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Zusammenfassung

In vielen Fällen sind analytische Lösungen von stochastischen partiellen Differentialgleichungen
nicht explizit berechenbar, weshalb das Ziel dieser Arbeit die Entwicklung numerischer Ver-
fahren zur Lösung dieser Gleichungen ist. Insbesondere liegt der Fokus auf ableitungsfreien
Verfahren höherer Ordnung. Diese Methoden haben im Allgemeinen, verglichen mit Approxi-
mationsverfahren welche mit der Ableitung des Diffusionsoperators arbeiten, einen geringeren
Rechenaufwand bei gleicher Konvergenzordnung.
In dieser Arbeit wird die Konvergenz im quadratischen Mittel der vorgestellten numerischen
Verfahren bewiesen und die Ergebnisse werden durch Simulationen bestätigt. Außerdem wird
der Rechenaufwand der einzelnen Verfahren analysiert. Die Minimierung des Fehlers für gegebe-
nen Aufwand liefert die effektive Konvergenzordnung. Dieser Wert wird für die verschiedenen
Verfahren bestimmt und verglichen. Es wird gezeigt, dass die ableitungsfreien Verfahren im All-
gemeinen eine höhere effektive Konvergenzordnung erreichen.
Bei der Approximation von nicht-kommutativen Gleichungen müssen zusätzlich iterierte sto-
chastische Integrale simuliert werden. Es werden Verfahren vorgestellt um diese Integrale zu
approximieren und die Gleichungen zu lösen. Die theoretischen Ergebnisse werden mit nu-
merischen Simulationen veranschaulicht. Auch für diese Klasse von stochastischen partiellen
Differentialgleichungen erreichen die ableitungsfreien Verfahren in vielen Fällen eine höhere ef-
fektive Konvergenzordnung.
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Summary

Analytical solutions to stochastic partial differential equations are in most cases not explicitly
computable. Therefore, the goal of this work is to derive numerical schemes to solve these
equations. Particularly, we focus on schemes with higher orders of convergence that are free
of derivatives. These numerical methods involve, in general, less computational effort with the
same high order of convergence compared to schemes that include the derivative of the diffusion
operator.
The convergence of the numerical schemes is proved analytically and the computational costs of
these schemes are analyzed. We derive the effective order of convergence for various schemes by
minimizing the mean-square error given some fixed computational cost. In general, this number
is higher for the derivative-free methods.
In the approximation of stochastic partial differential equations that are not commutative, it-
erated stochastic integrals have to be simulated. We present and analyze numerical schemes to
complete this task. These schemes are incorporated into a derivative-free numerical method to
approximate the mild solution of such equations. Moreover, the effective order of convergence of
these algorithms is derived and compared to the order of established approximation methods.
The theoretical results are illustrated and confirmed with numerical simulations for both types
of equation.
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Motivation

From medicine over biology and geology to finance - stochastic partial differential equations are
a powerful modeling tool in numerous applications. As an example, we present the transfer
of information in the human brain, that is, the modeling of the evolution of action potentials
between neurons.
Let us focus on one neuron with resting membrane potential V0 and denote by V the membrane
potential of this cell, that is, the difference between the voltage inside and outside of the neuron.
One model to describe changes in the membrane potential is the model by FitzHugh and Nagumo
[18, 19, 52], which is a simplification of the seminal model developed by Hodgkin and Huxley
[28]. We assume that the neuron can be represented by a cable of length l and radius r and
restrict this representation to the one-dimensional case for simplicity. The model comprises a
system of two (stochastic) partial differential equations

∂V

∂t
= D1

∂2V

∂x2
+ κV (V − a)(1− V )− λZ + I(x, t, V ),

∂Z

∂t
= D2

∂2Z

∂x2
+ ε(V − pZ + b), t > 0, x ∈ (0, l),

where Z is the recovery variable responsible for obtaining the equilibrium potential after an
action potential occurred. Moreover, we need to specify boundary conditions and initial values
for V and Z. For the parameters, it holds D1, D2, κ, a, λ, ε, p > 0, b ∈ R. Here, I(x, t, V ), t > 0,
x ∈ [0, l], is the input current which results from extern or cell intern sources. This term can
be random and accounts for input from other neurons, the variability in the interspike intervals,
the opening and closing of ion channels or random postsynaptic potentials, see [68]. For more
details on this or similar neuronal models, we refer the reader to [11, 64, 66, 67, 68, 69].
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1
Introduction

Let T ∈ (0,∞) and let (Ω,F , P ) denote a probability space endowed with some filtration
(Ft)t∈[0,T ] fulfilling the usual conditions. In this work, we investigate semilinear, parabolic
stochastic partial differential equations (SPDEs) on (Ω,F , (Ft)t∈[0,T ], P ). These equations are of
the following general form

dXt =
(
AXt + F (Xt)

)
dt+B(Xt) dWt, t ∈ (0, T ], X0 = ξ. (1.1)

Here, the solution process (Xt)t∈[0,T ] is an element of some separable Hilbert space Hγ for some
suitable γ ∈ [0, 1) and (Wt)t∈[0,T ] is a Q-Wiener process with respect to (Ft)t∈[0,T ]. More details
on the operators, spaces, and processes in this equation are given in Chapter 2.

Analytical properties of stochastic differential equations in infinite dimensions have been analyzed
extensively, consult, for example, [12, 13, 34, 36, 42, 47, 55, 69]. Different notions of solutions
for SPDEs have been introduced and properties of the solution process, such as its regularity,
have been studied, [7, 13, 34, 42, 79]. Existence and uniqueness of solutions have been proved
by different means. Walsh introduced the martingale approach, see [69]; another idea is the
variational approach, which is employed in [53] or [63], for example. In this work, we chose the
semigroup approach to prove the existence and uniqueness of a mild solution, as described in
[13] or [34].
SPDEs are, however, a complex class of differential equations barely allowing for an analytical
solution. As for stochastic ordinary differential equations (SODEs) and partial differential equa-
tions (PDEs), there is thus a need for numerical schemes to approximate the solution process.
Particularly, we need tools from both the fields of SODEs and PDEs in the approximation of
SPDEs. Research in this direction includes [1, 2, 6, 21, 22, 25, 26, 30, 31, 44, 48, 49, 51, 70, 78],
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to name only a few works.
In order to approximate the solution process of a SPDE numerically, one has to discretize the
infinite dimensional stochastic process next to the time and space domain. Concerning the space
domain most methods work with a spectral Galerkin method or a finite element discretization
to obtain a finite dimensional system of stochastic differential equations in the projection space,
see [1, 35, 41, 70, 78], for example.
So far, schemes with higher order of convergence in the temporal direction remain rare and
efficient algorithms are restricted to equations under very specific assumptions, see [3, 4, 5, 20,
35, 44, 45], or [71].
In [32], Jentzen and Kloeden derived Taylor approximations for the mild solution of SPDE (1.1),
which is given by

Xt = eAt ξ +

∫ t

0
eA(t−s) F (Xs) ds+

∫ t

0
eA(t−s)B(Xs) dWs P -a.s.

for t ∈ [0, T ]. These approximations allow for the schematic derivation of numerical schemes.
Based upon this work, the authors proposed the exponential Euler scheme, see [31]. Furthermore,
higher order schemes such as the Milstein scheme in [35] and a Wagner-Platen type scheme in
[5] were developed for SPDEs driven by a Q-Wiener process with trace class that fulfill certain
commutativity conditions. In [71], the authors derived a derivative-free version of the Milstein
scheme based on similar assumptions. Moreover, further Milstein-type schemes were developed
in [3, 4, 44]. All these higher order schemes are, however, only efficiently applicable to a specific
class of SPDEs with an operator B that is pointwise multiplicative in the Q-Wiener process.

The main novelty in this work is the development of efficient derivative-free approximation
schemes with computational cost of optimal order for SPDEs of type (1.1).
We start from the Milstein scheme for n-dimensional stochastic differential equations for some
fixed n ∈ N to emphasize the crux. Let (Wt)t∈[0,T ] be a k-dimensional Brownian motion with
respect to (Ft)t∈[0,T ] for some fixed k ∈ N and assume a : Rn → Rn and b = (b1, . . . , bk) : Rn →
Rn×k with bj(x) = (b1,j(x), . . . , bn,j(x))T , j ∈ {1, . . . , k}, x ∈ Rn, to be Lipschitz continuous
functions. In this setting, the system of SODEs

dXt = a(Xt) dt+
k∑
j=1

bj(Xt) dW j
t

for t ∈ (0, T ] with initial value X0 = ξ ∈ Rn allows for a unique solution, [38]. For simplicity, let
the step size h = T

M for someM ∈ N be constant such that we obtain an equidistant discretization
tm = m · h, m ∈ {0, . . . ,M}, of the time interval [0, T ].
Now, define ∆W j

m = W j
tm+1

−W j
tm for all j ∈ {1, . . . , k}, m ∈ {0, . . . ,M − 1}, M ∈ N. It is well

known that the following expression holds for the stochastic double integrals∫ tm+1

tm

∫ s

tm

dW j
u dW i

s +

∫ tm+1

tm

∫ s

tm

dW i
u dW j

s = ∆W i
m ∆W j

m (1.2)
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for i, j ∈ {1, . . . , k} with i 6= j, m ∈ {0, . . . . ,M − 1}, M ∈ N, see [38]. If we assume the SODE
to be commutative, that is,

n∑
r=1

br,j
∂bl,i
∂xr

=
n∑
r=1

br,i
∂bl,j
∂xr

(1.3)

holds for all l ∈ {1, . . . , n} and i, j ∈ {1, . . . , k}, the Milstein scheme can be easily simulated due
to expression (1.2).
Let us focus on the commutative SODE for now. In this setting, the Milstein scheme can be
written as YM

0 = ξ and

YM
m+1 = YM

m + h a(YM
m ) +

k∑
j=1

bj(Y
M
m ) ∆W j

m

+
1

2

k∑
i,j=1

(
∂bl,i
∂xr

(YM
m )

)
1≤l,r≤n

bj(Y
M
m )

(
∆W i

m ·∆W j
m

)
− h

2

k∑
j=1

(
∂bl,j
∂xr

(YM
m )

)
1≤l,r≤n

bj(Y
M
m )

for m ∈ {0, . . . ,M − 1}, M ∈ N. We refer to [38] for more details. The implementation of this
scheme is straightforward as no stochastic double integrals have to be simulated. The Milstein
scheme achieves a strong order of convergence of 1.0, which is an improvement compared to
the Euler-Maruyama scheme for SODEs with rate 0.5, [38]. The computation of the Milstein
scheme is costly, however. In each time step one has to evaluate the drift and diffusion functions
a, bj , j ∈ {1, . . . , k}, which are (k + 1) · n evaluations of scalar (nonlinear) functions in each
step. The same terms have to be computed in the Euler-Maruyama scheme as well. Moreover,
for fixed m ∈ {0, . . .M}, M ∈ N, one has to calculate the Jacobian

(
∂bl,i
∂xr

(YM
m )
)

1≤l,r≤n
for all

i ∈ {1, . . . , k} in the Milstein scheme, which results in n2k function evaluations. In total, we
obtain a computational effort of O(nkM) for the Euler-Maruyama scheme and O(n2kM) for the
Milstein scheme. The number of time steps employed to simulate one path with a prescribed
accuracy and to obtain XT with the Milstein scheme is, however, smaller than for the Euler-
Maruyama scheme as it attains a higher order of convergence, in general.
In order to reduce the computational cost while keeping the strong order of convergence at the
same level, Rößler introduced approximation schemes for SODEs that are free of derivatives in
[60, 61, 62].

For some N,K ∈ N, let PN : H → HN and PK : V → VK denote some projection operators for
the spatial discretization and the approximation of the Q-Wiener process, respectively - more
details are given in Section 3.3. In the setting of infinite dimensional stochastic differential
equations, the computational cost of the Milstein scheme is cubic in the dimensions N and K of
the projection spaces HN and VK ; precisely, the computational effort of the scheme is of order
O(N2K) in each time step. Since these dimensions need to increase to obtain a higher accuracy
of the approximation, the reduction of the computational cost becomes even more important for
SPDEs.
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Jentzen and Röckner developed a Milstein scheme for SPDEs that are commutative in [35]; the
commutativity condition for the setting of SPDEs is specified in Section 3.3. They solved the
problem of high computational effort by restricting their examples to the case of an operator
B that is pointwise multiplicative in the Q-Wiener process, that is, (B(y)v)(x) = b(x, y(x)) ·
v(x) for all x ∈ (0, 1)d, y ∈ H = V = L2((0, 1)d,R), v ∈ V0 ⊂ V , b : (0, 1)d × R → R and
d = 1, 2, 3. Therewith, they avoid the evaluation of terms that result in cubic computational
costs. In addition, their scheme is applicable to more general equations as well; in this case,
the computational effort is of order O(N2KM), however. For general commutative equations of
type (1.1), the scheme reads as Y N,K,M

0 = PNξ and

Y N,K,M
m+1 = PN

(
eAh
(
Y N,K,M
m + hF (Y N,K,M

m ) +B(Y N,K,M
m )∆WK,M

m

+
1

2
B′(Y N,K,M

m )
(
B(Y N,K,M

m )∆WK,M
m ,∆WK,M

m

)
− h

2

∑
j∈JK

ηj B
′(Y N,K,M

m )
(
B(Y N,K,M

m )ẽj , ẽj
)))

for all m ∈ {0, 1, . . . ,M − 1}, M,N,K ∈ N. Details on the notation can be found in Section 3.3.

Another approach to reduce the computational cost is the derivative-free version of the Milstein
scheme for SPDEs derived by Wang and Gan in [71]. This scheme is only applicable if the
operator B is pointwise multiplicative in the Q-Wiener process, the setting considered in [35] as
well, and cannot be employed to solve equation (1.1) in general. The Runge-Kutta type scheme
has the following general form Y N,K,M

0 = PNξ and

Y N,K,M
m+1 = PN

(
eAh
(
Y N,K,M
m + hF (Y N,K,M

m ) +B(Y N,K,M
m )∆WK,M

m

+
1

2
BB(Y N,K,M

m , h)(∆WK,M
m ,∆WK,M

m )− h

2

∑
j∈JK

ηjBB(Y N,K,M
m , h)(ẽj , ẽj)

))

for all m ∈ {0, 1, . . . ,M −1}, M,N,K ∈ N. The bilinear operator BB has to fulfill the following
assumptions. There exists a constant C, independent of h > 0, such that

‖BB(v, h)−BB(w, h)‖2
L
(2)
HS(V0,H)

≤ C

h
‖v − w‖2H (1.4)

‖BB(v, h)−B′(v)B(v)‖2
L
(2)
HS(V0,H)

≤ Ch
(

1 + ‖v‖4Hβ
)

(1.5)

for all v, w ∈ Hβ and some β ∈ [0, 1). Under these conditions, the strong order of the Milstein
scheme is preserved.

Here, we choose an alternative way to handle the issue of high dimensionality. We devise nu-
merical schemes which are applicable to a general class of equations of type (1.1) and free of
derivatives.
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Particularly, we specify an approximation operator of the term

1

2
B′(Y N,K,M

m )
(
B(Y N,K,M

m )∆WK,M
m ,∆WK,M

m

)
=

1

2

∑
i,j∈JK

√
ηi
√
ηjB

′(Y N,K,M
m )

(
B(Y N,K,M

m )ẽi, ẽj
)
∆βim∆βjm,

which has to be computed in the Milstein scheme for some N,M,K ∈ N and all m ∈ {0, . . . ,M};
this approximation can be obtain with reduced computational cost. The idea is based on the
work by Rößler for finite dimensional SODEs, see [60, 61, 62], for example, and allows to lower
the computational cost to the effort involved in the Euler-Maruyama scheme, that is, O(nkM).
In the setting of SPDEs, this reduction in the computational cost (CC) is even more powerful
as the effective order of convergence can be improved.
The effective order of convergence is defined as the rate that we obtain by solving the optimization
problem

min
N,M,K

(
sup

m∈{0,...,M}
E
[∥∥Xtm − YM,N,K

m

∥∥2

H

]) 1
2 such that CC = c̄

for some c̄ > 0. This concept is introduced in Section 3.2.
The formulation of the approximation method as well as its proof can, however, not be transferred
from the finite dimensional setting directly. The number of independent Brownian motionsK ∈ N
has to increase to obtain a higher accuracy in the approximation of SPDEs, but the constant in
the error estimate for SODEs is not independent of K. Therefore, a different approach is needed
in order to prove convergence. We elaborate on this issue in Chapter 3.
Commutative SPDEs allow for an expression of stochastic double integrals of the form∫ t

s
B′(Xs)

(∫ r

s
B(Xs) dWK

u

)
dWK

r , s, t ∈ [0, T ], s ≤ t, K ∈ N,

in terms of increments of the Q-Wiener process; thus their simulation is straightforward. This
simplification is not possible if the commutativity does not hold. In Section 4.1, we propose
two algorithms to approximate the stochastic double integrals in this case. These approximation
methods are based on the schemes by Wiktorsson, [39], and Kloeden, Platen, and Wright, [75],
developed for finite dimensional SODEs. We transfer the methods to the setting of SPDEs and
obtain error estimates which differ from the expressions derived for SODEs.

