
HM260347	60,122	JA201054	67,441	HG090261	101,630
AC260643	101,041	KS170540	44,638	KB071273	83,662
HH100340	53,880	RK280137	50,756	HM260347	79,724
HH130132	71,563	GH050542	43,653	MB020556	74,691
GN090921	77,949	GH050542	31,395	IM020849	78,763
JH221136	32,252	AG110141	71,575	IK161140	85,977
SH301247	35,694	JA271125	66,305	MF130955	114,414
HM150743	47,404	JH100448	25,948	MF130955	94,597
KM010259	53,229	HA140241	65,103	MF130955	110,759
GG220948	35,967	HW050329	68,699	GG060143	66,408
JK170352	69,190	BP021249	72,179	IM030942	67,668
US190256	49,054	WR080427	82,316	EW280336	108,786
MB020556	43,387	UG241242	64,030	GE060555	93,093
EW070740	52,644	PS020332	59,391	LM220846	83,923
AW100836	75,254			LM220846	73,252
UF260539	51,356			RK280137	67,457
GS230944	67,910			HT210346	107,715
GS230944	71,787			HR130151	64,845
HS160742	60,840			EG290636	76,270
IB030647	27,449			JB040147	90,110
HE241246	27,009			SA161169	107,117
GH100428	34,170				
DG230949	49,585				
DG230949	83,233				
WM210545	45,253				
SS190540	36,045				
LM220846	66,728				
MH150241	57,029				
RA270742	77,302				
RA270742	63,222				
GH280534	62,237				
FL090220	57,225				
SH301247	73,359				

Patient	SI M: noduläres BCC	Patient	SI M: fibrosierendes BCC	Patient	SI M: superfizielles BCC
EW280336	30,959				
US190256	79,812				
AW240748	56,806				
DJ160534	48,198				
RJ230856	45,703				
US190256	69,125				

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 3. Signalintensitäten von BCC und benachbarter gesunder Haut mit VivoSight®

	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	BCC	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
JK170352	115,028	140,395	63,960	100,276	29,916	44,410
JA271125	100,310	116,590	66,305	89,424	25,100	39,327
WR080427	131,330	157,482	82,316	120,713	42,738	57,190
WG040349	119,165	143,241	67,006	102,702	21,149	35,864
HA140241	128,242	158,192	65,103	108,882	23,588	45,586
BP021249	136,235	156,540	72,179	102,314	50,660	56,805
JS291130	89,762	105,242	48,025	55,958	19,185	24,434
BB310534	116,243	135,583	78,122	102,051	73,819	81,667
JL170269	132,810	141,526	78,436	101,417	66,397	71,414
MO200333	117,776	127,061	59,969	79,087	27,565	35,196
WW12097	147,076	169,883	62,281	133,238	24,351	69,860
RA270742	105,703	135,513	55,957	115,343	21,441	43,814
HM260347	133,999	152,901	79,724	108,691	32,730	42,191
HM260347	142,377	163,083	60,122	89,638	20,821	45,049
AW240748	133,384	158,199	56,806	83,511	23,433	34,929
AC260643	148,021	158,043	91,927	124,464	55,958	91,927
AC260643	147,054	159,385	101,041	121,251	45,623	57,521
HH100340	141,599	154,777	53,880	89,530	20,711	33,888
EG290636	116,391	148,136	76,270	92,757	39,735	52,647
RH230117	162,693	170,596	94,721	108,568	52,525	56,443
FL090220	144,884	150,462	57,225	68,789	18,570	34,185
IH260343	116,594	151,171	71,396	100,267	39,352	57,858
GN090921	144,110	153,047	77,949	103,144	28,651	42,805

	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	всс	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
RA270742	145,684	152,158	77,302	90,949	38,064	49,896
RA270742	128,582	141,679	63,222	91,396	17,680	29,353
MB130438	124,555	179,987	109,299	151,378	60,859	72,165
MS310346	157,152	183,941	127,648	143,111	70,956	84,033
HH130132	120,602	139,369	71,563	83,639	23,625	42,013
HW050329	126,773	149,740	68,699	88,088	27,888	34,445
JH221136	126,849	149,509	32,252	72,893	14,651	29,037
SH301247	140,310	155,343	73,359	104,550	31,057	50,406
SH301247	115,186	141,682	35,694	85,688	25,157	49,591
SH301247	158,089	167,028	84,320	125,150	46,945	57,004
SH301247	156,784	165,321	96,391	124,378	31,406	55,761
SH301247	114,726	148,682	37,716	81,213	15,555	28,720
HM150743	89,874	149,994	47,404	69,035	15,510	26,626
DJ160534	156,581	175,259	48,198	92,820	34,176	56,065
AG110141	136,339	150,201	71,575	108,617	38,182	43,929
HR130151	122,454	146,862	64,845	85,372	24,816	48,677
KM010259	145,718	162,161	53,229	92,008	24,425	47,203
JK170352	95,508	117,641	69,190	99,274	23,920	32,650
GG220948	130,888	141,874	35,967	91,822	24,508	35,384
HG090261	140,799	175,922	101,630	123,484	52,214	66,517
KB071273	126,404	152,894	83,662	125,008	45,492	56,392
US190256	142,749	172,536	69,125	84,194	24,043	34,477
US190256	131,157	142,424	56,186	100,392	29,134	42,530
US190256	122,366	136,311	49,054	82,653	21,636	33,340
US190256	112,323	148,735	79,812	103,549	19,743	30,824
MB020556	124,042	149,641	43,387	100,038	13,862	30,889
MB020556	136,250	145,776	74,691	91,876	48,892	62,719
EW070740	114,289	150,338	52,644	73,841	19,235	29,762
AW100836	143,918	159,624	75,254	114,071	43,342	51,532
UF260539	106,303	152,454	51,356	100,337	23,420	41,135
IM020849	142,986	164,650	78,763	111,960	26,597	42,967
GS230944	136,965	157,130	67,910	98,543	21,122	39,302
GS230944	136,979	155,476	71,787	112,277	38,056	64,011
RJ230856	106,318	161,618	45,703	104,838	18,386	60,949
UP010445	154,620	164,867	58,068	75,886	21,292	38,902
HS160742	111,287	153,317	60,840	81,203	17,831	31,995

	SIM:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	всс	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
HS160742	100,471	147,886	64,939	98,279	26,734	39,034
SA161169	143,230	164,664	107,117	137,526	34,761	50,578
HW260154	107,420	138,385	64,681	84,924	19,928	35,577
IS230852	136,168	164,601	61,960	119,149	28,943	46,460
JH100448	121,904	156,053	25,948	95,260	15,098	36,659
PS020332	103,464	128,686	59,391	81,518	17,949	31,096
IK161140	109,464	137,291	85,977	114,398	40,711	50,783
IB030647	143,186	172,298	27,449	101,868	20,863	36,640
GG060143	116,270	169,384	66,408	112,893	21,574	43,592
HE241246	90,864	151,572	27,009	81,573	14,056	27,486
MF130955	151,636	165,326	114,414	124,276	44,777	57,022
MF130955	128,702	167,784	94,597	125,081	38,375	49,672
MF130955	165,639	176,652	110,759	159,649	48,747	59,178
GB221244	142,022	155,660	30,208	71,936	25,585	35,698
JB040147	142,464	158,702	90,110	110,544	34,782	43,222
IM030942	94,797	155,809	67,668	105,681	25,776	37,378
EW280336	151,890	163,174	30,959	82,202	16,972	27,532
EW280336	153,138	170,064	108,786	139,943	42,548	59,329
JA201054	114,945	169,336	67,441	102,078	26,447	48,775
LM220846	124,521	154,256	83,923	126,805	27,346	42,518
LM220846	123,696	141,176	66,728	122,135	19,753	40,701
LM220846	135,643	156,373	73,252	119,162	24,853	57,105
GH100428	109,088	140,684	34,170	77,866	16,541	30,515
KS170540	123,238	149,363	44,638	60,857	19,569	26,070
RK280137	143,071	153,115	50,756	67,640	18,104	26,647
RK280137	136,154	146,247	67,457	98,921	25,420	34,463
GH050542	92,977	125,780	43,653	78,251	19,670	26,869
GH050542	91,077	145,624	31,395	75,319	14,882	26,248
MH150241	91,390	125,776	57,029	84,760	20,739	30,970
DG230949	128,598	168,154	49,585	93,357	19,786	39,056
DG230949	138,605	158,964	83,233	102,033	26,664	36,419
UG241242	97,485	141,809	64,030	85,597	23,507	33,117
WM210545	90,700	184,119	45,253	83,293	17,128	33,037
GE060555	133,637	144,421	93,093	109,029	37,111	49,080
SS190540	88,177	157,862	36,045	74,400	13,669	21,055
GH280534	127,692	165,205	62,237	90,828	16,930	26,125

	SIM:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	всс	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
HT210346	120,745	156,585	107,715	113,058	68,611	78,769
HF260928	129,555	175,592	77,928	141,933	30,842	50,681
HT210346	120,745	156,585	107,715	113,058	68,611	78,769
AW200242	113,931	122,996	45,899	84,644	29,034	35,137
IB221232	125,212	126,709	74,027	92,237	47,194	56,022
IB221232	133,445	139,404	103,702	106,494	78,292	88,786
IB221232	129,622	143,040	96,424	126,872	86,920	93,733
IB221232	152,952	163,177	68,410	94,108	43,151	54,662
IB221232	150,348	160,096	86,561	104,644	36,209	50,875
IB221232	131,038	157,430	70,183	83,540	25,884	36,357
KB071273	97,786	120,380	78,484	128,390	54,520	73,256
HF260928	136,002	150,197	83,426	92,520	65,481	68,286
HF260928	124,197	136,163	61,700	76,982	54,261	54,875
HF260928	145,755	152,299	82,607	93,335	61,695	63,618
HF260928	145,157	149,435	78,546	99,605	39,027	48,439
HF260928	139,307	151,939	77,638	87,780	31,872	35,058
HF260928	121,773	158,463	75,132	89,510	21,237	28,448
HF260928	158,144	168,681	75,178	91,929	31,302	33,579
HF260928	121,765	146,675	66,783	93,182	17,614	24,733
PT200450	173,130	184,872	106,447	119,046	68,566	80,746
MH150241	154,357	162,302	97,990	113,006	49,331	64,085
MH150241	159,163	169,904	99,108	115,576	61,384	69,780
MH150241	145,346	151,431	92,424	130,540	62,872	73,446
MW120219	116,521	148,178	104,557	122,464	59,153	70,986
MW120219	136,543	154,439	74,459	107,532	39,361	54,593
RK280137	117,499	132,572	55,516	98,727	26,703	38,485
RK280137	121,089	153,583	82,931	111,670	31,415	55,231
RK280137	151,528	166,530	87,901	127,672	43,733	57,477
RK280137	143,059	170,452	71,417	101,153	22,538	37,105
RK280137	123,920	142,228	51,214	77,506	20,473	34,820
RK280137	133,069	155,236	94,399	133,110	37,096	49,197
RK280137	156,931	164,607	79,473	115,648	23,047	36,878
PM311241	154,721	160,089	111,908	136,830	40,912	66,592
DJ160534	122,314	152,012	67,644	93,493	17,377	41,049
DJ160534	154,493	201,991	49,578	103,269	22,893	51,693
DJ160534	152,894	165,429	87,523	107,533	27,860	40,916

	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	всс	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
DJ160534	137,252	176,844	86,160	115,263	38,063	55,963
DJ160534	130,654	166,762	67,746	103,628	24,675	47,118
DJ160534	139,391	155,971	86,263	117,238	38,963	46,955
FD231041	134,067	165,994	83,291	113,813	27,383	49,825
UH241140	152,807	175,959	80,072	124,824	28,340	57,666
HR130151	127,995	150,870	58,260	99,235	26,287	49,950
GM040146	154,384	167,727	107,626	122,683	31,550	45,169
KM180438	138,607	158,459	84,706	128,941	38,176	51,986
KM180438	87,597	144,391	66,288	106,372	17,461	29,503
KB071273	143,826	158,465	89,746	139,214	42,307	82,482
KB071273	137,853	160,206	81,135	106,909	38,846	50,760
DD200559	141,521	168,401	72,440	92,164	24,172	38,581
HS110946	113,242	143,123	69,188	88,885	17,733	31,618
WB241047	99,553	147,574	52,852	99,034	14,948	35,422
AW100836	139,263	165,623	74,563	113,288	20,394	37,090
UP010445	154,620	164,867	58,068	75,886	21,292	38,902
AE150935	148,488	167,311	112,223	140,368	56,607	70,586
AE150935	151,337	164,093	63,247	98,625	20,117	42,624
AE150935	113,591	160,414	31,938	76,456	41,005	54,591
AE150935	143,430	167,703	57,235	80,920	31,319	39,907
PS100343	101,451	159,126	27,229	78,571	15,425	35,237
GG060143	116,270	169,384	66,408	112,893	21,574	43,592
IM030942	74,740	146,855	43,406	91,868	16,228	31,071
HF260928	107,088	148,774	81,223	112,178	22,667	35,962
HF260928	118,950	143,528	75,943	120,345	26,993	50,601
HF260928	148,089	172,028	67,554	100,012	23,111	36,185
HF260928	140,192	164,391	81,844	132,811	33,363	59,105
HF260928	140,219	159,035	74,461	130,952	30,443	50,059
HF260928	112,637	142,947	76,749	122,316	24,162	34,916
HF260928	135,982	153,307	112,865	129,070	27,750	42,626
HF260928	139,820	158,821	94,734	136,781	33,126	53,916
HF260928	141,077	154,659	87,777	116,000	29,133	43,399
AS240948	110,240	149,341	60,085	100,959	19,119	33,587
JA201054	143,837	164,873	108,932	127,079	41,015	57,376
JA201054	157,381	171,132	58,569	108,319	32,012	43,612
HP230842	129,159	138,465	54,417	74,728	18,793	28,738

Fortsetzung Anhang Tabelle 3

	SIM:	SI M:	SI M:	SIM:	SI M:	SI M:
Patient	Epidermis	Epidermis	всс	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
HP230842	130,262	152,799	73,387	92,515	22,693	34,690
HP230842	99,938	154,501	61,832	86,083	19,579	27,423
HP230842	145,547	159,989	91,864	109,326	35,725	48,992
HP230842	106,806	128,353	50,410	99,783	19,707	45,761
MA070646	96,750	145,062	50,396	99,166	18,377	31,643
EW280336	99,238	162,668	69,820	118,173	25,256	38,867
EW280336	152,382	167,905	73,322	107,428	33,583	45,698
EW280336	108,329	161,356	46,975	99,207	15,388	29,758
MH150241	120,073	176,778	74,748	111,014	22,886	34,461
MH150241	153,341	181,839	106,440	127,325	30,885	43,291
MH150241	161,081	187,287	121,478	137,412	39,707	55,743
MH150241	126,182	140,336	65,778	94,624	20,430	30,248
UG241242	132,936	156,403	75,236	102,087	22,961	33,822
RH150334	154,291	224,976	81,797	100,752	33,425	48,461
BR310336	122,875	150,515	55,382	91,524	22,871	34,839
BR310336	121,581	169,024	94,993	104,881	23,773	34,431
BR310336	135,923	160,542	60,816	98,902	18,492	30,325
BR310336	123,441	148,435	71,082	104,463	19,235	38,725
BR310336	134,297	161,684	94,258	110,191	32,936	49,636
IK140148	123,034	150,307	76,747	109,825	25,358	36,569
JA201054	126,973	151,782	54,194	103,557	19,307	28,312

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 4. Signalintensitäten von aK und periläsionaler normaler Haut mit VivoSight®

	SI M:	SI M:	SI M:	SI M:	SIM:	SI M:
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	Dermis	Dermis
	aK	gesund	aK	gesund	aK	gesund
HT210346	118,483	202,509	120,081	133,386	93,240	117,608
HT210346	109,177	146,949	106,139	139,431	65,700	114,305
HF260928	141,393	222,124	108,618	178,728	31,179	123,492
HF260928	138,928	189,121	127,216	135,879	66,882	117,002
HF260928	171,711	178,699	148,695	155,226	62,728	111,705
MG091134	152,963	199,825	128,666	144,433	48,581	61,265
IB221232	131,873	166,146	111,139	129,357	46,634	95,283
IB221232	148,940	156,626	120,512	127,819	49,596	84,255

Patient	SI M: Hornschicht aK	SI M: Hornschicht gesund	SI M: Epidermis aK	SI M: Epidermis gesund	SI M: Dermis aK	SI M: Dermis gesund
IB221232	151,032	210,554	132,869	149,702	83,975	117,598
HF260928	159,753	234,539	147,950	175,839	70,194	111,706
MG091134	132,108	225,874	113,422	146,946	42,334	62,129
MW120219	81,332	144,234	75,050	114,967	50,294	77,393
PM311241	148,866	212,476	130,343	143,128	47,714	68,749
PM311241	141,188	237,429	117,505	144,179	46,118	80,517
PM311241	119,152	213,764	108,996	164,825	35,456	66,906
DJ160534	135,769	200,966	91,811	140,184	25,863	62,666
DJ160534	140,523	229,585	131,767	161,734	47,256	62,289
DJ160534	157,461	213,527	134,220	158,621	55,392	64,583
OB150632	144,887	222,755	127,504	162,951	33,708	59,097
HO150743	139,415	222,681	114,222	143,082	36,090	64,622
KM180438	143,381	163,961	134,136	155,181	49,795	62,335
IM030942	110,688	194,703	102,578	151,000	30,863	44,737
IM030942	132,050	230,100	113,189	153,564	35,742	49,035
WP160436	115,722	236,168	105,055	164,870	43,774	79,857
WP160436	111,390	213,907	96,408	143,592	29,745	47,806
FS050745	141,927	202,912	117,656	161,742	36,867	48,360
FS050745	126,906	209,136	88,839	141,234	38,756	50,291
FS050745	147,767	180,559	96,157	162,748	32,563	42,899
BR310336	190,287	240,255	162,578	221,129	63,094	92,975
BW250237	115,338	210,853	96,103	165,422	31,960	73,435
BW250237	76,473	198,060	67,169	159,187	24,252	52,421
EH240441	128,060	191,616	123,064	146,776	37,694	48,794
EH240441	120,373	213,454	106,572	164,832	28,715	50,617
EH240441	158,577	226,087	135,479	163,315	35,251	49,666
GW290431	167,020	246,535	114,478	180,671	42,059	90,602
GW290431	135,258	171,203	114,945	145,921	55,478	78,022
UA160145	141,042	222,010	129,443	168,695	46,932	75,149
UA160145	143,602	240,205	136,065	165,426	42,076	83,228
HD080541	171,307	219,483	98,301	158,862	26,464	59,706
HD080541	137,129	196,185	108,708	156,053	30,203	72,899
HM150743	128,603	249,587	101,154	155,517	25,883	79,926
HM150743	132,673	223,133	121,156	147,021	43,366	68,914
HM150743	139,832	214,054	116,314	156,093	28,417	48,511

Patient	SI M: Hornschicht	SI M: Hornschicht	SI M: Epidermis	SI M: Epidermis	SI M: Dermis	SI M: Dermis
	aK	gesund	aK	gesund	aK	gesund
AG110141	160,978	206,995	129,967	170,339	31,692	51,453
AG110141	140,253	223,664	123,215	167,522	35,349	52,738
AG110141	128,226	223,830	110,683	149,293	28,189	55,713
GM130630	88,318	194,827	68,902	147,003	28,926	61,683
GM130630	87,827	214,463	76,118	155,592	31,125	60,781
GM130630	93,436	219,192	81,840	154,002	24,933	70,815
WK260635	131,399	205,696	111,782	147,601	29,543	51,281
WK260635	136,464	215,392	122,135	153,999	37,747	59,332
WR030241	84,027	201,168	71,767	141,317	24,250	51,423
WR030241	141,471	221,787	112,749	161,846	30,403	59,573
WR030241	99,470	224,430	80,261	132,518	27,379	58,364
WR030241	128,002	235,896	111,345	171,486	34,761	77,564
FL090220	110,441	192,491	107,633	143,070	46,118	79,970
FL090220	146,155	185,954	101,634	125,265	38,964	67,231
FL090220	175,281	222,374	97,228	158,349	34,704	60,947
HW111147	128,380	208,930	104,192	149,014	37,862	76,186
HW111147	121,354	212,472	109,019	148,239	58,698	84,741
HF260928	159,753	234,539	147,950	175,839	70,194	111,706
MG091134	138,658	208,948	121,693	133,958	48,807	62,460
MG091134	151,357	197,027	141,024	181,543	47,861	63,177
HW130939	124,921	208,649	106,837	139,980	50,158	67,707
HW130939	73,613	146,686	64,844	133,418	16,229	37,884
HW111147	128,380	208,930	104,192	149,014	37,862	76,186
HD080541	156,238	205,434	119,259	150,377	37,624	63,404
HT110939	119,345	206,351	93,941	145,796	33,453	66,912
FG270646	105,426	211,309	91,213	144,971	35,426	47,349
CW110835	119,921	182,102	84,775	137,337	25,815	40,054
RS210251	127,414	238,524	110,308	163,362	36,355	76,167
EH020839	134,166	197,295	117,145	150,316	37,395	66,234
GW240125	96,829	181,798	86,242	137,874	23,226	41,396
EK120633	136,983	218,967	108,959	161,134	33,030	49,115
GH280545	148,279	232,286	106,791	157,225	27,936	49,581
GH280545	114,908	226,618	102,557	149,119	38,538	63,859
GH280545	117,783	207,591	105,591	138,354	40,359	64,724
VS201138	89,142	188,569	78,831	153,451	20,002	46,010

Patient	SI M: Hornschicht aK	SI M: Hornschicht gesund	SI M: Epidermis aK	SI M: Epidermis gesund	SI M: Dermis aK	SI M: Dermis gesund
VS201138	78,253	202,058	71,571	149,492	26,584	39,015
WM210545	116,138	176,479	95,749	152,997	27,279	38,478
WM210545	144,910	226,213	118,184	191,335	43,512	67,282
WM210545	150,912	225,309	125,830	176,388	37,513	64,984
BW250237	131,685	218,019	113,768	163,851	24,640	53,938
DS120334	141,336	219,437	128,136	143,941	66,589	107,936
DS120334	144,317	177,441	132,914	157,680	50,317	91,995
WR030241	106,242	190,263	84,441	138,513	25,492	63,824
WR030241	115,275	190,263	107,204	138,513	34,825	63,824
WR030241	144,447	224,296	128,974	160,419	39,587	47,148
FS050745	136,947	218,854	111,352	167,600	30,737	43,043
FS050745	143,809	197,660	113,272	164,604	34,731	53,461
FS050745	131,470	217,224	97,775	151,423	29,481	40,694
FS050745	116,510	194,337	97,102	151,058	21,537	49,054
FS050745	158,599	219,245	137,214	179,094	33,728	48,431
FS050745	130,340	204,831	112,426	151,988	34,517	45,913
MB060749	141,015	193,465	116,282	146,272	67,971	80,811
MB060749	160,473	243,803	143,062	166,945	101,290	118,794
MB060749	155,126	183,767	152,776	162,043	93,181	123,548
MG091134	158,565	212,860	138,410	163,797	48,894	64,449
HH130132	108,665	163,205	102,700	135,736	69,898	84,390
HH130132	118,956	210,310	102,752	151,580	55,672	83,095
JK051238	96,271	216,112	92,279	157,717	57,972	114,448
JK051238	88,354	188,794	82,430	142,544	41,353	87,437
ER130741	174,860	236,314	163,458	214,249	109,439	168,089
ER130741	144,999	204,373	139,397	164,595	91,166	118,393
GW290431	111,658	213,266	89,093	155,812	24,103	82,765
GW290431	158,069	242,712	134,194	166,332	70,740	90,916
GW290431	133,374	221,740	106,564	154,889	31,378	91,638
CG140742	151,209	187,384	117,490	155,694	61,335	83,368
CG140742	127,316	195,564	113,488	144,930	63,780	100,456
CG140742	135,773	190,626	118,036	140,031	72,306	84,566
SS070159	152,659	215,216	128,114	159,199	37,464	68,575
VS201138	90,515	201,580	77,461	161,562	20,114	53,289
MG091134	107,202	180,301	77,445	125,606	26,162	44,032