This work is composed as follows. In Chapter 2, we lay the foundation to work with stochastic
partial differential equations. We explain and illustrate the equation of interest and present
stochastic calculus in Hilbert spaces. Furthermore, we elaborate on the theory of existence and
uniqueness of a mild solution and some important properties of this process to some extent.
The focus of this chapter is on stating results that are crucial for the numerical analysis later
on. In the main part of this work, Chapter 3 and Chapter 4, we develop derivative-free schemes
to solve equation (1.1) efficiently. We devise different schemes depending on the assumption of
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commutativity. These schemes solve the issue of high computational costs related to a higher
order of convergence, as described above. We introduce the concept of the effective order of
convergence for comparability of the schemes. Moreover, we prove the convergence of these
methods theoretically and analyze their computational effort.
Chapter 3 is concerned about commutative equations. We design a derivative-free Milstein
scheme and prove its strong convergence; this result is stated in Theorem 3.1. Besides, we
analyze the effective order of convergence for various schemes and compare these values for
different types of equations. A summary can be found in Table 3.2. Finally, we illustrate our
findings with numerical simulations.
In Chapter 4, we turn our attention to SPDEs of type (1.1) that are not commutative. We
introduce two algorithms to approximate the iterated stochastic integrals and prove convergence
results as specified in Theorem 4.1 and Theorem 4.2, respectively. These schemes are incorpo-
rated in a numerical method which is free of derivatives and attains a higher effective order of
convergence than the exponential Euler scheme for a large number of equations. The results on
the convergence are stated in Theorem 4.3 and a comparison of the schemes can be found in
Table 4.1.
Eventually, we state some ideas on the connection of local and global errors and close with a
discussion of our results.

7



2
Stochastic Differential Equations

in Infinite Dimensions

There are different ways to look at a stochastic partial differential equation - on the one hand,
we can describe it as a stochastic differential equation in infinite dimensions, on the other, it
defines an evolution equation where a stochastic term is added. It is therefore obvious, that
the study of stochastic differential equations in infinite dimensions employs tools from various
disciplines. We need to introduce some definitions and theorems from the theory of semigroups;
this is necessary due to the notion of a solution, the mild solution, that we focus on. We prove
the existence and uniqueness of the solution, similar as for partial differential equations (PDEs),
by means of semigroups. Next to ideas from the analysis of PDEs and some definitions from
functional analysis, we introduce stochastic analysis in Hilbert spaces, as the solution to SPDE
(1.1) is a Hilbert-space valued stochastic process.

First, we present the general setting in which the stochastic evolution equations are analyzed
in the following. Let (H, 〈·, ·〉H) and (V, 〈·, ·〉V ) be separable real-valued Hilbert spaces. In
particular, these spaces have countable orthonormal bases; {ei, i ∈ I} denotes the basis of H
and {ẽj , j ∈ J } the basis of V , where I,J are countable index sets. More details on these bases
are given in Section 2.1 and Section 2.2.
Let T ∈ (0,∞) and define a probability space (Ω,F , P ) with filtration (Ft)t∈[0,T ]. We assume
(Ft)t∈[0,T ] to be right-continuous and that F0 contains all sets A ∈ F with measure zero.
We are interested in solving semilinear, parabolic equations on (Ω,F , (Ft)t∈[0,T ], P ) of the general
form

dXt = (AXt + F (Xt)) dt+B(Xt) dWt, t ∈ (0, T ], X0 = ξ, (2.1)

8



2.1. Semigroups

where the solution process belongs to a Hilbert space Hγ , γ ∈ [0, 1), and (Wt)t∈[0,T ] ∈ V is a
Q-Wiener process with respect to (Ft)t∈[0,T ]. Details and properties of the operators, processes,
and spaces will be given in Section 2.1 to Section 2.3.

We want to emphasize that the following sections are not supposed to be complete but simply
aim to provide the theory and tools employed in the main part of this work.

2.1 Semigroups

As we make use of the theory of semigroups in the proof of existence and uniqueness of a mild
solution to SPDE (2.1), we need to collect some facts on semigroups on Hilbert spaces. We prove
estimates that are essential in the analyses that we conduct later on. The definitions, theorems,
and proofs in this part are taken from the fundamental works [54], [57], and [65].

First, we look at a deterministic Cauchy problem, [57].

Example 2.1
Consider

dX(t) = AX(t) dt, t ∈ (0, T ],

X(0) = x0,

where A ∈ Rn×n, x0 ∈ Rn, and n ∈ N.
The solution to this equation is known to equal

X(t) = x0e
At.

In this example, the operator A is bounded and the definition of eAt, t ∈ [0, T ], is straightforward.

In the case of evolution equations in infinite dimensions, the linear operator A does, however,
not have to be bounded; consider the Laplace operator A = ∆, for example. Thus, the questions
we need to answer are under which conditions on A the operator eAt, t ∈ [0, T ], is defined and
how eAt, t ∈ [0, T ], can be represented in this case. It will turn out that we need A to generate
some type of semigroup - an analytic semigroup in our setting - for a reasonable definition of
this expression. We start with semigroups of bounded linear operators and move step by step to
the definition of analytic semigroups and its properties.

Definition 2.1 (Semigroup of Bounded Linear Operators and C0-Semigroup)
S(t) is defined to be a semigroup of bounded linear operators on H if S(t) ∈ L(H), for all t > 0,
and

• S(0) = I

• S(t)S(s) = S(t+ s), s, t ∈ [0,∞).

9



2.1. Semigroups

We call S(t), t ≥ 0, a C0-semigroup if S(t), t ≥ 0, is a semigroup of bounded linear operators on
H and

lim
t→0+

S(t)w = w for every w ∈ H.

[54, Chapter 1, Definitions 1.1,2.1]

In the study of evolution equations we are, however, given the linear operator A instead of the
semigroup S(t), t ≥ 0. Therefore, we are interested in the relation of the operator A and the
corresponding semigroup as well as the properties that this operator has to fulfill such that S(t),
t ≥ 0, is a C0- or analytic semigroup, respectively.

Definition 2.2 (Infinitesimal Generator)
Let S(t), t ≥ 0, be a C0-semigroup on H. The infinitesimal generator A of S(t), t ≥ 0, is defined
by

Aw := lim
h→0+

S(h)− I
h

w =
d+(S(t))w

dt

∣∣∣∣
t=0

for w ∈ D(A). The domain D(A), in turn, is defined as

D(A) :=

{
w ∈ H : lim

h→0+

S(h)− I
h

w exists
}
.

[54, p.1]

The following assumptions on the operator A, stated in the Theorem by Hille-Yosida, guarantee
that A generates a C0-semigroup.

Theorem 2.1 (Hille-Yosida)
A linear operator A is the infinitesimal generator of a C0-semigroup with ‖S(t)‖L(H) ≤ 1 for all
t ≥ 0 if and only if

i) A is a closed operator and D(A) = H

ii) ρ(A) := {λ ∈ C : (λI −A) is invertible}, called the resolvent set of A, contains R+ and

‖Rλ(A)‖L(H) = ‖(λI −A)−1‖L(H) ≤
1

λ

for all λ > 0.

[54, Chapter 1, Theorem 3.1]

Proof. The proof of this important theorem can be found in [54, p.8,9].

In the analysis of the existence and uniqueness of a solution to SPDE (2.1) and the investigation
of the numerical schemes in Chapter 3 and Chapter 4, we need the operator A not only to
generate a C0-semigroup but an analytic semigroup instead.

10



2.1. Semigroups

Definition 2.3 (Analytic Semigroup)
An analytic semigroup S(t), t ≥ 0, is a C0-semigroup which fulfills the following additional
requirements

• S(t) ∈ L(H) can be extended to t ∈ ∆φ = {0} ∪ {t ∈ C| | arg t| < φ} for some φ ∈ (0, π2 )

and Definition 2.1 holds for all t ∈ ∆φ,

• S(t) is analytic in t for t ∈ ∆φ \ {0} (in the uniform operator topology).

[57, Definition 11.30]

As above, we are interested in the properties of the operator A that guarantee that the corre-
sponding semigroup is analytic.

Theorem 2.2 (Generator of Analytic Semigroup)
Let A be a linear, closed, and densely defined operator in H. A is the generator of an analytic
semigroup if and only if there exists some w ∈ R such that {λ : Reλ > w} ⊂ ρ(A) and it exists
a constant C such that

‖Rλ(A)‖L(H) ≤
C

λ− w
for Reλ > w.
Under these assumptions, it holds {λ : | arg(λ − w)| < π

2 + δ} ⊂ ρ(A) for some δ > 0 and the
semigroup can be represented as

eAt =
1

2πi

∫
Γ
eλt(λI −A)−1 dλ,

where Γ is a curve from e−iϕ∞ to eiϕ∞ such that Γ ⊂ {| arg(λ− w)| ≤ ϕ} for π
2 < ϕ < π

2 + δ.

[57, Theorem 11.31]

Proof. For a proof, we refer to [57, p. 412-414].

Moreover, A generates an analytic semigroup if we assume (−A) to be self adjoint and bounded
below with compact resolvent, [65, Theorem 32.1].

Next, we want to list and illustrate some basic features of analytic semigroups. These are
important in the analysis of the solvability of equation (2.1) and later on to prove the convergence
of the numerical schemes. First, we define the fractional power of the generator A of an analytic
semigroup. Therefore, we need to define the spectrum of the operator A

σ(A) := C \ ρ(A),

see [57, Definition 7.39] for details.

11



2.1. Semigroups

Definition 2.4 (Fractional Power)
Assume A to be the generator of an analytic semigroup and that the spectrum of A lies in the
open left half-plane. We define

(−A)−α = − 1

2πi

∫
Γ
λ−α(λI +A)−1 dλ, (2.2)

where Γ is again a curve from e−iϕ∞ to eiϕ∞, with π
2 −δ < ϕ < π and δ as specified in Theorem

2.2, such that the origin lies to the left of Γ and the spectrum of −A to its right. λ−α is taken to
be positive on the positive real axis. The integral converges in the uniform operator topology for
every α > 0.

[57, p. 415]

For α > 0 the integral in (2.2) can be expressed as

(−A)−α =
1

Γ(α)

∫ ∞
0

tα−1eAt dt.

The simple reformulations can be found in [54] or [57].
Now, we state some estimates which are of importance in our analysis in various steps. We give
a proof of these estimates as they are essential in this work.

Theorem 2.3 (Estimates of Analytic Semigroups)
Let A be the generator of an analytic semigroup S(t), t ≥ 0, with spectrum that lies entirely in
the open left half-plane. Then, it holds for some C > 0 , δ > 0, and all t ≥ 0

a) ‖S(t)‖L(H) ≤ Ce−δt,

b) ‖(−A)−α‖L(H) ≤ C, 0 ≤ α ≤ 1,

c) ‖(−A)αeAt‖L(H) ≤ Cαt−α, α ≥ 0, t > 0,

d) ‖(−A)−α(eAt − I)‖L(H) ≤ Cαtα, 0 < α ≤ 1.

[54, Chapter 2, Lemma 6.3,6.13]

Proof. The proofs are mainly taken from [54] and [65].

a) For C0-semigroups, it holds ‖S(t)‖L(H) ≤ Cewt with constants C ≥ 1, w ≥ 0, [54, Chapter
1, Theorem 2.2]. As the spectrum of A lies in the open left half-plane, this estimate is true
for w = 0. Moreover, we can choose some δ > 0 such that A+ δ is again the generator of an
analytic semigroup with

‖e(A+δ)t‖L(H) ≤ C ⇒ ‖eAt‖L(H) ≤ Ce−δt

for all t ≥ 0.

12



2.1. Semigroups

b) Let α ∈ (0, 1), with part a) it holds

‖(−A)−α‖L(H) =
∥∥∥ 1

Γ(α)

∫ ∞
0

tα−1eAt dt
∥∥∥
L(H)

≤ 1

Γ(α)

∫ ∞
0

tα−1‖eAt‖L(H) dt ≤ 1

Γ(α)

∫ ∞
0

tα−1Ce−δt dt

=
C

Γ(α)

∫ ∞
0

(u
δ

)α−1
e−u

1

δ
du =

CΓ(α)

Γ(α)δα−2
= C.

We get ‖(−A)−1‖L(H) ≤ C by similar computations.

c) First, note that (−A)α is a closed and densely defined operator for α ≥ 0, [54, Chapter 2,
Theorem 6.8]. So, (−A)αS(t), t > 0, is closed and everywhere defined and the Closed Graph
Theorem, [73, Theorem IV.4.5], implies (−A)αS(t) ∈ L(H) for all t > 0, α ≥ 0.

Let k > α > k − 1, k ∈ N, t > 0, we obtain

‖(−A)αeAt‖L(H) = ‖(−A)α−kAkeAt‖L(H)

=
∥∥∥ 1

Γ(k − α)

∫ ∞
0

sk−α−1AkeA(t+s) ds
∥∥∥
L(H)

≤ 1

Γ(k − α)

∫ ∞
0

sk−α−1‖AkeA(t+s)‖L(H) ds.

We compute an estimate of ‖AkeAt‖L(H), t > 0, first. For now, let k = 1. S(t), t > 0, is
differentiable, see [54, Chapter 2, Theorem 5.2], and it holds

AS(t) =
d

dt
S(t) =

1

2πi

∫
Γ
λeλt(λI −A)−1 dλ.

Since S(t), t ≥ 0, is an analytic semigroup, we can shift Γ to the rays ρeiϕ and ρe−iϕ with
ρ ∈ (0,∞) and ϕ as given in Theorem 2.2, [54, p.63]. Therewith, and as ‖(λI−A)−1‖L(H) ≤ C

λ

for Reλ > 0, we obtain

‖AS(t)‖L(H) ≤
C

πt| cos(ϕ)|
= Ct−1.

Now, we easily get for arbitrary k ∈ N

∥∥AkeAt∥∥
L(H)

=
∥∥(AeA t

k
)k∥∥

L(H)
≤
(
C
( t
k

)−1)k
= Ckt

−k.

With the substitution r = s
t , it follows for all t > 0

‖(−A)αeAt‖L(H) ≤
1

Γ(k − α)

∫ ∞
0

sk−α−1Ck(t+ s)−k ds

=
Ck

Γ(k − α)

∫ ∞
0

(rt)k−α−1t−k(1 + r)−kt dr

=
Ck

Γ(k − α)tα

∫ ∞
0

rk−α−1(1 + r)−k dr

13



2.2. Stochastic Processes in Hilbert Spaces

=
Ck

Γ(k − α)tα

(∫ 1

0

rk−α−1

(1 + r)k
dr +

∫ ∞
1

rk−α−1

(1 + r)k
dr
)
.

As k > α > k − 1, we obtain for all t > 0

‖(−A)αeAt‖L(H) ≤
Ck

Γ(k − α)tα

(∫ 1

0
rk−α−1 dr +

∫ ∞
1

rk−α−1

rk
dr
)

≤ Ck
Γ(k − α)tα

( 1

k − α
+

1

α

)
= Cαt

−α.

d) We estimate this term with the help of c), [54, Chapter 1, Theorem 2.4], and [54, Chapter 2,
Theorem 6.13(b)]. For w ∈ D

(
(−A)α

)
and 0 < α ≤ 1, it holds

‖eAtw − w‖H =
∥∥∥∫ t

0
AeAsw ds

∥∥∥
H

=
∥∥∥∫ t

0
(−A)1−αeAs(−A)αw ds

∥∥∥
H

≤
∫ t

0
‖(−A)1−αeAs‖L(H)‖(−A)αw‖H ds ≤ C

∫ t

0
sα−1‖(−A)αw‖H ds

= Cαt
α‖(−A)αw‖H .

By means of the fractional power of the operator (−A), we define the solution spaces of SPDE
(2.1). Let (−A) be self-adjoint and positive with compact resolvent, then A generates an analytic
semigroup and there exists an orthonormal basis of H consisting of eigenfunctions {ei, i ∈ N}
of (−A) with eigenvalues λi, i ∈ N, such that infi∈N λi > 0 and limi→∞ λi =∞, [65, p.66].
Following [65], we define the interpolation spaces Hr, r ∈ [0,∞), as Hr := D((−A)r) ⊂ H with
norm ‖x‖Hr = ‖(−A)rx‖H for all x ∈ Hr, r ∈ [0,∞). Let the inner product be defined as
〈x, y〉r :=

∑
i∈N λ

2r
i xiyi for x, y ∈ Hr; then, the spaces (Hr, 〈·, ·〉r), r ∈ [0,∞), are separable

Hilbert spaces as well. Moreover, the relation Hs ⊂ Hp for p < s, p, s ∈ [0,∞) holds.