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 5. Hornschicht- und Epidermisdicken von aK und benachbarter gesunder Haut $mit\ VivoSight^{@}$

aK gesund aK gesund IT210346 0,134 0,018 0,183 0,183 IT210346 0,161 0,025 0,298 0,181 IF260928 0,153 0,019 0,204 0,0 IF260928 0,151 0,018 0,213 0,0 IF260928 0,231 0,015 0,307 0,0 IF260928 0,231 0,015 0,307 0,0 IF260928 0,231 0,015 0,307 0,0 IF260928 0,225 0,018 0,398 0,0 IF260928 0,120 0,027 0,153 0,0 IF260928 0,059 0,016 0,160 0,0 IF260928 0,059 0,015 0,121 0,0 IF260928	Patient	Dicke Hornschicht	Dicke Hornschicht	Dicke Epidermis	Dicke Epidermis
RT210346 0,161 0,025 0,298 0, RF260928 0,153 0,019 0,204 0, RF260928 0,151 0,018 0,213 0, RF260928 0,231 0,015 0,307 0, RG091134 0,172 0,018 0,398 0, RG221232 0,125 0,018 0,166 0, RG221232 0,120 0,027 0,153 0, RG221232 0,086 0,016 0,160 0, RG221232 0,086 0,016 0,160 0, RG221232 0,086 0,016 0,160 0, RG291134 0,135 0,018 0,255 0, RG091134 0,135 0,018 0,255 0, RG091134 0,135 0,018 0,255 0, RG091134 0,135 0,018 0,255 0, RG11241 0,104 0,011 0,208 0, RM311241				_	gesund
RF260928 0,153 0,019 0,204 0, RF260928 0,151 0,018 0,213 0, RF260928 0,231 0,015 0,307 0, MG091134 0,172 0,018 0,398 0, RG221232 0,125 0,018 0,166 0, RG221232 0,120 0,027 0,153 0, RG221232 0,086 0,016 0,160 0, RG221232 0,086 0,016 0,160 0, RG221232 0,086 0,015 0,121 0, RG091134 0,135 0,018 0,255 0, RG091134 0,135 0,018 0,255 0, RMV120219 0,262 0,052 0,512 0, RM311241 0,104 0,011 0,208 0, RM311241 0,270 0,012 0,417 0, RM311241 0,270 0,012 0,417 0, RM311241 <td>HT210346</td> <td>0,134</td> <td>0,018</td> <td>0,183</td> <td>0,086</td>	HT210346	0,134	0,018	0,183	0,086
RF260928 0,151 0,018 0,213 0, RF260928 0,231 0,015 0,307 0, MG091134 0,172 0,018 0,398 0, 32221232 0,125 0,018 0,166 0, 3221232 0,120 0,027 0,153 0, 3221232 0,086 0,016 0,160 0, 4F260928 0,059 0,015 0,121 0, 4G091134 0,135 0,018 0,255 0, 4G091134 0,135 0,018 0,255 0, 4W120219 0,262 0,052 0,512 0, 4W11241 0,104 0,011 0,208 0, 2W311241 0,096 0,012 0,417 0, 0W160534 0,245 0,016 0,760 0, 0W160534 0,127 0,015 0,217 0, 0W160534 0,127 0,015 0,217 0, 0W160534	HT210346	0,161	0,025	0,298	0,114
8F260928 0,231 0,015 0,307 0, MG091134 0,172 0,018 0,398 0, B221232 0,125 0,018 0,166 0, B221232 0,120 0,027 0,153 0, B221232 0,086 0,016 0,160 0, B221232 0,086 0,015 0,121 0, B20134 0,135 0,018 0,255 0, MG091134 0,135 0,018 0,255 0, MW120219 0,262 0,052 0,512 0, MW1311241 0,104 0,011 0,208 0, MW1311241	HF260928	0,153	0,019	0,204	0,112
AGO91134 0,172 0,018 0,398 0,3921232 0,125 0,018 0,166 0,3221232 0,120 0,027 0,153 0,3221232 0,086 0,016 0,160 0,0 0,016 0,160 0,0 0,016 0,160 0,0 0,016 0,160 0,0 0,0 0,012 0,027 0,015 0,121 0,0 0,0 0,016 0,0 0	HF260928	0,151	0,018	0,213	0,106
3221232 0,125 0,018 0,166 0, 3221232 0,120 0,027 0,153 0, 3221232 0,086 0,016 0,160 0, 3221232 0,086 0,015 0,121 0, 4G0928 0,059 0,015 0,121 0, 4G091134 0,135 0,018 0,255 0, 4W120219 0,262 0,052 0,512 0, 4W120219 0,262 0,052 0,512 0, 4W1311241 0,104 0,011 0,208 0, 4W311241 0,096 0,012 0,262 0, 4W311241 0,270 0,012 0,417 0, 4W311241 0,270 0,012 0,417 0, 4W31160534 0,245 0,016 0,760 0, 4W160534 0,127 0,015 0,217 0, 4W160534 0,082 0,012 0,170 0, 4W160534	HF260928	0,231	0,015	0,307	0,076
3221232 0,120 0,027 0,153 0, 3221232 0,086 0,016 0,160 0, 3621232 0,086 0,015 0,121 0, 3620134 0,059 0,015 0,121 0, 36091134 0,135 0,018 0,255 0, 36091134 0,135 0,018 0,255 0, 36091134 0,135 0,018 0,255 0, 36091134 0,141 0,011 0,208 0, 36091134 0,104 0,011 0,208 0, 3611241 0,096 0,012 0,262 0, 3611241 0,096 0,012 0,417 0, 36160534 0,245 0,016 0,760 0, 36160534 0,127 0,015 0,217 0, 36160534 0,082 0,012 0,170 0, 36150632 0,121 0,015 0,210 0, 36160534	MG091134	0,172	0,018	0,398	0,129
3221232 0,086 0,016 0,160 0,460 4F260928 0,059 0,015 0,121 0,46091134 0,135 0,018 0,255 0,470 4W120219 0,262 0,052 0,512 0,512 0,70 0,711 0,208 0,70 2W311241 0,104 0,011 0,208 0,70 0,012 0,262 0,70 2W311241 0,096 0,012 0,262 0,71 0,71 0,70 2W311241 0,270 0,012 0,417 0,70 0,012 0,417 0,70 3W160534 0,245 0,016 0,760 0,760 0,760 0,760 0,760 0,760 0,016 0,760 0,016 0,760 0,016 0,760 0,016 </td <td>IB221232</td> <td>0,125</td> <td>0,018</td> <td>0,166</td> <td>0,063</td>	IB221232	0,125	0,018	0,166	0,063
HF260928 0,059 0,015 0,121 0,000 MG091134 0,135 0,018 0,255 0,000 MW120219 0,262 0,052 0,512 0,000 PM311241 0,104 0,011 0,208 0,000 PM311241 0,096 0,012 0,262 0,000 PM311241 0,270 0,012 0,417 0,000 PM311241 0,270 0,016 0,760 0,000 PM311241 0,270 0,016 0,760 0,000 PM3160534 0,127 0,015 0,217 0,000 PM160534 0,082 0,012 0,170 0,000 PM150632 0,121 0,015 0,210 0,000 <td>IB221232</td> <td>0,120</td> <td>0,027</td> <td>0,153</td> <td>0,104</td>	IB221232	0,120	0,027	0,153	0,104
MG091134 0,135 0,018 0,255 0, MW120219 0,262 0,052 0,512 0, PM311241 0,104 0,011 0,208 0, PM311241 0,096 0,012 0,262 0, PM311241 0,270 0,012 0,417 0, PM3160534 0,245 0,016 0,760 0, PM160534 0,082 0,012 0,170 0, PM160534 0,082 0,012 0,170 0, PM150632 0,121 0,015 0,210 0, PM150633 0,169 0,016 0,305 0, PM1506438 0,150 0,022 0,256 0, PM160436 <td>IB221232</td> <td>0,086</td> <td>0,016</td> <td>0,160</td> <td>0,076</td>	IB221232	0,086	0,016	0,160	0,076
AW120219 0,262 0,052 0,512 0, PM311241 0,104 0,011 0,208 0, PM311241 0,096 0,012 0,262 0, PM311241 0,270 0,012 0,417 0, PM3160534 0,245 0,016 0,760 0, PM3160534 0,082 0,012 0,170 0, PM3160534 0,082 0,012 0,170 0, PM3160534 0,082 0,012 0,170 0, PM3160534 0,169 0,016 0,305 0, PM3160632 0,121 0,015 0,210 0, PM3160633 0,150 0,022 0,256 0, PM3180633 <td< td=""><td>HF260928</td><td>0,059</td><td>0,015</td><td>0,121</td><td>0,040</td></td<>	HF260928	0,059	0,015	0,121	0,040
PM311241 0,104 0,011 0,208 0, PM311241 0,096 0,012 0,262 0, PM311241 0,270 0,012 0,417 0, PM311241 0,270 0,012 0,417 0, PM311241 0,270 0,016 0,760 0, PM311241 0,270 0,016 0,760 0, PM311241 0,270 0,015 0,217 0, PM311241 0,082 0,012 0,170 0, PM311241 0,082 0,012 0,170 0, PM311241 0,015 0,210 0, PM311241 0,015 0,210 0, PM31106534 0,169 0,016 0,305 0, PM31106534 0,183 0,019 0,297 0, PM31106534 0,191 0,016 0,406 0, PM31106534 0,191 0,016 0,406 0, PM31106534 0,191 0,016 0,406 0, PM31106534 0,191 0,016 0,409 0, PM31106534 0,196 0,011 0,409 0, PM31106534 0,019 0,531 0, PM31106534 0,019	MG091134	0,135	0,018	0,255	0,084
PM311241 0,096 0,012 0,262 0,0013 11241 0,270 0,012 0,417 0,00160534 0,245 0,016 0,760 0,00160534 0,127 0,015 0,217 0,00160534 0,082 0,012 0,170 0,00160534 0,082 0,012 0,170 0,00160534 0,121 0,015 0,210 0,00160534 0,121 0,015 0,210 0,00160534 0,169 0,016 0,305 0,00160160534 0,169 0,016 0,305 0,00160160534 0,150 0,022 0,256 0,0016030942 0,174 0,019 0,343 0,0019 0,297 0,00160436 0,183 0,019 0,297 0,00160436 0,183 0,019 0,297 0,0016 0,343 0,0019 0,297 0,00160436 0,098 0,014 0,343 0,0019 0,297 0,0016 0,343 0,0019 0,297 0,0016 0,406 0,00	MW120219	0,262	0,052	0,512	0,229
PM311241 0,270 0,012 0,417 0,0160534 0J160534 0,245 0,016 0,760 0,00 0J160534 0,127 0,015 0,217 0,00 0J160534 0,082 0,012 0,170 0,00 0J160534 0,082 0,015 0,210 0,00 0J160534 0,082 0,015 0,210 0,00 0J160534 0,012 0,016 0,305 0,00 0J160534 0,015 0,016 0,021 0,256 0,00 0J160534 0,150 0,022 0,256 0,00 0,00 0,022 0,256 0,00 0J160438 0,183 0,019 0,029 0,0251 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	PM311241	0,104	0,011	0,208	0,091
0J160534 0,245 0,016 0,760 0,010 0J160534 0,127 0,015 0,217 0,010 0J160534 0,082 0,012 0,170 0,010 0J160534 0,082 0,015 0,210 0,010 0J160534 0,0121 0,015 0,210 0,010 0J160534 0,121 0,015 0,210 0,010 0J160534 0,0121 0,015 0,210 0,010 0J160534 0,0121 0,015 0,210 0,010 0J160534 0,0169 0,016 0,305 0,010 0J160534 0,0150 0,022 0,256 0,010 0J160534 0,150 0,019 0,256 0,010 0J160534 0,150 0,019 0,256 0,010 0J160534 0,139 0,020 0,251 0,000 0J160436 0,139 0,012 0,343 0,000 0J160436 0,139 0,012 0,343 0,000 0J160436 0,139 0,012 0,343 0,000 <td>PM311241</td> <td>0,096</td> <td>0,012</td> <td>0,262</td> <td>0,088</td>	PM311241	0,096	0,012	0,262	0,088
0J160534 0,127 0,015 0,217 0,015 0J160534 0,082 0,012 0,170 0,015 0B150632 0,121 0,015 0,210 0,010 0H0150743 0,169 0,016 0,305 0,010 0H030942 0,174 0,019 0,343 0,019 0H030942 0,139 0,020 0,251 0,019 0H060436 0,183 0,019 0,297 0,014 0H060436 0,098 0,014 0,343 0,019 0H060436 0,139 0,012 0,343 0,019 0H060436 0,139 0,012 0,343 0,019 0H060436 0,144 0,019 0,417 0,011	PM311241	0,270	0,012	0,417	0,052
0J160534 0,082 0,012 0,170 0,000 0B150632 0,121 0,015 0,210 0,000 0H0150743 0,169 0,016 0,305 0,000 0H030942 0,174 0,019 0,343 0,000 0H030942 0,139 0,020 0,251 0,000 0H060436 0,183 0,019 0,297 0,000 0H060436 0,098 0,014 0,343 0,000 0H060436 0,139 0,012 0,343 0,000 0H060436 0,139 0,012 0,343 0,000 0H060436 0,139 0,012 0,343 0,000 0H060436 0,144 0,019 0,417 0,000 0H060436 0,014 0,010 0,417 0,000 0H060436 0,014 0,010 0,011 0,409 0	DJ160534	0,245	0,016	0,760	0,143
OB 150632 0,121 0,015 0,210 0, HO 150743 0,169 0,016 0,305 0, KM 180438 0,150 0,022 0,256 0, M030942 0,174 0,019 0,343 0, M030942 0,139 0,020 0,251 0, VP160436 0,183 0,019 0,297 0, VP160436 0,098 0,014 0,343 0, SS050745 0,139 0,012 0,343 0, SS050745 0,191 0,016 0,406 0, SS050745 0,144 0,019 0,417 0, SR310336 0,147 0,022 0,274 0, SW250237 0,196 0,011 0,409 0, SW250237 0,380 0,019 0,531 0,	DJ160534	0,127	0,015	0,217	0,106
HO150743 0,169 0,016 0,305 0, KM180438 0,150 0,022 0,256 0, M030942 0,174 0,019 0,343 0, M030942 0,139 0,020 0,251 0, VP160436 0,183 0,019 0,297 0, VP160436 0,098 0,014 0,343 0, SS050745 0,139 0,012 0,343 0, SS050745 0,191 0,016 0,406 0, SS050745 0,144 0,019 0,417 0, SR310336 0,147 0,022 0,274 0, SW250237 0,196 0,011 0,409 0, SW250237 0,380 0,019 0,531 0,	DJ160534	0,082	0,012	0,170	0,077
XM180438 0,150 0,022 0,256 0,002 M030942 0,174 0,019 0,343 0,000 M030942 0,139 0,020 0,251 0,000 VP160436 0,183 0,019 0,297 0,000 VP160436 0,098 0,014 0,343 0,000 SS050745 0,139 0,012 0,343 0,000 SS050745 0,191 0,016 0,406 0,000 SS050745 0,144 0,019 0,417 0,000 SR310336 0,147 0,022 0,274 0,000 SW250237 0,196 0,011 0,409 0,531 0,000 SW250237 0,380 0,019 0,531 0,000	OB150632	0,121	0,015	0,210	0,076
M030942 0,174 0,019 0,343 0,000 M030942 0,139 0,020 0,251 0,000 VP160436 0,183 0,019 0,297 0,000 VP160436 0,098 0,014 0,343 0,000 SS050745 0,139 0,012 0,343 0,000 SS050745 0,191 0,016 0,406 0,000 SS050745 0,144 0,019 0,417 0,000 SR310336 0,147 0,022 0,274 0,000 SW250237 0,196 0,011 0,409 0,531 0,000 SW250237 0,380 0,019 0,531 0,000	HO150743	0,169	0,016	0,305	0,096
M030942 0,139 0,020 0,251 0,020 VP160436 0,183 0,019 0,297 0,020 VP160436 0,098 0,014 0,343 0,020 SS050745 0,139 0,012 0,343 0,020 SS050745 0,191 0,016 0,406 0,020 SS050745 0,144 0,019 0,417 0,020 SR310336 0,147 0,022 0,274 0,020 SW250237 0,196 0,011 0,409 0,000 SW250237 0,380 0,019 0,531 0,000	KM180438	0,150	0,022	0,256	0,100
VP160436 0,183 0,019 0,297 0, VP160436 0,098 0,014 0,343 0, SS050745 0,139 0,012 0,343 0, SS050745 0,191 0,016 0,406 0, SS050745 0,144 0,019 0,417 0, 3R310336 0,147 0,022 0,274 0, 3W250237 0,196 0,011 0,409 0, 3W250237 0,380 0,019 0,531 0,	IM030942	0,174	0,019	0,343	0,084
VP160436 0,098 0,014 0,343 0, SS050745 0,139 0,012 0,343 0, SS050745 0,191 0,016 0,406 0, SS050745 0,144 0,019 0,417 0, 3R310336 0,147 0,022 0,274 0, 3W250237 0,196 0,011 0,409 0, 3W250237 0,380 0,019 0,531 0,	IM030942	0,139	0,020	0,251	0,098
\$\color{1}{2}\$\$\color{1}{2}\$\$ 0,139 0,012 0,343 0, \$\color{1}{2}\$\$\color{1}{2}\$\$ 0,191 0,016 0,406 0, \$\color{1}{2}\$\$\$\color{1}{2}\$\$ 0,144 0,019 0,417 0, \$\color{1}{2}\$	WP160436	0,183	0,019	0,297	0,113
\$\color{1}{2}\$\$\sqrt{0}\$\$\sqrt{1}\$\$\sqrt{0}\$\$\sqrt{1}\$\$ 0,191 0,016 0,406 0, \$\color{1}{2}\$\$\sqrt{0}\$\$\sqrt{0}\$\$\sqrt{1}\$\$\sqrt{0}\$\$ 0,144 0,019 0,417 0, \$\color{1}{2}\$\$\sqrt{0}\$\$\sqrt{0}\$\$\sqrt{0}\$\$ 0,147 0,022 0,274 0, \$\color{1}{2}\$\$\$\sqrt{0}\$\$\$\sqrt{0}\$\$ 0,011 0,409 0, \$\color{1}{2}\$\$\$\$\sqrt{0}\$	WP160436	0,098	0,014	0,343	0,078
\$\text{S050745}\$ 0,144 0,019 0,417 0,88310336 0,147 0,022 0,274 0,880250237 0,196 0,011 0,409 0,688250237 0,380 0,019 0,531 0,688250237 0,000 </td <td>FS050745</td> <td>0,139</td> <td>0,012</td> <td>0,343</td> <td>0,053</td>	FS050745	0,139	0,012	0,343	0,053
3R310336 0,147 0,022 0,274 0,8W250237 0,196 0,011 0,409 0,8W250237 0,380 0,019 0,531 0,000 </td <td>FS050745</td> <td>0,191</td> <td>0,016</td> <td>0,406</td> <td>0,096</td>	FS050745	0,191	0,016	0,406	0,096
3W250237 0,196 0,011 0,409 0, 3W250237 0,380 0,019 0,531 0,	FS050745	0,144	0,019	0,417	0,106
3W250237 0,380 0,019 0,531 0,	BR310336	0,147	0,022	0,274	0,117
	BW250237	0,196	0,011	0,409	0,044
31040444	BW250237	0,380	0,019	0,531	0,090
:H240441 0,272 0,020 0,408 0,	EH240441	0,272	0,020	0,408	0,087

EH240441 0,157 0,015 0,260 0 GW290431 0,106 0,022 0,335 0 GW290431 0,173 0,029 0,360 0 UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	_
EH240441 0,387 0,014 0,529 0 EH240441 0,157 0,015 0,260 0 GW290431 0,106 0,022 0,335 0 GW290431 0,173 0,029 0,360 0 UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	nis
EH240441 0,157 0,015 0,260 0 GW290431 0,106 0,022 0,335 0 GW290431 0,173 0,029 0,360 0 UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	
GW290431 0,106 0,022 0,335 0 GW290431 0,173 0,029 0,360 0 UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,069
GW290431 0,173 0,029 0,360 0 UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,058
UA160145 0,225 0,014 0,323 0 UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,102
UA160145 0,153 0,016 0,238 0 HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,143
HD080541 0,109 0,018 0,379 0 HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,052
HD080541 0,125 0,016 0,282 0 HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,082
HM150743 0,262 0,014 0,480 0 HM150743 0,182 0,011 0,347 0	,083
HM150743 0,182 0,011 0,347 0	,112
	,086
HM150743 0,138 0,011 0,327 0	,091
	,084
AG110141 0,093 0,011 0,206 0	,071
AG110141 0,082 0,014 0,200 0	,064
AG110141 0,195 0,013 0,391 0	,090
GM130630 0,621 0,020 1,189 0	,114
GM130630 0,715 0,018 0,871 0	,090
GM130630 0,305 0,014 0,504 0	,114
WK260635 0,096 0,012 0,192 0	,080,
WK260635 0,155 0,014 0,292 0	,099
WR030241 0,518 0,019 0,757 0	,109
WR030241 0,191 0,016 0,373 0	,100
WR030241 0,406 0,020 0,618 0	,110
WR030241 0,247 0,018 0,341 0	,076
FL090220 0,191 0,022 0,264 0	,114
FL090220 0,196 0,016 0,405 0	,087
FL090220 0,110 0,020 0,414 0	,085
HW111147 0,302 0,015 0,425 0	,083
HW111147 0,180 0,014 0,280 0	,110
HF260928 0,059 0,015 0,121 0	,040
MG091134 0,161 0,022 0,330 0	,112
MG091134 0,078 0,029 0,195 0	,061
HW130939 0,308 0,022 0,567 0	,082
HW130939 0,458 0,029 0,740 0	,112
HW111147 0,302 0,015 0,425 0	,083
HD080541 0,124 0,009 0,313 0	,072

Patient	Dicke Hornschicht	Dicke Hornschicht	Dicke Epidermis	Dicke Epidermis
	aK	gesund	aK	gesund
HT110939	0,176	0,014	0,589	0,110
FG270646	0,163	0,016	0,332	0,096
CW110835	0,104	0,015	0,319	0,072
RS210251	0,121	0,014	0,217	0,083
EH020839	0,204	0,012	0,364	0,089
GW240125	0,292	0,012	0,492	0,097
EK120633	0,110	0,011	0,252	0,097
GH280545	0,129	0,011	0,245	0,112
GH280545	0,168	0,018	0,331	0,096
GH280545	0,114	0,014	0,241	0,074
VS201138	0,445	0,020	0,740	0,096
VS201138	0,233	0,016	0,499	0,094
WM210545	0,159	0,025	0,601	0,076
WM210545	0,372	0,033	0,568	0,079
WM210545	0,134	0,030	0,277	0,079
BW250237	0,199	0,016	0,381	0,061
DS120334	0,149	0,018	0,276	0,089
DS120334	0,177	0,012	0,281	0,084
WR030241	0,262	0,018	0,597	0,074
WR030241	0,217	0,018	0,409	0,074
WR030241	0,080	0,014	0,155	0,072
FS050745	0,095	0,014	0,191	0,041
FS050745	0,114	0,029	0,245	0,074
FS050745	0,112	0,016	0,307	0,069
FS050745	0,136	0,016	0,229	0,084
FS050745	0,128	0,020	0,207	0,098
FS050745	0,087	0,014	0,213	0,076
MB060749	0,082	0,014	0,136	0,067
MB060749	0,102	0,018	0,127	0,065
MB060749	0,093	0,016	0,170	0,057
MG091134	0,065	0,008	0,278	0,087
HH130132	0,097	0,015	0,192	0,106
HH130132	0,264	0,018	0,398	0,080
JK051238	0,539	0,015	0,659	0,116
JK051238	0,331	0,018	0,388	0,131

	Dicke	Dicke	Dicke	Dicke
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis
	аК	gesund	aK	gesund
ER130741	0,316	0,018	0,471	0,096
ER130741	0,208	0,019	0,309	0,099
GW290431	0,257	0,016	0,576	0,079
GW290431	0,100	0,018	0,206	0,090
GW290431	0,392	0,019	0,594	0,114
CG140742	0,072	0,016	0,165	0,065
CG140742	0,102	0,019	0,232	0,065
CG140742	0,049	0,012	0,139	0,037
SS070159	0,231	0,015	0,343	0,091
VS201138	0,347	0,016	0,817	0,131
MG091134	0,180	0,012	0,286	0,106

Anhang Tabelle 6. Unterscheidung von aK und BCC anhand von Dicken und Signalintensitäten mit VivoSight[®]

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
HT210346	0	0,183	93,240
HT210346	0	0,298	65,700
HF260928	0	0,204	31,179
HF260928	0	0,213	66,882
HF260928	0	0,307	62,728
MG091134	0	0,398	48,894
IB221232	0	0,166	46,634
IB221232	0	0,153	49,596
IB221232	0	0,160	83,975
HF260928	0	0,121	70,194
MG091134	0	0,255	42,334
MW120219	0	0,512	50,294
PM311241	0	0,208	47,714
PM311241	0	0,262	46,118
PM311241	0	0,417	35,456
DJ160534	0	0,760	25,863
DJ160534	0	0,217	47,256

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
DJ160534	0	0,170	55,392
OB150632	0	0,210	33,708
HO150743	0	0,305	36,090
KM180438	0	0,256	49,795
IM030942	0	0,343	30,863
IM030942	0	0,251	35,742
WP160436	0	0,297	43,774
WP160436	0	0,343	29,745
FS050745	0	0,343	36,867
FS050745	0	0,406	38,756
FS050745	0	0,417	32,563
BR310336	0	0,274	63,094
BW250237	0	0,409	31,960
BW250237	0	0,531	24,252
EH240441	0	0,408	37,694
EH240441	0	0,529	28,715
EH240441	0	0,260	35,251
GW290431	0	0,335	42,059
GW290431	0	0,360	55,478
UA160145	0	0,323	46,932
UA160145	0	0,238	42,076
HD080541	0	0,379	26,464
HD080541	0	0,282	30,203
HM150743	0	0,480	25,883
HM150743	0	0,347	43,366
HM150743	0	0,327	28,417
AG110141	0	0,206	31,692
AG110141	0	0,200	35,349
AG110141	0	0,391	28,189
GM130630	0	1,189	28,926
GM130630	0	0,871	31,125
GM130630	0	0,504	24,933
WK260635	0	0,192	29,543
WK260635	0	0,292	37,747
WR030241	0	0,757	24,250

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
WR030241	0	0,373	30,403
WR030241	0	0,618	27,379
WR030241	0	0,341	34,761
FL090220	0	0,264	46,118
FL090220	0	0,405	38,964
FL090220	0	0,414	34,704
HW111147	0	0,425	37,862
HW111147	0	0,280	58,698
HF260928	0	0,121	70,194
MG091134	0	0,330	48,807
MG091134	0	0,195	47,861
HW130939	0	0,567	50,158
HW130939	0	0,740	16,229
HW111147	0	0,425	37,862
HD080541	0	0,313	37,624
HT110939	0	0,589	33,453
FG270646	0	0,332	35,426
CW110835	0	0,319	25,815
RS210251	0	0,217	36,355
EH020839	0	0,364	37,395
GW240125	0	0,492	23,226
EK120633	0	0,252	33,030
GH280545	0	0,245	27,936
GH280545	0	0,331	38,538
GH280545	0	0,241	40,359
VS201138	0	0,740	20,002
VS201138	0	0,499	26,584
WM210545	0	0,601	27,279
WM210545	0	0,568	43,512
WM210545	0	0,277	37,513
BW250237	0	0,381	24,640
DS120334	0	0,276	66,589
DS120334	0	0,281	50,317
WR030241	0	0,597	25,492
WR030241	0	0,409	34,825

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
WR030241	0	0,155	39,587
FS050745	0	0,191	30,737
FS050745	0	0,245	34,731
FS050745	0	0,307	29,481
FS050745	0	0,229	21,537
FS050745	0	0,207	33,728
FS050745	0	0,213	34,517
MB060749	0	0,136	67,971
MB060749	0	0,127	101,290
MB060749	0	0,170	93,181
MG091134	0	0,278	48,894
HH130132	0	0,192	69,898
HH130132	0	0,398	55,672
JK051238	0	0,659	57,972
JK051238	0	0,388	41,353
ER130741	0	0,471	109,439
ER130741	0	0,309	91,166
GW290431	0	0,576	24,103
GW290431	0	0,206	70,740
GW290431	0	0,594	31,378
CG140742	0	0,165	61,335
CG140742	0	0,232	63,780
CG140742	0	0,139	72,306
SS070159	0	0,343	37,464
VS201138	0	0,817	20,114
MG091134	0	0,286	26,162
HT210346	1	0,055	107,715
AW200242	1	0,065	45,899
IB221232	1	0,053	74,027
IB221232	1	0,074	103,702
IB221232	1	0,037	96,424
IB221232	1	0,074	68,410
IB221232	1	0,065	86,561
IB221232	1	0,065	70,183
KB071273	1	0,053	78,484

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
HF260928	1	0,057	83,426
HF260928	1	0,049	61,700
HF260928	1	0,065	82,607
HF260928	1	0,061	78,546
HF260928	1	0,049	77,638
HF260928	1	0,069	75,132
HF260928	1	0,045	75,178
HF260928	1	0,057	66,783
PT200450	1	0,057	106,447
MH150241	1	0,053	97,990
MH150241	1	0,065	99,108
MH150241	1	0,049	92,424
MW120219	1	0,045	104,557
MW120219	1	0,057	74,459
RK280137	1	0,065	55,516
RK280137	1	0,069	82,931
RK280137	1	0,069	87,901
RK280137	1	0,065	71,417
RK280137	1	0,061	51,214
RK280137	1	0,053	94,399
RK280137	1	0,074	79,473
PM311241	1	0,057	111,908
DJ160534	1	0,053	67,644
DJ160534	1	0,078	49,578
DJ160534	1	0,065	87,523
DJ160534	1	0,061	86,160
DJ160534	1	0,049	67,746
DJ160534	1	0,069	86,263
FD231041	1	0,053	83,291
UH241140	1	0,045	80,072
HR130151	1	0,053	58,260
GM040146	1	0,049	107,626
KM180438	1	0,065	84,706
KM180438	1	0,069	66,288
KB071273	1	0,049	89,746

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
KB071273	1	0,078	81,135
DD200559	1	0,065	72,440
HS110946	1	0,074	69,188
WB241047	1	0,086	52,852
AW100836	1	0,041	74,563
UP010445	1	0,078	58,068
AE150935	1	0,069	112,223
AE150935	1	0,053	63,247
AE150935	1	0,065	31,938
AE150935	1	0,045	57,235
PS100343	1	0,110	27,229
GG060143	1	0,082	66,408
IM030942	1	0,086	43,406
HF260928	1	0,057	81,223
HF260928	1	0,057	75,943
HF260928	1	0,053	67,554
HF260928	1	0,061	81,844
HF260928	1	0,074	74,461
HF260928	1	0,074	76,749
HF260928	1	0,045	112,865
HF260928	1	0,061	94,734
HF260928	1	0,082	87,777
AS240948	1	0,065	60,085
JA201054	1	0,033	108,932
JA201054	1	0,069	58,569
HP230842	1	0,065	54,417
HP230842	1	0,078	73,387
HP230842	1	0,045	61,832
HP230842	1	0,049	91,864
HP230842	1	0,061	50,410
MA070646	1	0,090	50,396
EW280336	1	0,069	69,820
EW280336	1	0,061	73,322
EW280336	1	0,082	46,975
MH150241	1	0,078	74,748

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
MH150241	1	0,065	106,440
MH150241	1	0,045	121,478
MH150241	1	0,061	65,778
UG241242	1	0,041	75,236
RH150334	1	0,061	81,797
BR310336	1	0,074	55,382
BR310336	1	0,041	94,993
BR310336	1	0,053	60,816
BR310336	1	0,053	71,082
BR310336	1	0,069	94,258
IK140148	1	0,074	76,747
JK170352	1	0,078	63,960
JA271125	1	0,069	66,305
WR080427	1	0,061	82,316
WG040349	1	0,098	67,006
HA140241	1	0,090	65,103
BP021249	1	0,114	72,179
JS291130	1	0,106	48,025
BB310534	1	0,069	78,122
JL170269	1	0,061	78,436
MO200333	1	0,082	59,969
WW120937	1	0,074	62,281
RA270742	1	0,074	55,957
HM260347	1	0,094	79,724
HM260347	1	0,057	60,122
AW240748	1	0,078	56,806
AC260643	1	0,053	91,927
AC260643	1	0,082	101,041
HH100340	1	0,074	53,880
EG290636	1	0,074	76,270
RH230117	1	0,074	94,721
FL090220	1	0,041	57,225
IH260343	1	0,049	71,396
GN090921	1	0,065	77,949
RA270742	1	0,061	77,302

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
RA270742	1	0,078	63,222
MB130438	1	0,065	109,299
MS310346	1	0,074	127,648
HH130132	1	0,074	71,563
HW050329	1	0,065	68,699
JH221136	1	0,041	32,252
SH301247	1	0,065	73,359
SH301247	1	0,082	35,694
SH301247	1	0,074	84,320
SH301247	1	0,061	96,391
SH301247	1	0,057	37,716
HM150743	1	0,069	47,404
DJ160534	1	0,078	48,198
AG110141	1	0,074	71,575
HR130151	1	0,053	64,845
KM010259	1	0,057	53,229
JK170352	1	0,074	69,190
GG220948	1	0,078	35,967
HG090261	1	0,074	101,630
KB071273	1	0,053	83,662
US190256	1	0,065	69,125
US190256	1	0,045	56,186
US190256	1	0,049	49,054
US190256	1	0,061	79,812
MB020556	1	0,057	43,387
MB020556	1	0,090	74,691
EW070740	1	0,049	52,644
AW100836	1	0,074	75,254
UF260539	1	0,069	51,356
IM020849	1	0,069	78,763
GS230944	1	0,041	67,910
GS230944	1	0,061	71,787
RJ230856	1	0,074	45,703
UP010445	1	0,078	58,068
HS160742	1	0,086	60,840

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
HS160742	1	0,061	64,939
SA161169	1	0,069	107,117
HW260154	1	0,069	64,681
IS230852	1	0,061	61,960
JH100448	1	0,053	25,948
PS020332	1	0,045	59,391
IK161140	1	0,053	85,977
IB030647	1	0,053	27,449
GG060143	1	0,074	66,408
HE241246	1	0,053	27,009
MF130955	1	0,037	114,414
MF130955	1	0,074	94,597
MF130955	1	0,061	110,759
GB221244	1	0,057	30,208
JB040147	1	0,069	90,110
IM030942	1	0,053	67,668
EW280336	1	0,061	30,959
EW280336	1	0,053	108,786
JA201054	1	0,069	67,441
LM220846	1	0,069	83,923
LM220846	1	0,057	66,728
LM220846	1	0,057	73,252
GH100428	1	0,094	34,170
KS170540	1	0,078	44,638
RK280137	1	0,053	50,756
RK280137	1	0,053	67,457
GH050542	1	0,098	43,653
GH050542	1	0,086	31,395
MH150241	1	0,078	57,029
DG230949	1	0,049	49,585
DG230949	1	0,090	83,233
UG241242	1	0,106	64,030
WM210545	1	0,082	45,253
GE060555	1	0,053	93,093
SS190540	1	0,069	36,045

Patient	0 = aK, 1 = BCC	Dicke (Epidermis bei aK/ Epidermis über BCC)	Signalintensität Mittelwert (Dermis bei aK/BCC)
GH280534	1	0,053	62,237
HT210346	1	0,055	107,715
HF260928	1	0,053	77,928
JA201054	1	0,061	54,194

Anhang Tabelle 7. Signalintensitäten von BCC und benachbarter gesunder Haut vor OP mit VivoSight®

Patient	SI M: Epidermis	SI M: Epidermis	SI M: BCC	SI M: Dermis	SI M: Dermis	SI M: Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
JK170352	115,028	140,395	63,960	100,276	29,916	44,410
JA271125	100,310	116,590	66,305	89,424	25,100	39,327
WR080427	131,330	157,482	82,316	120,713	42,738	57,190
WG040349	119,165	143,241	67,006	102,702	21,149	35,864
HA140241	128,242	158,192	65,103	108,882	23,588	45,586
BP021249	136,235	156,540	72,179	102,314	50,660	56,805
JS291130	89,762	105,242	48,025	55,958	19,185	24,434
BB310534	116,243	135,583	78,122	102,051	73,819	81,667
JL170269	132,810	141,526	78,436	101,417	66,397	71,414
MO200333	117,776	127,061	59,969	79,087	27,565	35,196
WW120937	147,076	169,883	62,281	133,238	24,351	69,860
RA270742	105,703	135,513	55,957	115,343	21,441	43,814
HM260347	133,999	152,901	79,724	108,691	32,730	42,191
HM260347	142,377	163,083	60,122	89,638	20,821	45,049
AW240748	133,384	158,199	56,806	83,511	23,433	34,929
AC260643	148,021	158,043	91,927	124,464	55,958	91,927
AC260643	147,054	159,385	101,041	121,251	45,623	57,521
HH100340	141,599	154,777	53,880	89,530	20,711	33,888
EG290636	116,391	148,136	76,270	92,757	39,735	52,647
RH230117	162,693	170,596	94,721	108,568	52,525	56,443
FL090220	144,884	150,462	57,225	68,789	18,570	34,185
IH260343	116,594	151,171	71,396	100,267	39,352	57,858
GN090921	144,110	153,047	77,949	103,144	28,651	42,805
RA270742	145,684	152,158	77,302	90,949	38,064	49,896

Patient	SI M: Epidermis über BCC	SI M: Epidermis gesund	SI M: BCC	SI M: Dermis gesund	SI M: Dermis unter BCC	SI M: Dermis Tiefe gesund
RA270742	128,582	141,679	63,222	91,396	17,680	29,353
MB130438	124,555	179,987	109,299	151,378	60,859	72,165
MS310346	157,152	183,941	127,648	143,111	70,956	84,033
HH130132	120,602	139,369	71,563	83,639	23,625	42,013
HW050329	126,773	149,740	68,699	88,088	27,888	34,445
JH221136	126,849	149,509	32,252	72,893	14,651	29,037
SH301247	140,310	155,343	73,359	104,550	31,057	50,406
SH301247	115,186	141,682	35,694	85,688	25,157	49,591
SH301247	158,089	167,028	84,320	125,150	46,945	57,004
SH301247	156,784	165,321	96,391	124,378	31,406	55,761
SH301247	114,726	148,682	37,716	81,213	15,555	28,720
HM150743	89,874	149,994	47,404	69,035	15,510	26,626
DJ160534	156,581	175,259	48,198	92,820	34,176	56,065
AG110141	136,339	150,201	71,575	108,617	38,182	43,929
HR130151	122,454	146,862	64,845	85,372	24,816	48,677
KM010259	145,718	162,161	53,229	92,008	24,425	47,203
JK170352	95,508	117,641	69,190	99,274	23,920	32,650
GG220948	130,888	141,874	35,967	91,822	24,508	35,384
HG090261	140,799	175,922	101,630	123,484	52,214	66,517
KB071273	126,404	152,894	83,662	125,008	45,492	56,392
US190256	142,749	172,536	69,125	84,194	24,043	34,477
US190256	131,157	142,424	56,186	100,392	29,134	42,530
US190256	122,366	136,311	49,054	82,653	21,636	33,340
US190256	112,323	148,735	79,812	103,549	19,743	30,824
MB020556	124,042	149,641	43,387	100,038	13,862	30,889
MB020556	136,250	145,776	74,691	91,876	48,892	62,719
EW070740	114,289	150,338	52,644	73,841	19,235	29,762
AW100836	143,918	159,624	75,254	114,071	43,342	51,532
UF260539	106,303	152,454	51,356	100,337	23,420	41,135
IM020849	142,986	164,650	78,763	111,960	26,597	42,967
GS230944	136,965	157,130	67,910	98,543	21,122	39,302
GS230944	136,979	155,476	71,787	112,277	38,056	64,011
RJ230856	106,318	161,618	45,703	104,838	18,386	60,949
UP010445	154,620	164,867	58,068	75,886	21,292	38,902
HS160742	111,287	153,317	60,840	81,203	17,831	31,995

Patient	SI M: Epidermis über BCC	SI M: Epidermis gesund	SI M: BCC	SI M: Dermis gesund	SI M: Dermis unter BCC	SI M: Dermis Tiefe gesund
HS160742	100,471	147,886	64,939	98,279	26,734	39,034
SA161169	143,230	164,664	107,117	137,526	34,761	50,578
HW260154	107,420	138,385	64,681	84,924	19,928	35,577
IS230852	136,168	164,601	61,960	119,149	28,943	46,460
JH100448	121,904	156,053	25,948	95,260	15,098	36,659
PS020332	103,464	128,686	59,391	81,518	17,949	31,096
IK161140	109,464	137,291	85,977	114,398	40,711	50,783
IB030647	143,186	172,298	27,449	101,868	20,863	36,640
GG060143	116,270	169,384	66,408	112,893	21,574	43,592
HE241246	90,864	151,572	27,009	81,573	14,056	27,486
MF130955	151,636	165,326	114,414	124,276	44,777	57,022
MF130955	128,702	167,784	94,597	125,081	38,375	49,672
MF130955	165,639	176,652	110,759	159,649	48,747	59,178
GB221244	142,022	155,660	30,208	71,936	25,585	35,698
JB040147	142,464	158,702	90,110	110,544	34,782	43,222
IM030942	94,797	155,809	67,668	105,681	25,776	37,378
EW280336	151,890	163,174	30,959	82,202	16,972	27,532
EW280336	153,138	170,064	108,786	139,943	42,548	59,329
JA201054	114,945	169,336	67,441	102,078	26,447	48,775
LM220846	124,521	154,256	83,923	126,805	27,346	42,518
LM220846	123,696	141,176	66,728	122,135	19,753	40,701
LM220846	135,643	156,373	73,252	119,162	24,853	57,105
GH100428	109,088	140,684	34,170	77,866	16,541	30,515
KS170540	123,238	149,363	44,638	60,857	19,569	26,070
RK280137	143,071	153,115	50,756	67,640	18,104	26,647
RK280137	136,154	146,247	67,457	98,921	25,420	34,463
GH050542	92,977	125,780	43,653	78,251	19,670	26,869
GH050542	91,077	145,624	31,395	75,319	14,882	26,248
MH150241	91,390	125,776	57,029	84,760	20,739	30,970
DG230949	128,598	168,154	49,585	93,357	19,786	39,056
DG230949	138,605	158,964	83,233	102,033	26,664	36,419
UG241242	97,485	141,809	64,030	85,597	23,507	33,117
WM210545	90,700	184,119	45,253	83,293	17,128	33,037
GE060555	133,637	144,421	93,093	109,029	37,111	49,080
SS190540	88,177	157,862	36,045	74,400	13,669	21,055

Patient	SI M: Epidermis über BCC	SI M: Epidermis gesund	SI M: BCC	SI M: Dermis gesund	SI M: Dermis unter BCC	SI M: Dermis Tiefe gesund
GH280534	127,692	165,205	62,237	90,828	16,930	26,125
HT210346	120,745	156,585	107,715	113,058	68,611	78,769
HF260928	129,555	175,592	77,928	141,933	30,842	50,681

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 8. Signalintensitäten von aK und periläsionaler normaler Haut vor OP mit VivoSight[®]

Patient	SI M: Hornschicht aK	SI M: Hornschicht gesund	SI M: Epidermis aK	SI M: Epidermis gesund	SI M: Dermis aK	SI M: Dermis gesund
HF260928	159,753	234,539	147,950	175,839	70,194	111,706
MG091134	138,658	208,948	121,693	133,958	48,807	62,460
MG091134	151,357	197,027	141,024	181,543	47,861	63,177
HW130939	124,921	208,649	106,837	139,980	50,158	67,707
HW130939	73,613	146,686	64,844	133,418	16,229	37,884
HW111147	128,380	208,930	104,192	149,014	37,862	76,186
HD080541	156,238	205,434	119,259	150,377	37,624	63,404
HT110939	119,345	206,351	93,941	145,796	33,453	66,912
FG270646	105,426	211,309	91,213	144,971	35,426	47,349
CW110835	119,921	182,102	84,775	137,337	25,815	40,054
RS210251	127,414	238,524	110,308	163,362	36,355	76,167
EH020839	134,166	197,295	117,145	150,316	37,395	66,234
GW240125	96,829	181,798	86,242	137,874	23,226	41,396
EK120633	136,983	218,967	108,959	161,134	33,030	49,115
GH280545	148,279	232,286	106,791	157,225	27,936	49,581
GH280545	114,908	226,618	102,557	149,119	38,538	63,859
GH280545	117,783	207,591	105,591	138,354	40,359	64,724
VS201138	89,142	188,569	78,831	153,451	20,002	46,010
VS201138	78,253	202,058	71,571	149,492	26,584	39,015
WM210545	116,138	176,479	95,749	152,997	27,279	38,478
WM210545	144,910	226,213	118,184	191,335	43,512	67,282
WM210545	150,912	225,309	125,830	176,388	37,513	64,984
BW250237	131,685	218,019	113,768	163,851	24,640	53,938

Anhang Tabelle 9. Hornschicht- und Epidermisdicken von aK und benachbarter gesunder Haut vor OP mit VivoSight[®]

	Dicke	Dicke	Dicke	Dicke
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis
	аК	gesund	aK	gesund
HF260928	0,059	0,015	0,121	0,040
MG091134	0,161	0,022	0,330	0,112
MG091134	0,078	0,029	0,195	0,061
HW130939	0,308	0,022	0,567	0,082
HW130939	0,458	0,029	0,740	0,112
HW111147	0,302	0,015	0,425	0,083
HD080541	0,124	0,009	0,313	0,072
HT110939	0,176	0,014	0,589	0,110
FG270646	0,163	0,016	0,332	0,096
CW110835	0,104	0,015	0,319	0,072
RS210251	0,121	0,014	0,217	0,083
EH020839	0,204	0,012	0,364	0,089
GW240125	0,292	0,012	0,492	0,097
EK120633	0,110	0,011	0,252	0,097
GH280545	0,129	0,011	0,245	0,112
GH280545	0,168	0,018	0,331	0,096
GH280545	0,114	0,014	0,241	0,074
VS201138	0,445	0,020	0,740	0,096
VS201138	0,233	0,016	0,499	0,094
WM210545	0,159	0,025	0,601	0,076
WM210545	0,372	0,033	0,568	0,079
WM210545	0,134	0,030	0,277	0,079
BW250237	0,199	0,016	0,381	0,061

Anhang Tabelle 10. Unterscheidung von aK und BCC anhand von Dicken und Signalintensitäten vor OP mit VivoSight[®]

	0 = aK,	Dicke	Signalintensität	
Patient	0 - arc, 1 = BCC	(Epidermis bei aK/	Mittelwert	
	1 = BCC	Epidermis über BCC)	(Dermis bei aK/ BCC)	
HF260928	0	0,121	70,194	
MG091134	0	0,330	48,807	
MG091134	0	0,195	47,861	
HW130939	0	0,567	50,158	
HW130939	0	0,740	16,229	

	0 = aK	Dicke	Signalintensität
Patient	0 = aK,	(Epidermis bei aK/	Mittelwert
	1 = BCC	Epidermis über BCC)	(Dermis bei aK/ BCC)
HW111147	0	0,425	37,862
HD080541	0	0,313	37,624
HT110939	0	0,589	33,453
FG270646	0	0,332	35,426
CW110835	0	0,319	25,815
RS210251	0	0,217	36,355
EH020839	0	0,364	37,395
GW240125	0	0,492	23,226
EK120633	0	0,252	33,030
GH280545	0	0,245	27,936
GH280545	0	0,331	38,538
GH280545	0	0,241	40,359
VS201138	0	0,740	20,002
VS201138	0	0,499	26,584
WM210545	0	0,601	27,279
WM210545	0	0,568	43,512
WM210545	0	0,277	37,513
BW250237	0	0,381	24,640
JK170352	1	0,078	63,960
JA271125	1	0,069	66,305
WR080427	1	0,061	82,316
WG040349	1	0,098	67,006
HA140241	1	0,090	65,103
BP021249	1	0,114	72,179
JS291130	1	0,106	48,025
BB310534	1	0,069	78,122
JL170269	1	0,061	78,436
MO200333	1	0,082	59,969
WW120937	1	0,074	62,281
RA270742	1	0,074	55,957
HM260347	1	0,094	79,724
HM260347	1	0,057	60,122
AW240748	1	0,078	56,806
AC260643	1	0,053	91,927
AC260643	1	0,082	101,041
HH100340	1	0,074	53,880

		Dicke	Signalintensität
Patient	0 = aK,	(Epidermis bei aK/	Mittelwert
	1 = BCC	Epidermis über BCC)	(Dermis bei aK/ BCC)
EG290636	1	0,074	76,270
RH230117	1	0,074	94,721
FL090220	1	0,041	57,225
IH260343	1	0,049	71,396
GN090921	1	0,065	77,949
RA270742	1	0,061	77,302
RA270742	1	0,078	63,222
MB130438	1	0,065	109,299
MS310346	1	0,074	127,648
HH130132	1	0,074	71,563
HW050329	1	0,065	68,699
JH221136	1	0,041	32,252
SH301247	1	0,065	73,359
SH301247	1	0,082	35,694
SH301247	1	0,074	84,320
SH301247	1	0,061	96,391
SH301247	1	0,057	37,716
HM150743	1	0,069	47,404
DJ160534	1	0,078	48,198
AG110141	1	0,074	71,575
HR130151	1	0,053	64,845
KM010259	1	0,057	53,229
JK170352	1	0,074	69,190
GG220948	1	0,078	35,967
HG090261	1	0,074	101,630
KB071273	1	0,053	83,662
US190256	1	0,065	69,125
US190256	1	0,045	56,186
US190256	1	0,049	49,054
US190256	1	0,061	79,812
MB020556	1	0,057	43,387
MB020556	1	0,090	74,691
EW070740	1	0,049	52,644
AW100836	1	0,074	75,254
UF260539	1	0,069	51,356
IM020849	1	0,069	78,763

	0 - 4/	Dicke	Signalintensität	
Patient	0 = aK,	(Epidermis bei aK/	Mittelwert	
	1 = BCC	Epidermis über BCC)	(Dermis bei aK/ BCC)	
GS230944	1	0,041	67,910	
GS230944	1	0,061	71,787	
RJ230856	1	0,074	45,703	
UP010445	1	0,078	58,068	
HS160742	1	0,086	60,840	
HS160742	1	0,061	64,939	
SA161169	1	0,069	107,117	
HW260154	1	0,069	64,681	
IS230852	1	0,061	61,960	
JH100448	1	0,053	25,948	
PS020332	1	0,045	59,391	
IK161140	1	0,053	85,977	
IB030647	1	0,053	27,449	
GG060143	1	0,074	66,408	
HE241246	1	0,053	27,009	
MF130955	1	0,037	114,414	
MF130955	1	0,074	94,597	
MF130955	1	0,061	110,759	
GB221244	1	0,057	30,208	
JB040147	1	0,069	90,110	
IM030942	1	0,053	67,668	
EW280336	1	0,061	30,959	
EW280336	1	0,053	108,786	
JA201054	1	0,069	67,441	
LM220846	1	0,069	83,923	
LM220846	1	0,057	66,728	
LM220846	1	0,057	73,252	
GH100428	1	0,094	34,170	
KS170540	1	0,078	44,638	
RK280137	1	0,053	50,756	
RK280137	1	0,053	67,457	
GH050542	1	0,098	43,653	
GH050542	1	0,086	31,395	
MH150241	1	0,078	57,029	
DG230949	1	0,049	49,585	
DG230949	1	0,090	83,233	

	0 = aK	Dicke	Signalintensität
Patient	0 = aK, 1 = BCC	(Epidermis bei aK/	Mittelwert
	I - BCC	Epidermis über BCC)	(Dermis bei aK/ BCC)
UG241242	1	0,106	64,030
WM210545	1	0,082	45,253
GE060555	1	0,053	93,093
SS190540	1	0,069	36,045
GH280534	1	0,053	62,237
HT210346	1	0,055	107,715
HF260928	1	0,053	77,928

Anhang Tabelle 11. Vergleich der BCC Tumordicken in der OCT VivoSight[®] und in der Histologie

		(P)	
Patient	Dicke Tumor Histologie	Dicke Tumor VivoSight®	
JK170352	1,500	1,467	
JA271125	2,800	1,099	
WR080427	1,250	0,752	
WG040349	10,300	0,907	
HA140241	1,800	0,973	
BP021249	1,000	0,891	
JS291130	4,500	0,944	
BB310534	2,300	1,005	
JL170269	0,600	0,617	
MO200333	1,800	1,308	
WW120937	1,300	1,038	
RA270742	1,000	0,989	
HM260347	1,050	1,038	
HM260347	1,600	1,553	
AW240748	1,000	1,034	
AC260643	1,150	1,099	
AC260643	0,700	0,699	
HH100340	1,050	1,038	
EG290636	0,700	0,658	
RH230117	1,700	1,202	
FL090220	3,000	1,647	
IH260343	0,360	0,327	
GN090921	2,150	1,561	
RA270742	1,300	1,259	
RA270742	0,800	0,838	

Patient	Dicke Tumor Histologie	Dicke Tumor VivoSight [®]
MB130438	0,300	0,323
MS310346	0,340	0,356
HH130132	1,100	1,087
HW050329	0,900	0,866
SH301247	2,000	1,602
SH301247	0,700	0,703
SH301247	0,400	0,413
SH301247	0,800	0,854
HM150743	1,150	1,165
DJ160534	1,900	1,512
AG110141	1,400	1,394
HR130151	0,800	0,793
KM010259	1,400	1,271
JK170352	1,300	1,304
GG220948	1,800	1,259
HG090261	0,400	0,417
KB071273	0,400	0,388
US190256	1,700	1,377
US190256	1,200	1,202
US190256	1,100	1,136
US190256	1,200	1,202
MB020556	1,500	1,500
MB020556	0,400	0,409
EW070740	1,400	1,426
AW100836	0,600	0,617
UF260539	0,700	0,903
IM020849	0,260	0,286
GS230944	1,000	0,911
GS230944	1,200	1,202
RJ230856	1,200	1,251
HS160742	1,500	1,537
HS160742	1,300	1,222
SA161169	0,600	0,552
HW260154	0,800	0,719
IS230852	1,100	1,087
JH100448	2,100	1,573
PS020332	1,300	1,296