2.2 Stochastic Processes in Hilbert Spaces

We turn our attention to the analysis of stochastic processes in Hilbert spaces now. We clarify
what we understand by (Wt)t∈[0,T ] and explain in what sense the integral version of (2.1) is to
be understood. The results and definitions in this section can be found in [13] and [55].

The first step towards understanding a Hilbert space-valued Brownian motion is to define a
Gaussian measure on that Hilbert space.

Definition 2.5 (Gaussian Measure on Hilbert Space)
A probability measure µ on (V,B(V )) is called Gaussian if for all v ∈ V there exist a ∈ R and
σ ≥ 0 such that

µ({u ∈ V : 〈v, u〉V ∈ B}) = Na,σ(B) for all B ∈ B(R).
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2.2. Stochastic Processes in Hilbert Spaces

If µ is Gaussian, there exist elements m ∈ V and Q ∈ L(V ) such that

〈m,u〉V =

∫
V
〈u, x〉V µ(dx) ∀u ∈ V,

and
〈Qu, v〉V =

∫
V
〈u, x−m〉V 〈v, x−m〉V µ(dx) ∀u, v ∈ V.

The characteristic function of µ is

ϕ(u) =

∫
V
ei〈u,x〉V µ(dx) = ei〈u,m〉V −

1
2
〈Qu,u〉V

for u ∈ V .
We call m the mean and Q the covariance operator of µ and denote the Gaussian measure µ by
Nm,Q.

[13, p.46-48]

With this definition it is straightforward to define a Brownian motion which takes values in a
Hilbert space. Let Q ∈ L(V ) be symmetric and nonnegative; this follows from Definition 2.5 if
Q is the covariance operator of a Gaussian measure, see [13, p.47,48]. Moreover, we restrict our
analysis to a class of operators Q with finite trace, that is,

trQ :=
∑
j∈N
〈Qgj , gj〉V <∞, (2.3)

where {gj , j ∈ N} is an arbitrary orthonormal basis of V .
Under these assumptions on Q, there exists an orthonormal basis {ẽj , j ∈ N} of V, consisting
of eigenvectors ẽj , j ∈ N, of Q such that

Qẽj = ηj ẽj (2.4)

for all j ∈ N. Here, ηj , j ∈ N, denote the corresponding eigenvalues and it holds ηj ≥ 0 for all
j ∈ N and ηj → 0 for j → ∞. This follows from the Hilbert-Schmidt Theorem, [57, Theorem
7.94], as the operator Q is compact, see [56, Thereom VI.21]. We fix this basis of V .
With this notation, we directly obtain

trQ =
∑
j∈N

ηj <∞.

Next, we define the stochastic process (Wt)t∈[0,T ] in SPDE (2.1).

Definition 2.6 (Q-Wiener Process)
A V-valued stochastic process (Wt)t∈[0,T ] on a probability space (Ω,F ,P) is called a standard
Q-Wiener process if

• W0 = 0 P -a.s.,
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2.2. Stochastic Processes in Hilbert Spaces

• the paths t 7→Wt are P -a.s. continuous,

• the increments of (Wt)t∈[0,T ] are independent, that is, the random variables

Wt1 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1

are independent for all 0 ≤ t1 < . . . < tm ≤ T , m ∈ N,

• the increments follow a Gaussian law

Wt −Ws ∼ N0,(t−s)Q

for all 0 ≤ s ≤ t ≤ T .

[55, Definition 2.1.9]

We call (Wt)t∈[0,T ] a Q-Wiener process with respect to (Ft)t∈[0,T ] if Wt is Ft-measurable and
Wt −Ws is independent of Fs for all s, t ∈ [0, t], s ≤ t, [55, Definition 2.1.12].
An important connection between a Q-Wiener process and real-valued Brownian motions is
illustrated in the following theorem; the Q-Wiener process can be represented by an infinite sum
of real-valued Brownian motions. As this connection is crucial in the numerical simulations later
on, we detail its proof here.

Theorem 2.4 (Representation by Real-valued Brownian Motions)
Let {ẽj , j ∈ N} be an orthonormal basis of V consisting of eigenvectors of Q with corresponding
eigenvalues ηj , j ∈ N. Then a V -valued stochastic process (Wt)t∈[0,T ] is a Q-Wiener process if
and only if

Wt =
∑
j∈N

√
ηjβ

j
t ẽj , t ∈ [0, T ], (2.5)

where (βjt )t∈[0,T ], j ∈ {n ∈ N| ηn > 0}, are independent real-valued Brownian motions on
a probability space (Ω,F ,P). The series even converges in L2(Ω,F , P ;C([0, T ], V )), and thus
always has a P -a.s. continuous modification. In particular, for any Q as above there exists a
Q-Wiener process on V .

[55, Proposition 2.1.10]

Proof. In the following we give, and detail, the proof from [55].
“⇒ “

Let (Wt)t∈[0,T ] be a Q-Wiener process; this process can be expressed as Wt =
∑

j∈N〈Wt, ẽj〉V ẽj
where 〈Wt, ẽj〉V ∼ N(0, ηjt) for all t ∈ [0, T ]. Now, define for j ∈ N, t ∈ [0, T ]

βjt :=

{ 〈Wt,ẽj〉V√
ηj

, ηj > 0

0, else.

Then, we obtain Wt =
∑

j∈N
√
ηjβ

j
t ẽj and β

j
t ∼ N(0, t) for all j ∈ N, t ∈ [0, T ].
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First, we show that for fixed t ∈ [0, T ] the random variables (βjt )j∈N are all independent. As
βjt ∼ N(0, t) for all j ∈ N, we only have to prove that βjt and βkt are uncorrelated for all j, k ∈ N,
j 6= k. This can easily be seen as

E
[
βjt β

k
t

]
= E

[
〈Wt, ẽk〉V 〈Wt, ẽj〉V√

ηjηk

]
=

1
√
ηjηk
〈Qẽk, ẽj〉V

=

√
ηk√
ηj
〈ẽk, ẽj〉V = 0

for j 6= k.
Now, we prove that (βjt )t∈[0,T ] is a Brownian motion for any j ∈ N. For this purpose, we define
a partition of [0, T ] as 0 = t0 < t1 < . . . < tm ≤ T , m ∈ N. Since

βjtk − β
j
tk−1

=


〈Wtk

−Wtk−1
,ẽj〉V√

ηj
, ηj > 0

0, else,

the increments βjtk − β
j
tk−1

and βjti − β
j
ti−1

are independent for i, k ∈ {1, . . . ,m}, i 6= k, j ∈ N.
Furthermore, βjt − β

j
s ∼ N(0, t− s) for all j ∈ N and 0 ≤ s < t.

It remains to show that σ(βj1t1 , . . . , β
j1
tm), . . . , σ(βjnt1 , . . . , β

jn
tm) are independent for any j1, . . . , jn ∈

N, n ∈ N. This is proved by induction. For m = 1, it is obvious. Let us assume that the
statement holds for some m ∈ N and let Bij ∈ B(R), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m+ 1}.
It holds

P
( n⋂
i=1

{βjit1 ∈ Bi1, . . . , β
ji
tm ∈ Bim, β

ji
tm+1

− βjitm ∈ Bim+1}
)

= P
( n⋂
i=1

m⋂
k=1

{βjitk ∈ Bik} ∩
n⋂
i=1

{βjitm+1
− βjitm ∈ Bim+1}

)
.

Since σ(Ws, s ≤ tm) and σ(Wtm+1 −Wtm) are independent, (βjt )j∈N are independent for fixed
t ∈ [0, T ], and by the induction hypothesis, we obtain

P
( n⋂
i=1

{βjit1 ∈ Bi1, . . . , β
ji
tm ∈ Bim, β

ji
tm+1

− βjitm ∈ Bim+1}
)

= P
( n⋂
i=1

m⋂
k=1

{βjitk ∈ Bik}
)
· P
( n⋂
i=1

{βjitm+1
− βjitm ∈ Bim+1}

)
=

n∏
i=1

P
( m⋂
k=1

{βjitk ∈ Bik}
)
·
n∏
i=1

P
(
{βjitm+1

− βjitm ∈ Bim+1}
)

=

n∏
i=1

P
( m⋂
k=1

{βjitk ∈ Bik} ∩ {β
ji
tm+1

− βjitm ∈ Bim+1}
)
.

This proves the independence of σ(βj1t1 , . . . , β
j1
tm), . . . , σ(βjnt1 , . . . , β

jn
tm) for any j1, . . . , jn ∈ N, n ∈ N

as σ(βjit1 , . . . , β
ji
tm , β

ji
tm+1

) = σ(βjit1 , . . . , β
ji
tm , β

ji
tm+1

− βjitm) for any ji ∈ {j1, . . . , jn}.
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“⇐ “

LetWt =
∑

j∈N
√
ηjβ

j
t ẽj , t ∈ [0, T ] be given; the series is obviously well defined in L2(Ω,F , P ;V ).

We have to show that this process fulfills the properties in Definition 2.6. We only prove that the
increments Wt −Ws, 0 ≤ s < t, are normally distributed with mean 0 and covariance Q(t− s),
as the other attributes follow directly from the series representation.
Fix some n ∈ N; we know that 〈

∑n
j=1
√
ηjβ

j
t ẽj , v〉V =

∑n
j=1
√
ηjβ

j
t 〈ẽj , v〉V is normally distributed

for all v ∈ V . The sequence converges in L2(Ω,F , P ;V ) and with the help of the characteristic
function it can be easily shown that the limit is normally distributed as well. Furthermore, we
find E

[
〈Wt, v〉V

]
= 0 and

E
[
〈Wt, u〉V 〈Wt, v〉V

]
= lim

n→∞
E
[〈 n∑

j=1

√
ηjβ

j
t ẽj , u

〉
V

〈 n∑
j=1

√
ηjβ

j
t ẽj , v

〉
V

]
=
∑
j∈N

ηjt〈ẽj , u〉V 〈ẽj , v〉V =
∑
j∈N

t〈Qẽj , u〉V 〈ẽj , v〉V

= t〈Qu, v〉V

for all u, v ∈ V , t ∈ [0, T ].

It remains to show that the series converges in L2(Ω,F , P ;C([0, T ], V )). For any n ∈ N, it holds
by Doob’s maximal inequality, [13, Theorem 3.9],

E
[

sup
t∈[0,T ]

∥∥ n∑
j=1

√
ηjβ

j
t ẽj
∥∥2

V

]
≤

n∑
j=1

ηjE
[

sup
t∈[0,T ]

(βjt )
2
]
≤ C

n∑
j=1

ηj .

Since Q is a trace class operator,
∑∞

j=1 ηj <∞ follows. This proves that the series converges in
L2(Ω,F , P ;C([0, T ], V )).

As for finite dimensional stochastic differential equations, equation (2.1) is only a formal ex-
pression and is to be understood as an integral equation in fact. We refrain from deriving the
concept of stochastic integration in Hilbert spaces in depth, as this theory is well studied and
not the focus of this work, and simply give the definition of the stochastic integral. For de-
tails as well as the theory of integration with respect to a broader class of stochastic processes,
we refer to the comprehensive texts [13] and [55], from which the following representation is taken.

Primarily, we introduce the space of Hilbert-Schmidt operators mapping from V to H, denoted
as LHS(V,H). We call a bounded linear operator B : V → H Hilbert-Schmidt if

‖B‖LHS(V,H) :=
(∑
j∈N
‖Bẽj‖2H

) 1
2
<∞.

Note that this definition holds for any orthonormal basis of V and that the space of Hilbert-
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Schmidt operators (LHS(V,H), 〈·, ·〉LHS(V,H)), with inner product given by 〈B, T 〉LHS(V,H) :=∑
j∈N〈Bẽj , T ẽj〉H for all B, T ∈ LHS(V,H), is a separable Hilbert space, [55, Appendix B].

By the assumptions on Q, there exists a unique decomposition of Q as Q = Q
1
2 ◦Q

1
2 such that

Q
1
2 ∈ L(V ) is again symmetric and nonnegative, [55, Proposition 2.3.4]. In the following, it is

convenient to work with the Cameron-Martin space V0 defined by V0 := Q
1
2V as the isometry

stated in equation (2.6) below involves this space naturally. The inner product on V0 is defined
as 〈u, v〉V0 = 〈Q−

1
2u,Q−

1
2 v〉V for u, v ∈ V0. Here, Q−

1
2 denotes the Pseudo inverse of Q and the

space (V0, 〈·, ·〉V0) is a Hilbert space, [55, Appendix C].

First, we state the definition of the stochastic integral for some elementary process (Ψt)t∈[0,T ]

which takes finitely many values Ψ̄0, . . . , Ψ̄m−1 ∈ L(V,H) on 0 = t0 < t1 < . . . < tm = T such
that Ψ̄n is Fn-measurable for all n ∈ {0, . . . ,m − 1} and Ψt =

∑m−1
n=0 Ψ̄n1(tn,tn+1](t) for some

m ∈ N. The space of all these processes is denoted as E .
For these elementary processes, the stochastic integral, which is a square-integrable and contin-
uous martingale with respect to (Ft)t∈[0,T ], is defined as

∫ t

0
Ψs dWs =

m−1∑
n=0

Ψ̄n(Wtn+1∧t −Wtn∧t)

for any t ∈ [0, T ]. The following isometry holds

E

[∥∥∥ ∫ T

0
Ψs dWs

∥∥∥2

H

]
= E

[ ∫ T

0

∥∥Ψs

∥∥2

LHS(V0,H)
ds
]
. (2.6)

Next, we transfer the definition of the stochastic integral to a larger class of processes. Therefore,
we introduce the following notation. Let ΩT = [0, T ]×Ω, PT = dt⊗P , and define the σ-Algebra
of all predictable processes Y : ΩT → R as

PT := σ
(
{(s, t]× Fs| 0 ≤ s < t ≤ T, Fs ∈ Fs} ∪ {{0} × F0|F0 ∈ F0}

)
.

Denote the completion of E by N 2
W (0, T ;H); it can be shown that

N 2
W (0, T ;H) =

{
Y : ΩT → LHS(V0, H) | Y is PT − B(LHS(V0, H))-measurable

and E
[ ∫ T

0

∥∥Ys∥∥2

LHS(V0,H)
ds
]
<∞

}
. (2.7)

For processes (Ys)s∈[0,T ] ∈ N 2
W (0, T ;H), we can extend the definition of the stochastic integral

as there exist elementary processes (Ψn
s )s∈[0,T ] ∈ {T|V0 : T ∈ L(V,H)}, n ∈ N, such that

lim
n→∞

(
E
[ ∫ T

0

∥∥Ys −Ψn
s

∥∥2

LHS(V0,H)
ds
]) 1

2
= 0.
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2.3. Existence and Uniqueness of Mild Solutions

Finally, the stochastic integral can be extended to the class of processes

NW (0, T ;H) :=
{
Y : ΩT → LHS(V0, H) | Y is PT − B(LHS(V0, H))-measurable

P
(∫ T

0
‖Ys‖2LHS(V0,H) ds <∞

)
= 1
}

(2.8)

by a localization procedure.
Before we move on to the analysis of the solution to equation (2.1), we state some properties of
the stochastic integral that we need later on. The following estimates are essential to prove the
existence of a unique solution to SPDE (2.1) as well as in the error analysis of the numerical
schemes in Chapter 3 and Chapter 4.

Theorem 2.5
For any process (Zs)s∈[0,T ] that is PT -B(LHS(V0, H))-measurable and every p > 0, there exists a
constant cp > 0 such that

E
[

sup
s∈[0,t]

∥∥∥∫ s

0
Zr dWr

∥∥∥p
H

]
≤ cp

(
E
[ ∫ t

0
‖Zr‖2LHS(V0,H) dr

]) p
2

for every t ∈ [0, T ].

[13, Theorem 4.36]

Proof. The proof of this theorem employs Itô’s formula and some basic martingale inequalities.
It is detailed in [13, Section 4.6].

Theorem 2.6
For any process (Zs)s∈[0,T ] that is PT -B(LHS(V0, H))-measurable and every p ≥ 2, there exists a
constant cp > 0 such that

E
[

sup
s∈[0,t]

∥∥∥∫ s

0
Zr dWr

∥∥∥p
H

]
≤ cp

(∫ t

0

(
E
[
‖Zr‖pLHS(V0,H)

]) 2
p dr

) p
2

for every t ∈ [0, T ].

[13, Theorem 4.37]

Proof. The main idea of the proof is the same as in the proof of Theorem 2.5. For details, we
refer to [13, Section 4.6] again.

2.3 Existence and Uniqueness of Mild Solutions

With the theory presented in the previous sections, we can finally start to analyze the solvability
of SPDE (2.1). Throughout this section, let Q ∈ L(V ) be symmetric and nonnegative with finite
trace and denote by (Wt)t∈[0,T ] a Q-Wiener process with respect to (Ft)t∈[0,T ] taking values in
V . We employ the notation introduced above.
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2.3. Existence and Uniqueness of Mild Solutions

We prove that SPDE (2.1) possesses a unique solution. Therefore, we need to impose some
restrictions on the operators A, F , and B, of course, and most importantly specify what we
understand as a solution to this equation. We assume the following.