Patient	Dicke Tumor Histologie	Dicke Tumor VivoSight [®]
IK161140	0,200	0,180
IB030647	2,700	1,410
GG060143	0,500	0,470
HE241246	4,500	1,647
MF130955	0,650	0,687
MF130955	0,700	0,658
MF130955	0,300	0,282
GB221244	1,700	1,283
JB040147	0,600	0,609
IM030942	0,450	0,544
EW280336	1,000	1,022
EW280336	0,400	0,376
JA201054	1,200	1,185
LM220846	0,800	0,772
LM220846	0,900	0,915
LM220846	1,000	1,050
GH100428	1,500	1,516
KS170540	2,000	1,614
RK280137	1,900	1,647
RK280137	1,800	1,422
GH050542	1,600	1,545
GH050542	1,900	1,798
MH150241	0,400	0,413
DG230949	1,500	1,467
DG230949	0,800	0,821
UG241242	1,700	1,627
WM210545	4,100	1,860
GE060555	0,400	0,421
SS190540	1,000	1,034
GH280534	1,700	1,663
HT210346	1,000	1,042
HF260928	1,400	1,414

Anhang Tabelle 12. Vergleich der aK Schichtdicken in der OCT VivoSight[®] und in der Histologie

Patient	Dicke Ho	rnschicht	Dicke E	oidermis
Patient	Histologie	VivoSight [®]	Histologie	VivoSight [®]
HF260928	0,050	0,059	0,120	0,121
MG091134	0,150	0,161	0,340	0,330
MG091134	0,100	0,078	0,200	0,195
HW130939	0,260	0,308	0,450	0,567
HW130939	0,500	0,458	0,710	0,740
HW111147	0,250	0,302	0,410	0,425
HD080541	0,130	0,124	0,300	0,313
HT110939	0,130	0,176	0,400	0,589
FG270646	0,150	0,163	0,300	0,332
CW110835	0,110	0,104	0,280	0,319
RS210251	0,130	0,121	0,230	0,217
EH020839	0,180	0,204	0,310	0,364
GW240125	0,230	0,292	0,490	0,492
EK120633	0,120	0,110	0,250	0,252
GH280545	0,100	0,129	0,200	0,245
GH280545	0,100	0,168	0,300	0,331
GH280545	0,100	0,114	0,220	0,241
VS201138	0,380	0,445	0,720	0,740
VS201138	0,180	0,233	0,450	0,499
WM210545	0,160	0,159	0,450	0,601
WM210545	0,350	0,372	0,600	0,568
WM210545	0,160	0,134	0,300	0,277
BW250237	0,160	0,199	0,380	0,381

Anhang Tabelle 13. Vergleich der Signalintensitäten der BCC vor und nach Therapie mit VivoSight[®]

Patient	SI M: BCC	SI M: BCC
	vor Therapie	nach Therapie
HT210346	107,715	160,321
AW200242	45,899	144,240
IB221232	74,027	130,946
IB221232	103,702	169,992
IB221232	96,424	168,900
IB221232	68,410	158,853
IB221232	86,561	157,565

Deticat	SI M: BCC	SI M: BCC
Patient	vor Therapie	nach Therapie
IB221232	70,183	163,335
KB071273	78,484	159,722
HF260928	61,700	120,190
HF260928	78,546	130,094
HF260928	75,178	124,582
HF260928	66,783	90,025
PT200450	106,447	119,293
MH150241	97,990	129,860
MW120219	74,459	96,474
RK280137	82,931	111,723
RK280137	71,417	134,078
RK280137	51,214	138,067
RK280137	94,399	142,984
DJ160534	49,578	66,282
DJ160534	87,523	110,811
DJ160534	86,160	111,968
DJ160534	67,746	111,689
UH241140	80,072	177,625
KM180438	66,288	92,891
KB071273	89,746	154,072
DD200559	72,440	100,066
HS110946	69,188	103,593
WB241047	52,852	126,710
AW100836	74,563	103,223
UP010445	58,068	116,647
AE150935	63,247	91,012
AE150935	31,938	151,681
AE150935	57,235	143,090
IM030942	43,406	154,261
HF260928	67,554	92,202
HF260928	76,749	113,274
HF260928	87,777	197,090
AS240948	60,085	95,902
JA201054	58,569	114,110
HP230842	61,832	153,004
HP230842	91,864	150,565

Patient	SI M: BCC	SI M: BCC
i atient	vor Therapie	nach Therapie
HP230842	50,410	153,228
MA070646	50,396	134,548
EW280336	73,322	108,786
MH150241	106,440	156,301
MH150241	65,778	124,025
BR310336	55,382	74,085
BR310336	94,993	127,487
BR310336	60,816	152,834
BR310336	71,082	96,071
BR310336	94,258	113,503
IK140148	76,747	90,075

Anhang Tabelle 14. Vergleich der Signalintensitäten der Hornschicht bei aK vor und nach Therapie mit VivoSight[®]

Patient	SI M: Hornschicht	SI M: Hornschicht
	vor Therapie	nach Therapie
HT210346	118,483	197,312
HT210346	109,177	190,970
HF260928	141,393	147,743
HF260928	138,928	180,133
HF260928	171,711	217,594
IB221232	131,873	216,898
IB221232	148,940	152,641
IB221232	151,032	200,083
HF260928	159,753	230,246
MG091134	132,108	207,608
MW120219	81,332	167,101
PM311241	148,866	151,387
PM311241	141,188	215,607
PM311241	119,152	196,525
DJ160534	135,769	179,928
DJ160534	140,523	159,895
DJ160534	157,461	163,966
OB150632	144,887	181,168

Patient	SI M: Hornschicht vor Therapie	SI M: Hornschicht nach Therapie
HO150743	139,415	141,155
KM180438	143,381	208,412
IM030942	110,688	160,300
IM030942	132,050	166,009
WP160436	115,722	118,405
FS050745	141,927	165,174
FS050745	126,906	156,428
FS050745	147,767	166,278
BR310336	190,287	192,970
BW250237	115,338	155,695
DS120334	141,336	172,559
DS120334	144,317	234,590
WR030241	106,242	235,032
WR030241	115,275	235,841
WR030241	144,447	172,556
FS050745	136,947	145,184
FS050745	143,809	184,394
FS050745	131,470	220,647
FS050745	116,510	135,318
FS050745	158,599	209,142
FS050745	130,340	194,603
MG091134	107,202	151,357

Anhang Tabelle 15. Vergleich der Hornschichtdicken bei aK vor und nach Therapie mit VivoSight®

vor Therapie nach Therapie HT210346 0,134 0,038 HT210346 0,161 0,030 HF260928 0,153 0,011 HF260928 0,151 0,016 HF260928 0,231 0,014 IB221232 0,125 0,010 IB221232 0,0120 0,018 IB221232 0,086 0,016	Detient	Dicke Hornschicht	Dicke Hornschicht
HT210346 0,161 0,030 HF260928 0,153 0,011 HF260928 0,151 0,016 HF260928 0,231 0,014 IB221232 0,125 0,010 IB221232 0,120 0,018 IB221232 0,086 0,016	Patient	vor Therapie	nach Therapie
HF260928 0,153 0,011 HF260928 0,151 0,016 HF260928 0,231 0,014 IB221232 0,125 0,010 IB221232 0,120 0,018 IB221232 0,086 0,016	HT210346	0,134	0,038
HF260928 0,151 0,016 HF260928 0,231 0,014 IB221232 0,125 0,010 IB221232 0,120 0,018 IB221232 0,086 0,016	HT210346	0,161	0,030
HF260928 0,231 0,014 IB221232 0,125 0,010 IB221232 0,120 0,018 IB221232 0,086 0,016	HF260928	0,153	0,011
IB221232 0,125 0,010 IB221232 0,120 0,018 IB221232 0,086 0,016	HF260928	0,151	0,016
IB221232 0,120 0,018 IB221232 0,086 0,016	HF260928	0,231	0,014
IB221232 0,086 0,016	IB221232	0,125	0,010
· · · · · · · · · · · · · · · · · · ·	IB221232	0,120	0,018
115000000 0.050 0.040	IB221232	0,086	0,016
HF260928 0,059 0,010	HF260928	0,059	0,010

Dationt	Dicke Hornschicht	Dicke Hornschicht
Patient	vor Therapie	nach Therapie
MG091134	0,135	0,014
MW120219	0,262	0,025
PM311241	0,104	0,061
PM311241	0,096	0,014
PM311241	0,270	0,011
DJ160534	0,245	0,019
DJ160534	0,127	0,090
DJ160534	0,082	0,053
OB150632	0,121	0,016
HO150743	0,169	0,147
KM180438	0,150	0,014
IM030942	0,174	0,019
IM030942	0,139	0,016
WP160436	0,183	0,086
FS050745	0,139	0,020
FS050745	0,191	0,033
FS050745	0,144	0,033
BR310336	0,147	0,084
BW250237	0,196	0,110
DS120334	0,149	0,082
DS120334	0,177	0,016
WR030241	0,262	0,011
WR030241	0,217	0,014
WR030241	0,080	0,049
FS050745	0,095	0,019
FS050745	0,114	0,076
FS050745	0,112	0,019
FS050745	0,136	0,102
FS050745	0,128	0,016
FS050745	0,087	0,012
MG091134	0,180	0,078

Anhang Tabelle 16. Signalintensitäten von BCC und benachbarter gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

			Viv	∕oSight [®]		
	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	BCC	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
RK280137	151,528	166,530	87,901	127,672	43,733	57,477
RK280137	156,931	164,607	79,473	115,648	23,047	36,878
RK280137	132,008	120,071	83,580	66,143	28,619	23,695
RK280137	136,154	146,247	67,457	98,921	25,420	34,463
IB221232	147,660	137,071	130,946	116,060	41,469	34,593
HA140241	128,242	158,192	65,103	108,882	23,588	45,586
BB310534	116,243	135,583	78,122	102,051	73,819	81,667
BP021249	136,235	156,540	72,179	102,314	50,660	56,805
AG110141	136,339	150,201	71,575	108,617	38,182	43,929
JK170352	115,028	140,395	63,960	100,276	29,916	44,410
JK170352	95,508	117,641	69,190	99,274	23,920	32,650
JS291130	89,762	105,242	48,025	55,958	19,185	24,434
KM010259	145,718	162,161	53,229	92,008	24,425	47,203
WR080427	131,330	157,482	82,316	120,713	42,738	57,190
HM150743	89,874	149,994	47,404	69,035	15,510	26,626
WG040349	119,165	143,241	67,006	102,702	21,149	35,864

Anhang Tabelle 17. Signalintensitäten von BCC und benachbarter gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

	Callisto [®]					
	SI M:	SIM:	SI M:	SI M:	SI M:	SIM:
Patient	Epidermis	Epidermis	BCC	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
RK280137	230,347	245,189	122,267	229,274	63,242	92,721
RK280137	238,425	244,980	127,752	154,131	39,455	76,060
RK280137	247,816	229,548	207,604	184,439	69,362	63,731
RK280137	218,827	237,578	64,426	191,906	36,255	56,809
IB221232	246,022	245,746	172,174	171,684	74,647	59,459
HA140241	156,066	236,841	84,148	133,993	34,535	62,106
BB310534	202,255	214,555	107,843	131,414	11,405	15,717
BP021249	184,106	208,281	87,702	160,251	5,444	14,269

	Callisto [®]						
	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:	
Patient	Epidermis	Epidermis	BCC	Dermis	Dermis	Dermis Tiefe	
	über BCC	gesund		gesund	unter BCC	gesund	
AG110141	227,831	238,640	71,285	117,920	10,251	18,467	
JK170352	123,491	197,463	46,288	115,747	32,703	73,834	
JK170352	196,805	221,219	115,736	143,412	47,199	78,674	
JS291130	180,140	212,696	86,280	117,164	57,713	73,319	
KM010259	205,892	234,114	59,239	128,098	42,235	78,021	
WR080427	211,275	235,986	144,344	194,549	49,975	95,333	
HM150743	227,706	251,646	9,072	148,810	5,671	16,212	
WG040349	220,428	228,429	44,309	134,381	43,368	62,850	

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 18. Signalintensitäten von BCC und benachbarter gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

	Skintell [®]					
	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	ВСС	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
RK280137	96,231	135,413	17,286	45,077	14,643	19,697
RK280137	69,467	81,959	34,553	63,335	26,418	29,536
RK280137	51,986	39,957	38,752	27,071	12,512	11,700
RK280137	90,295	111,979	19,093	35,608	14,402	17,023
IB221232	85,204	84,087	43,988	42,465	16,754	16,349
HA140241	44,642	73,232	18,553	31,853	16,346	17,868
BB310534	42,803	78,290	22,991	32,225	15,693	19,233
BP021249	36,975	69,029	24,363	40,155	19,066	23,272
AG110141	39,466	61,122	28,541	37,052	21,150	27,844
JK170352	18,732	20,245	14,369	18,981	10,461	13,343
JK170352	53,555	57,935	28,911	48,441	24,348	26,242
JS291130	45,507	48,791	21,366	25,125	19,927	20,768
KM010259	46,180	50,968	20,947	28,005	17,790	20,325
WR080427	94,710	105,918	47,870	98,755	38,645	45,613
HM150743	77,362	140,640	21,273	73,145	12,218	15,994
WG040349	40,539	47,086	26,663	29,293	19,446	21,219

Anhang Tabelle 19. Signalintensitäten von aK und von benachbarter gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

	VivoSight [®]					
_	SI M:	SIM:	SI M:	SI M:	SI M:	SI M:
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	Dermis	Dermis
	аК	gesund	aK	gesund	aK	gesund
FS050745	126,906	209,136	88,839	141,234	38,756	50,291
FS050745	143,809	197,660	113,272	164,604	34,731	53,461
IB221232	176,488	205,199	133,796	143,428	56,399	58,609
MG091134	158,565	212,860	138,410	163,797	48,894	64,449
WK260635	136,464	215,392	122,135	153,999	37,747	59,332
EH240441	120,373	213,454	106,572	164,832	28,715	50,617
GM130630	88,318	194,827	68,902	147,003	28,926	61,683
GM130630	93,436	219,192	81,840	154,002	24,933	70,815
HM150743	128,603	249,587	101,154	155,517	25,883	79,926
HT110939	119,345	206,351	93,941	145,796	33,453	66,912

Anhang Tabelle 20. Signalintensitäten von aK und von benachbarter gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

	Callisto [®]					
	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	Dermis	Dermis
	aK	gesund	aK	gesund	aK	gesund
FS050745	202,486	251,203	167,522	215,762	73,847	136,911
FS050745	207,778	252,141	187,130	245,082	30,867	49,151
IB221232	218,560	249,600	205,905	215,854	109,318	135,042
MG091134	206,853	244,947	156,750	231,979	45,269	72,098
WK260635	187,004	237,436	140,890	193,476	66,558	83,305
EH240441	153,327	240,295	142,469	212,802	50,969	65,048
GM130630	196,224	243,089	168,956	226,342	63,271	80,577
GM130630	160,741	235,497	131,183	214,748	41,622	88,689
HM150743	182,715	252,262	102,607	199,113	38,515	64,059
HT110939	77,360	108,786	58,062	88,866	25,697	35,148

Anhang Tabelle 21. Signalintensitäten von aK und von benachbarter gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

	Skintell [®]					
_	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	Dermis	Dermis
	aK	gesund	aK	gesund	aK	gesund
FS050745	76,715	184,286	54,747	100,884	29,968	43,588
FS050745	77,916	186,271	69,000	114,766	13,596	27,577
IB221232	103,070	110,139	56,144	63,460	25,363	26,950
MG091134	69,174	123,280	16,914	37,974	10,828	12,148
WK260635	26,229	50,418	21,456	32,274	15,991	17,929
EH240441	46,787	136,884	39,920	65,157	19,135	23,864
GM130630	47,535	89,070	43,129	77,720	17,267	32,308
GM130630	62,539	107,219	46,764	64,686	14,669	17,030
HM150743	51,841	176,423	40,047	97,479	17,959	30,932
HT110939	40,606	74,135	39,830	55,963	22,196	25,630

Anhang Tabelle 22. Dicken von aK und von benachbarter gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

	VivoSight [®]					
-	Dicke	Dicke	Dicke	Dicke		
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis		
	aK	gesund	aK	gesund		
FS050745	0,191	0,016	0,406	0,096		
FS050745	0,114	0,029	0,245	0,074		
IB221232	0,010	0,007	0,084	0,074		
MG091134	0,065	0,008	0,278	0,087		
WK260635	0,155	0,014	0,292	0,099		
EH240441	0,387	0,014	0,529	0,069		
GM130630	0,621	0,020	1,189	0,114		
GM130630	0,305	0,014	0,504	0,114		
HM150743	0,262	0,014	0,480	0,086		
HT110939	0,176	0,014	0,589	0,110		

Anhang Tabelle 23. Dicken von aK und von benachbarter gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

	Callisto [®]				
	Dicke	Dicke	Dicke	Dicke	
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	
	aK	gesund	аК	gesund	
FS050745	0,159	0,012	0,380	0,118	
FS050745	0,110	0,029	0,273	0,094	
IB221232	0,016	0,012	0,106	0,082	
MG091134	0,084	0,009	0,294	0,090	
WK260635	0,245	0,020	0,486	0,106	
EH240441	0,380	0,024	0,535	0,090	
GM130630	0,425	0,020	0,714	0,135	
GM130630	0,359	0,020	0,510	0,135	
HM150743	0,253	0,020	0,510	0,163	
HT110939	0,176	0,024	0,588	0,110	

Anhang Tabelle 24. Dicken von aK und von benachbarter gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

	Skintell [®]				
	Dicke	Dicke	Dicke	Dicke	
Patient	Hornschicht	Hornschicht	Epidermis	Epidermis	
	аК	gesund	aK	gesund	
FS050745	0,110	0,011	0,252	0,084	
FS050745	0,105	0,029	0,186	0,090	
IB221232	0,018	0,014	0,093	0,081	
MG091134	0,057	0,015	0,141	0,069	
WK260635	0,162	0,008	0,244	0,042	
EH240441	0,164	0,021	0,264	0,068	
GM130630	0,063	0,014	0,132	0,048	
GM130630	0,222	0,018	0,306	0,081	
HM150743	0,080	0,015	0,198	0,070	
HT110939	0,123	0,021	0,239	0,105	

Anhang Tabelle 25. Vergleich von Signalintensitäten der Epidermis über BCC und von benachbarter gesunder Haut mit drei OCT Geräten

VivoSight [®]		Call	isto [®]	Skintell [®]		
Patient	SI M:	SIM:	SIM:	SI M:	SIM:	SI M:
Patient	Epidermis	Epidermis	Epidermis	Epidermis	Epidermis	Epidermis
	über BCC	gesund	über BCC	gesund	über BCC	gesund
RK280137	151,528	166,530	230,347	245,189	96,231	135,413
RK280137	156,931	164,607	238,425	244,980	69,467	81,959
RK280137	132,008	120,071	247,816	229,548	51,986	39,957
RK280137	136,154	146,247	218,827	237,578	90,295	111,979
IB221232	147,660	137,071	246,022	245,746	85,204	84,087
HA140241	128,242	158,192	156,066	236,841	44,642	73,232
BB310534	116,243	135,583	202,255	214,555	42,803	78,290
BP021249	136,235	156,540	184,106	208,281	36,975	69,029
AG110141	136,339	150,201	227,831	238,640	39,466	61,122
JK170352	115,028	140,395	123,491	197,463	18,732	20,245
JK170352	95,508	117,641	196,805	221,219	53,555	57,935
JS291130	89,762	105,242	180,140	212,696	45,507	48,791
KM010259	145,718	162,161	205,892	234,114	46,180	50,968
WR080427	131,330	157,482	211,275	235,986	94,710	105,918
HM150743	89,874	149,994	227,706	251,646	77,362	140,640
WG040349	119,165	143,241	220,428	228,429	40,539	47,086

Anhang Tabelle 26. Vergleich von Signalintensitäten der BCC und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSight [®]		(Callisto [®]	Skintell [®]	
Patient	SI M:	SIM:	SI M:	SI M:	SI M:	SIM:
	всс	Dermis gesund	ВСС	Dermis gesund	BCC	Dermis gesund
RK280137	87,901	127,672	122,267	229,274	17,286	45,077
RK280137	79,473	115,648	127,752	154,131	34,553	63,335
RK280137	83,580	66,143	207,604	184,439	38,752	27,071
RK280137	67,457	98,921	64,426	191,906	19,093	35,608
IB221232	130,946	116,060	172,174	171,684	43,988	42,465
HA140241	65,103	108,882	84,148	133,993	18,553	31,853
BB310534	78,122	102,051	107,843	131,414	22,991	32,225
BP021249	72,179	102,314	87,702	160,251	24,363	40,155
AG110141	71,575	108,617	71,285	117,920	28,541	37,052

	VivoSight [®]			Callisto [®]	Skintell [®]		
Patient	SI M:	SIM:	SI M:	SI M:	SIM:	SI M:	
	всс	Dermis gesund	ВСС	Dermis gesund	BCC	Dermis gesund	
JK170352	63,960	100,276	46,288	115,747	14,369	18,981	
JK170352	69,190	99,274	115,736	143,412	28,911	48,441	
JS291130	48,025	55,958	86,280	117,164	21,366	25,125	
KM010259	53,229	92,008	59,239	128,098	20,947	28,005	
WR080427	82,316	120,713	144,344	194,549	47,870	98,755	
HM150743	47,404	69,035	9,072	148,810	21,273	73,145	
WG040349	67,006	102,702	44,309	134,381	26,663	29,293	

Anmerkungen. SI, Signalintensität; M, Mittelwert.

Anhang Tabelle 27. Vergleich von Signalintensitäten der Dermis unter BCC und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSi	ght [®]	Callisto [®]		Skintell	®
	SI M:	SI M:	SI M:	SIM:	SIM:	SI M:
Patient	Dermis	Dermis	Dermis	Dermis	Dermis	Dermis
	unter BCC	Tiefe	unter BCC	Tiefe	unter BCC	Tiefe
		gesund		gesund		gesund
RK280137	43,733	57,477	63,242	92,721	14,643	19,697
RK280137	23,047	36,878	39,455	76,060	26,418	29,536
RK280137	28,619	23,695	69,362	63,731	12,512	11,700
RK280137	25,420	34,463	36,255	56,809	14,402	17,023
IB221232	41,469	34,593	74,647	59,459	16,754	16,349
HA140241	23,588	45,586	34,535	62,106	16,346	17,868
BB310534	73,819	81,667	11,405	15,717	15,693	19,233
BP021249	50,660	56,805	5,444	14,269	19,066	23,272
AG110141	38,182	43,929	10,251	18,467	21,150	27,844
JK170352	29,916	44,410	32,703	73,834	10,461	13,343
JK170352	23,920	32,650	47,199	78,674	24,348	26,242
JS291130	19,185	24,434	57,713	73,319	19,927	20,768
KM010259	24,425	47,203	42,235	78,021	17,790	20,325
WR080427	42,738	57,190	49,975	95,333	38,645	45,613
HM150743	15,510	26,626	5,671	16,212	12,218	15,994
WG040349	21,149	35,864	43,368	62,850	19,446	21,219

Anhang Tabelle 28. Vergleich von Signalintensitäten der Hornschicht bei aK und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSight [®] Patient SI M: Hornschicht		Callis	to [®]	Skintell [®]	
Patient			SI M: Horn	schicht	SI M: Hornschicht	
-	aK	gesund	aK	gesund	aK	gesund
FS050745	126,906	209,136	202,486	251,203	76,715	184,286
FS050745	143,809	197,660	207,778	252,141	77,916	186,271
IB221232	176,488	205,199	218,560	249,600	103,070	110,139
MG091134	158,565	212,860	206,853	244,947	69,174	123,280
WK260635	136,464	215,392	187,004	237,436	26,229	50,418
EH240441	120,373	213,454	153,327	240,295	46,787	136,884
GM130630	88,318	194,827	196,224	243,089	47,535	89,070
GM130630	93,436	219,192	160,741	235,497	62,539	107,219
HM150743	128,603	249,587	182,715	252,262	51,841	176,423
HT110939	119,345	206,351	77,360	108,786	40,606	74,135

Anhang Tabelle 29. Vergleich von Signalintensitäten der Epidermis bei aK und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSight [®]		Callis	sto [®]	Skintell [®]		
Patient	SI M: Epi	dermis	SI M: Epi	idermis	SI M: Epidermis		
	aK	gesund	aK	gesund	aK	gesund	
FS050745	88,839	141,234	167,522	215,762	54,747	100,884	
FS050745	113,272	164,604	187,130	245,082	69,000	114,766	
IB221232	133,796	143,428	205,905	215,854	56,144	63,460	
MG091134	138,410	163,797	156,750	231,979	16,914	37,974	
WK260635	122,135	153,999	140,890	193,476	21,456	32,274	
EH240441	106,572	164,832	142,469	212,802	39,920	65,157	
GM130630	68,902	147,003	168,956	226,342	43,129	77,720	
GM130630	81,840	154,002	131,183	214,748	46,764	64,686	
HM150743	101,154	155,517	102,607	199,113	40,047	97,479	
HT110939	93,941	145,796	58,062	88,866	39,830	55,963	

Anhang Tabelle 30. Vergleich von Signalintensitäten der Dermis bei aK und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSight [®] SI M: Dermis		Callis	to [®]	Skintell [®]		
Patient			SI M: De	ermis	SI M: Dermis		
	aK	gesund	aK	gesund	aK	gesund	
FS050745	38,756	50,291	73,847	136,911	29,968	43,588	
FS050745	34,731	53,461	30,867	49,151	13,596	27,577	
IB221232	56,399	58,609	109,318	135,042	25,363	26,950	
MG091134	48,894	64,449	45,269	72,098	10,828	12,148	
WK260635	37,747	59,332	66,558	83,305	15,991	17,929	
EH240441	28,715	50,617	50,969	65,048	19,135	23,864	
GM130630	28,926	61,683	63,271	80,577	17,267	32,308	
GM130630	24,933	70,815	41,622	88,689	14,669	17,030	
HM150743	25,883	79,926	38,515	64,059	17,959	30,932	
HT110939	33,453	66,912	25,697	35,148	22,196	25,630	

Anhang Tabelle 31. Vergleich der Hornschichtdicken bei aK und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoSight [®] Dicke Hornschicht		Callis	sto [®]	Skintell [®] Dicke Hornschicht	
Patient			Dicke Hor	nschicht		
	aK	gesund	aK	gesund	aK	gesund
FS050745	0,191	0,016	0,159	0,012	0,110	0,011
FS050745	0,114	0,029	0,110	0,029	0,105	0,029
IB221232	0,010	0,007	0,016	0,012	0,018	0,014
MG091134	0,065	0,008	0,084	0,009	0,057	0,015
WK260635	0,155	0,014	0,245	0,020	0,162	0,008
EH240441	0,387	0,014	0,380	0,024	0,164	0,021
GM130630	0,621	0,020	0,425	0,020	0,063	0,014
GM130630	0,305	0,014	0,359	0,020	0,222	0,018
HM150743	0,262	0,014	0,253	0,020	0,080	0,015
HT110939	0,176	0,014	0,176	0,024	0,123	0,021

Anhang Tabelle 32. Vergleich der Epidermisdicken bei aK und von benachbarter gesunder Haut mit drei OCT Geräten

	VivoS	ight [®]	Callis	sto [®]	Skin	tell [®]
Patient	Dicke Epidermis		Dicke Ep	idermis	Dicke Epidermis	
	aK	gesund	aK	gesund	aK	gesund
FS050745	0,406	0,096	0,380	0,118	0,252	0,084
FS050745	0,245	0,074	0,273	0,094	0,186	0,090
IB221232	0,084	0,074	0,106	0,082	0,093	0,081
MG091134	0,278	0,087	0,294	0,090	0,141	0,069
WK260635	0,292	0,099	0,486	0,106	0,244	0,042
EH240441	0,529	0,069	0,535	0,090	0,264	0,068
GM130630	1,189	0,114	0,714	0,135	0,132	0,048
GM130630	0,504	0,114	0,510	0,135	0,306	0,081
HM150743	0,480	0,086	0,510	0,163	0,198	0,070
HT110939	0,589	0,110	0,588	0,110	0,239	0,105

Anhang Tabelle 33. Signalintensitäten von BCC und von benachbarter gesunder Haut vor OP mit VivoSight® für den Vergleich mit drei OCT Geräten

	VivoSight [®]					
	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:
Patient	Epidermis	Epidermis	ВСС	Dermis	Dermis	Dermis Tiefe
	über BCC	gesund		gesund	unter BCC	gesund
RK280137	136,154	146,247	67,457	98,921	25,420	34,463
HA140241	128,242	158,192	65,103	108,882	23,588	45,586
BB310534	116,243	135,583	78,122	102,051	73,819	81,667
BP021249	136,235	156,540	72,179	102,314	50,660	56,805
AG110141	136,339	150,201	71,575	108,617	38,182	43,929
JK170352	115,028	140,395	63,960	100,276	29,916	44,410
JK170352	95,508	117,641	69,190	99,274	23,920	32,650
JS291130	89,762	105,242	48,025	55,958	19,185	24,434
KM010259	145,718	162,161	53,229	92,008	24,425	47,203
WR080427	131,330	157,482	82,316	120,713	42,738	57,190
HM150743	89,874	149,994	47,404	69,035	15,510	26,626
WG040349	119,165	143,241	67,006	102,702	21,149	35,864

Anhang Tabelle 34. Signalintensitäten von BCC und von benachbarter gesunder Haut vor OP mit Callisto[®] für den Vergleich mit drei OCT Geräten

	Callisto [®]						
_	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:	
Patient	Epidermis	Epidermis	BCC	Dermis	Dermis	Dermis Tiefe	
	über BCC	gesund	ВСС	gesund	unter BCC	gesund	
RK280137	218,827	237,578	64,426	191,906	36,255	56,809	
HA140241	156,066	236,841	84,148	133,993	34,535	62,106	
BB310534	202,255	214,555	107,843	131,414	11,405	15,717	
BP021249	184,106	208,281	87,702	160,251	5,444	14,269	
AG110141	227,831	238,640	71,285	117,920	10,251	18,467	
JK170352	123,491	197,463	46,288	115,747	32,703	73,834	
JK170352	196,805	221,219	115,736	143,412	47,199	78,674	
JS291130	180,140	212,696	86,280	117,164	57,713	73,319	
KM010259	205,892	234,114	59,239	128,098	42,235	78,021	
WR080427	211,275	235,986	144,344	194,549	49,975	95,333	
HM150743	227,706	251,646	9,072	148,810	5,671	16,212	
WG040349	220,428	228,429	44,309	134,381	43,368	62,850	

Anhang Tabelle 35. Signalintensitäten von BCC und von benachbarter gesunder Haut vor OP mit Skintell[®] für den Vergleich mit drei OCT Geräten

	Skintell [®]							
-	SI M:	SIM:	SI M:	SI M:	SI M:	SI M:		
Patient	Epidermis	Epidermis		Dermis	Dermis	Dermis Tiefe		
	über BCC	gesund	ВСС	gesund	unter BCC	gesund		
RK280137	90,295	111,979	19,093	35,608	14,402	17,023		
HA140241	44,642	73,232	18,553	31,853	16,346	17,868		
BB310534	42,803	78,290	22,991	32,225	15,693	19,233		
BP021249	36,975	69,029	24,363	40,155	19,066	23,272		
AG110141	39,466	61,122	28,541	37,052	21,150	27,844		
JK170352	18,732	20,245	14,369	18,981	10,461	13,343		
JK170352	53,555	57,935	28,911	48,441	24,348	26,242		
JS291130	45,507	48,791	21,366	25,125	19,927	20,768		
KM010259	46,180	50,968	20,947	28,005	17,790	20,325		
WR080427	94,710	105,918	47,870	98,755	38,645	45,613		
HM150743	77,362	140,640	21,273	73,145	12,218	15,994		
WG040349	40,539	47,086	26,663	29,293	19,446	21,219		

Anhang Tabelle 36. Vergleich der Signalintensitäten der Epidermis über BCC und von benachbarter gesunder Haut vor OP mit drei OCT Geräten

	VivoSight [®]		Calli	isto [®]	Skintell [®]		
Patient	SI M:	SI M:	SI M:	SI M:	SI M:	SI M:	
ratient	Epidermis	Epidermis	Epidermis	Epidermis	Epidermis	Epidermis	
	über BCC	gesund	über BCC	gesund	über BCC	gesund	
RK280137	136,154	146,247	218,827	237,578	90,295	111,979	
HA140241	128,242	158,192	156,066	236,841	44,642	73,232	
BB310534	116,243	135,583	202,255	214,555	42,803	78,290	
BP021249	136,235	156,540	184,106	208,281	36,975	69,029	
AG110141	136,339	150,201	227,831	238,640	39,466	61,122	
JK170352	115,028	140,395	123,491	197,463	18,732	20,245	
JK170352	95,508	117,641	196,805	221,219	53,555	57,935	
JS291130	89,762	105,242	180,140	212,696	45,507	48,791	
KM010259	145,718	162,161	205,892	234,114	46,180	50,968	
WR080427	131,330	157,482	211,275	235,986	94,710	105,918	
HM150743	89,874	149,994	227,706	251,646	77,362	140,640	
WG040349	119,165	143,241	220,428	228,429	40,539	47,086	

Anhang Tabelle 37. Vergleich der Signalintensitäten der BCC und von benachbarter gesunder Haut vor OP mit drei OCT Geräten

VivoSight [®]		voSight [®]	Ca	llisto [®]	Skintell [®]		
Patient	SI M:	SI M: Dermis	SI M:	SI M: Dermis	SI M:	SI M: Dermis	
	BCC	gesund	BCC	gesund	всс	gesund	
RK280137	67,457	98,921	64,426	191,906	19,093	35,608	
HA140241	65,103	108,882	84,148	133,993	18,553	31,853	
BB310534	78,122	102,051	107,843	131,414	22,991	32,225	
BP021249	72,179	102,314	87,702	160,251	24,363	40,155	
AG110141	71,575	108,617	71,285	117,920	28,541	37,052	
JK170352	63,960	100,276	46,288	115,747	14,369	18,981	
JK170352	69,190	99,274	115,736	143,412	28,911	48,441	
JS291130	48,025	55,958	86,280	117,164	21,366	25,125	
KM010259	53,229	92,008	59,239	128,098	20,947	28,005	
WR080427	82,316	120,713	144,344	194,549	47,870	98,755	
HM150743	47,404	69,035	9,072	148,810	21,273	73,145	
WG040349	67,006	102,702	44,309	134,381	26,663	29,293	

Anhang Tabelle 38. Vergleich der Signalintensitäten der Dermis unter BCC und von benachbarter gesunder Haut vor OP mit drei OCT Geräten

	Vivo	Sight [®]	Call	isto [®]	Skiı	ntell [®]
	SI M:	SI M:	SI M:	SIM:	SI M:	SI M:
Patient	Dermis	Dermis	Dermis	Dermis	Dermis	Dermis
Patient	unter BCC	Tiefe	unter BCC	Tiefe	unter BCC	Tiefe
		gesund		gesund		gesund
RK280137	25,420	34,463	36,255	56,809	14,402	17,023
HA140241	23,588	45,586	34,535	62,106	16,346	17,868
BB310534	73,819	81,667	11,405	15,717	15,693	19,233
BP021249	50,660	56,805	5,444	14,269	19,066	23,272
AG110141	38,182	43,929	10,251	18,467	21,150	27,844
JK170352	29,916	44,410	32,703	73,834	10,461	13,343
JK170352	23,920	32,650	47,199	78,674	24,348	26,242
JS291130	19,185	24,434	57,713	73,319	19,927	20,768
KM010259	24,425	47,203	42,235	78,021	17,790	20,325
WR080427	42,738	57,190	49,975	95,333	38,645	45,613
HM150743	15,510	26,626	5,671	16,212	12,218	15,994
WG040349	21,149	35,864	43,368	62,850	19,446	21,219

Anhang Tabelle 39. Vergleich der Tumordicken der drei OCT Geräte mit der Histologie

Patient	Tumordicke Histologie	Tumordicke VivoSight [®]	Tumordicke Callisto [®]	Tumordicke Skintell [®]
RK280137	1,800	0,842	0,539	0,339
HA140241	1,800	0,973	0,914	0,291
BB310534	2,300	1,005	0,918	0,447
BP021249	1,000	0,891	0,653	0,366
AG110141	1,400	1,394	1,400	0,390
JK170352	1,500	1,467	1,363	0,444
JK170352	1,300	1,304	1,298	0,246
JS291130	4,500	0,944	0,816	0,294
KM010259	1,400	1,271	1,249	0,471
WR080427	1,250	0,752	0,588	0,327
HM150743	1,150	1,165	1,176	0,594
WG040349	10,300	0,907	0,890	0,345

7.3 Statistische Auswertung

Anhang Tabelle 40. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und gesunder Epidermis mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis	Negative Ränge	0 ^a	,00	,00,
gesund -	Positive Ränge	188 ^b	94,50	17766,00
SI Epidermis über	Bindungen	0°		
BCC	Gesamt	188		

Anmerkungen. a. SI Epidermis gesund < SI Epidermis über BCC; b. SI Epidermis gesund > SI Epidermis über BCC; c. SI Epidermis gesund = SI Epidermis über BCC; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund SI Epidermis über BCC

Z - 11,890^b

Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 41. *T-Test für die Signalintensitäten von BCC und normaler Dermis mit VivoSight*®

Test bei gepaarten Stichproben								
Gepaarte Differenzen								
				95 %	KI der			
				Diffe	renz			Sig. (2-
	M	SD	SF des M	Untere	Obere	Т	df	seitig)
SI Dermis gesund - SI BCC	31,93	14,10	1,03	29,90	33,96	31,05	187	,000

Anmerkungen. M, Mittelwert; SD, Standardabweichung; SF, Standardfehler; KI, Konfidenzintervall; T, t-Wert; df, Freiheitsgrade; Sig., Signifikanz (*P*-Wert); SI, Signalintensität.

Anhang Tabelle 42. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und gesunder Dermis mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe	Negative Ränge	0 ^a	,00	,00
gesund –	Positive Ränge	188 ^b	94,50	17766,00
SI Dermis unter	Bindungen	0°		
BCC	Gesamt	188		

Anmerkungen. a. SI Dermis Tiefe gesund < SI Dermis unter BCC; b. SI Dermis Tiefe gesund > SI Dermis unter BCC; c. SI Dermis Tiefe gesund = SI Dermis unter BCC; SI, Signalintensität.

Statistik für Test^a

SI Dermis Tiefe gesund –
SI Dermis unter BCC
Z -11,890^b
Asymptomatische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 43. Wilcoxon-Test für die Signalintensitäten von Hornschicht bei aK und normaler Haut mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Hornschicht	Negative Ränge	0 ^a	,00	,00
gesund –	Positive Ränge	113 ^b	57,00	6441,00
SI Hornschicht	Bindungen	0°		
aK	Gesamt	113		

Anmerkungen. a. SI Hornschicht gesund < SI Hornschicht aK; b. SI Hornschicht gesund > SI Hornschicht aK; c. SI Hornschicht gesund = SI Hornschicht aK; SI, Signalintensität.

Statistik für Test^a

SI Hornschicht gesund –
SI Hornschicht aK
Z -9,226^b
Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 44. Wilcoxon-Test für die Signalintensitäten von Epidermis bei aK und gesunder Haut mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis	Negative Ränge	0ª	,00	,00
gesund –	Positive Ränge	113 ^b	57,00	6441,00
SI Epidermis	Bindungen	0^{c}		
aK	Gesamt	113		

Anmerkungen. a. SI Epidermis gesund < SI Epidermis aK; b. SI Epidermis gesund > SI Epidermis aK; c. SI Epidermis gesund = SI Epidermis aK; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund –
SI Epidermis aK

Z -9,226^b
Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 45. Wilcoxon-Test für die Signalintensitäten von Dermis bei aK und normaler Haut mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis	Negative Ränge	0ª	,00	,00
gesund –	Positive Ränge	113 ^b	57,00	6441,00
SI Dermis	Bindungen	0°		
aK	Gesamt	113		

Anmerkungen. a. SI Dermis gesund < SI Dermis aK; b. SI Dermis gesund > SI Dermis aK; c. SI Dermis gesund = SI Dermis aK; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund –
SI Dermis aK

Z -9,226^b
Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 46. Wilcoxon-Test für die Hornschichtdicken bei aK und gesunder Haut mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	113 ^a	57,00	6441,00
gesund –	Positive Ränge	0 _p	,00	,00
Dicke Hornschicht	Bindungen	0°		
аК	Gesamt	113		

Anmerkungen. a. Dicke Hornschicht gesund < Dicke Hornschicht aK; b. Dicke Hornschicht gesund > Dicke Hornschicht aK; c. Dicke Hornschicht gesund = Dicke Hornschicht aK.

Statistik für Test^a

	Dicke Hornschicht gesund –
	Dicke Hornschicht aK
Z	-9,226 ^b
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 47. Wilcoxon-Test für die Epidermisdicken bei aK und normaler Haut mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis	Negative Ränge	113 ^a	57,00	6441,00
gesund –	Positive Ränge	Op	,00	,00
Dicke Epidermis	Bindungen	0°		
aK	Gesamt	113		

Anmerkungen. a. Dicke Epidermis gesund < Dicke Epidermis aK; b. Dicke Epidermis gesund > Dicke Epidermis aK; c. Dicke Epidermis gesund = Dicke Epidermis aK.

Statistik für Test^a

	Dicke Epidermis gesund –
	Dicke Epidermis aK
Z	-9,226 ^b
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 48. *Mann-Whitney-U-Test zur Unterscheidung von aK und BCC anhand von Epidermisdicken*

Ränge							
	Messstelle	N	Mittlerer Rang	Rangsumme			
	Epidermis bei aK	113	245,00	27685,00			
Dicke	Epidermis über BCC	188	94,50	17766,00			
	Gesamt	301					

Statistik für Test^a

	Dicke
Mann-Whitney-U	,000
Wilcoxon-W	17766,000
Z	-14,542
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Gruppenvariable: Messstelle.

Anhang Tabelle 49. Mann-Whitney-U-Test zur Unterscheidung von aK und BCC anhand von Signalintensitäten der Dermis bei aK und von Signalintensitäten der BCC

Ränge							
	Messstelle	N	Mittlerer Rang	Rangsumme			
	Dermis bei aK	113	84,65	9566,00			
SI	BCC	188	190,88	35885,00			
	Gesamt	301					

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

	Signalintensität
Mann-Whitney-U	3125,000
Wilcoxon-W	9566,000
Z	-10,253
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Gruppenvariable: Messstelle.

Anhang Tabelle 50. T-Test für die Signalintensitäten von Epidermis über BCC und gesunder Epidermis vor OP mit VivoSight[®]

Test bei gepaarten Stichproben								
Gepaarte Differenzen								
				95 %	KI der			
				Diffe	renz			Sig. (2-
	М	SD	SF des M	Untere	Obere	Т	df	seitig)
SI Epidermis								
gesund vor OP -	26,56	16,04	1,63	23,33	29,80	16,31	96	,000
SI Epidermis über	20,50	10,04	1,03	23,33	29,00	10,51	90	,000
BCC vor OP								

Anmerkungen. M, Mittelwert; SD, Standardabweichung; SF, Standardfehler; KI, Konfidenzintervall; T, t-Wert; df, Freiheitsgrade; Sig., Signifikanz (*P*-Wert); SI, Signalintensität.

Anhang Tabelle 51. T-Test für die Signalintensitäten von BCC und gesunder Dermis vor OP mit VivoSight[®]

Test bei gepaarten Stichproben								
		Gep	aarte Differe	nzen				
	95 % KI der					•		
	Differenz					Sig. (2-		
	M	SD	SF des M	Untere	Obere	Т	df	seitig)
SI Dermis gesund								
vor OP -	33,35	14,77	1,50	30,37	36,33	22,23	96	,000
SI BCC vor OP								

Anmerkungen. M, Mittelwert; SD, Standardabweichung; SF, Standardfehler; KI, Konfidenzintervall; T, t-Wert; df, Freiheitsgrade; Sig., Signifikanz (*P*-Wert); SI, Signalintensität.

Anhang Tabelle 52. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und gesunder Dermis vor OP mit VivoSight[®]

Ränge							
		N	Mittlerer Rang	Rangsumme			
SI Dermis Tiefe	Negative Ränge	0 ^a	,00	,00,			
gesund vor OP –	Positive Ränge	97 ^b	49,00	4753,00			
SI Dermis unter	Bindungen	0°					
BCC vor OP	Gesamt	97					

Anmerkungen. a. SI Dermis Tiefe gesund vor OP < SI Dermis unter BCC vor OP; b. SI Dermis Tiefe gesund vor OP > SI Dermis unter BCC vor OP; c. SI Dermis Tiefe gesund vor OP = SI

Dermis unter BCC vor OP; SI, Signalintensität.

Statistik für Test^a

SI Dermis Tiefe gesund vor OP -

SI Dermis unter BCC vor OP

Z -8,551^b

Asymptomatische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 53. Wilcoxon-Test für die Signalintensitäten von Hornschicht bei aK und normaler Haut vor OP mit VivoSight[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Hornschicht	Negative Ränge	0 ^a	,00	,00,
gesund vor OP –	Positive Ränge	23 ^b	12,00	276,00
SI Hornschicht	Bindungen	0°		
aK vor OP	Gesamt	23		

Anmerkungen. a. SI Hornschicht gesund vor OP < SI Hornschicht aK vor OP; b. SI Hornschicht gesund vor OP > SI Hornschicht aK vor OP; c. SI Hornschicht gesund vor OP = SI Hornschicht aK vor OP; SI, Signalintensität.

Statistik für Test^a

SI Hornschicht gesund vor OP –
SI Hornschicht aK vor OP

Z -4,197^b

Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 54. Wilcoxon-Test für die Signalintensitäten von Epidermis bei aK und gesunder Haut vor OP mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis	Negative Ränge	0ª	,00	,00
gesund vor OP –	Positive Ränge	23 ^b	12,00	276,00
SI Epidermis	Bindungen	0°		
aK vor OP	Gesamt	23		

Anmerkungen. a. SI Epidermis gesund vor OP < SI Epidermis aK vor OP; b. SI Epidermis gesund vor OP > SI Epidermis aK vor OP; c. SI Epidermis gesund vor OP = SI Epidermis aK vor OP; SI,

Signalintensität.

Statistik für Test^a

SI Epidermis gesund vor OP -

SI Epidermis aK vor OP

Z -4,197^b

Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 55. Wilcoxon-Test für die Signalintensitäten von Dermis bei aK und normaler Haut vor OP mit VivoSight[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis	Negative Ränge	0 ^a	,00	,00
gesund vor OP –	Positive Ränge	23 ^b	12,00	276,00
SI Dermis	Bindungen	0°		
aK vor OP	Gesamt	23		

Anmerkungen. a. SI Dermis gesund vor OP < SI Dermis aK vor OP; b. SI Dermis gesund vor OP > SI Dermis aK vor OP; c. SI Dermis gesund vor OP = SI Dermis aK vor OP; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund vor OP –
SI Dermis aK vor OP

Z -4,197^b
Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 56. Wilcoxon-Test für die Hornschichtdicken bei aK und gesunder Haut vor OP mit VivoSight[®]

		Ränge		
-		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	23 ^a	12,00	276,00
gesund vor OP –	Positive Ränge	O_p	,00	,00
Dicke Hornschicht	Bindungen	0°		
aK vor OP	Gesamt	23		

Anmerkungen. a. Dicke Hornschicht gesund vor OP < Dicke Hornschicht aK vor OP; b. Dicke Hornschicht gesund vor OP > Dicke Hornschicht aK vor OP; c. Dicke Hornschicht gesund vor OP = Dicke Hornschicht aK vor OP.

Dicke Hornschicht gesund vor OP –

Dicke Hornschicht aK vor OP

Z -4,197^b

Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 57. Wilcoxon-Test für die Epidermisdicken bei aK und normaler Haut vor OP mit VivoSight®

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis	Negative Ränge	23ª	12,00	276,00
gesund vor OP –	Positive Ränge	O_p	,00	,00
Dicke Epidermis	Bindungen	0°		
aK vor OP	Gesamt	23		

Anmerkungen. a. Dicke Epidermis gesund vor OP < Dicke Epidermis aK vor OP; b. Dicke Epidermis gesund vor OP > Dicke Epidermis aK vor OP; c. Dicke Epidermis gesund vor OP = Dicke Epidermis aK vor OP.

Statistik für Test^a

Dicke Epidermis gesund vor OP –

Dicke Epidermis aK vor OP

Z

-4,197^b

Asymptotische Signifikanz (2-seitig)
,000

Anhang Tabelle 58. *Mann-Whitney-U-Test zur Unterscheidung von aK und BCC anhand von Epidermisdicken vor OP*

		Ränge		
	Messstelle	N	Mittlerer Rang	Rangsumme
	Epidermis bei aK vor OP	23	109,00	2507,00
Dicke	Epidermis über BCC vor OP	97	49,00	4753,00
	Gesamt	120		

	Dicke
Mann-Whitney-U	,000
Wilcoxon-W	4753,000
Z	-7,458
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Gruppenvariable: Messstelle.

Anhang Tabelle 59. Mann-Whitney-U-Test zur Unterscheidung von aK und BCC anhand von
Signalintensitäten der Dermis bei aK und von Signalintensitäten der BCC vor
OP

		Ränge		
	Messstelle	N	Mittlerer Rang	Rangsumme
	Dermis bei aK	23	22,39	515,00
SI	BCC	97	69,54	6745,00
	Gesamt	120		

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

	Signalintensität
Mann-Whitney-U	239,000
Wilcoxon-W	515,000
Z	-5,844
Asymptotische Signifikanz (2-seitig)	,000

Anmerkungen. a. Gruppenvariable: Messstelle.

Anhang Tabelle 60. Wilcoxon-Test für die Tumordicken bei VivoSight® und in der Histologie

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Tumor	Negative Ränge	59 ^a	56,11	3310,50
VivoSight [®] -	Positive Ränge	35 ^b	32,99	1154,50
Dicke Tumor	Bindungen	0°		
Histologie	Gesamt	94		

Anmerkungen. a. Dicke Tumor VivoSight® < Dicke Tumor Histologie; b. Dicke Tumor VivoSight® > Dicke Tumor Histologie; c. Dicke Tumor VivoSight® = Dicke Tumor Histologie.

Dicke Tumor VivoSight® –

Dicke Tumor Histologie

Z -4,065^b

Asymptotische Signifikanz (2-seitig) ,000

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 61. Wilcoxon-Test für die Hornschichtdicken bei VivoSight® und in der Histologie

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	8 ^a	7,00	56,00
VivoSight [®] -	Positive Ränge	15 ^b	14,67	220,00
Dicke Hornschicht	Bindungen	O ^c		
Histologie	Gesamt	23		

Anmerkungen. a. Dicke Hornschicht VivoSight® < Dicke Hornschicht Histologie; b. Dicke Hornschicht VivoSight® > Dicke Hornschicht Histologie; c. Dicke Hornschicht VivoSight® = Dicke Hornschicht Histologie.

Statistik für Test^a

Dicke Hornschicht VivoSigh	
	Dicke Hornschicht Histologie
Z	-2,494 ^b
Asymptotische Signifikanz (2-seitig)	,013

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen.

Anhang Tabelle 62. Wilcoxon-Test für die Epidermisdicken bei VivoSight[®] und in der Histologie

Ränge						
		N	Mittlerer Rang	Rangsumme		
Dicke Epidermis	Negative Ränge	5 ^a	9,20	46,00		
VivoSight [®] -	Positive Ränge	18 ^b	12,78	230,00		
Dicke Epidermis	Bindungen	0°				
Histologie	Gesamt	23				

Anmerkungen. a. Dicke Epidermis VivoSight® < Dicke Epidermis Histologie; b. Dicke Epidermis VivoSight® > Dicke Epidermis Histologie; c. Dicke Epidermis VivoSight® = Dicke Epidermis Histologie.

Dicke Epidermis VivoSight® –

Dicke Epidermis Histologie

Z -2,798b

Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen.

Anhang Tabelle 63. Ergebnisse der Korrelation der Dicken von BCC und aK in der OCT mit der Histologie

			Histologie Dicke		OCT Dicke		ke	
			всс	Stratum corneum	Epidermis	ВСС	Stratum corneum	Epidermis
	ВСС	rs	1,000			,879 * *		
	ВСС	Sig.				,000		
Histologie	Stratum	rs		1,000			,894**	
Dicke	corneum	Sig.					,000	
	Epidermis	rs			1,000			,951**
	Lpideiiiis	Sig.						,000
	ВСС	rs	,879**			1,000		
	ВСС	Sig.	,000					
OCT	Stratum	rs		,894**			1,000	
Dicke	corneum	Sig.		,000				
	Enidermie	rs			,951**			1,000
Epidermis	Lpideiiiis	Sig.			,000			

Anmerkungen. **Die Korrelation ist signifikant auf einem Niveau von 0,01 (2-seitig); n (aK) = 23, n (BCC) = 94; r_s, Spearman-Rho; Sig., Signifikanz (2-seitig).