(A1) A : D(A) ⊂ H → H is closed, densely defined, and the infinitesimal generator of an
analytic semigroup S(t) = etA ∈ L(H), t ∈ [0, T ].

(A2) F : H → H is globally Lipschitz continuous.

(A3) B : H → LHS(V0, H) is globally Lipschitz continuous, B(Hδ) ⊂ LHS(V0, Hδ), and

‖B(y)‖2LHS(V0,Hδ)
≤ C2(1 + ‖y‖2Hδ), y ∈ Hδ, for δ ∈ [0, 1

2), C > 0.

(A4) For γ ∈ [δ, δ + 1
2), p ∈ [2,∞) the initial condition ξ : Ω → Hγ is F0-B(Hγ)-measurable

and E
[
‖ξ‖pHγ

]
<∞.

As for PDEs, there exist different notions of solutions. Based on [13], we define the strong
solution.

Definition 2.7 (Strong Solution)
An H-valued predictable process (Xt)t∈[0,T ] is called a strong solution of (2.1) if Xt ∈ D(A)

PT -a.s.,

P
(∫ T

0
(‖Xs‖H + ‖AXs‖H) ds <∞

)
= 1,

P
(∫ T

0
‖B(Xs)‖2LHS(V0,H) ds <∞

)
= 1,

and if it holds, for all t ∈ [0, T ],

Xt = X0 +

∫ t

0

(
AXs + F (Xs)

)
ds+

∫ t

0
B(Xs) dWs P -a.s.

[13, Chapter 6,7]

Another concept is the weak solution, where (Xt)t∈[0,T ] does not need to take values in D(A).

Definition 2.8 (Weak Solution)
An H-valued predictable process (Xt)t∈[0,T ] is called a weak solution of (2.1) if

P
(∫ T

0
‖Xs‖H ds <∞

)
= 1,

P
(∫ T

0
‖B(Xs)‖2LHS(V0,H) ds <∞

)
= 1,

and for all t ∈ [0, T ] and φ ∈ D(A∗)

〈Xt, φ〉H = 〈X0, φ〉H +

∫ t

0

(
〈Xs, A

∗φ〉H + 〈F (Xs), φ〉H
)

ds+

∫ t

0
〈φ,B(Xs) dWs〉H P -a.s.

[13, Chapter 6,7]
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2.3. Existence and Uniqueness of Mild Solutions

Finally, we define the mild solution of SPDE (2.1). This is the solution concept that we work
with and the numerical schemes in Chapter 3 and Chapter 4 are developed to approximate this
process.

Definition 2.9 (Mild Solution)
An H-valued predictable process (Xt)t∈[0,T ] is called a mild solution of (2.1) if

P
(∫ T

0
‖Xs‖2H ds <∞

)
= 1

and if, for all t ∈ [0, T ], it holds

Xt = S(t)X0 +

∫ t

0
S(t− s)F (Xs) ds+

∫ t

0
S(t− s)B(Xs) dWs P -a.s.

[13, Chapter 7]

Obviously, any strong solution is also a weak solution. For further implications, we need to
impose restrictions on the integrability, see [47, Appendix G].

Assumptions (A1)–(A4) allow for a unique mild solution of (2.1) as stated in the next theorem;
its proof is a combination of the proofs from [13] and [34]. Moreover, some properties of the mild
solution are shown.

Theorem 2.7 (Existence and Uniqueness of Mild Solutions)
Assume that (A1)-(A4) are satisfied. Then, there exists a, up to modifications, unique mild
solution X : [0, T ] × Ω → Hγ of SPDE (2.1) with supt∈[0,T ] E[‖Xt‖pHγ ] < ∞, where p and γ are
determined by (A4).

Furthermore, it holds

(i) (Xt)t∈[0,T ] has a continuous modification with respect to
(
E
[
‖ · ‖pHγ

]) 1
p ,

(ii) for r ∈ [0, γ), p ∈ [2,∞),

sup
t1,t2∈[0,T ],t1 6=t2

(
E
[
‖Xt1 −Xt2‖

p
Hr

]) 1
p

|t2 − t1|min(γ−r, 1
2

)
<∞.

[34, Theorem 1]

Proof.
The proof of the existence of a mild solution of equation (2.1) is based on a fixed point theorem
for contractions. This is a standard technique also used to prove the existence of solutions for
other types of differential equations.
For r ∈ [0,∞), p ≥ 2, let Hr denote the vector space of equivalence classes of predictable
processes Y : [0, T ]× Ω→ Hr such that

sup
t∈[0,T ]

E
[
‖Yt‖pHr

]
<∞.
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2.3. Existence and Uniqueness of Mild Solutions

Two stochastic processes X,Y : [0, T ]× Ω→ Hr lie in one equivalence class iff

P (Xt = Yt) = 1 ∀t ∈ [0, T ],

that is, if and only if they are modifications of each other.
Define

‖Y ‖Hr := sup
t∈[0,T ]

(
E
[
‖Yt‖pHr

] ) 1
p

for all Y ∈ Hr, r ∈ [0,∞), then the space (Hr, ‖ · ‖Hr) is a Banach space for all r ∈ [0,∞), [13,
Chapter 7].
Next, we specify a mapping Ψ : Hδ → Hδ for all t ∈ [0, T ] and (Yt)t∈[0,T ] ∈ Hδ as

(
Ψ(Y )

)
t

:= eAtξ +

∫ t

0
eA(t−s)F (Ys) ds+

∫ t

0
eA(t−s)B(Ys) dWs P -a.s. (2.9)

We show that Ψ : Hδ → Hδ is well defined and a contraction.

First, we set CA := sups∈[0,T ] ‖eAs‖L(H) and compute for all t ∈ [0, T ]

‖eAtξ‖Hγ = sup
t∈[0,T ]

(
E
[
‖eAtξ‖pHγ

]) 1
p ≤ sup

t∈[0,T ]
‖eAt‖L(H)

(
E
[
‖ξ‖pHγ

]) 1
p

= CA
(
E
[
‖ξ‖pHγ

]) 1
p . (2.10)

With (A1) and (A4) as well as Proposition 3.7 (ii) in [13], we get that eAtξ, t ∈ [0, T ], is a
predictable stochastic process in Hγ .

By Kuratowski’s Theorem, see [37], it follows that Hδ ∈ B(H) and B(Hδ) = B(H) ∩Hδ which
shows that F |Hδ is B(Hδ)-B(H)-measurable. We use assumption (A1) and (A2) to obtain

E

[∥∥∥ ∫ t

0
eA(t−s)F (Ys) ds

∥∥∥
Hγ

]
≤ E

[ ∫ t

0
‖(−A)γeA(t−s)‖L(H)‖F (Ys)‖H ds

]
≤ E

[ ∫ t

0
Cγ(t− s)−γ‖F (Ys)‖H ds

]
≤ Cγ

∫ t

0
(t− s)−γ sup

u∈[0,T ]
E
[
‖F (Yu)‖H

]
ds

≤ Cγ sup
s∈[0,T ]

E
[
1 + ‖Ys‖H

] ∫ t

0
(t− s)−γ ds ≤ Cγ sup

s∈[0,T ]

(
1 + E

[
‖Ys‖pHδ

] 1
p
)T 1−γ

1− γ

for all t ∈ [0, T ]. This implies that the process
∫ t

0 e
A(t−s)F (Ys) ds, t ∈ [0, T ], is adapted and takes

values in Hγ for all (Yt)t∈[0,T ] ∈ Hδ.
Analogously to the argumentation above, we obtain that Bδ : Hδ → LHS(V0, Hδ), defined as
Bδ(y) = B(y) for y ∈ Hδ, is B(Hδ)-B(LHS(V0, Hδ))-measurable. Then, we estimate the third
term with the help of assumption (A3) and Itô’s isometry for all t ∈ [0, T ]

E

[∥∥∥ ∫ t

0
eA(t−s)B(Ys) dWs

∥∥∥2

Hγ

]
=

∫ t

0
E
[
‖eA(t−s)B(Ys)‖2LHS(V0,Hγ)

]
ds
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≤
∫ t

0

∥∥(−A)γ−δeA(t−s)∥∥2

L(H)
E
[
‖B(Ys)‖2LHS(V0,Hδ)

]
ds

≤ Cγ−δ
∫ t

0
(t− s)2(δ−γ)E

[
(1 + ‖Ys‖Hδ)

2
]

ds

≤ 2Cγ−δ sup
s∈[0,T ]

(
1 + E

[
‖Ys‖2Hδ

]) ∫ t

0
(t− s)2(δ−γ) ds

≤ 2Cγ−δ sup
s∈[0,T ]

(
1 + E

[
‖Ys‖2Hδ

]) T 1+2(δ−γ)

1 + 2(δ − γ)
.

We obtain that
∫ t

0 e
A(t−s)B(Ys) dWs, t ∈ [0, T ], is an adapted and Hγ-valued stochastic process

for all (Yt)t∈[0,T ] ∈ Hδ (see also Remark 1 in [34]).

Let r ∈ [0, γ]; now, we prove estimates which are also used to show (i) and (ii). In the following,
we employ assumption (A3), Corollary A.1 in [32], and estimates on the semigroup eAt, t ∈ [0, T ],
as stated in Theorem 2.3. Let t, s ∈ [0, T ] with s ≤ t, it holds

(
E

[∥∥∥ ∫ t

0
eA(t−u)F (Yu) du−

∫ s

0
eA(s−u)F (Yu) du

∥∥∥p
Hr

]) 1
p

≤
(

E

[∥∥∥ ∫ t

s
eA(t−u)F (Yu) du

∥∥∥p
Hr

]) 1
p

+

(
E

[∥∥∥ ∫ s

0

(
eA(t−u) − eA(s−u)

)
F (Yu) du

∥∥∥p
Hr

]) 1
p

≤
∫ t

s
(t− u)−r

(
E
[
‖F (Yu)‖pH

]) 1
p du+

(
E

[∥∥∥ ∫ s

0

(
eA(t−s) − I

)
eA(s−u)F (Yu) du

∥∥∥p
Hr

]) 1
p

≤
∫ t

s
(t− u)−r

(
E
[
(1 + ‖Yu‖H)p

]) 1
p du

+ ‖(−A)r−γ−κ(eA(t−s) − I)‖L(H)

∫ s

0

(
E
[
‖eA(s−u)F (Yu)‖pHγ+κ

]) 1
p du

≤
∫ t

s
(t− u)−r2

1− 1
p
(
1 +

(
E
[
‖Yu‖pH

]) 1
p
)

du

+ (t− s)κ+γ−r
∫ s

0
(s− u)−γ−κ2

1− 1
p
(
1 +

(
E
[
‖Yu‖pH

]) 1
p
)

du

for all κ ∈ [0, 1− γ), r ∈ [0, γ], and (Ys)s∈[0,T ] ∈ Hδ.
Further computations show

(
E

[∥∥∥ ∫ t

0
eA(t−u)F (Yu) du−

∫ s

0
eA(s−u)F (Yu) du

∥∥∥p
Hr

]) 1
p

≤ C2
1− 1

p

(
1 + sup

u∈[0,T ]

(
E
[
‖Yu‖pH

]) 1
p

)∫ t

s
(t− u)−r du

+ (t− s)κ+γ−r2
1− 1

pC
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pH

] ) 1
p

)∫ s

0
(s− u)−γ−κ du

≤ C2
1− 1

p

(
1 + sup

u∈[0,T ]

(
E
[
‖Yu‖pH

]) 1
p

)((t− s)1−r

1− r
+ (t− s)κ+γ−r s1−γ−κ

1− γ − κ

)
≤ C2

1− 1
p

(
1 + sup

u∈[0,T ]

(
E
[
‖Yu‖pH

]) 1
p

)((t− s)1−r

1− r
T 1−γ

(t− s)1−γ + (t− s)κ+γ−r T 1−γ−κ

1− γ − κ

)
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for all s ≤ t, s, t ∈ [0, T ], κ ∈ [0, 1− γ), and r ∈ [0, γ].
In total, we obtain

(
E

[∥∥∥ ∫ t

0
eA(t−u)F (Yu) du−

∫ s

0
eA(s−u)F (Yu) du

∥∥∥p
Hr

]) 1
p

≤ C2
2− 1

p

(
1 + sup

u∈[0,T ]

(
E
[
‖Yu‖pH

]) 1
p

)T 1−γ

1− γ
(t− s)κ+γ−r (2.11)

for all κ ∈ [0, 1 − γ), r ∈ [0, γ], s ≤ t, s, t ∈ [0, T ], and (Yt)t∈[0,T ] ∈ Hδ. This shows that(∫ t
0 e

A(t−u)F (Yu) du
)
t∈[0,T ]

is continuous; combining our results on the Bochner integral and

employing Proposition 3.7 in [13], implies that
(∫ t

0 e
A(t−u)F (Yu) du

)
t∈[0,T ]

has a modification in

Hγ for all (Yt)t∈[0,T ] ∈ Hδ.

Similarly, we estimate for all κ ∈ [0, 1
2 + δ − γ), r ∈ [0, γ], δ ∈ [0, 1

2), s ≤ t, s, t ∈ [0, T ], and
(Yt)t∈[0,T ] ∈ Hδ

(
E

[∥∥∥ ∫ t

0
eA(t−u)B(Yu) dWu −

∫ s

0
eA(s−u)B(Yu) dWu

∥∥∥p
Hr

]) 1
p

≤
(

E

[∥∥∥ ∫ t

s
eA(t−u)B(Yu) dWu

∥∥∥p
Hr

]) 1
p

+

(
E

[∥∥∥ ∫ s

0

(
eA(t−u) − eA(s−u)

)
B(Yu) dWu

∥∥∥p
Hr

]) 1
p

≤
(p

2
(p− 1)

) 1
2

((∫ t

s

(
E
[
‖(−A)reA(t−u)B(Yu)‖pLHS(V0,H)

]) 2
p du

) p
2

1
p

+
(∫ s

0
‖(−A)r−γ−κ(eA(t−s) − I)‖2L(H)

(
E
[
‖eA(s−u)B(Yu)‖pLHS(V0,Hγ+κ)

]) 2
p du

) p
2

1
p

)
≤ p

(∫ t

s
‖(−A)r−δeA(t−u)‖2L(H)

(
E
[
‖B(Yu)‖pLHS(V0,Hδ)

]) 2
p du

) 1
2

+ p(t− s)κ+γ−r
(∫ s

0
(s− u)2(δ−γ−κ)

(
E
[
‖B(Yu)‖pLHS(V0,Hδ)

]) 2
p du

) 1
2

≤ pC
(∫ t

s
‖(−A)r−δeA(t−u)‖2L(H)

(
1 + E

[
‖Yu‖pHδ

]) 2
p du

) 1
2

+ pC(t− s)κ+γ−r
(∫ s

0
(s− u)2(δ−γ−κ)

(
1 + E

[
‖Yu‖pHδ

]) 2
p du

) 1
2
.

Here, we used Theorem 2.6 and assumption (A3) again.
Further, we obtain with Theorem 2.3 parts b) and c)

(
E

[∥∥∥ ∫ t

0
eA(t−u)B(Yu) dWu −

∫ s

0
eA(s−u)B(Yu) dWu

∥∥∥p
Hr

]) 1
p

≤ pC
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)(∫ t

s
‖(−A)r−δeA(t−u)‖2L(H) du

) 1
2

+ pC
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)
(t− s)κ+γ−r

( s2(δ−γ−κ)+1

1 + 2(δ − γ − κ)

) 1
2

≤ pC
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)(∫ t

s
(C2

r−δ(t− u)2(δ−r) + C2) du
) 1

2
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+ pC
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)
(t− s)κ+γ−r T

1+2(δ−γ−κ)
2

(1 + 2(δ − γ − κ))
1
2

≤ Cp
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)((t− s)
1
2

+δ−r + (t− s)
1
2

(1 + 2(δ − γ))
1
2

+
T

1
2

+δ−γ−κ(t− s)κ+γ−r

(1 + 2(δ − γ − κ))
1
2

)

≤ Cp
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

)(T 1
2

+δ−γ−κ(t− s)κ+γ−r + (t− s)
1
2

(1 + 2(δ − γ))
1
2

)
≤ Cp

(
1 + sup

u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

) max(1, T )

(1 + 2(δ − γ))
1
2

(
(t− s)κ+γ−r + (t− s)

1
2

)
.

This implies

(
E

[∥∥∥ ∫ t

0
eA(t−u)B(Yu) dWu −

∫ s

0
eA(s−u)B(Yu) dWu

∥∥∥p
Hr

]) 1
p

≤ Cp
(

1 + sup
u∈[0,T ]

(
E
[
‖Yu‖pHδ

]) 1
p

) max(1, T )

(1 + 2(δ − γ))
1
2

(t− s)min(κ+γ−r, 1
2

) <∞ (2.12)

for all κ ∈ [0, 1
2 + δ − γ), r ∈ [0, γ], δ ∈ [0, 1

2), s ≤ t, s, t ∈ [0, T ], and (Yt)t∈[0,T ] ∈ Hδ.
As for the Bochner integral, we obtain that

(∫ t
0 e

A(t−u)B(Yu) dWu

)
t∈[0,T ]

has a modification in

Hγ ⊂ Hδ. Combining the estimates above, shows that Ψ : Hγ → Hγ is well defined.