Anhang Tabelle 64. T-Test für die Signalintensitäten von BCC vor und nach Therapie mit VivoSight[®]

Test bei gepaarten Stichproben								
Gepaarte Differenzen								
		95 % KI der						
		Differenz					Sig. (2-	
	М	SD	SF des M	Untere	Obere	T	df	seitig)
SI BCC vor								
Therapie- SI BCC nach Therapie	-54,95	29,53	4,02	-63,01	-46,89	-13,68	53	,000

Anmerkungen. M, Mittelwert; SD, Standardabweichung; SF, Standardfehler; KI, Konfidenzintervall; T, t-Wert; df, Freiheitsgrade; Sig., Signifikanz (*P*-Wert); SI, Signalintensität.

Anhang Tabelle 65. T-Test für die Signalintensität von Hornschichten bei aK vor und nach Therapie mit VivoSight[®]

Test bei gepaarten Stichproben								
	Gepaarte Differenzen							
				95 %	KI der			
				Diffe	renz			Sig. (2-
	М	SD	SF des M	Untere	Obere	Т	df	seitig)
SI Hornschicht vor								
Therapie-	-46,66	33,40	5,28	-57.34	-35,98	-8,84	39	,000
SI Hornschicht	-40,00	33,40	5,26	-57,54	-35,96	-0,04	39	,000
nach Therapie								

Anmerkungen. M, Mittelwert; SD, Standardabweichung; SF, Standardfehler; KI, Konfidenzintervall; T, t-Wert; df, Freiheitsgrade; Sig., Signifikanz (*P*-Wert); SI, Signalintensität.

Anhang Tabelle 66. Wilcoxon-Test für die Hornschichtdicken bei aK vor und nach Therapie mit VivoSight[®]

Ränge						
		N	Mittlerer Rang	Rangsumme		
Dicke Hornschicht	Negative Ränge	0 ^a	,00	,00		
vor Therapie –	Positive Ränge	40 ^b	20,50	820,00		
Dicke Hornschicht	Bindungen	0^{c}				
nach Therapie	Gesamt	40				

Anmerkungen. a. Dicke Hornschicht vor Therapie < Dicke Hornschicht nach Therapie; b. Dicke Hornschicht vor Therapie > Dicke Hornschicht nach Therapie; c. Dicke Hornschicht vor Therapie = Dicke Hornschicht nach Therapie.

Statistik für Test^a

	Dicke Hornschicht vor Therapie –
	Dicke Hornschicht nach Therapie
Z	-5,511 ^b
Asymptotische Signifikanz (2-seitig)	,000

Anhang Tabelle 67. Vergleich von drei OCT Geräten bezüglich der Signalintensitäten von BCC und benachbarter gesunder Haut

	Signalintensität				
	Benachbarte	BCC			
	gesunde Haut	Воо			
	M ± SD	M ± SD	<i>P</i> -Wert		
VivoSight [®]					
Epidermis über BCC	144,4 ± 17,9	126,7 ± 21,1	*P = 0,002		
BCC	99,1 ± 19,9	73,0 ± 19,6	*P = 0,001		
Dermis unter BCC	42,7 ± 15,2	32,8 ± 15,0	*P = 0,001		
Callisto [®]					
Epidermis über BCC	230,2 ± 15,4	$207,3 \pm 33,5$	*P = 0,002		
BCC	153,6 ± 32,9	$96,9 \pm 50,8$	*P = 0,001		
Dermis unter BCC	58,6 ± 27,5	$39,0 \pm 22,0$	$^*P = 0,002$		
Skintell [®]					
Epidermis über BCC	75,4 ± 33,9	$58,4 \pm 23,8$	*P = 0,002		
BCC	42,3 ± 20,6	26.8 ± 9.8	$^*P = 0,002$		
Dermis unter BCC	21,6 ± 8,1	$18,7 \pm 6,8$	*P = 0,001		

Anmerkungen. Die dargestellten Parameter sind Mittelwerte (M) \pm Standardabweichung (SD) sowie P-Werte; n = 16; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); *signifikanter Unterschied von BCC zur benachbarten gesunden Haut, Wilcoxon-Tests s. Anhang Tabellen 68, 69, 70, 71, 72, 73, 74, 75 und 76.

Anhang Tabelle 68. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge						
		N	Mittlerer Rang	Rangsumme		
SI Epidermis gesund	Negative Ränge	2ª	3,50	7,00		
VivoSight [®] –	Positive Ränge	14 ^b	9,21	129,00		
SI Epidermis über	Bindungen	0^{c}				
BCC VivoSight®	Gesamt	16				

Anmerkungen. a. SI Epidermis gesund VivoSight® < SI Epidermis über BCC VivoSight®; b. SI Epidermis gesund VivoSight® > SI Epidermis über BCC VivoSight®; c. SI Epidermis gesund VivoSight® = SI Epidermis über BCC VivoSight®; SI, Signalintensität.

SI Epidermis gesund VivoSight® –

SI Epidermis über BCC VivoSight®

Z -3,154^b

Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 69. Wilcoxon-Test für die Signalintensitäten von BCC und normaler Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge						
		N	Mittlerer Rang	Rangsumme		
SI Dermis gesund	Negative Ränge	2 ^a	2,50	5,00		
VivoSight [®] –	Positive Ränge	14 ^b	9,36	131,00		
SI BCC VivoSight®	Bindungen	0°				
	Gesamt	16				

Anmerkungen. a. SI Dermis gesund VivoSight® < SI BCC VivoSight®; b. SI Dermis gesund VivoSight® > SI BCC VivoSight®; c. SI Dermis gesund VivoSight® = SI BCC VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund VivoSight® –
SI BCC VivoSight®

Z -3,258^b
Asymptotische Signifikanz (2-seitig) ,001

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 70. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge						
		N	Mittlerer Rang	Rangsumme		
SI Dermis Tiefe	Negative Ränge	2 ^a	3,00	6,00		
gesund VivoSight [®] –	Positive Ränge	14 ^b	9,29	130,00		
SI Dermis unter BCC	Bindungen	0°				
VivoSight [®]	Gesamt	16				

Anmerkungen. a. SI Dermis Tiefe gesund VivoSight® < SI Dermis unter BCC VivoSight®; b. SI Dermis Tiefe gesund VivoSight® > SI Dermis unter BCC VivoSight®; c. SI Dermis Tiefe gesund VivoSight® = SI Dermis unter BCC VivoSight®; SI, Signalintensität.

Ζ

SI Dermis Tiefe gesund VivoSight® -SI Dermis unter BCC VivoSight® -3,206^b Asymptotische Signifikanz (2-seitig) ,001

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 71. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und normaler Haut mit Callisto® für den Vergleich mit drei OCT Geräten

Ränge						
		N	Mittlerer Rang	Rangsumme		
SI Epidermis gesund	Negative Ränge	2ª	4,00	8,00		
Callisto [®] –	Positive Ränge	14 ^b	9,14	128,00		
SI Epidermis über	Bindungen	0°				
BCC Callisto®	Gesamt	16				

Anmerkungen. a. SI Epidermis gesund Callisto® < SI Epidermis über BCC Callisto®; b. SI Epidermis gesund Callisto® > SI Epidermis über BCC Callisto®; c. SI Epidermis gesund Callisto® = SI Epidermis über BCC Callisto[®]; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund Callisto® -SI Epidermis über BCC Callisto® -3,103^b Ζ Asymptotische Signifikanz (2-seitig) .002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 72. Wilcoxon-Test für die Signalintensitäten von BCC und gesunder Haut mit Callisto® für den Vergleich mit drei OCT Geräten

Ränge						
		N	Mittlerer Rang	Rangsumme		
SI Dermis gesund	Negative Ränge	2 ^a	1,50	3,00		
Callisto [®] –	Positive Ränge	14 ^b	9,50	133,00		
SI BCC Callisto®	Bindungen	0°				
	Gesamt	16				

Anmerkungen. a. SI Dermis gesund Callisto® < SI BCC Callisto®; b. SI Dermis gesund Callisto® > SI BCC Callisto[®]; c. SI Dermis gesund Callisto[®] = SI BCC Callisto[®]; SI, Signalintensität.

SI Dermis gesund Callisto® –
SI BCC Callisto®

Z -3,361^b
Asymptotische Signifikanz (2-seitig) ,001

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 73. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und normaler Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe	Negative Ränge	2 ^a	4,00	8,00
gesund Callisto [®] –	Positive Ränge	14 ^b	9,14	128,00
SI Dermis unter BCC	Bindungen	0°		
Callisto [®]	Gesamt	16		

Anmerkungen. a. SI Dermis Tiefe gesund Callisto[®] < SI Dermis unter BCC Callisto[®]; b. SI Dermis Tiefe gesund Callisto[®] > SI Dermis unter BCC Callisto[®]; c. SI Dermis Tiefe gesund Callisto[®] = SI Dermis unter BCC Callisto[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis Tiefe gesund Callisto® –
SI Dermis unter BCC Callisto®

Z -3,103^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 74. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	2 ^a	4,50	9,00
Skintell [®] –	Positive Ränge	14 ^b	9,07	127,00
SI Epidermis über	Bindungen	0°		
BCC Skintell®	Gesamt	16		

Anmerkungen. a. SI Epidermis gesund Skintell® < SI Epidermis über BCC Skintell®; b. SI Epidermis gesund Skintell® > SI Epidermis über BCC Skintell®; c. SI Epidermis gesund Skintell® = SI Epidermis über BCC Skintell®; SI, Signalintensität.

Ζ

Asymptotische Signifikanz (2-seitig)

SI Epidermis gesund Skintell[®] –
SI Epidermis über BCC Skintell[®]
-3,051^b

,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 75. Wilcoxon-Test für die Signalintensitäten von BCC und normaler Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund	Negative Ränge	2 ^a	4,50	9,00
Skintell [®] –	Positive Ränge	14 ^b	9,07	127,00
SI BCC Skintell®	Bindungen	0°		
	Gesamt	16		

Anmerkungen. a. SI Dermis gesund Skintell[®] < SI BCC Skintell[®]; b. SI Dermis gesund Skintell[®] > SI BCC Skintell[®]; c. SI Dermis gesund Skintell[®] = SI BCC Skintell[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund Skintell® –
SI BCC Skintell®

Z -3,051^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 76. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe	Negative Ränge	2 ^a	1,50	3,00
gesund Skintell [®] –	Positive Ränge	14 ^b	9,50	133,00
SI Dermis unter BCC	Bindungen	0°		
Skintell [®]	Gesamt	16		

Anmerkungen. a. SI Dermis Tiefe gesund Skintell[®] < SI Dermis unter BCC Skintell[®]; b. SI Dermis Tiefe gesund Skintell[®] > SI Dermis unter BCC Skintell[®]; c. SI Dermis Tiefe gesund Skintell[®] = SI Dermis unter BCC Skintell[®]; SI, Signalintensität.

SI Dermis Tiefe gesund Skintell® – SI

Dermis unter BCC Skintell®

Z

-3,361^b

Asymptotische Signifikanz (2-seitig)
,001

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 77. Vergleich von drei OCT Geräten bezüglich der Signalintensitäten und Dicken der aK und von periläsionaler normaler Haut

	Signalintensität		Dicke	
	benachbarte	aK	benachbarte	aK
	gesunde Haut		gesunde Haut	
VivoSight [®]				
Stratum corneum	212,4 ± 15,1	129,2 ± 26,9*	$0,015 \pm 0,006$	$0,229 \pm 0,117*$
Epidermis	$153,4 \pm 8,9$	104,9 ± 22,5*	$0,092 \pm 0,017$	$0,460 \pm 0,299$ *
Dermis	$61,6 \pm 9,3$	35,8 ± 10,2*		
Callisto [®]				
Stratum corneum	231,5 ± 43,6	179,3 ± 41,4*	0,019 ± 0,006	0,221 ± 0,136*
Epidermis	204,4 ± 43,2	146,1 ± 42,5*	0,112 ± 0,026	$0,440 \pm 0,177*$
Dermis	81,0 ± 33,1	54,6 ± 24,7*		
Skintell [®]				
Stratum corneum	123,8 ± 47,2	60,2 ± 22,3*	0,016 ± 0,006	0,110 ± 0,060*
Epidermis	71.0 ± 26.9	42,8 ± 15,5*	$0,074 \pm 0,019$	$0,205 \pm 0,067$ *
Dermis	25.8 ± 8.9	18,7 ± 5,8*		

Anmerkungen. Die dargestellten Parameter sind Mittelwerte ± Standardabweichung; Signalintensität in Grauwerten (0 = schwarz, 255 = weiß); Dicke in mm; n = 10; * signifikanter Unterschied zur benachbarten gesunden Haut (P = 0,005), Wilcoxon-Tests s. Anhang Tabellen 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 und 92.

Anhang Tabelle 78. Wilcoxon-Test für die Signalintensitäten von Hornschicht bei aK und normaler Haut mit VivoSight[®] für den Vergleicht mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Hornschicht	Negative Ränge	0 ^a	,00,	,00,
gesund VivoSight [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Hornschicht aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht gesund VivoSight[®] < SI Hornschicht aK VivoSight[®]; b. SI Hornschicht gesund VivoSight[®] > SI Hornschicht aK VivoSight[®]; c. SI Hornschicht gesund VivoSight[®] = SI Hornschicht aK VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Hornschicht gesund VivoSight® –
SI Hornschicht aK VivoSight®

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 79. Wilcoxon-Test für die Signalintensitäten von Epidermis bei aK und gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0ª	,00	,00,
VivoSight [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Epidermis aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Epidermis gesund VivoSight® < SI Epidermis aK VivoSight®; b. SI Epidermis gesund VivoSight® > SI Epidermis aK VivoSight®; c. SI Epidermis gesund VivoSight® = SI Epidermis aK VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund VivoSight® –
SI Epidermis aK VivoSight®

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 80. Wilcoxon-Test für die Signalintensitäten von Dermis bei aK und normaler Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund	Negative Ränge	0 ^a	,00	,00,
VivoSight [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Dermis aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Dermis gesund VivoSight® < SI Dermis aK VivoSight®; b. SI Dermis gesund VivoSight® > SI Dermis aK VivoSight®; c. SI Dermis gesund VivoSight® = SI Dermis aK VivoSight®; SI, Signalintensität.

Statistik für Test^a

	SI Dermis gesund VivoSight® –
	SI Dermis aK VivoSight [®]
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 81. Wilcoxon-Test für die Signalintensitäten von Hornschicht bei aK und gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
-		N	Mittlerer Rang	Rangsumme
SI Hornschicht	Negative Ränge	0 ^a	,00	,00,
gesund Callisto [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Hornschicht aK	Bindungen	0^{c}		
Callisto [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht gesund Callisto[®] < SI Hornschicht aK Callisto[®]; b. SI Hornschicht gesund Callisto[®] > SI Hornschicht aK Callisto[®]; c. SI Hornschicht gesund Callisto[®] = SI Hornschicht aK Callisto[®]; SI, Signalintensität.

Statistik für Test^a

	SI Hornschicht gesund Callisto® –
	SI Hornschicht aK Callisto®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 82. Wilcoxon-Test für die Signalintensitäten von Epidermis bei aK und normaler Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0 ^a	,00	,00
Callisto [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Epidermis aK	Bindungen	0°		
Callisto®	Gesamt	10		

Anmerkungen. a. SI Epidermis gesund Callisto[®] < SI Epidermis aK Callisto[®]; b. SI Epidermis gesund Callisto[®] > SI Epidermis aK Callisto[®]; c. SI Epidermis gesund Callisto[®] = SI Epidermis aK Callisto[®]; SI, Signalintensität.

Statistik für Test^a

	SI Epidermis gesund Callisto® –
	SI Epidermis aK Callisto®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 83. Wilcoxon-Test für die Signalintensitäten von Dermis bei aK und gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund	Negative Ränge	0 ^a	,00	,00
Callisto [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Dermis aK	Bindungen	0°		
Callisto [®]	Gesamt	10		

Anmerkungen. a. SI Dermis gesund Callisto[®] < SI Dermis aK Callisto[®]; b. SI Dermis gesund Callisto[®] > SI Dermis aK Callisto[®]; c. SI Dermis gesund Callisto[®] = SI Dermis aK Callisto[®]; SI, Signalintensität.

Statistik für Test^a

	SI Dermis gesund Callisto [®] –
	SI Dermis aK Callisto®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 84. Wilcoxon-Test für die Signalintensitäten von Hornschicht bei aK und normaler Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Hornschicht	Negative Ränge	0 ^a	,00	,00
gesund Skintell [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Hornschicht aK	Bindungen	0°		
Skintell [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht gesund Skintell[®] < SI Hornschicht aK Skintell[®]; b. SI Hornschicht gesund Skintell[®] > SI Hornschicht aK Skintell[®]; c. SI Hornschicht gesund Skintell[®] = SI Hornschicht aK Skintell[®]; SI, Signalintensität.

Statistik für Test^a

SI Hornschicht gesund Skintell[®] –
SI Hornschicht aK Skintell[®]

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 85. Wilcoxon-Test für die Signalintensitäten von Epidermis bei aK und gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0ª	,00	,00,
Skintell [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Epidermis aK	Bindungen	0^{c}		
Skintell [®]	Gesamt	10		

Anmerkungen. a. SI Epidermis gesund Skintell® < SI Epidermis aK Skintell®; b. SI Epidermis gesund Skintell® > SI Epidermis aK Skintell®; c. SI Epidermis gesund Skintell® = SI Epidermis aK Skintell®; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund Skintell® –
SI Epidermis aK Skintell®

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 86. Wilcoxon-Test für die Signalintensitäten von Dermis bei aK und normaler Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund	Negative Ränge	0 ^a	,00	,00
Skintell [®] –	Positive Ränge	10 ^b	5,50	55,00
SI Dermis aK	Bindungen	0^{c}		
Skintell [®]	Gesamt	10		

Anmerkungen. a. SI Dermis gesund Skintell[®] < SI Dermis aK Skintell[®]; b. SI Dermis gesund Skintell[®] > SI Dermis aK Skintell[®]; c. SI Dermis gesund Skintell[®] = SI Dermis aK Skintell[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund Skintell® –
SI Dermis aK Skintell®

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 87. Wilcoxon-Test für die Hornschichtdicken bei aK und gesunder Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
-		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	10 ^a	5,50	55,00
gesund VivoSight [®] –	Positive Ränge	0 _p	,00	,00
Dicke Hornschicht	Bindungen	0^{c}		
aK VivoSight®	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht gesund VivoSight[®] < Dicke Hornschicht aK VivoSight[®]; b. Dicke Hornschicht gesund VivoSight[®] > Dicke Hornschicht aK VivoSight[®]; c. Dicke Hornschicht gesund VivoSight[®] = Dicke Hornschicht aK VivoSight[®].

Statistik für Test^a

Dicke Hornschicht gesund VivoSight® –

Dicke Hornschicht aK VivoSight®

Z

-2,803^b

Asymptotische Signifikanz (2-seitig)

,005

Anhang Tabelle 88. Wilcoxon-Test für die Epidermisdicken bei aK und normaler Haut mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
-		N	Mittlerer Rang	Rangsumme
Dicke Epidermis	Negative Ränge	10 ^a	5,50	55,00
gesund VivoSight [®] –	Positive Ränge	0 _p	,00	,00
Dicke Epidermis aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. Dicke Epidermis gesund VivoSight® < Dicke Epidermis aK VivoSight®; b. Dicke Epidermis gesund VivoSight® > Dicke Epidermis aK VivoSight®; c. Dicke Epidermis gesund VivoSight® = Dicke Epidermis aK VivoSight®.

Statistik für Test^a

	Dicke Epidermis gesund VivoSight® –
	Dicke Epidermis aK VivoSight®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 89. Wilcoxon-Test für die Hornschichtdicken bei aK und gesunder Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	10 ^a	5,50	55,00
gesund Callisto [®] –	Positive Ränge	0 _p	,00	,00
Dicke Hornschicht	Bindungen	0°		
aK Callisto®	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht gesund Callisto® < Dicke Hornschicht aK Callisto®; b. Dicke Hornschicht gesund Callisto® > Dicke Hornschicht aK Callisto®; c. Dicke Hornschicht gesund Callisto® = Dicke Hornschicht aK Callisto®.

Statistik für Test^a

	Dicke Hornschicht gesund Callisto® –
	Dicke Hornschicht aK Callisto®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anhang Tabelle 90. Wilcoxon-Test für die Epidermisdicken bei aK und normaler Haut mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis	Negative Ränge	10 ^a	5,50	55,00
gesund Callisto [®] –	Positive Ränge	0_p	,00	,00
Dicke Epidermis aK	Bindungen	0°		
Callisto [®]	Gesamt	10		

Anmerkungen. a. Dicke Epidermis gesund Callisto[®] < Dicke Epidermis aK Callisto[®]; b. Dicke Epidermis gesund Callisto[®] > Dicke Epidermis aK Callisto[®]; c. Dicke Epidermis gesund Callisto[®] = Dicke Epidermis aK Callisto[®].

Statistik für Test^a

	Dicke Epidermis gesund Callisto® –
	Dicke Epidermis aK Callisto®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 91. Wilcoxon-Test für die Hornschichtdicken bei aK und gesunder Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	10 ^a	5,50	55,00
gesund Skintell [®] –	Positive Ränge	0 _p	,00	,00
Dicke Hornschicht	Bindungen	0°		
aK Skintell [®]	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht gesund Skintell® < Dicke Hornschicht aK Skintell®; b. Dicke Hornschicht gesund Skintell® > Dicke Hornschicht aK Skintell®; c. Dicke Hornschicht gesund Skintell® = Dicke Hornschicht aK Skintell®.

Statistik für Test^a

	Dicke Hornschicht gesund Skintell® –
	Dicke Hornschicht aK Skintell®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anhang Tabelle 92. Wilcoxon-Test für die Epidermisdicken bei aK und normaler Haut mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis	Negative Ränge	10 ^a	5,50	55,00
gesund Skintell [®] –	Positive Ränge	0 _p	,00	,00
Dicke Epidermis aK	Bindungen	$0_{\rm c}$		
Skintell [®]	Gesamt	10		

Anmerkungen. a. Dicke Epidermis gesund Skintell[®] < Dicke Epidermis aK Skintell[®]; b. Dicke Epidermis gesund Skintell[®] > Dicke Epidermis aK Skintell[®]; c. Dicke Epidermis gesund Skintell[®] = Dicke Epidermis aK Skintell[®].

Statistik für Test^a

	Dicke Epidermis gesund Skintell® –
	Dicke Epidermis aK Skintell®
Z	-2,803 ^b
Asymptotische Signifikanz (2-seitig)	,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen.

Anhang Tabelle 93. Friedman-Test zum Vergleich der Signalintensitäten der Epidermis über BCC mit drei OCT Geräten

Ränge				
	Mittlerer Rang			
SI Epidermis über BCC VivoSight®	2,00			
SI Epidermis über BCC Callisto®	3,00			
SI Epidermis über BCC Skintell®	1,00			

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	16
Chi-Quadrat	32,000
df	2
Asymptotische Signifikanz	,000
, .	

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 94. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC zum Vergleich von VivoSight® - Skintell®

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis über	Negative Ränge	16 ^a	8,50	136,00
BCC Skintell [®] –	Positive Ränge	0 _p	,00	,00
SI Epidermis über	Bindungen	0°		
BCC VivoSight®	Gesamt	16		

Anmerkungen. a. SI Epidermis über BCC Skintell[®] < SI Epidermis über BCC VivoSight[®]; b. SI Epidermis über BCC Skintell[®] > SI Epidermis über BCC VivoSight[®]; c. SI Epidermis über BCC Skintell[®] = SI Epidermis über BCC VivoSight[®]; SI, Signalintensität.

SI Epidermis über BCC Skintell® –

SI Epidermis über BCC VivoSight®

Z -3,516^b

Asymptotische Signifikanz (2-seitig) ,0004

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 95. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC zum Vergleich von VivoSight[®] - Callisto[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis über	Negative Ränge	0 ^a	,00	,00,
BCC Callisto [®] –	Positive Ränge	16 ^b	8,50	136,00
SI Epidermis über	Bindungen	0°		
BCC VivoSight®	Gesamt	16		

Anmerkungen. a. SI Epidermis über BCC Callisto[®] < SI Epidermis über BCC VivoSight[®]; b. SI Epidermis über BCC Callisto[®] > SI Epidermis über BCC VivoSight[®]; c. SI Epidermis über BCC Callisto[®] = SI Epidermis über BCC VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Epidermis über BCC Callisto[®] –
SI Epidermis über BCC VivoSight[®]
-3,516^b

Asymptotische Signifikanz (2-seitig) ,0004

Ζ

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 96. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis über	Negative Ränge	16 ^a	8,50	136,00
BCC Skintell [®] –	Positive Ränge	O _p	,00	,00
SI Epidermis über	Bindungen	0°		
BCC Callisto®	Gesamt	16		(0)

Anmerkungen. a. SI Epidermis über BCC Skintell[®] < SI Epidermis über BCC Callisto[®]; b. SI Epidermis über BCC Skintell[®] > SI Epidermis über BCC Callisto[®]; c. SI Epidermis über BCC Skintell[®] = SI Epidermis über BCC Callisto[®]; SI, Signalintensität.

SI Epidermis über BCC Skintell® – SI Epidermis über BCC Callisto® -3,516^b

Ζ

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferronikorrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

,0004

Anhang Tabelle 97. Friedman-Test zum Vergleich der Signalintensitäten der BCC mit drei OCT Geräten

Ränge

Asymptotische Signifikanz (2-seitig)

	Mittlerer Rang
SI BCC VivoSight®	2,31
SI BCC Callisto®	2,63
SI BCC Skintell®	1,06

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	16
Chi-Quadrat	21,875
df	2
Asymptotische Signifikanz	,000

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 98. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC zum Vergleich von VivoSight® - Skintell®

Ränge				
		N	Mittlerer Rang	Rangsumme
SI BCC Skintell® -	Negative Ränge	16 ^a	8,50	136,00
SI BCC VivoSight®	Positive Ränge	0 ^p	,00	,00
	Bindungen	0°		
	Gesamt	16		

Anmerkungen. a. SI BCC Skintell® < SI BCC VivoSight®; b. SI BCC Skintell® > SI BCC VivoSight®; c. SI BCC Skintell® = SI BCC VivoSight®; SI, Signalintensität.

SI BCC Skintell® – SI BCC VivoSight®

Z -3,516^b

Asymptotische Signifikanz (2-seitig) ,0004

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05: 3 = 0,0167.

Anhang Tabelle 99. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC zum Vergleich von VivoSight[®] - Callisto[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI BCC Callisto [®] –	Negative Ränge	5 ^a	5,20	26,00
SI BCC VivoSight®	Positive Ränge	11 ^b	10,00	110,00
	Bindungen	0^{c}		
	Gesamt	16		

Anmerkungen. a. SI BCC Callisto[®] < SI BCC VivoSight[®]; b. SI BCC Callisto[®] > SI BCC VivoSight[®]; c. SI BCC Callisto[®] = SI BCC VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

	SI BCC Callisto [®] – SI BCC VivoSight [®]
Z	-2,172 ^b
Asymptotische Signifikanz (2-seitig)	,030

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 100. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI BCC Skintell® -	Negative Ränge	15 ^a	9,00	135,00
SI BCC Callisto®	Positive Ränge	1 ^b	1,00	1,00
	Bindungen	0^{c}		
	Gesamt	16		

Anmerkungen. a. SI BCC Skintell[®] < SI BCC Callisto[®]; b. SI BCC Skintell[®] > SI BCC Callisto[®]; c. SI BCC Skintell[®] = SI BCC Callisto[®]; SI, Signalintensität.

SI BCC Skintell® – SI BCC Callisto®

Z -3,464^b

Asymptotische Signifikanz (2-seitig) ,001

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05: 3 = 0,0167.

Anhang Tabelle 101. Friedman-Test zum Vergleich der Signalintensitäten der Dermis unter BCC mit drei OCT Geräten

Ränge Mittlerer Rang SI Dermis unter BCC VivoSight® 2,06 SI Dermis unter BCC Callisto® 2,50 SI Dermis unter BCC Skintell® 1,44

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	16
Chi-Quadrat	9,125
df	2
Asymptotische Signifikanz	,010

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 102. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis unter BCC	Negative Ränge	13 ^a	9,85	128,00
Skintell [®] –	Positive Ränge	3 ^b	2,67	8,00
SI Dermis unter BCC	Bindungen	0^{c}		
VivoSight [®]	Gesamt	16		

Anmerkungen. a. SI Dermis unter BCC Skintell® < SI Dermis unter BCC VivoSight®; b. SI Dermis unter BCC Skintell® > SI Dermis unter BCC VivoSight®; c. SI Dermis unter BCC Skintell® = SI Dermis unter BCC VivoSight®; SI, Signalintensität.

SI Dermis unter BCC Skintell® –
SI Dermis unter BCC VivoSight®

Z -3,103^b

Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 103. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC zum Vergleich von VivoSight[®] - Callisto[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis unter BCC	Negative Ränge	4 ^a	11,25	45,00
Callisto [®] –	Positive Ränge	12 ^b	7,58	91,00
SI Dermis unter BCC	Bindungen	0°		
VivoSight [®]	Gesamt	16		

Anmerkungen. a. SI Dermis unter BCC Callisto® < SI Dermis unter BCC VivoSight®; b. SI Dermis unter BCC Callisto® > SI Dermis unter BCC VivoSight®; c. SI Dermis unter BCC Callisto® = SI Dermis unter BCC VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Dermis unter BCC Callisto® –
SI Dermis unter BCC VivoSight®

Z -1,189^b
Asymptotische Signifikanz (2-seitig) ,234

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 104. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis unter BCC	Negative Ränge	12 ^a	10,33	124,00
Skintell [®] –	Positive Ränge	4 ^b	3,00	12,00
SI Dermis unter BCC	Bindungen	0°		
Callisto [®]	Gesamt	16		70

Anmerkungen. a. SI Dermis unter BCC Skintell[®] < SI Dermis unter BCC Callisto[®]; b. SI Dermis unter BCC Skintell[®] > SI Dermis unter BCC Callisto[®]; c. SI Dermis unter BCC Skintell[®] = SI Dermis unter BCC Callisto[®]; SI, Signalintensität.

SI Dermis unter BCC Skintell® –

SI Dermis unter BCC Callisto®

Z -2,896^b

Asymptotische Signifikanz (2-seitig) ,004

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 105. Friedman-Test zum Vergleich der Signalintensitäten der Hornschicht bei aK mit drei OCT Geräten

Ränge

	Mittlerer Rang
SI Hornschicht bei aK VivoSight®	2,10
SI Hornschicht bei aK Callisto®	2,90
SI Hornschicht bei aK Skintell®	1,00

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	10
Chi-Quadrat	18,200
df	2
Asymptotische Signifikanz	,0001

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 106. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Hornschicht bei aK zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Hornschicht bei	Negative Ränge	10 ^a	5,50	55,00
aK Skintell [®] –	Positive Ränge	0 _p	,00	,00
SI Hornschicht bei	Bindungen	0°		
aK VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht bei aK Skintell[®] < SI Hornschicht bei aK VivoSight[®]; b. SI Hornschicht bei aK Skintell[®] > SI Hornschicht bei aK VivoSight[®]; c. SI Hornschicht bei aK Skintell[®] = SI Hornschicht bei aK VivoSight[®]; SI, Signalintensität.

SI Hornschicht bei aK Skintell[®] –
SI Hornschicht bei aK VivoSight[®]
-2,803^b

Asymptotische Signifikanz (2-seitig) ,005

Ζ

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 107. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Hornschicht bei aK zum Vergleich von VivoSight[®] - Callisto[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Hornschicht bei	Negative Ränge	1 ^a	2,00	2,00
aK Callisto [®] –	Positive Ränge	9 ^b	5,89	53,00
SI Hornschicht bei	Bindungen	0^{c}		
aK VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht bei aK Callisto[®] < SI Hornschicht bei aK VivoSight[®]; b. SI Hornschicht bei aK Callisto[®] > SI Hornschicht bei aK VivoSight[®]; c. SI Hornschicht bei aK Callisto[®] = SI Hornschicht bei aK VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Hornschicht bei aK Callisto® –
SI Hornschicht bei aK VivoSight®
Z -2,599^b
Asymptotische Signifikanz (2-seitig) ,009

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 108. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Hornschicht bei aK zum Vergleich von Callisto[®] - Skintell[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Hornschicht bei	Negative Ränge	10 ^a	5,50	55,00
aK Skintell [®] –	Positive Ränge	O_p	,00	,00
SI Hornschicht bei	Bindungen	0°		
aK Callisto [®]	Gesamt	10		

Anmerkungen. a. SI Hornschicht bei aK Skintell[®] < SI Hornschicht bei aK Callisto[®]; b. SI Hornschicht bei aK Skintell[®] > SI Hornschicht bei aK Callisto[®]; c. SI Hornschicht bei aK Skintell[®] = SI Hornschicht bei aK Callisto[®]; SI, Signalintensität.

SI Hornschicht bei aK Skintell® –
SI Hornschicht bei aK Callisto®

Z -2,803^b

Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 109. Friedman-Test zum Vergleich der Signalintensitäten der Epidermis bei aK mit drei OCT Geräten

Ränge

	Mittlerer Rang
SI Epidermis bei aK VivoSight®	2,10
SI Epidermis bei aK Callisto®	2,90
SI Epidermis bei aK Skintell®	1,00

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	10
Chi-Quadrat	18,200
df	2
Asymptotische Signifikanz	,0001

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 110. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis bei aK zum Vergleich von VivoSight® - Skintell®

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis bei aK	Negative Ränge	10 ^a	5,50	55,00
Skintell [®] –	Positive Ränge	0 _p	,00	,00
SI Epidermis bei aK	Bindungen	O _c		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Epidermis bei aK Skintell[®] < SI Epidermis bei aK VivoSight[®]; b. SI Epidermis bei aK Skintell[®] > SI Epidermis bei aK VivoSight[®]; c. SI Epidermis bei aK Skintell[®] = SI Epidermis bei aK VivoSight[®]; SI, Signalintensität.

SI Epidermis bei aK Skintell® –

SI Epidermis bei aK VivoSight®

Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0.05 : 3 = 0.0167.

Anhang Tabelle 111. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis bei aK zum Vergleich von VivoSight® - Callisto®

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Epidermis bei aK	Negative Ränge	1 ^a	4,00	4,00
Callisto [®] –	Positive Ränge	9 _p	5,67	51,00
SI Epidermis bei aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Epidermis bei aK Callisto® < SI Epidermis bei aK VivoSight®; b. SI Epidermis bei aK Callisto® > SI Epidermis bei aK VivoSight®; c. SI Epidermis bei aK Callisto® = SI Epidermis bei aK VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Epidermis bei aK Callisto® –
SI Epidermis bei aK VivoSight®

Z -2,395^b

Asymptotische Signifikanz (2-seitig) ,017

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 112. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis bei aK zum Vergleich von Callisto[®] - Skintell[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Epidermis bei aK	Negative Ränge	10 ^a	5,50	55,00
Skintell [®] –	Positive Ränge	Op	,00	,00
SI Epidermis bei aK	Bindungen	0^{c}		
Callisto [®]	Gesamt	10		

Anmerkungen. a. SI Epidermis bei aK Skintell[®] < SI Epidermis bei aK Callisto[®]; b. SI Epidermis bei aK Skintell[®] > SI Epidermis bei aK Callisto[®]; c. SI Epidermis bei aK Skintell[®] = SI Epidermis bei aK Callisto[®]; SI, Signalintensität.

SI Epidermis bei aK Skintell[®] –

SI Epidermis bei aK Callisto[®]

Z -2,803^b

Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 113. Friedman-Test zum Vergleich der Signalintensitäten der Dermis bei aK mit drei OCT Geräten

Ränge Mittlerer Rang SI Dermis bei aK VivoSight® 2,30 SI Dermis bei aK Callisto® 2,70 SI Dermis bei aK Skintell® 1,00

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	10
Chi-Quadrat	15,800
df	2
Asymptotische Signifikanz	,0004

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 114. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis bei aK zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis bei aK	Negative Ränge	10 ^a	5,50	55,00
Skintell [®] –	Positive Ränge	0 ^p	,00	,00
SI Dermis bei aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Dermis bei aK Skintell[®] < SI Dermis bei aK VivoSight[®]; b. SI Dermis bei aK Skintell[®] > SI Dermis bei aK VivoSight[®]; c. SI Dermis bei aK Skintell[®] = SI Dermis bei aK VivoSight[®]; SI, Signalintensität.

SI Dermis bei aK Skintell® –
SI Dermis bei aK VivoSight®

Z -2,803^b

Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05: 3 = 0,0167.

Anhang Tabelle 115. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis bei aK zum Vergleich von VivoSight[®] - Callisto[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Dermis bei aK	Negative Ränge	3ª	2,00	6,00
Callisto [®] –	Positive Ränge	7 ^b	7,00	49,00
SI Dermis bei aK	Bindungen	0°		
VivoSight [®]	Gesamt	10		

Anmerkungen. a. SI Dermis bei aK Callisto[®] < SI Dermis bei aK VivoSight[®]; b. SI Dermis bei aK Callisto[®] > SI Dermis bei aK VivoSight[®]; c. SI Dermis bei aK Callisto[®] = SI Dermis bei aK VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis bei aK Callisto® –
SI Dermis bei aK VivoSight®

Z -2,191^b

Asymptotische Signifikanz (2-seitig) ,028

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 116. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis bei aK zum Vergleich von Callisto[®] - Skintell[®]

		Ränge		
		N	Mittlerer Rang	Rangsumme
SI Dermis bei aK	Negative Ränge	10 ^a	5,50	55,00
Skintell [®] –	Positive Ränge	0_p	,00	,00
SI Dermis bei aK	Bindungen	0°		
Callisto [®]	Gesamt	10		

Anmerkungen. a. SI Dermis bei aK Skintell[®] < SI Dermis bei aK Callisto[®]; b. SI Dermis bei aK Skintell[®] > SI Dermis bei aK Callisto[®]; c. SI Dermis bei aK Skintell[®] = SI Dermis bei aK Callisto[®]; SI, Signalintensität.

SI Dermis bei aK Skintell[®] –
SI Dermis bei aK Callisto[®]
Z -2,803^b
Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 117. Friedman-Test zum Vergleich der Hornschichtdicken bei aK mit drei OCT Geräten

Ränge	
	Mittlerer Rang
Dicke Hornschicht bei aK VivoSight®	2,30
Dicke Hornschicht bei aK Callisto®	2,40
Dicke Hornschicht bei aK Skintell®	1,30

Statistik für Test^a

N	10
Chi-Quadrat	7,400
df	2
Asymptotische Signifikanz	,025

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 118. Post-hoc-Test Wilcoxon-Test für die Hornschichtdicken bei aK zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	8 ^a	6,50	52,00
bei aK Skintell [®] –	Positive Ränge	2 ^b	1,50	3,00
Dicke Hornschicht	Bindungen	0^{c}		
bei aK VivoSight [®]	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht bei aK Skintell[®] < Dicke Hornschicht bei aK VivoSight[®]; b. Dicke Hornschicht bei aK Skintell[®] > Dicke Hornschicht bei aK VivoSight[®]; c. Dicke Hornschicht bei aK Skintell[®] = Dicke Hornschicht bei aK VivoSight[®].

Dicke Hornschicht bei aK Skintell® –
Dicke Hornschicht bei aK VivoSight®

,013

Z -2,497^b

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; Bonferroni-korrigiertes

Signifikanzniveau: 0.05:3=0.0167.

Asymptotische Signifikanz (2-seitig)

Anhang Tabelle 119. Post-hoc-Test Wilcoxon-Test für die Hornschichtdicken bei aK zum Vergleich von VivoSight[®] - Callisto[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	5 ^a	5,60	28,00
bei aK Callisto [®] –	Positive Ränge	5 ^b	5,40	27,00
Dicke Hornschicht	Bindungen	0^{c}		
bei aK VivoSight [®]	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht bei aK Callisto[®] < Dicke Hornschicht bei aK VivoSight[®]; b. Dicke Hornschicht bei aK Callisto[®] > Dicke Hornschicht bei aK VivoSight[®]; c. Dicke Hornschicht bei aK Callisto[®] = Dicke Hornschicht bei aK VivoSight[®].

Statistik für Test^a

Dicke Hornschicht bei aK Callisto[®] –

Dicke Hornschicht bei aK VivoSight[®]

Z -,051^b

Asymptotische Signifikanz (2-seitig) ,959

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 120. Post-hoc-Test Wilcoxon-Test für die Hornschichtdicken bei aK zum

Vergleich von Callisto[®] - Skintell[®]

rungo				
		N	Mittlerer Rang	Rangsumme
Dicke Hornschicht	Negative Ränge	9 ^a	6,00	54,00
bei aK Skintell [®] –	Positive Ränge	1 ^b	1,00	1,00
Dicke Hornschicht	Bindungen	0°		
bei aK Callisto [®]	Gesamt	10		

Anmerkungen. a. Dicke Hornschicht bei aK Skintell[®] < Dicke Hornschicht bei aK Callisto[®]; b. Dicke Hornschicht bei aK Skintell[®] > Dicke Hornschicht bei aK Callisto[®]; c. Dicke Hornschicht bei aK Skintell[®] = Dicke Hornschicht bei aK Callisto[®].

Dicke Hornschicht bei aK Skintell® –
Dicke Hornschicht bei aK Callisto®

Z -2,701^b

Asymptotische Signifikanz (2-seitig) ,007

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; Bonferroni-korrigiertes

Signifikanzniveau: 0.05:3=0.0167.

Anhang Tabelle 121. Friedman-Test zum Vergleich der Epidermisdicken bei aK mit drei OCT Geräten

Ränge Mittlerer Rang Dicke Epidermis bei aK VivoSight® 2,20 Dicke Epidermis bei aK Callisto® 2,70 Dicke Epidermis bei aK Skintell® 1,10

Statistik für Test^a

N	10
Chi-Quadrat	13,400
df	2
Asymptotische Signifikanz	,001

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 122. Post-hoc-Test Wilcoxon-Test für die Epidermisdicken bei aK zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis bei	Negative Ränge	9 ^a	6,00	54,00
aK Skintell [®] –	Positive Ränge	1 ^b	1,00	1,00
Dicke Epidermis bei	Bindungen	0°		
aK VivoSight [®]	Gesamt	10		

Anmerkungen. a. Dicke Epidermis bei aK Skintell® < Dicke Epidermis bei aK VivoSight®; b. Dicke Epidermis bei aK Skintell® > Dicke Epidermis bei aK VivoSight®; c. Dicke Epidermis bei aK Skintell® = Dicke Epidermis bei aK VivoSight®.

Dicke Epidermis bei aK Skintell[®] –

Dicke Epidermis bei aK VivoSight[®]

Z -2,701^b

Asymptotische Signifikanz (2-seitig) ,007

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; Bonferroni-korrigiertes

Signifikanzniveau: 0.05:3=0.0167.

Anhang Tabelle 123. Post-hoc-Test Wilcoxon-Test für die Epidermisdicken bei aK zum Vergleich von VivoSight[®] - Callisto[®]

Ränge Mittlerer Rang Rangsumme Ν 3^a Dicke Epidermis bei Negative Ränge 5,67 17,00 aK Callisto® -**7**^b Positive Ränge 5,43 38,00 0^{c} Dicke Epidermis bei Bindungen aK VivoSight® Gesamt 10

Anmerkungen. a. Dicke Epidermis bei aK Callisto[®] < Dicke Epidermis bei aK VivoSight[®]; b. Dicke Epidermis bei aK Callisto[®] > Dicke Epidermis bei aK VivoSight[®]; c. Dicke Epidermis bei aK Callisto[®] = Dicke Epidermis bei aK VivoSight[®].

Statistik für Test^a

Dicke Epidermis bei aK Callisto® –

Dicke Epidermis bei aK VivoSight®

Z -1,070^b

Asymptotische Signifikanz (2-seitig) ,285

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; Bonferroni-korrigiertes

Signifikanzniveau: 0,05:3=0,0167.

Anhang Tabelle 124. Post-hoc-Test Wilcoxon-Test für die Epidermisdicken bei aK zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
Dicke Epidermis bei	Negative Ränge	10 ^a	5,50	55,00
aK Skintell [®] –	Positive Ränge	0 ^b	,00	,00
Dicke Epidermis bei	Bindungen	0°		
aK Callisto [®]	Gesamt	10		(0)

Anmerkungen. a. Dicke Epidermis bei aK Skintell[®] < Dicke Epidermis bei aK Callisto[®]; b. Dicke Epidermis bei aK Skintell[®] > Dicke Epidermis bei aK Callisto[®]; c. Dicke Epidermis bei aK Skintell[®] = Dicke Epidermis bei aK Callisto[®].

Dicke Epidermis bei aK Skintell[®] –

Dicke Epidermis bei aK Callisto[®]

Z -2,803^b

Asymptotische Signifikanz (2-seitig) ,005

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 125. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und normaler Haut vor OP mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
-		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0 ^a	,00	,00
vor OP VivoSight [®] –	Positive Ränge	12 ^b	6,50	78,00
SI Epidermis über BCC	Bindungen	0°		
vor OP VivoSight [®]	Gesamt	12		

Anmerkungen. a. SI Epidermis gesund vor OP VivoSight® < SI Epidermis über BCC vor OP VivoSight®; b. SI Epidermis gesund vor OP VivoSight® > SI Epidermis über BCC vor OP VivoSight®; c. SI Epidermis gesund vor OP VivoSight® = SI Epidermis über BCC vor OP VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund vor OP VivoSight® –
SI Epidermis über BCC vor OP VivoSight®

Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 126. Wilcoxon-Test für die Signalintensitäten von BCC und normaler Haut vor OP mit VivoSight[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund vor	Negative Ränge	0 ^a	,00	,00
OP VivoSight® –	Positive Ränge	12 ^b	6,50	78,00
SI BCC vor OP	Bindungen	0 ^c		
VivoSight [®]	Gesamt	12		

Anmerkungen. a. SI Dermis gesund vor OP VivoSight[®] < SI BCC vor OP VivoSight[®]; b. SI Dermis gesund vor OP VivoSight[®] > SI BCC vor OP VivoSight[®]; c. SI Dermis gesund vor OP VivoSight[®] = SI BCC vor OP VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund vor OP VivoSight®—
SI BCC vor OP VivoSight®

Z
-3,059^b
Asymptotische Signifikanz (2-seitig)
,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 127. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und normaler Haut vor OP mit VivoSight® für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe gesund vor	Negative Ränge	0 ^a	,00	,00,
OP VivoSight [®] –	Positive Ränge	12 ^b	6,50	78,00
SI Dermis unter BCC vor	Bindungen	0°		
OP VivoSight [®]	Gesamt	12		

Anmerkungen. a. SI Dermis Tiefe gesund vor OP VivoSight® < SI Dermis unter BCC vor OP VivoSight®; b. SI Dermis Tiefe gesund vor OP VivoSight® > SI Dermis unter BCC vor OP VivoSight®; c. SI Dermis Tiefe gesund vor OP VivoSight® = SI Dermis unter BCC vor OP VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Dermis Tiefe gesund vor OP VivoSight® –
SI Dermis unter BCC vor OP VivoSight®

Z
-3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anhang Tabelle 128. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und normaler Haut vor OP mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0ª	,00	,00,
vor OP Callisto [®] –	Positive Ränge	12 ^b	6,50	78,00
SI Epidermis über	Bindungen	0°		
BCC vor OP Callisto®	Gesamt	12		

Anmerkungen. a. SI Epidermis gesund vor OP Callisto[®] < SI Epidermis über BCC vor OP Callisto[®]; b. SI Epidermis gesund vor OP Callisto[®] > SI Epidermis über BCC vor OP Callisto[®]; c. SI Epidermis gesund vor OP Callisto[®] = SI Epidermis über BCC vor OP Callisto[®]; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund vor OP Callisto® –
SI Epidermis über BCC vor OP Callisto®

Z -3,059^b

Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 129. Wilcoxon-Test für die Signalintensitäten von BCC und normaler Haut vor OP mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund vor	Negative Ränge	0 ^a	,00,	,00
OP Callisto [®] –	Positive Ränge	12 ^b	6,50	78,00
SI BCC vor OP	Bindungen	0°		
Callisto [®]	Gesamt	12		

Anmerkungen. a. SI Dermis gesund vor OP Callisto® < SI BCC vor OP Callisto®; b. SI Dermis gesund vor OP Callisto® > SI BCC vor OP Callisto®; c. SI Dermis gesund vor OP Callisto® = SI BCC vor OP Callisto®; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund vor OP Callisto®—
SI BCC vor OP Callisto®
Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anhang Tabelle 130. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und normaler Haut vor OP mit Callisto[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe gesund	Negative Ränge	0 ^a	,00	,00,
vor OP Callisto [®] –	Positive Ränge	12 ^b	6,50	78,00
SI Dermis unter BCC	Bindungen	0°		
vor OP Callisto [®]	Gesamt	12		

Anmerkungen. a. SI Dermis Tiefe gesund vor OP Callisto[®] < SI Dermis unter BCC vor OP Callisto[®]; b. SI Dermis Tiefe gesund vor OP Callisto[®] > SI Dermis unter BCC vor OP Callisto[®]; c. SI Dermis Tiefe gesund vor OP Callisto[®] = SI Dermis unter BCC vor OP Callisto[®]; SI, Signalintensität.

Statistik für Test^a

	SI Dermis Tiefe gesund vor OP Callisto® –
	SI Dermis unter BCC vor OP Callisto®
Z	-3,059 ^b
Asymptotische Signifikanz (2-seitig)	,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 131. Wilcoxon-Test für die Signalintensitäten von Epidermis über BCC und normaler Haut vor OP mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis gesund	Negative Ränge	0 ^a	,00	,00,
vor OP Skintell [®] –	Positive Ränge	12 ^b	6,50	78,00
SI Epidermis über	Bindungen	0°		
BCC vor OP Skintell®	Gesamt	12		

Anmerkungen. a. SI Epidermis gesund vor OP Skintell[®] < SI Epidermis über BCC vor OP Skintell[®]; b. SI Epidermis gesund vor OP Skintell[®] > SI Epidermis über BCC vor OP Skintell[®]; c. SI Epidermis gesund vor OP Skintell[®] = SI Epidermis über BCC vor OP Skintell[®]; SI, Signalintensität.

Statistik für Test^a

SI Epidermis gesund vor OP Skintell® –
SI Epidermis über BCC vor OP Skintell®

Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anhang Tabelle 132. Wilcoxon-Test für die Signalintensitäten von BCC und normaler Haut vor OP mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis gesund vor	Negative Ränge	0 ^a	,00	,00,
OP Skintell [®] –	Positive Ränge	12 ^b	6,50	78,00
SI BCC vor OP	Bindungen	0^{c}		
Skintell [®]	Gesamt	12		

Anmerkungen. a. SI Dermis gesund vor OP Skintell[®] < SI BCC vor OP Skintell[®]; b. SI Dermis gesund vor OP Skintell[®] > SI BCC vor OP Skintell[®]; c. SI Dermis gesund vor OP Skintell[®] = SI BCC vor OP Skintell[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis gesund vor OP Skintell®–
SI BCC vor OP Skintell®

Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität.

Anhang Tabelle 133. Wilcoxon-Test für die Signalintensitäten von Dermis unter BCC und normaler Haut vor OP mit Skintell[®] für den Vergleich mit drei OCT Geräten

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis Tiefe gesund	Negative Ränge	0 ^a	,00	,00,
vor OP Skintell [®] -	Positive Ränge	12 ^b	6,50	78,00
SI Dermis unter BCC	Bindungen	0°		
vor OP Skintell [®]	Gesamt	12		

Anmerkungen. a. SI Dermis Tiefe gesund vor OP Skintell® < SI Dermis unter BCC vor OP Skintell®; b. SI Dermis Tiefe gesund vor OP Skintell® > SI Dermis unter BCC vor OP Skintell®; c. SI Dermis Tiefe gesund vor OP Skintell® = SI Dermis unter BCC vor OP Skintell®; SI, Signalintensität.