It remains to prove that Ψ is a contraction. Let (Y 1
t )t∈[0,T ], (Y 2

t )t∈[0,T ] ∈ Hδ; in the following,
we use Corollary A.1 in [32], Theorem 4.37 in [13], and assumptions (A2), (A3). For t ∈ [0, T ],
we obtain

(
E
[
‖Ψ(Y 1)t −Ψ(Y 2)t‖pHδ

]) 1
p

≤
(

E

[∥∥∥ ∫ t

0
eA(t−s)(F (Y 1

s )− F (Y 2
s )) ds

∥∥∥p
Hδ

]) 1
p

+

(
E

[∥∥∥ ∫ t

0
eA(t−s)(B(Y 1

s )−B(Y 2
s )) dWs

∥∥∥p
Hδ

]) 1
p

≤
∫ t

0

(
E
[
‖eA(t−s)(F (Y 1

s )− F (Y 2
s ))‖pHδ

]) 1
p ds

+ C p
2

(∫ t

0

(
E
[
‖(−A)δeA(t−s)(B(Y 1

s )−B(Y 2
s ))‖pLHS(V0,H)

]) 2
p

ds

) p
2

1
p

≤ Cδ
∫ t

0
(t− s)−δ

(
E
[
‖Y 1

s − Y 2
s ‖

p
H

]) 1
p ds+ C p

2
,δ

(∫ t

0
(t− s)−2δ

(
E
[
‖Y 1

s − Y 2
s ‖

p
H

] ) 2
p ds

) 1
2

≤ Cδ
∫ t

0
(t− s)−δ sup

u∈[0,T ]

(
E
[
‖Y 1

u − Y 2
u ‖

p
H

]) 1
p ds

+ C p
2
,δ

(∫ t

0
(t− s)−2δ

(
sup

u∈[0,T ]

(
E
[
‖Y 1

u − Y 2
u ‖

p
H

]) 1
p

)2
ds

) 1
2

≤
(
Cδ
T 1−δ

1− δ
+ C p

2
,δ

√
T 1−2δ

1− 2δ

)
sup
s∈[0,T ]

(
E
[
‖Y 1

s − Y 2
s ‖

p
H

] ) 1
p
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=

(
Cδ
T 1−δ

1− δ
+ C p

2
,δ

√
T 1−2δ

1− 2δ

)
‖Y 1 − Y 2‖H.

This shows

‖Ψ(Y 1)−Ψ(Y 2)‖Hδ ≤ C p
2
,δ

(
T 1−δ

1− δ
+

√
T 1−2δ

1− 2δ

)
‖Y 1 − Y 2‖H

≤ C p
2
,δ

(
T 1−δ

1− δ
+

√
T 1−2δ

1− 2δ

)
‖Y 1 − Y 2‖Hδ

for all (Y 1
t )t∈[0,T ], (Y

2
t )t∈[0,T ] ∈ Hδ. Therefore, the mapping Ψ is a contraction and allows for a

unique fixed point in Hδ iff C p
2
,δ

(
T 1−δ

1−δ +
√

T 1−2δ

1−2δ

)
< 1. If this condition is fulfilled, there exists

a predictable and unique (up to modifications) process (Y ∗t )t∈[0,T ] ∈ Hδ such that

Y ∗t = eAtξ +

∫ t

0
eA(t−s)F (Y ∗s ) ds+

∫ t

0
eA(t−s)B(Y ∗s ) dWs P -a.s., t ∈ [0, T ].

We partition the interval [0, T ] into subintervals [0, T ∗], [T ∗, 2T ∗], . . . , [nT ∗, T ], n ∈ N0, such that

T ∗ fulfills C p
2
,γ

(
(T ∗)1−δ

1−δ +
√

(T ∗)1−2δ

1−2δ

)
< 1, which completes the proof of the first statement.

Finally, the estimates (2.10), (2.11), (2.12), and Proposition 3.7 in [13] show that there exists a
predictable modification X : ΩT → Hγ of Y ∗.
Furthermore, it follows

i) From (2.10), (2.11), and (2.12), we get directly that (Yt)t∈[0,T ] is continuous with respect

to
(
E
[
‖ · ‖pHγ

]) 1
p .

ii) Let (Y 1
t )t∈[0,T ], (Y

2
t )t∈[0,T ] ∈ Hδ; for t2 > t1, t1, t2 ∈ [0, T ], r ∈ [0, γ), δ ∈ [0, 1

2), we obtain
by (2.11) and (2.12)

(
E
[
‖Yt2 − Yt1‖

p
Hr

]) 1
p

≤
(
E
[
‖eAt2ξ − eAt1ξ‖pHr

]) 1
p + C2

2− 1
p

(
1 + sup

u∈[0,T ]
E
[
‖Yu‖pH

]) 1
p T 1−γ

1− γ
(t2 − t1)γ−r

+ Cp

(
1 + sup

u∈[0,T ]
E
[
‖Yu‖pHδ

]) 1
p max(1, T )

(1 + 2(δ − γ))
1
2

(t2 − t1)min(γ−r, 1
2

)

≤
(

E
[
‖eAt1‖pL(H)‖(−A)r−γ(eA(t2−t1) − I)‖pL(H)‖ξ‖

p
Hγ

]) 1
p

+ Cp,T,δ,γ,r(t2 − t1)min(γ−r, 1
2

)

≤ CA,γ,T,r(t2 − t1)γ−r + Cp,T,δ,γ,r(t2 − t1)min(γ−r, 1
2

)

≤ Cp,T,γ,δ,r(t2 − t1)min(γ−r, 1
2

).

We proved that, given (A1)–(A4), SPDE (2.1) allows for a unique solution. In the next chapters
we aim at obtaining this solution.
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3
Efficient Approximation of

Commutative SPDEs

Explicit solutions to SPDE (1.1) are, in general, not computable; it is only possible to obtain the
solution process for a few types of SPDEs analytically. In the following, we specify two examples
and present different approaches to solve these equations. We emphasize the difficulties that are
involved and highlight the features that allow for the computation of an explicit solution.
If the diffusion operator is of the form B(Xt) = bXt, Xt ∈ H, t ∈ [0, T ], b ∈ R, and we assume
V = R additionally, it is possible to obtain an analytical solution - as outlined in the following
example.

Example 3.1 (Scalar Brownian Motion)
For some T ∈ (0,∞), we compute the strong solution to

dXt = ∆Xt dt+ bXt dβt, t ∈ (0, T ], b ∈ R, (3.1)

X0(x) =
√

2

∞∑
n=1

cn sin(nπx), x ∈ (0, 1), cn ∈ R, n ∈ N,

Xt(0) = Xt(1) = 0, t ∈ (0, T ],

for some suitable sequence (cn)n∈N. Here, (βt)t∈[0,T ] denotes a scalar Brownian motion and
H = L2((0, 1),R), V = R.
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If cn = 1
n2 , n ∈ N, for example, one can show that

Xt(x) =
√

2
∞∑
n=1

cne
−(n2π2+ b2

2
)t+bβt sin(nπx) (3.2)

is a strong solution to (3.1) for all t ∈ [0, T ], x ∈ (0, 1), see [13] or [21]. This can easily be
proved by Itô’s formula, which is stated in [7].

Next, we examine an equation with additive noise and show that even for this simple equation,
we need to simulate the stochastic integrals involved in the solution process. A similar example
is illustrated in [9].

Example 3.2 (Additive Noise)
Let T ∈ (0,∞) and H = V = L2((0, 1),R); in the following, we compute the mild solution to

dXt = (∆Xt + 1) dt+ bdWt, b ∈ R, t ∈ (0, T ], (3.3)

X0(x) =
√

2
∞∑
n=1

1

n2
sin(nπx), x ∈ (0, 1),

Xt(0) = Xt(1) = 0, t ∈ (0, T ].

Here, (Wt)t∈[0,T ] is a Q-Wiener process, see Definition 2.6, and the operator Q ∈ L(V ), with
eigenvalues (ηn)n∈N, is assumed to have finite trace. This admits the representation

Wt =
∑
j∈N

√
ηjβ

j
t ẽj , t ∈ [0, T ],

see equation (2.5). Moreover, it holds −∆en = λnen with λn = n2π2 and en(x) =
√

2 sin(nπx)

for all n ∈ N, x ∈ (0, 1).

We compute the coefficients an(t), n ∈ N, t ∈ [0, T ], such that

Xt(x) =
√

2

∞∑
n=1

an(t) sin(nπx)

fulfills equation (3.3).
Obviously, it holds an(0) = 1

n2 and

dan(t) =
(
− n2π2an(t) + 〈1, en〉H

)
dt+ b

√
ηn dβnt , t ∈ (0, T ],

for all n ∈ N.
First, we compute the Fourier coefficients for all n ∈ N

〈1, en〉H =
√

2

∫ 1

0
sin(nπx) dx =

2
√

2

nπ
1n odd.
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This yields the system an(0) = 1
n2 and

dan(t) =
(
− n2π2an(t) +

2
√

2

nπ
1n odd

)
dt+ b

√
ηn dβnt , t ∈ (0, T ],

for all n ∈ N.
For each n ∈ N, t ∈ [0, T ], the solution can easily be obtained and reads as

an(t) =
1

n2
e−n

2π2t +
2
√

2

nπ
1n odd

∫ t

0
e−n

2π2(t−s) ds+ b
√
ηn

∫ t

0
e−n

2π2(t−s) dβns

=
1

n2
e−n

2π2t +
2
√

2

n3π3
1n odd

(
1− e−n2π2t

)
+ b
√
ηn

∫ t

0
e−n

2π2(t−s) dβns .

Then, we get the mild solution of (3.3) for all t ∈ [0, T ] and x ∈ (0, 1) as

Xt(x) =
∞∑
n=1

( 1

n2
e−n

2π2t + b
√
ηn

∫ t

0
e−n

2π2(t−s) dβns

)√
2 sin(nπx)

+

∞∑
n=0

2
√

2

(2n+ 1)3π3

(
1− e−(2n+1)2π2t

)√
2 sin((2n+ 1)πx).

We need to simulate the integrals
∫ t

0 e
−n2π2(t−s) dβns for all n ∈ N, t ∈ [0, T ], however, which can

be done as described in [31].
This example shows that even for additive equations, we are not guaranteed to obtain a closed
form solution.

In applications, the model at hand is generally not of such a simple form as in Example 3.1. That
is, the diffusion operator is nonlinear in general and the Q-Wiener process belongs to a Hilbert
space of infinite dimension such that no analytical solution can be computed. This justifies the
extensive research on numerical methods for stochastic partial differential equations.

Stochastic partial differential equations need a distinct numerical treatment. We cannot simply
employ the well studied methods developed to solve SODEs. Numerical methods for this class
of differential equations are mainly designed for a fixed number of random influences, K ∈ N,
where K is often a factor in the error constant, see [38] or [59], for example. Therefore, they do,
in general, not converge when K goes to infinity in the approximation of the Q-Wiener process.
Moreover, even if for some N,K ∈ N, we project the SPDE to a finite dimensional system of
SODEs inHN and obtain an approximation of the Q-Wiener process in VK (these projections will
be described in the following), schemes for SODEs are not necessarily applicable. The projection
might distort properties of the original equation. One such example is the commutativity of the
SPDE which reads

B′(y) (B(y)u, v) = B′(y) (B(y)v, u)

for all u, v ∈ V0, y ∈ Hβ , and some β ∈ [0, 1) specified below.
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Example 3.3 (Projected SPDE is not commutative)
Assume a SPDE of the form

dXt =
∂2

∂x2
Xt dt+

∞∑
i=1

∞∑
j=1

1

j2
〈Xt, ei〉H〈Xt, e2j〉Hei dβjt , t ∈ (0, T ],

X0 = ξ. (3.4)

In this notation, the diffusion operator reads as

B(y)u =
∑
i,j∈N
〈y, ei〉H〈y, e2j〉H〈u, ẽj〉V ei

for all y ∈ Hβ, u ∈ V0. We choose the eigenvalues of Q as ηj = j−4 for all j ∈ N. Here,
{ei, i ∈ N} and {ẽj , j ∈ N} denote the orthonormal bases of H and V , respectively, introduced
in Chapter 2.
In this setting, we have

B′(y) (B(y)v, u) =

∞∑
i,k,j,r=1

(
〈y, ei〉H1k=2j + 〈y, e2j〉H1k=i

)
〈y, ek〉H〈y, e2r〉H〈v, ẽr〉V 〈u, ẽj〉V ei

for all u, v ∈ V0, y ∈ Hβ. The notation and the derivation of this expression can be found in
Section 3.6.

Then, the commutativity condition reads

∞∑
k=1

(
〈y, ei〉H1k=2m + 〈y, e2m〉H1k=i

)
〈y, ek〉H〈y, e2n〉H

= 2〈y, ei〉H〈y, e2m〉H〈y, e2n〉H

!
=
∞∑
k=1

(
〈y, ei〉H1k=2n + 〈y, e2n〉H1k=i

)
〈y, ek〉H〈y, e2m〉H

= 2〈y, ei〉H〈y, e2m〉H〈y, e2n〉H

for all i ∈ N, n,m ∈ JK , K ∈ N, y ∈ Hβ. This shows that the equation is commutative. See
Section 3.3 for a definition of the set JK .
Now, we define the projection operator PN : H → HN for y ∈ H by

PNy :=

N∑
n=1

〈y, en〉Hen

for all N ∈ N.
We set XN

t = PNXt for t ∈ [0, T ], N ∈ N, and approximate the Q-Wiener process by some
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3.1. Setting for SPDEs

projection PK , K ∈ N, as well; then, we obtain

dXN
t = PN

∂2

∂x2
XN
t dt+

N∑
i=1

K∑
j=1

1

j2
〈XN

t , ei〉H〈XN
t , e2j〉Hei dβjt , t ∈ (0, T ], (3.5)

XN
0 = PNξ.

This equation is not commutative anymore, that is, condition (1.3) does not hold, if we project
the spaces such that HN is identified by RN , VK by RK , for N,K ∈ N with K > N , and choose
indices i, j ∈ {1, . . . ,K} such that 2i > N but 2j < N . In this case, we get

N∑
r=1

〈y, er〉H〈y, e2j〉H
(
〈y, e2i〉H1r=l + 〈y, el〉H1r=2i

)
= 〈y, el〉H〈y, e2j〉H〈y, e2i〉H

whereas

N∑
r=1

〈y, er〉H〈y, e2i〉H
(
〈y, e2j〉H1r=l + 〈y, el〉H1r=2j

)
= 2〈y, el〉H〈y, e2j〉H〈y, e2i〉H

for all l ∈ {1, . . . , N} and y ∈ Hβ.

Examples 3.1, 3.2, and 3.3 motivate the development of numerical schemes to approximate the
mild solution of SPDE (1.1) in the following sections. First, we detail the framework that we
assume throughout this work. We specify the operators and conditions necessary to conduct the
analysis of convergence below. As described in the introduction, we develop numerical schemes
free of derivatives to approximate the mild solution of SPDE (1.1). We focus on this type of
solution in this work as for this process it is known how to construct higher order schemes by
means of Taylor approximations, [32], which form the base for the derivative-free methods. We
prove the convergence of the schemes and discuss their computational effort, which leads to
the notion of the effective order of convergence. This concept combines the theoretical order of
convergence with respect to the dimensions of the projection spaces and the time step size with
the computational cost necessary to compute one path with a specific method. We are concerned
about the effective order of convergence as this is the rate that actually determines the scheme
that is favorable with respect to the overall computational effort. The analytical findings are
then illustrated and confirmed in numerical simulations. In this chapter, we investigate SPDEs
that are commutative.
Approximation schemes for equations of type (1.1) that do not fulfill this assumption are discussed
in Chapter 4.

3.1 Setting for SPDEs

Throughout this chapter, let T ∈ (0,∞) and let (Ω,F , P ) denote a probability space endowed
with a filtration (Ft)t∈[0,T ] fulfilling the usual conditions. Furthermore, let (H, 〈·, ·〉H) and
(V, 〈·, ·〉V ) denote separable real-valued Hilbert spaces. Assume Q ∈ L(V ) to be positive, sym-
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3.1. Setting for SPDEs

metric, and to have finite trace and denote by (Wt)t∈[0,T ] a V -valued Q-Wiener process with
respect to (Ft)t∈[0,T ], see Definition 2.6. According to Section 2.2, there exists an orthonormal
basis of V consisting of eigenfunctions ẽj , j ∈ N, of Q. In the following, we consider this basis.
Our aim is to obtain an approximation of the mild solution (Xt)t∈[0,T ] to

dXt = (AXt + F (Xt)) dt+B(Xt) dWt, t ∈ (0, T ], (3.6)

X0 = ξ.

We denote by A the generator of an analytic semigroup, call F drift operator and B diffusion
operator. Let I and J denote finite or countable sets such that ηk 6= 0 for all k ∈ J . Then,
(Wt)t∈[0,T ] can be represented as

Wt =
∑
j∈J

√
ηj ẽjβ

j
t P -a.s. (3.7)

for all t ∈ [0, T ] with ηj ẽj = Qẽj , j ∈ J , see Theorem 2.4. The index set I is specified in
condition (C1) below.
We assume that the operators fulfill the following conditions, where we follow the notation in
[35] to make our results easily comparable.

(C1) Let A : D(A) ⊆ H → H be the infinitesimal generator of an analytic semigroup S(t) =

etA ∈ L(H), t ∈ [0, T ]. Denote by ei, i ∈ I, its eigenfunctions and by λi ∈ (0,∞), i ∈ I,
its eigenvalues such that infi∈I λi > 0, −λiei = Aei, i ∈ I, and A can be written as

Au =
∑
i∈I
−λi〈u, ei〉Hei

for all u ∈ D(A) with

D(A) :=
{
u ∈ H :

∑
i∈I
|λi|2|〈u, ei〉H |2 <∞

}
.

This implies the existence of an orthonormal basis {ei, i ∈ I} of H, as described in Section 2.1
or [65]. In the following, we work with this basis. Moreover, we define the interpolation spaces
Hr = D((−A)r) for some r ∈ [0,∞), see Section 2.1 for details.

Remark 3.1
In this setting, the analytic semigroup can be expressed as

eAty =
∑
i∈I

e−λit〈y, ei〉Hei

for all y ∈ H and t ∈ [0, T ], [65, p.67]. Therefore, its implementation in a numerical scheme is
straightforward.

(C2) Let F : Hβ → H be twice continuously Fréchet differentiable with supy∈Hβ ‖F
′(y)‖2L(H) <

∞ and supy∈Hβ ‖F
′′(y)‖2

L(2)(Hβ ,H)
<∞ for some β ∈ [0, 1).
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3.1. Setting for SPDEs

We introduce the Cameron-Martin space V0 = Q
1
2V which we use in the following, more details

can be found in Section 2.2. Moreover, define L(V,H)0 := {T |V0 |T ∈ L(V,H)}, see [55]. Note
that L(V,H)0 is a dense subset of LHS(V0, H), [55, Lemma 2.3.7].

(C3) Assume B : Hβ → L(V,H)0, β ∈ [0, 1), to be twice continuously Fréchet differentiable with
supy∈Hβ ‖B

′(y)‖L(H,L(V,H)) <∞, supy∈Hβ ‖B
′′(y)‖L(2)(H,L(V,H)) <∞. Moreover, B(Hδ) ⊂

L(V,Hδ) and for all u ∈ Hδ, y, w ∈ Hγ ,

‖B(u)‖L(V,Hδ) ≤ C(1 + ‖u‖Hδ),

‖B′(y)B(y)−B′(w)B(w)‖
L
(2)
HS(V0,H)

≤ C‖y − w‖H ,

‖(−A)−ϑB(y)Q−α‖LHS(V0,H) ≤ C(1 + ‖y‖Hγ )

for some constant C > 0 and parameters α ∈ (0,∞), δ, ϑ ∈ (0, 1
2), γ ∈ [max(δ, β), δ + 1

2).

We denote L(2)(H,L(V,H)) = L(H,L(H,L(V,H)) and L
(2)
HS(V0, H) = LHS(V0, LHS(V0, H))

here.

(C4) The initial condition ξ : Ω→ Hγ is F0-B(Hγ)-measurable with E[‖ξ‖4Hγ ] <∞.

Note that it holds supy∈Hβ ‖B
′(y)‖L(H,LHS(V0,H)) ≤

√
trQ supy∈Hβ ‖B

′(y)‖L(H,L(V,H)) <∞.
Since Hβ is a dense subset of H, the operator B : Hβ → L(V,H)0 can be continuously extended
to a globally Lipschitz continuous mapping B̃ : H → L(V,H)0. For legibility, we do not distin-
guish between B and B̃ in the following. For the operator F we proceed analogously.

As we show in the error analysis in Section 3.4, the parameters α, β, and γ determine the maximal
order of convergence that can be obtained. This contrasts the results obtained for SODEs, where
the rate of convergence can be specified universally for each approximation scheme.
We want to give an idea on the influence of these parameters on the intensity of the assumptions
as well as the rate of convergence. For this purpose, we consider the setting underlying the
examples in Section 3.6.
The parameter δ is mainly determined by the operator A, more precisely its eigenvalues (λi)i∈I ,
the operator B, and its behavior on the boundary. This can be seen in equation (3.37) as well
as in [34]. Moreover, if we assume ηj ≤ Cj−ρQ for some C, ρQ > 0 and all j ∈ J , it follows
from (3.40) and the examples in Section 3.6 that the parameter α increases with decreasing
ρQ. That is, the faster the sequence of eigenvalues (ηj)j∈J of Q converges to zero, the less
restrictive is assumption (C3). Furthermore, α depends on the operator B naturally. The pa-
rameter range for ϑ is determined by the connection of the eigenvalues (λi)i∈I of A and the
operator B, see (3.40). The faster the sequence (λi)i∈I increases, the smaller the parameter ϑ
can be chosen. The value of β ∈ [0, 1) is selected such that the Fréchet derivatives of B and F are
bounded on Hβ , that is, (C2) and (C3) hold. Finally, γ is determined by the parameters δ and β.

If not stated differently, this is the setting in which the numerical schemes are analyzed in this
work. Given (C1)–(C4), assumptions (A1)–(A4) in Section 2.3 hold with p = 4 such that there
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3.2. Effective Order of Convergence

exists a unique mild solution to SPDE (3.6) according to Theorem 2.7. Moreover, the properties
(i) and (ii) in Theorem 2.7 hold.

3.2 Effective Order of Convergence

Before we develop approximation schemes for SPDE (3.6), we specify the error criterium we are
interested in. The concept that we introduce has also been considered in our article [46]. For
some fixed M,N,K ∈ N, denote by (YM,N,K

m )m∈{0,...,M} the discrete approximation process of
(Xt)t∈[0,T ] obtained by some numerical scheme. Here, YM,N,K

m are Ftm-B(H)-measurable random
variables for allm ∈ {0, . . . ,M}. We examine the strong convergence of the schemes in this work,
so we are concerned about

sup
m∈{0,...,M}

(
E
[
‖Xtm − YM,N,K

m ‖2H
]) 1

2 (3.8)

for all M,N,K ∈ N.
In the numerical analysis of SPDEs, we need to discretize the time interval and the infinite di-
mensional Hilbert space H (referred to as approximation with respect to the space domain) as
well as the infinite dimensional stochastic process driving the equation. Therefore, the approxi-
mation error (3.8) is determined by diverse sources. In the following sections, we show that the
approximation of H by a spectral projection yields an error term depending on (λi)i∈I , whereas
the error resulting from the approximation of the Q-Wiener process involves the eigenvalues
(ηj)j∈J . We denote these terms by E(λ,N) and E(η,K) for some N,K ∈ N, respectively. Due
to the approximation in the temporal direction, we obtain some error term E(M) depending on
the step size h > 0 which, in turn, is determined by M ∈ N. In total, we get an expression for
the strong error subject to the dimensions N and K of the projection spaces and the step size
in temporal direction as

sup
m∈{0,...,M}

(
E
[
‖Xtm − YM,N,K

m ‖2H
]) 1

2 ≤ E(λ,N) + E(η,K) + E(M). (3.9)

We estimate this expression for the numerical schemes developed in the following sections. In
order to obtain an overall order of convergence, we have to balance the error terms according
to their respective convergence rates. We are, however, mainly interested in the relation of the
error and the computational cost necessary to simulate one sample path with a specific numerical
scheme, instead of considering the relation of the error to the dimensions of the approximation
spaces only.

The cost model that we consider is based on [74], see also [46]. We employ this model as it is more
objective than the comparison of computation time, which may depend on the implementation
of the algorithm. In the following, we assume that an arithmetic operation, like the evaluation
of the sine function, generates cost of one unit. The cost necessary to obtain information about,
for example, some element v ∈ H by some functional ϕ : H → R is taken to be cost(ϕ) = c for
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3.3. Derivation of Efficient Derivative-Free Milstein Scheme

some c� 1. Therefore, the cost of arithmetic operations is negligible.
For some fixed N,K ∈ N, we specify the finite dimensional subsets IN , JK with IN ⊂ I, JK ⊂ J
and |IN | = N , |JK | = K, which is the worst case in terms of computational cost necessary to
simulate one path. Moreover, we identify HN by RN and VK by RK . In the numerical schemes
that we describe in the following sections, there are mainly three terms that we need to evaluate.
Let y ∈ Hβ , u, v ∈ VK , N,K ∈ N,

• We compute PNF (y) =
∑

i∈IN 〈F (y), ei〉Hei; therefore, we need to obtain the functionals
〈F (y), ei〉H with cost(〈F (y), ei〉H) = c for all i ∈ IN . This implies cost(PNF (y)) = O(N).

• In order to compute PNB(y)u =
∑

i∈IN
∑

j∈JK 〈B(y)ẽj , ei〉H〈u, ẽj〉V ei, we need to evaluate
〈B(y)ẽj , ei〉H for all i ∈ IN , j ∈ JK with cost(PNB(y)|VK ) = cNK. Moreover, given
〈B(y)ẽj , ei〉H and 〈u, ẽj〉V for all i ∈ IN , j ∈ JK , the computation of PNB(y)u requires
K multiplications and K − 1 summations for each i ∈ IN . This yields cost(PNB(·)u) =

2NK − 1. In total, we obtain cost(PNB(y)u) = O(NK).

• For the Milstein scheme, we additionally compute

PNB
′(y)(B(y)u)v =

∑
i,k∈IN

∑
j∈JK

〈B′(y)(ek, ẽj), ei〉H〈B(y)u, ek〉H〈v, ẽj〉V ei,

that is, we need to evaluate 〈B′(y)(ek, ẽj), ei〉H for all i, k ∈ IN , j ∈ JK with

cost(PNB′(y)(·, ·)|HN ,VK ) = cN2K. The total cost necessary to compute PNB′(y)(B(y)u)v

is cost(PNB′(y)(B(y)u)v) = O(N2K), which can be obtained similar as for PNB(y)u.

Combining these terms according to the specific scheme, gives the computational cost required
to simulate the solution process (Xt)t∈[0,T ] at time T . This is detailed in Section 3.4.

Now, we derive the connection of the computational cost and the approximation error (3.8) as
our goal is to minimize this term such that the computational cost (CC) does not exceed some
specified value c̄ > 0. That is, we have to solve the optimization problem

min
N,M,K

(
sup

m∈{0,...,M}
E
[
‖Xtm − YM,N,K

m ‖2H
]) 1

2 such that CC = c̄

for some c̄ > 0. As a result, we obtain the effective order of convergence, see also [62] for this
concept. We compute and compare this value in the following sections for the schemes that we
derive.

3.3 Derivation of Efficient Derivative-Free Milstein Scheme

We develop a numerical scheme to approximate the mild solution to SPDE (3.6) in a setting
where (C1)-(C4) hold and impose a commutativity condition additionally; this reads as

(C5) B′(y)
(
B(y)u, v

)
= B′(y)

(
B(y)v, u

)
for all y ∈ Hβ , u, v ∈ V0.
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3.3. Derivation of Efficient Derivative-Free Milstein Scheme

As explained in the introduction, the goal of this section is to devise an approximation scheme
free of derivatives with reduced computational cost but theoretical rate of convergence as high
as for the Milstein scheme presented in [35], that is, the scheme obtains a higher effective order
of convergence. We call this scheme commutative derivative-free Milstein scheme (cDFM). Our
approach to deal with the problem of high dimensionality is not restricted to equations that are
pointwise multiplicative in the Q-Wiener process, which is the technique chosen in [35] and [71],
but is applicable to a more general type of equation. Equations which do not fulfill this assump-
tion involve an integral or derivative operator for the operator B, for example, see [43, 58, 64].
In the case of pointwise multiplicative operators B, the scheme by Jentzen and Röckner [35] and
the derivative-free version introduced by Gan and Wang in [71] are indeed very efficient, and the
cDFM obtains the same effective order of convergence, see Section 3.4. This is due to the fact,
that in this setting the evaluation of the Jacobian can be done with less computational cost and
therefore, the computational effort is of the same order of magnitude for all these schemes. It is,
however, not our aim to construct approximation schemes for this class and in a general setting
the effective order of convergence of the Milstein scheme in [35] can be improved. This issue is
illustrated in the introduction in detail.

The approach that we present is based on an idea to reduce the computational cost by a factor
depending on the dimensionality of the equation, originally designed for SODEs by Rößler, see
[60, 61, 62], for example. In the error analysis of these numerical schemes for SODEs, the number
of Brownian motions K ∈ N is a factor in the constant, however. Therefore, we need to design a
scheme tailored to SPDEs and prove its convergence by different means. In the setting of SPDEs,
the idea is even more powerful as it increases the effective order of convergence.
The operator that we propose to approximate B′B is more flexible than the operator BB defined
in [71] as it does not have to fulfill assumptions (1.4) and (1.5). Moreover, we do not have to
assume the relation B(y(x))v(x) = b(x, y(x)) · v(x) for all x ∈ (0, 1)d, y ∈ Hβ , v ∈ V0, d = 1, 2, 3

and the approximations BB(y, h)(·, ·), h > 0, of the operators B′(y)B(y)(·, ·) do not need to be
bilinear operators.
By a careful choice of the approximation operator, we maintain the theoretical order of the Mil-
stein scheme in [35] with respect to the spatial and time discretizations, whereas we reduce the
large number of function evaluations by one order of magnitude. The commutative derivative-
free Milstein scheme that we derive in the following is also described in our article [46].

In the numerical analysis of SPDEs, there are different spaces that need to be approximated.
We start with the infinite dimensional solution space H. Concerning the approximation of the
space domain, there exist various numerical schemes designed for PDEs which are of interest in
the approximation of SPDEs as well. We can make use of methods such as finite differences,
finite elements, or spectral Galerkin approximations, as in Example 3.3, which are employed in
[1, 35, 41, 49, 70, 78], for example. Here, we decide for a spectral Galerkin projection; this type
of approximation has also been chosen in [1, 24, 35], or [71], for instance.
Let PN denote a projection operator for some N ∈ N and define a finite index set IN ⊂ I with
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3.3. Derivation of Efficient Derivative-Free Milstein Scheme

|IN | = N . Then PN : H → HN maps H to a finite dimensional subspace HN := span(e1, . . . , eN )

and is given by
PNy =

∑
i∈IN

〈y, ei〉Hei for all y ∈ H, N ∈ N.

The approximation of the Q-Wiener process is represented similarly. We define JK ⊂ J with
|JK | = K and the operator PK : V → VK for all K ∈ N as

WK
t := PKWt =

∑
j∈JK

〈Wt, ẽj〉V ẽj =
∑
j∈JK

√
ηjβ

j
t ẽj P -a.s. (3.10)

We use the notation PNXt = XN
t , t ∈ [0, T ], and obtain a finite dimensional system of SODEs

in HN for all N,K ∈ N

dXN
t =

(
PNAX

N
t + PNF (XN

t )
)

dt+ PNB(XN
t ) dWK

t , t ∈ (0, T ],

XN
0 = PNξ.

Now, merely the temporal discretization is missing. For legibility, we consider an equidistant
partition of the time interval [0, T ] as tm = m · h, m ∈ {0, . . . ,M}, with time step h = T

M for
M ∈ N. We define the increments of the Q-Wiener process as follows

∆WK,M
m (ω) := WK

tm+1
(ω)−WK

tm(ω) =
∑
j∈JK

√
ηj∆β

j
m(ω)ẽj

with ∆βjm(ω) = βjtm+1
(ω)− βjtm(ω) for all ω ∈ Ω, m ∈ {0, . . . ,M − 1}, j ∈ JK , M,K ∈ N.