Statistik für Test^a

SI Dermis Tiefe gesund vor OP Skintell® –
SI Dermis unter BCC vor OP Skintell®

Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anhang Tabelle 134. Friedman-Test zum Vergleich der Signalintensitäten der Epidermis über BCC vor OP mit drei OCT Geräten

Ränge

	Mittlerer Rang
SI Epidermis über BCC vor OP VivoSight®	2,00
SI Epidermis über BCC vor OP Callisto®	3,00
SI Epidermis über BCC vor OP Skintell®	1,00

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	12
Chi-Quadrat	24,000
df	2
Asymptotische Signifikanz	,000

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 135. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC vor OP zum Vergleich von VivoSight[®] - Skintell[®]

Ränge

		N	Mittlerer Rang	Rangsumme
SI Epidermis über BCC	Negative Ränge	12 ^a	6,50	78,00
vor OP Skintell [®] –	Positive Ränge	O_p	,00	,00
SI Epidermis über BCC	Bindungen	0°		
vor OP VivoSight [®]	Gesamt	12		

Anmerkungen. a. SI Epidermis über BCC vor OP Skintell[®] < SI Epidermis über BCC vor OP VivoSight[®]; b. SI Epidermis über BCC vor OP Skintell[®] > SI Epidermis über BCC vor OP VivoSight[®]; c. SI Epidermis über BCC vor OP Skintell[®] = SI Epidermis über BCC vor OP VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Epidermis über BCC vor OP Skintell® –
SI Epidermis über BCC vor OP VivoSight®

Z -3,059^b

Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 136. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC vor OP zum Vergleich von VivoSight[®] - Callisto[®]

Ränge					
		N	Mittlerer Rang	Rangsumme	
SI Epidermis über BCC	Negative Ränge	0 ^a	,00	,00	
vor OP Callisto [®] –	Positive Ränge	12 ^b	6,50	78,00	
SI Epidermis über BCC	Bindungen	O ^c			
vor OP VivoSight [®]	Gesamt	12			

Anmerkungen. a. SI Epidermis über BCC vor OP Callisto® < SI Epidermis über BCC vor OP VivoSight®; b. SI Epidermis über BCC vor OP Callisto® > SI Epidermis über BCC vor OP VivoSight®; c. SI Epidermis über BCC vor OP Callisto® = SI Epidermis über BCC vor OP VivoSight®; SI, Signalintensität.

Statistik für Test^a

SI Epidermis über BCC vor OP Callisto® –
SI Epidermis über BCC vor OP VivoSight®

Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 137. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Epidermis über BCC vor OP zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Epidermis über BCC	Negative Ränge	12 ^a	6,50	78,00
vor OP Skintell [®] –	Positive Ränge	0 _p	,00	,00
SI Epidermis über BCC	Bindungen	0°		
vor OP Callisto [®]	Gesamt	12		

Anmerkungen. a. SI Epidermis über BCC vor OP Skintell[®] < SI Epidermis über BCC vor OP Callisto[®]; b. SI Epidermis über BCC vor OP Skintell[®] > SI Epidermis über BCC vor OP Callisto[®]; c. SI Epidermis über BCC vor OP Skintell[®] = SI Epidermis über BCC vor OP Callisto[®]; SI, Signalintensität.

SI Epidermis über BCC vor OP Skintell® –
SI Epidermis über BCC vor OP Callisto®
Z -3,059^b
Asymptotische Signifikanz (2-seitig) ,002

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05: 3 = 0,0167.

Anhang Tabelle 138. Friedman-Test zum Vergleich der Signalintensitäten der BCC vor OP mit drei OCT Geräten

Ränge Mittlerer Rang SI BCC vor OP VivoSight® 2,42 SI BCC vor OP Callisto® 2,50 SI BCC vor OP Skintell® 1,08

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	12
Chi-Quadrat	15,167
df	2
Asymptotische Signifikanz	,001

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 139. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC vor OP zum Vergleich von VivoSight[®] - Skintell[®]

Ränge					
		N	Mittlerer Rang	Rangsumme	
SI BCC vor OP	Negative Ränge	12 ^a	6,50	78,00	
Skintell [®] –	Positive Ränge	O_p	,00	,00	
SI BCC vor OP	Bindungen	0°			
VivoSight [®]	Gesamt	12			

Anmerkungen. a. SI BCC vor OP Skintell® < SI BCC vor OP VivoSight®; b. SI BCC vor OP Skintell® > SI BCC vor OP VivoSight®; c. SI BCC vor OP Skintell® = SI BCC vor OP VivoSight®; SI, Signalintensität.

SI BCC vor OP Skintell[®] – SI BCC vor OP VivoSight[®]
-3,059^b

Asymptotische Signifikanz (2-seitig)

Ζ

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

,002

Anhang Tabelle 140. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC vor OP zum Vergleich von VivoSight® - Callisto®

Ränge				
		N	Mittlerer Rang	Rangsumme
SI BCC vor OP	Negative Ränge	5 ^a	5,00	25,00
Callisto® – SI BCC	Positive Ränge	7 ^b	7,57	53,00
vor OP VivoSight [®]	Bindungen	0°		
	Gesamt	12		

Anmerkungen. a. SI BCC vor OP Callisto[®] < SI BCC vor OP VivoSight[®]; b. SI BCC vor OP Callisto[®] > SI BCC vor OP VivoSight[®]; c. SI BCC vor OP Callisto[®] = SI BCC vor OP VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI BCC vor OP Callisto® – SI BCC vor OP VivoSight®

Z -1,098^b

Asymptotische Signifikanz (2-seitig) ,272

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 141. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der BCC vor OP zum Vergleich von Callisto[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI BCC vor OP	Negative Ränge	11 ^a	7,00	77,00
Skintell® – SI BCC	Positive Ränge	1 ^b	1,00	1,00
vor OP Callisto®	Bindungen	0°		
	Gesamt	12		

Anmerkungen. a. SI BCC vor OP Skintell® < SI BCC vor OP Callisto®; b. SI BCC vor OP Skintell® > SI BCC vor OP Callisto®; c. SI BCC vor OP Skintell® = SI BCC vor OP Callisto®; SI, Signalintensität.

SI BCC vor OP Skintell® – SI BCC vor OP Callisto®
Z -2,981^b
Asymptotische Signifikanz (2-seitig) ,003

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 142. Friedman-Test zum Vergleich der Signalintensitäten der Dermis unter BCC vor OP mit drei OCT Geräten

Ränge				
	Mittlerer Rang			
SI Dermis unter BCC vor OP VivoSight®	2,17			
SI Dermis unter BCC vor OP Callisto®	2,33			
SI Dermis unter BCC vor OP Skintell®	1,50			

Anmerkungen. SI, Signalintensität.

Statistik für Test^a

N	12
Chi-Quadrat	4,667
df	2
Asymptotische Signifikanz	,097

Anmerkungen. a. Friedman-Test.

Anhang Tabelle 143. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC vor OP zum Vergleich von VivoSight[®] - Skintell[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis unter BCC	Negative Ränge	10 ^a	7,50	75,00
vor OP Skintell [®] –	Positive Ränge	2 ^b	1,50	3,00
SI Dermis unter BCC	Bindungen	0°		
vor OP VivoSight [®]	Gesamt	12		

Anmerkungen. a. SI Dermis unter BCC vor OP Skintell® < SI Dermis unter BCC vor OP VivoSight®; b. SI Dermis unter BCC vor OP Skintell® > SI Dermis unter BCC vor OP VivoSight®; c. SI Dermis unter BCC vor OP Skintell® = SI Dermis unter BCC vor OP VivoSight®; SI, Signalintensität.

SI Dermis unter BCC vor OP Skintell® –
SI Dermis unter BCC vor OP VivoSight®

,005

Z -2,824^b

Asymptotische Signifikanz (2-seitig)

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0.05 : 3 = 0.0167.

Anhang Tabelle 144. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC vor OP zum Vergleich von VivoSight[®] - Callisto[®]

Ränge					
		N	Mittlerer Rang	Rangsumme	
SI Dermis unter BCC	Negative Ränge	4 ^a	8,75	35,00	
vor OP Callisto [®] –	Positive Ränge	8 ^b	5,38	43,00	
SI Dermis unter BCC	Bindungen	0°			
vor OP VivoSight [®]	Gesamt	12			

Anmerkungen. a. SI Dermis unter BCC vor OP Callisto[®] < SI Dermis unter BCC vor OP VivoSight[®]; b. SI Dermis unter BCC vor OP Callisto[®] > SI Dermis unter BCC vor OP VivoSight[®]; c. SI Dermis unter BCC vor OP Callisto[®] = SI Dermis unter BCC vor OP VivoSight[®]; SI, Signalintensität.

Statistik für Test^a

SI Dermis unter BCC vor OP Callisto® –
SI Dermis unter BCC vor OP VivoSight®

Z -,314^b

Asymptotische Signifikanz (2-seitig) ,754

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf negativen Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 145. Post-hoc-Test Wilcoxon-Test für die Signalintensitäten der Dermis unter BCC vor OP zum Vergleich von Skintell[®] - Callisto[®]

Ränge				
		N	Mittlerer Rang	Rangsumme
SI Dermis unter BCC	Negative Ränge	4 ^a	8,38	67,00
vor OP Skintell [®] –	Positive Ränge	8 ^b	2,75	11,00
SI Dermis unter BCC	Bindungen	0°		
vor OP Callisto [®]	Gesamt	12		

Anmerkungen. a. SI Dermis unter BCC vor OP Skintell[®] < SI Dermis unter BCC vor OP Callisto[®]; b. SI Dermis unter BCC vor OP Skintell[®] > SI Dermis unter BCC vor OP Callisto[®]; c. SI Dermis unter BCC vor OP Skintell[®] = SI Dermis unter BCC vor OP Callisto[®]; SI, Signalintensität.

SI Dermis unter BCC vor OP Skintell® –

SI Dermis unter BCC vor OP Callisto®

Ζ

-2,197^b

Asymptotische Signifikanz (2-seitig)

,028

Anmerkungen. a. Wilcoxon-Test; b. Basiert auf positiven Rängen; SI, Signalintensität; Bonferroni-korrigiertes Signifikanzniveau: 0,05 : 3 = 0,0167.

Anhang Tabelle 146. Korrelation von Histologie, VivoSight[®], Callisto[®] und Skintell[®]

		Histologie	VivoSight [®]	Callisto [®]	Skintell [®]
Histologia	Spearman-Rho (r _s)	1,000	- 0,070	- 0,112	- 0,196
Histologie	Signifikanz (2-seitig)		0,828	0,728	0,540
VivoSight [®]	Spearman-Rho (r _s)	- 0,070	1,000	0,979**	0,350
vivoSignt	Signifikanz (2-seitig)	0,828		0,000	0,265
Callisto [®]	Spearman-Rho (r _s)	- 0,112	0,979 * *	1,000	0,357
Callisto	Signifikanz (2-seitig)	0,728	0,000		0,255
Skintell [®]	Spearman-Rho (r_s)	- 0,196	0,350	0,357	1,000
	Signifikanz (2-seitig)	0,540	0,265	0,255	

Anmerkungen. **Die Korrelation ist signifikant auf einem Niveau von 0,01 (2-seitig); n = 12.

7.4 Patienteninformation und Einverständniserklärung

Patienteninformation

Thema: Optische Kohärenztomographie von aktinischen Keratosen und Basaliomen – morphologische Charakterisierung und Signalintensitäten im Gerätevergleich

Sehr geehrte Probandin, sehr geehrter Proband,

wir bitten Sie an der oben genannten Studie teilzunehmen. Wir möchten untersuchen, ob sich die optische Kohärenztomographie, ein nicht- in- den- Körpereindringendes, bildgebendes Verfahren, zur Erkennung und Verlaufsuntersuchung der Behandlungen von folgenden Hautveränderungen eignet: einerseits zur Behandlung von aktinischen Keratosen (sog. "Lichtschwielen") mit lokalen Therapeutika und andererseits von Basaliomen mit lokalen Therapeutika sowie möglicherweise einer Operation. Damit könnten in Zukunft Nachbehandlungen und Komplikationen hierbei gezielter vorausgesehen bzw. vermieden werden. Zur Beurteilung der aktinischen Keratose und des Basalioms wird eine Untersuchungsmethode angewandt, die optische Kohärenztomographie (OCT), die nicht in den Körper eindringt und mit keinerlei zusätzlichen Risiken oder Nebenwirkungen einhergeht.

Sie werden vor Therapie/Biopsie/Operation gemessen an möglichst mit aktinischer Keratose und/oder Basaliom erkrankter Haut. Dabei werden drei betroffene Stellen und die benachbarte gesunde Haut aufgenommen, um auch Unterschiede, die innerhalb eines Individuums ablaufen, in der Behandlung zu beurteilen.

Es werden drei verschiedene optische Kohärenztomographen (von Firma Thorlabs Firma Michelson und Firma Aqfa) im Vergleich beurteilt.

Während oder nach der Untersuchung mit dem optischen Kohärenztomographen sind keinerlei Risiken oder Nebenwirkungen bekannt. Bei Beschwerden können Sie sich selbstverständlich trotzdem jederzeit melden.

Die Untersuchung der aktinischen Keratosen und Basaliome mit dem oben genannten Verfahren erfolgt direkt vor Therapie und bis zu vier Wochen nach Abschluss der Therapie.

Im Rahmen der Studie werden Sie betreut durch Frau Prof. Dr. Julia Welzel, Raphaela Kästle und Sandra Schuh.

Bei dieser Studie werden die Vorschriften über die ärztliche Schweigepflicht und den Datenschutz eingehalten. Es werden persönliche Daten und Befunde über Sie erhoben, gespeichert und verschlüsselt (pseudonymisiert), d.h. weder Ihr Name noch Ihre Initialen oder das exakte Geburtsdatum erscheinen im Verschlüsselungscode, werden weitergegeben. Im Falle des Widerrufs Ihrer Einwilligung werden die pseudonymisiert gespeicherten Daten vernichtet. Der Zugang zu den Orginaldaten und zum Verschlüsselungscode ist auf folgende Personen beschränkt: Prof. Dr. Julia Welzel, Raphaela Kästle, Karin

Seite 1 von 2

Plaumann und Sandra Schuh. Die Bilder werden über mind. 10 Jahre und alle anderen Unterlagen 15 Jahre im Studienzentrum der Hautklinik verschlossen aufbewahrt. Eine Entschlüsselung erfolgt lediglich in Fällen, in denen es Ihre eigene Sicherheit erfordert ("medizinische Gründe") oder falls es zu Änderungen in der wissenschaftlichen Fragestellung kommt ("wissenschaftliche Gründe").

Im Falle von Veröffentlichungen der Studienergebnisse bleibt die Vertraulichkeit der persönlichen Daten gewährleistet.

Desweiteren wurde keine Studienversicherung abgeschlossen. Da es sich um eine nicht-interventionelle Studie handelt, sind Sie als Patient über die Patientenversicherung des Klinikums Augsburg versichert, die für die Diagnostik und Behandlung der Patienten abgeschlossen wurde.

Ich bin über die Studie "Optische Kohärenztomographie von aktinischen Keratosen und Basaliomen – morphologische Charakterisierung und Signalintensitäten im Gerätevergleich" aufgeklärt worden.

Vom Proband auszufüllen:		
Ort und Datum:		
Unterschrift Proband	Unterschrift Arzt	

Anschrift Klinikum Augsburg Süd Sauerbruchstraße 6 89179 Augsburg Tel. 0821 400-03

Seite 2 von 2

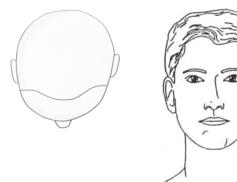
Einverständiserklärung

Thema: Optische Kohärenztomographie von aktinischen Keratosen und Basaliomen – morphologische Charakterisierung und Signalintensitäten im Gerätevergleich

Vorname:	Nachname:
Anschrift:	
Ich erkläre mich einverstanden, an der ober dieser Studie wird mittels der optischen Koh Behandlungen von aktinischen Keratosen m Basaliomen mit lokalen Therapeutika sowie Bildaufnahmen mit Geräten gemacht, die nin Nebenwirkungen durch die Messungen trete Die Patientenaufklärung habe ich gelesen. Möglichkeit gegeben worden, weitere Frage Alle Daten werden im Rahmen einer wissen und unterliegen der ärztlichen Schweigepflicerklärung ohne Angabe von Gründen wider	närenztomographie vor und ggf. nach den nit lokalen Therapeutika und von möglicherweise einer Operation cht in den Körper eindringen. en nicht auf. Mir ist von einem zuständigen Arzt die en zu stellen. Ischaftlichen Studie anonym ausgewertet cht. Ich kann diese Einverständnis-
Ich bin mit der Erhebung und Verwendur Befunddaten in pseudonymisierter Form Patienteninformation einverstanden.	
Vom Proband auszufüllen:	
Ort und Datum:	
Unterschrift Proband	Unterschrift Arzt

Seite 1 von 1

7.5 Dokumentationsbögen


Studie aktinische Keratosen

Gerät ankreuzen:

- O VivaScope 1500
- O VivoSight OCT O SkinTell OCT
- O Callisto OCT
- O Foto
- O Videoauflicht

Lokalisation:

	Lokalisation	Grad	Datum	Datum	Datum
1 aK					
2 aK					
3 aK					
4 ges. Haut					

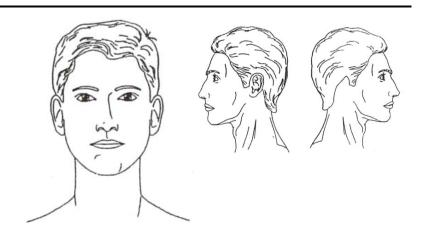
Therapie:

	Startdatum	Stopdatum
O Solaraze		
O Aldara		
O PDT		
O Sonstiges		

Studie aktinische Keratosen

Datum

der Aufnahmen:


Gerät ankreuzen:

O VivaScope 1500

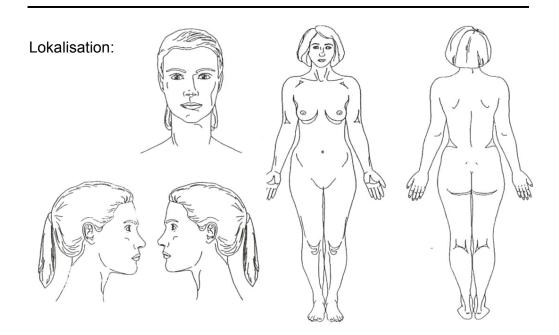
O VivoSight - OCT O SkinTell - OCT

O Callisto - OCT

Lokalisation:

Diagnose:

Studie aktinische Keratosen


Datum

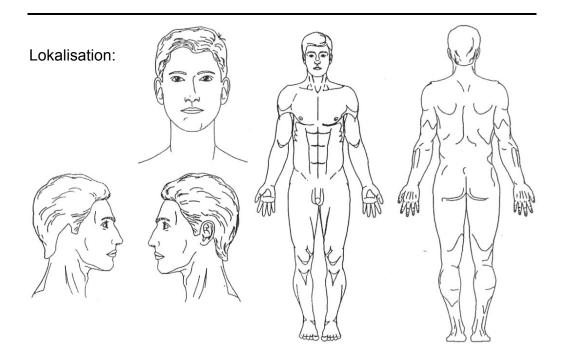
der Aufnahmen:

Gerät ankreuzen:

O VivaScope 1500 O VivoSight - OCT O SkinTell - OCT

O Callisto - OCT

Diagnose:


Studie aktinische Keratosen

Datum

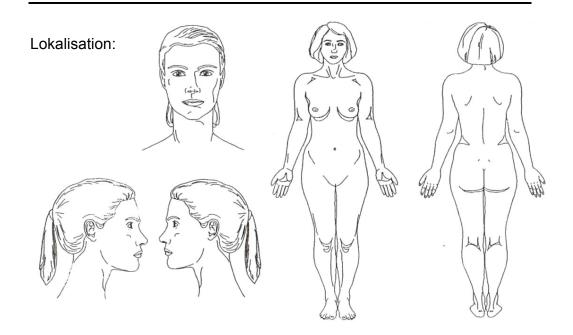
der Aufnahmen:

Gerät ankreuzen:

- O VivaScope 1500
 O VivoSight OCT
 O SkinTell OCT
- O Callisto OCT

Diagnose:

Studie Basaliome


Datum

der Aufnahmen:

Gerät ankreuzen:

O VivaScope 1500
O VivoSight - OCT
O SkinTell - OCT

O Callisto - OCT

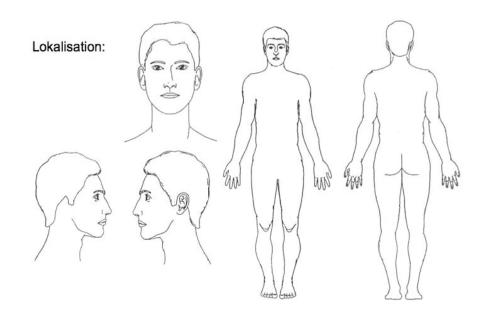
Diagnose:

	Lokalisation	OP	Imiquimod	PDT
1. BCC				
2. BCC				
3. BCC				

Studie Basaliome

Datum

der Aufnahmen:


Gerät ankreuzen:

O VivaScope 1500

O VivoSight - OCT

O SkinTell - OCT

O Callisto - OCT

Diagnose:

	Lokalisation	OP	Imiquimod	PDT
1. BCC				
2. BCC				
3. BCC				

8. Danksagung

Ich möchte mich ganz herzlich bei meiner Doktormutter Frau Professor Dr. med. Julia Welzel für die Überlassung dieses interessanten Themas und ihre hervorragende Betreuung meiner Doktorarbeit bedanken. Neben einem idealen Arbeitsplatz im Studienzentrum der Abteilung Dermatologie im Klinikum Augsburg, hatte sie immer eine Antwort auf meine vielen Fragen und unterstützte mich mit ihrer großen Fachkompetenz in allen Dingen. Sie förderte und ermutigte mich und stand mir stets mit Rat und Tat bei der Erstellung der Publikationen und Vorträge zur Seite. Durch die Teilnahme an Fortbildungen und Kongressen konnte ich faszinierende Einblicke in verschiedene Forschungsrichtungen der nichtinvasiven dermatologischen Diagnostik gewinnen, die mir nicht nur für die Weiterarbeit an der Studie von großem Nutzen waren, sondern mir auch eine ganz neue Sichtweise auf die Dermatologie eröffnete. Um es mit ihren Worten zu sagen: "Dermatologie ist schön!" [234] Frau Professor Welzel war mir die beste Doktormutter, die ich mir vorstellen konnte! Vielen Dank für alles!

Herzlichen Dank auch an Frau Dr. med. Elke Sattler, Oberärztin an der Dermatologischen Klinik der LMU München, für ihre Hilfe und Engagement bei den Publikationen der Studie.

Ferner danke ich Frau Raphaela Kästle, Mitarbeiterin und Bioingenieurin im Studienzentrum, für ihre große Unterstützung bei den Messungen an den OCT Geräten und am KLM. Sie war bei allen Fragen immer für mich da!

Weiterhin danke ich Frau Plaumann, Mitarbeiterin im Studienzentrum, der Station 1.3, der Dermatologie Ambulanz sowie den Ärzten der dermatologischen Klinik für die herzliche Zusammenarbeit und dem Team des histologischen Labors am Klinikum Augsburg für die Anfertigung der histologischen Präparate. Herrn Karlheinz Haude, Dipl.-Mathematiker am Klinikum Augsburg, danke ich für seine konstruktiven Ratschläge bei der statistischen Auswertung.

Für die freundliche Unterstützung mit hilfreicher Literatur danke ich Herrn Uwe Heinloth, dem Bibliotheksangestellten der Fachinformationsstelle des BWK Ulm, Frau Barbara Satzinger, Mitarbeiterin der Bibliothek des Klinikums Augsburg, sowie Frau Ryan und ihrem Team im Archiv des Klinikums Augsburg Süd bei der Beschaffung der Akten.

Von Herzen danke ich Frau Dr. med. Martina Bayerl und Herrn Dr. med. René Bayerl. Ohne sie hätte die Dermatologie nie einen so großen Platz in meinem Herzen eingenommen und meinen Lebensweg so sehr geprägt, wie sie es getan hat. Danke! Genauso sehr danke ich meinen "Derma Queens" Dr. med. Catharina Fischer und Dr. med. Gabriele Rothmund für all ihre Unterstützung und Ermutigung die letzten Jahre!

Zuletzt gilt mein innigster Dank meinen Eltern und meiner Schwester Anja, ohne deren Liebe, Hilfe und Geduld das Medizinstudium und die Dissertation nicht möglich gewesen wären.

9. Lebenslauf

Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.

10. Publikationen

- **1. Schuh S**, Kaestle R, Sattler E, Welzel J (2016) Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer. Skin Res Technol 22, 395-405.
- **2. Schuh S**, Kaestle R, Sattler EC, Welzel J (2016) Optical coherence tomography of actinic keratoses and basal cell carcinomas differentiation by quantification of signal intensity and layer thickness. J Eur Acad Dermatol Venereol 30, 1321-1326.
- **3. Schuh S**, Holmes J, Ulrich M, Themstrup L, Jemec G, Pellacani G, Welzel J (2017) Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology. Dermatol Ther (Heidelberg) 7, 187-202.
- **4.** Welzel J, **Schuh S** (2017) Noninvasive diagnosis in dermatology. J Dtsch Dermatol Ges 15, 999-1016.
- **5. Schuh S**, Welzel J (2017) Neue nichtinvasive diagnostische Verfahren in der Dermatologie. Der Deutsche Dermatologe 65, 840-851.
- **6.** De Carvalho N, **Schuh S**, Kindermann N, Kästle R, Holmes J, Welzel J (2017) Optical coherence tomography for margin definition of basal cell carcinoma before micrographic surgery recommendations regarding the marking and scanning technique. Skin Res Technol (DOI: 10.1111/srt.12407 [Epub ahead of print]).
- **7.** Holmes J, von Braunmühl T, Berking C, Sattler E, Ulrich M, Reinhold U, Kurzen H, Dirschka T, Kellner C, **Schuh S**, Welzel J (2017) Optical coherence tomography of basal cell carcinoma: influence of location, subtype, observer variability and image quality on diagnostic performance. Br J Dermatol (DOI: 10.1111/bjd.16154 [Epub ahead of print]).
- **8.** Themstrup L, De Carvalho N, Mai Nielsen S, Olsen J, Ciardo S, **Schuh S**, Meinecke-Hansen Nørnberg B, Welzel J, Ulrich M, Pellacani G, Jemec GBE (2017) In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography. Exp Dermatol (DOI: 10.1111/exd.13479 [Epub ahead of print]).

Die ersten beiden Publikationen wurden nach Peer-Review Verfahren veröffentlicht und stellen die wesentlichen Ergebnisse dieser Arbeit dar.