Since we assume commutativity as stated in (C5) and by the expression for the finite dimensional
stochastic double integral (1.2), we can split the iterated integrals as

eA(t−s)
∫ t

s
B′(Xs)

(∫ r

s
B(Xs) dWK

u

)
dWK

r (3.11)

= eA(t−s)
(1

2
B′(Xs)

(
B(Xs)(W

K
t −WK

s ), (WK
t −WK

s )
)
− t− s

2

∑
j∈JK

ηjB
′(Xs)

(
B(Xs)ẽj , ẽj

))
P -a.s. for all s, t ∈ [0, T ], s ≤ t, K ∈ N. This expression can easily be simulated and a proof,
which mainly employs (1.2), can be found in [35].
Let us fix some arbitrary M,N,K ∈ N. In this setting the Milstein scheme in [35], denoted as
MIL in this work, reads Y N,K,M

0 = PNξ and

Y N,K,M
m+1 = PN

(
eAh
(
Y N,K,M
m + hF (Y N,K,M

m ) +B(Y N,K,M
m )∆WK,M

m

+
1

2
B′(Y N,K,M

m )
(
B(Y N,K,M

m )∆WK,M
m ,∆WK,M

m

)
− h

2

∑
j∈JK

ηj B
′(Y N,K,M

m )
(
B(Y N,K,M

m )ẽj , ẽj
)))

for all m ∈ {0, 1, . . . ,M − 1}.
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3.4. Error Analysis and Computational Cost

Now, we carefully choose the approximation operator of B′B such that we obtain a scheme with
computational cost of optimal order. The cDFM reads Y N,K,M

0 = PNξ and

Y N,K,M
m+1 = PN

(
eAh
(
Y N,K,M
m + hF (Y N,K,M

m ) +B(Y N,K,M
m )∆WK,M

m

+
1√
h

(
B
(
Y N,K,M
m +

1

2

√
hPNB(Y N,K,M

m )∆WK,M
m

)
−B(Y N,K,M

m )
)

∆WK,M
m

+
∑
j∈JK

B̄(Y N,K,M
m , h, j)

))
(3.12)

for all m ∈ {0, 1, . . . ,M − 1}, where, in general, we choose

B̄(Y N,K,M
m , h, j) = B

(
Y N,K,M
m − h

2

√
ηj PNB(Y N,K,M

m )ẽj

)√
ηj ẽj −B(Y N,K,M

m )
√
ηj ẽj

for all j ∈ JK , M,N,K ∈ N, see also [46]. If B is pointwise multiplicative in the Q-Wiener
process, we define the approximation operator differently; this operator is specified in equation
(3.21) in the next section.

Remark 3.2
In [20], the authors showed that the exponential term eAt in the Milstein scheme can be approxi-
mated by (I −At)−1, t ∈ [0, T ], without a reduction in the theoretical order of convergence. The
same should hold true for the cDFM.

3.4 Error Analysis and Computational Cost

For the commutative derivative-free Milstein scheme in (3.12), we obtain the following error
estimate, which is the same, apart from constants, as for the Milstein scheme in [35]. We
impose assumptions which differ only slightly from the conditions that are necessary to prove
the convergence of the Milstein scheme.

Theorem 3.1 (Convergence of cDFM)
Let assumptions (C1)–(C5) be fulfilled. Then, there exists a constant CT,Q ∈ (0,∞), independent
of N , K, and M , such that for (Y N,K,M

m )0≤m≤M , defined by the commutative derivative-free
Milstein scheme in (3.12), it holds

(
E
[∥∥Xtm − Y N,K,M

m

∥∥2

H

]) 1
2 ≤ CT,Q

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ)

)
for all m ∈ {0, 1, . . . ,M} and all N,K,M ∈ N. The parameter values are determined by (C1)–
(C4).

Proof. The proof of Theorem 3.1 can be found in Section 3.5, see also our article [46].

As we do not only want to compare our scheme to the Milstein scheme but to some type of
exponential Euler scheme (EES) as well, analyzed in [49] or in [32] in a slightly different form, we
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3.4. Error Analysis and Computational Cost

give a short proof of the error estimate adjusted to our setting and notation. Let M,N,K ∈ N
be arbitrarily fixed; the exponential Euler scheme reads as Y EES

0 = PNξ and

Y EES
m+1 = PN

(
eAhY EES

m +A−1(eAh − I)F (Y EES
m ) + eAhB(Y EES

m )∆WK,M
m

)
(3.13)

for all m ∈ {0, 1, . . . ,M − 1}. In this form, the scheme has been introduced in [49] with a finite
element discretization. We obtain the following estimate for this scheme.

Theorem 3.2 (Convergence of EES)
Let assumptions (C1)–(C4) be fulfilled. Then, there exists a constant CT ∈ (0,∞), independent
of N , K, andM , such that for (Y EES

m )0≤m≤M , defined by the exponential Euler scheme in (3.13),
it holds(

E
[∥∥Xtm − Y EES

m

∥∥2

H

]) 1
2 ≤ CT

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min( 1

2
,γ,2(γ−β))

)
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. The parameter values are determined by (C1)–
(C4).

Proof. For a proof, we refer to Section 3.5. We present a proof tailored to our setting and employ
computations similar to those in the proof of convergence of the Milstein scheme in [35]. The
proof differs from the representation in [49] as we do employ a Galerkin approximation instead
of a finite element discretization in the numerical scheme. Moreover, in [49], the operators F and
B are defined on H which yields a slightly differing result. The proof of the exponential Euler
scheme in [32] employs stochastic trees. We do not use this technique.

Besides, we compare the cDFM to the linear implicit Euler scheme (LIE) in the numerical
simulations. This scheme reads as Y LIE

0 = PNξ and

Y LIE
m+1 = PN

(
(I − hA)−1

(
Y LIE
m + hF (Y LIE

m ) +B(Y LIE
m )∆WK,M

m

))
(3.14)

for all m ∈ {0, 1, . . . ,M − 1} and M,N,K ∈ N, see [40]. Similar as for the EES, we obtain the
error estimate for this scheme, which attains the same order. This can be proved by combining
estimates from the proof of Theorem 3.2 with the error estimate for the linear implicit Euler
scheme in [78] adjusted to our setting.

Our goal is to determine the effective order of convergence for the schemes illustrated above.
Therefore, we need to compute their computational costs and combine them with their respective
theoretical order of convergence. The following results can also be found in [46].
Let us fix M,N,K ∈ N; first, we consider the exponential Euler scheme as this is the base for
the analysis of the other schemes as well. In order to simulate one path with the EES, we need
to evaluate PNF (·) and PNB(·)|VK in each time step m ∈ {0, . . . ,M}. Moreover, we compute
PNB(Y N,K,M

m )|VK , m ∈ {0, . . . ,M}, as described in Section 3.2. We need K realizations of
standard normal random variables (rv) ε ∼ N(0, 1) in each step, where we assume cost(ε) = 1.
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3.4. Error Analysis and Computational Cost

In total, we obtain cost(EES) = O(MNK).
For the commutative derivative-free Milstein scheme, we have to compute the same terms. Ad-
ditionally, we need to compute the expression PN B̄(Y N,M,K

m , h, j)u for Y N,M,K
m ∈ HN , m ∈

{0, . . . ,M}, j ∈ JK , u ∈ VK with

PN B̄(Y N,M,K
m , h, j)u =

∑
i∈IN

∑
j∈JK

〈B̄(Y N,M,K
m , h, j)ẽj , ei〉H〈u, ẽj〉V ei.

The computation of 〈B̄(Y N,M,K
m , h, j)ẽj , ei〉H for all i ∈ IN , j ∈ JK has cost of NK in each time

step. As described in Section 3.2, we obtain total costs of O(NK) for this term. Therefore, the
computational cost of the cDFM differs by a constant compared to the EES only, and it holds
cost(cDFM) = O(MNK).
For the Milstein scheme, the computational cost is higher by one order of magnitude in N . We
need to compute terms PNB′(Y

N,M,K
m )(B(Y N,M,K

m )u, v) for Y N,M,K
m ∈ HN , m ∈ {0, . . . ,M},

u, v ∈ VK along with the terms that have to be computed in the EES. This yields cost(MIL) =

O(MN2K) to simulate one path with the Milstein scheme.

The main differences between these schemes are summarized in the following table.

computational cost for evaluation of

Scheme PNF (x) PNB(x) PNB
′(x) # of N(0, 1) rv

MIL N KN KN2 K

LIE N KN − K

EES N KN − K

cDFM N 3KN − K

Table 3.1: Number of (nonlinear) function evaluations and random variables for each time step.

In Table 3.1, we observe that the cDFM obtains computational costs which are optimal in some
sense. The term PNB(y)u, y ∈ HN , u ∈ VK , which is included in all the numerical schemes that
we consider, yields costs of O(MNK). Therefore, we cannot reduce the computational effort
below this magnitude.

We solve the following optimization problem to determine the effective order of convergence

min
N,M,K

sup
m∈{0,...,M}

(
E
[∥∥Xtm − YM,N,K

m

∥∥2

H

]) 1
2 such that CC = c̄

for some fixed c̄ > 0. To this end, we assume a relationship of the eigenvalues of A and Q with the
dimensions of the corresponding projection spaces. Precisely, we assume infi∈I\IN λi = O(NρA)

and supj∈J\JK ηj = O(K−ρQ) for some ρA, ρQ > 0. Therewith, we obtain an estimate of the
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error for some numerical scheme as

error(SCHEME(N,K,M)) = sup
m∈{0,...,M}

(
E
[∥∥Xtm − YM,N,K

m

∥∥2

H

]) 1
2 ≤ N−γρA +K−αρQ +M−q

(3.15)

for some q > 0, which is determined by the approximation scheme, and all N,M,K ∈ N.

General Setting
Let c̄ > 0 be arbitrarily fixed. As described above, we have cost(EES) = O(MNK) for the
exponential Euler scheme. Therefore, we obtain an optimal choice of M,N,K as

N = O
(
c̄

αρQq

(αρQ+γρA)q+αγρAρQ

)
, K = O

(
c̄

γρAq

(αρQ+γρA)q+αγρAρQ

)
, M = O

(
c̄

αγρAρQ
(αρQ+γρA)q+αγρAρQ

)
.

These values balance the error term, which yields the effective order of convergence

error(EES(N,K,M)) = O
(
c̄
−

αγρAρQq

(αρQ+γρA)q+αγρAρQ

)
. (3.16)

For this scheme, it holds q = qEES = min(2(γ − β), γ, 1
2), see Theorem 3.2.

We optimize the error for the Milstein scheme in the same fashion. Here, the parameter q equals
q = qMIL = min(2(γ − β), γ), [35]. We obtain

N = O
(
c̄

αρQq

(2αρQ+γρA)q+αγρAρQ

)
, K = O

(
c̄

γρAq

(2αρQ+γρA)q+αγρAρQ

)
, M = O

(
c̄

αγρAρQ
(2αρQ+γρA)q+αγρAρQ

)
,

and the optimal order as

error(MIL(N,K,M)) = O
(
c̄
−

αγρAρQq

(2αρQ+γρA)q+αγρAρQ

)
. (3.17)

Finally, we investigate the effective order of convergence for the commutative derivative-free
Milstein scheme. On first sight, we obtain the same result as for the EES, that is

N = O
(
c̄

αρQq

(αρQ+γρA)q+αγρAρQ

)
, K = O

(
c̄

γρAq

(αρQ+γρA)q+αγρAρQ

)
, M = O

(
c̄

αγρAρQ
(αρQ+γρA)q+αγρAρQ

)
(3.18)

and
error(cDFM(N,K,M)) = O

(
c̄
−

αγρAρQq

(αρQ+γρA)q+αγρAρQ

)
. (3.19)

The parameter q, however, differs. As in the Milstein scheme, we have q = qcDFM = min(2(γ −
β), γ), see Theorem 3.1.
Next, we compare the effective orders of convergence for the different schemes. We consider the
reciprocal of the effective order of the cDFM as this term allows to clearly identify the dependence
on q

(αρQ + γρA)q + αγρAρQ
αγρAρQq

=
αρQ + γρA
αγρAρQ

+
1

q
.
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The reciprocal decreases with increasing q. As qEES ≤ qcDFM , the effective order of convergence
of the cDFM is, in general, higher than for the EES.
A comparison of the cDFM and the Milstein scheme clearly reveals a preference for the cDFM
as the order of convergence differs by a factor 2 in the denominator, whereas all parameters take
the same values. Thus, the optimal order of the cDFM is higher if α, γ, ρQ, ρA, q > 0.

Pointwise Multiplicative Diffusion
If we restrict the operator B to be pointwise multiplicative in the Q-Wiener process, this is
the setting considered in [35] and [71], we get differing results. Let H = V = L2((0, 1),R),
(F (y))(x) = f(x, y(x)), and (B(y)v)(x) = b(x, y(x)) · v(x) for all y ∈ Hβ , β ∈ [0, 1), v ∈ V0, and
x ∈ (0, 1) with b, f : [0, 1]× R→ R.
As mentioned before, the operator B̄(y, h, j) in the cDFM is chosen differently in this case.
Precisely, we compute Y N,K,M

0 = PNξ and

Y N,K,M
m+1 = PN

(
eAh
(
Y N,K,M
m + hf(·, Y N,K,M

m ) + b(·, Y N,K,M
m ) ·∆WK,M

m

+
1√
h

(
b
(
·, Y N,K,M

m +
1

2

√
hPNb(·, Y N,K,M

m ) ·∆WK,M
m

)
− b(·, Y N,K,M

m )
)
·∆WK,M

m

+
∑
j∈JK

B̄(Y N,K,M
m , h, j)

))
(3.20)

for all m ∈ {0, . . . ,M − 1} with

B̄(Y N,K,M
m , h, j) =

(
b
(
·, Y N,K,M

m − h

2
PNb(·, Y N,K,M

m )
)
− b(·, Y N,K,M

m )
)
ηj ẽ

2
j (3.21)

for all j ∈ JK and M,N,K ∈ N. We call this scheme the multiplicative version of the commu-
tative derivative-free Milstein scheme (cDFMM), see also [46]. The computational cost of the
multiplicative scheme is lower than for the cDFM as we only need to compute terms such as
PNb(·, Y N,M,K

m (·)) here with cost(PNb(·, Y N,M,K
m (·)) = N in each time step m ∈ {0, . . . ,M}. The

same holds true for the other terms involved in this scheme. Moreover, we need to simulate K
independent standard normal distributed random variables in each time step. In total, we have
cost(cDFMM) = O(MN +MK).
We determine the effective order of convergence as above. Let c̄ > 0 be arbitrarily fixed; we
minimize the error (3.15) such that O(MN +MK) = c̄. This yields a reasonable choice of

N = O
(
c̄

min(γρA,αρQ)q

γρA(min(γρA,αρQ)+q)

)
, K = O

(
c̄

min(γρA,αρQ)q

αρQ(min(γρA,αρQ)+q)

)
, M = O

(
c̄

min(γρA,αρQ)

min(γρA,αρQ)+q

)
with q = qcDFMM = min(2(γ − β), γ). For the effective order of convergence, we get

error(cDFMM(N,K,M)) = O
(
c̄
−

min(γρA,αρQ)q

min(γρA,αρQ)+q

)
. (3.22)

The Milstein scheme in [35] and the Runge-Kutta type scheme in [71] obtain the same effective
order in this setting. The computational cost of the Milstein scheme is significantly reduced,
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compared to the general setting, as the evaluation of the Jacobian produces cost of N in each
time step only. Therefore, it efficiently approximates the solution process (Xt)t∈[0,T ] in T . The
Runge-Kutta type scheme in [71] does not involve this derivative, which may help to reduce
computation time even more.
For the EES, we obtain the same expression as well, but one has to keep in mind that the pa-
rameter q = qEES = min(2(γ−β), γ, 1

2) differs. We do, however, not restrict our analysis to this
special case in the following.

Finite Dimensional Noise
We detail this exception here for completeness and since we illustrate one such example in Section
3.6. Let K ∈ N be fixed and assume |{ηj : j ∈ J }| = K, that is, we choose JK = J . Then,
there is no error from the approximation of the Q-Wiener process and we analyze

error(SCHEME(N,M)) = sup
m∈{0,...,M}

(
E
[∥∥Xtm − YM,N

m

∥∥2

H

]) 1
2 ≤ N−γρA +M−q (3.23)

for all M,N ∈ N.
We consider the commutative derivative-free Milstein scheme first and obtain computational
costs of cost(cDFM(N,M)) = O(MN). The minimization of error(cDFM(N,M)) such that
O(MNK) = c̄, for fixed c̄ > 0, yields an optimal choice of N = O

(
c̄

q
γρA+q

)
and M = O

(
c̄

γρA
γρA+q

)
.

Then, the effective order of convergence for the cDFM is

error(cDFM(N,M)) = O
(
c̄
− γρAq

γρA+q

)
. (3.24)

As in the previous part, the Milstein scheme has computational costs of order cost(MIL(N,M)) =

O(N2M). The optimization of error(MIL(N,M)) yields N = O
(
c̄

q
γρA+2q

)
and M = O

(
c̄

γρA
γρA+2q

)
.

The effective order of convergence for the Milstein scheme is

error(MIL(N,M)) = O
(
c̄
− γρAq

γρA+2q

)
. (3.25)

In both these schemes, it holds q = min(2(γ − β), γ). Therefore, as in the general case, the
commutative derivative-free Milstein scheme obtains a higher effective order of convergence than
the Milstein scheme.

If the operators are pointwise multiplicative additionally, the multiplicative version of the cDFM
is employed. The computational cost for this scheme is cost(cDFMM(N,M)) = O(MN +MK).
This yields a reasonable choice of N = O

(
c̄

q
γρA+q

)
and M = O

(
c̄

γρA
γρA+q

)
. The effective order of

convergence results in
error(cDFMM(N,M)) = O

(
c̄
− γρAq

γρA+q

)
. (3.26)

As in the last part the Milstein and the Runge-Kutta type scheme obtain the same effective
order of convergence for this particular case. Furthermore, observe that in this special case the
cDFM obtains the same order as the cDFMM as well. So, we can choose the cDFM instead.
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Again, for the EES, we get the same expressions as for the cDFM, but qEES = min(2(γ−β), γ, 1
2).

For the linear implicit Euler scheme, we obtain the same results as for the exponential Euler
scheme in all cases as the computational cost as well as the theoretical order of convergence
agree, see page 40.

The following table combines the results.

Effective Order

Scheme general pointwise multiplicative finite noise

MIL
αγρAρQqMIL

(2αρQ+γρA)qMIL+αγρAρQ

min(γρA,αρQ)qMIL

min(γρA,αρQ)+qMIL
∗ γρAqMIL

γρA+2qMIL

LIE
αγρAρQqEES

(αρQ+γρA)qEES+αγρAρQ

min(γρA,αρQ)qEES

min(γρA,αρQ)+qEES

γρAqEES

γρA+qEES

EES
αγρAρQqEES

(αρQ+γρA)qEES+αγρAρQ

min(γρA,αρQ)qEES

min(γρA,αρQ)+qEES

γρAqEES

γρA+qEES

cDFM or cDFMM αγρAρQqcDFM

(αρQ+γρA)qcDFM+αγρAρQ
∗ min(γρA,αρQ)qcDFM

min(γρA,αρQ)+qcDFM
∗ γρAqcDFM

γρA+qcDFM
∗

Table 3.2: Effective order of convergence for commutative SPDE - by ∗ we indicate the scheme
that is superior for each setting, given that γ, ρA, α, ρQ, q > 0 and qEES < qcDFM . Moreover, it
holds qMIL = qcDFM .

We compare the effective order for various numerical examples after we present the proofs of
convergence of the approximation schemes in the next section.

3.5 Proofs

Proof of Theorem 3.1

Theorem (Convergence of cDFM)
Let assumptions (C1)–(C5) be fulfilled. Then, there exists a constant CT,Q ∈ (0,∞), independent
of N , K, and M , such that for (Y N,K,M

m )0≤m≤M , defined by the commutative derivative-free
Milstein scheme in (3.12), it holds

(
E
[∥∥Xtm − Y N,K,M

m

∥∥2

H

]) 1
2 ≤ CT,Q

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ)

)
for all m ∈ {0, 1, . . . ,M} and N,K,M ∈ N. The parameter values are determined by (C1)–(C4).

The proof of Theorem 3.1 builds on the proof of convergence in [35] - with an addition which ac-
counts for the approximation of the derivative, see also [46]. We do not incorporate the analysis
of the error which may result from the approximation of the coefficients in the spectral projection
PNy =

∑
n∈IN 〈y, en〉Hen, N ∈ N, y ∈ H, here.

In the proof, we use some generic constant C which may change from line to line.
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Proof of Theorem 3.1.
We adopt the representation

Xtm =eAtmX0 +
m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F (Xs) ds+
m−1∑
l=0

∫ tl+1

tl

eA(tm−s)B(Xs) dWs,

set Ym := Y N,M,K
m and WK

m := WK,M
m for all m ∈ {0, . . . ,M}, M,N,K ∈ N, for legibility, and

define some auxiliary processes for all m ∈ {0, . . . ,M}, M,N,K ∈ N as

X̄tm :=PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Xtl) ds+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Xtl) dWK
s

+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

)
,

Ȳtm :=PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Yl) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Yl) dWK
s

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Yl)
(∫ s

tl

B(Yl) dWK
r

)
dWK

s

)

=PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Yl) ds+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Yl) dWK
s

+

m−1∑
l=0

eA(tm−tl)
(1

2
B′(Yl)

(
B(Yl)∆W

K
l ,∆W

K
l

)
− h

2

∑
j∈JK

ηjB
′(Yl)

(
B(Yl)ẽj , ẽj

)))
.

For all m ∈ {0, . . . ,M}, M,N ∈ N, we estimate

E
[
‖Xtm − Ym‖2H

]
= E

[
‖Xtm − PNXtm + PNXtm − X̄tm + X̄tm − Ȳtm + Ȳtm − Ym‖2H

]
in several parts

E
[
‖Xtm − Ym‖2H

]
≤4
(

E
[
‖Xtm − PNXtm‖2H

]
+ E

[
‖PNXtm − X̄tm‖2H

]
+ E

[
‖X̄tm − Ȳtm‖2H

]
+ E

[
‖Ȳtm − Ym

∥∥2

H

])
. (3.27)

The first term is the error that results from the projection of H to a finite dimensional subspace
HN , N ∈ N. The second and third term arise due to the approximation of the solution process
with the Milstein scheme and the last one is the error that we obtain by approximating the
operator B′B. The estimates of the first three terms are not specific to our scheme and the ideas
originate from [35]. For completeness, we state the whole proof.

For all m ∈ {1, . . . ,M}, M,N,K ∈ N, we want to prove the error from the Galerkin projection,

(
E
[
‖PNXtm − X̄tm‖

]2
H

) 1
2 ≤

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

(
eA(tm−s)F (Xs)− eA(tm−tl)F (Xtl)

)
ds
∥∥∥2

H

]) 1
2
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+

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

(
eA(tm−s)B(Xs)− eA(tm−tl)B(Xtl)

)
dWK

s

−
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Xtl)

(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]) 1
2

+

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s)B(Xs) d(Ws −WK
s )
∥∥∥2

H

]) 1
2

≤ CT
(
M−min(2(γ−β),γ) +

(
sup

j∈J\JK
ηj

)α)
,

E
[
‖X̄tm − Ȳtm‖

]2
H
≤ CT
M

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
, (3.28)

and
E
[
‖Ȳtm − Ym‖

]2
H
≤ CT,QM−2

separately.

After estimating these expressions, we obtain

E
[
‖Xtm − Ym‖2H

]
≤CT

((
inf

i∈I\IN
λi

)−2γ
+
(

sup
j∈I\IK

ηj

)2α
+M−2 min(2(γ−β),γ)

)
+
CT
M

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
+ CT,QM

−2

≤CT,Q
((

inf
i∈I\IN

λi

)−2γ
+
(

sup
j∈I\IK

ηj

)2α
+M−2 min(2(γ−β),γ)

)
for all m ∈ {1, . . . ,M}, M,N,K ∈ N, by a discrete version of Gronwall’s Lemma.

Spectral Galerkin projection
The error resulting from the spectral Galerkin projection is estimated for all m ∈ {0, . . . ,M},
M,N ∈ N as

E
[
‖Xtm − PNXtm‖2H

]
= E

[
‖(I − PN )Xtm‖2H

]
≤ E

[
‖(I − PN )(−A)−γ‖2L(H)

∥∥Xtm

∥∥2

Hγ

]
= sup

y∈H
‖y‖H=1

‖(I − PN )(−A)−γy‖2HE
[
‖Xtm‖2Hγ

]
= sup

y∈H
‖y‖H=1

∥∥∥(I − PN )
∑
k∈I

λ−γk 〈y, ek〉Hek
∥∥∥2

H
E
[
‖Xtm‖2Hγ

]
= sup

y∈H
‖y‖H=1

∥∥∥ ∑
n∈I\IN

〈
∑
k∈I

λ−γk 〈y, ek〉Hek, en〉Hen
∥∥∥2

H
E
[
‖Xtm‖2Hγ

]
.

47



3.5. Proofs

Due to (C1)–(C4) and Theorem 2.7, we further obtain

E
[
‖Xtm − PNXtm‖2H

]
= sup

y∈H
‖y‖H=1

∥∥∥ ∑
n∈I\IN

λ−γn 〈y, en〉Hen
∥∥∥2

H
E
[
‖Xtm

∥∥2

Hγ
]

≤ C sup
y∈H
‖y‖H=1

∑
n∈I\IN

λ−2γ
n 〈y, en〉2H

≤ C
(

inf
i∈I\IN

λi

)−2γ
sup
y∈H
‖y‖H=1

∑
n∈I\IN

〈y, en〉2H

≤ C
(

inf
i∈I\IN

λi

)−2γ
sup
y∈H
‖y‖H=1

‖y‖H

= C
(

inf
i∈I\IN

λi

)−2γ

for all m ∈ {0, . . . ,M}, M,N ∈ N. This proves the first part.

In the following, we use

‖PNy‖2H =
∥∥∥ ∑
n∈IN

〈y, en〉Hen
∥∥∥2

H
=
∑
n∈IN

|〈y, en〉H |2

≤
∑
n∈I
|〈y, en〉H |2 = ‖y‖2H

for y ∈ H, N ∈ N, several times.

Temporal discretization - Nonlinearity F

We prove the error resulting from the temporal discretization of the Bochner integral by partition-
ing the error into three components, which we again estimate separately. Let m ∈ {1, . . . ,M},
M ∈ N, we show

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

(
eA(tm−s)F (Xs)− eA(tm−tl)F (Xtl)

)
ds
∥∥∥2

H

]) 1
2

≤
(

E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

+

(
E

[∥∥∥m−2∑
l=0

∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
F (Xtl) ds

∥∥∥2

H

]) 1
2

+

(
E

[∥∥∥ ∫ tm

tm−1

(
eA(tm−s) − eA(tm−tm−1)

)
F (Xtm−1) ds

∥∥∥2

H

]) 1
2

≤ CTM−min(2(γ−β),γ).

We define X̃s,l := Xs − Xtl for all s ∈ [0, T ], l ∈ {0, . . . ,M − 1}, M ∈ N, for legibility. For
the first term, we obtain by the triangle inequality and the representation of the mild solution
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(Xt)t∈[0,T ] for all m ∈ {1, . . . ,M}, M ∈ N

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

≤
(

E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F ′(Xtl)(Xs −Xtl) ds
∥∥∥2

H

]) 1
2

+

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s)
(∫ 1

0

∫ r

0

1

2
F ′′(Xtl + uX̃s,l)(X̃s,l, X̃s,l) du r dr

)
ds
∥∥∥2

H

]) 1
2

≤
m−1∑
l=0

(
E

[∥∥∥ ∫ tl+1

tl

eA(tm−s)F ′(Xtl)
(
eA(s−tl) − I

)
Xtl ds

∥∥∥2

H

]) 1
2

+
m−1∑
l=0

(
E

[∥∥∥ ∫ tl+1

tl

eA(tm−s)F ′(Xtl)
(∫ s

tl

eA(s−u)F (Xu) du
)

ds
∥∥∥2

H

]) 1
2

+

(m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−s)F ′(Xtl)
(∫ s

tl

eA(s−u)B(Xu) dWu

)
ds
∥∥∥2

H

]) 1
2

+

m−1∑
l=0

(
E

[∥∥∥ ∫ tl+1

tl

eA(tm−s)
(∫ 1

0

∫ r

0

1

2
F ′′(Xtl + uX̃s,l)(X̃s,l, X̃s,l) du r dr

)
ds
∥∥∥2

H

]) 1
2

.

Then, Hölder’s inequality implies for all m ∈ {1, . . . ,M}, M ∈ N

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

≤
m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥∥eA(tm−s)F ′(Xtl)
(
eA(s−tl) − I

)
Xtl

∥∥∥2

H
ds

]) 1
2

+
m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥∥eA(tm−s)F ′(Xtl)
(∫ s

tl

eA(s−u)F (Xu) du
)∥∥∥2

H
ds

]) 1
2

+

(m−1∑
l=0

E

[
h

∫ tl+1

tl

∥∥∥eA(tm−s)F ′(Xtl)
(∫ s

tl

eA(s−u)B(Xu) dWu

)∥∥∥2

H
ds

]) 1
2

+

m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥∥eA(tm−s)
(∫ 1

0

∫ r

0
F ′′(Xtl + uX̃s,l)(Xs −Xtl , Xs −Xtl) du r dr

)
ds
∥∥∥2

H

]) 1
2

and by (C2), Theorem 2.3, and Theorem 2.7, we get

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

≤ C
m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥F ′(Xtl)
∥∥2

L(H)

∥∥(−A)−γ
(
eA(s−tl) − I

)∥∥2

L(H)
‖Xtl‖

2
Hγ ds

]) 1
2

+ C

m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥F ′(Xtl)
∥∥2

L(H)

∥∥∥∫ s

tl

eA(s−u)F (Xu) du
∥∥∥2

H
ds

]) 1
2
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+ C

(m−1∑
l=0

hE

[ ∫ tl+1

tl

∥∥F ′(Xtl)
∥∥2

L(H)

∥∥∥∫ s

tl

eA(s−u)B(Xu) dWu

∥∥∥2

H
ds

]) 1
2

+ C
m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∫ 1

0

∫ r

0
‖F ′′(Xtl + uX̃s,l)‖L(2)(Hβ ,H) du r dr‖Xs −Xtl‖

4
Hβ

ds

]) 1
2

≤ C
m−1∑
l=0

(
h

∫ tl+1

tl

(s− tl)2γ E
[
‖Xtl‖

2
Hγ

]
ds

) 1
2

+ C
m−1∑
l=0

(
E

[
h

∫ tl+1

tl

∥∥∥∫ s

tl

eA(s−u)F (Xu) du
∥∥∥2

H
ds

]) 1
2

+ C

(m−1∑
l=0

hE

[ ∫ tl+1

tl

∥∥∥∫ s

tl

eA(s−u)B(Xu) dWu

∥∥∥2

H
ds

]) 1
2

+ C

m−1∑
l=0

(
h

∫ tl+1

tl

(s− tl)4 min(γ−β, 1
2

) ds

) 1
2

.

Next, (C1)–(C4) and Itô’s isometry imply

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

≤ CMh1+γ + C
m−1∑
l=0

(
h

∫ tl+1

tl

(s− tl)2 ds

) 1
2

+

(
C
m−1∑
l=0

h

∫ tl+1

tl

∫ s

tl

E
[
‖(−A)−δ‖2L(H) ‖B(Xu)‖2LHS(V0,Hδ)

]
duds

) 1
2

+

m−1∑
l=0

(
h4 min(γ−β, 1

2
)+2
) 1

2

≤ CThγ + CMh2 +

(
C
m−1∑
l=0

h

∫ tl+1

tl

(s− tl) ds

) 1
2

+ hmin(2(γ−β),1)

≤ CThγ + CTh+ C
(
Mh3

) 1
2 ≤ CThmin(2(γ−β),γ)

for all m ∈ {1, . . . ,M}, M ∈ N.
The estimates of the second and third part follow easily by the triangle inequality, Hölder’s
inequality, (C1)–(C4), and Theorem 2.3 as well. For all m ∈ {1, . . . ,M}, M ∈ N, we get

(
E

[∥∥∥m−2∑
l=0

∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
F (Xtl) ds

∥∥∥2

H

]) 1
2

≤
m−2∑
l=0

(
E

[∥∥∥ ∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
F (Xtl) ds

∥∥∥2

H

]) 1
2

≤ C
m−2∑
l=0

(
h

∫ tl+1

tl

∥∥(−A)eA(tm−s)
∥∥2

L(H)

∥∥(−A)−1
(
I − eA(s−tl)

)∥∥2

L(H)
ds

) 1
2

≤ C
m−2∑
l=0

(
h

∫ tl+1

tl

( s− tl
tm − s

)2
ds

) 1
2

≤ C
m−2∑
l=0

(
h

∫ tl+1

tl

( s− tl
(m− l − 1)h

)2
ds

) 1
2
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= C

m−2∑
l=0

( h4

(m− l − 1)2h2

) 1
2

= Ch

m−2∑
l=0

1

m− l − 1
= Ch

m−1∑
l=1

1

l
≤ C 1 + ln(M)

M

≤ C M1−γ

M(1− γ)
= Chγ .

In the last step, we employed some basic computations for m ∈ {1, . . . ,M}, M ∈ N

m−1∑
l=1

1

l
= 1 +

m−1∑
l=2

1

l
≤ 1 +

M∑
l=2

1

l
≤ 1 +

∫ M

1

1

s
ds = 1 + ln(M)

and for all r ∈ [0, 1) and x ≥ 1, we get

1 + ln(x) = 1 +

∫ x

1
s−1 ds ≤ 1 +

∫ x

1

1

s1−r ds = 1 +
xr − 1

r
=
xr

r
− (1− r)

r
≤ xr

r
,

see [33]. Further, we obtain

(
E

[∥∥∥ ∫ tm

tm−1

(
eA(tm−s) − eA(tm−tm−1)

)
F (Xtm−1) ds

∥∥∥2

H

]) 1
2

≤
√
h

(∫ tm

tm−1

E
[∥∥(eA(tm−s) − eA(tm−tm−1)

)
F (Xtm−1)

∥∥2

H

]
ds

) 1
2

≤
√
h
(∫ tm

tm−1

C ds
) 1

2 ≤ CTh

for all m ∈ {1, . . . ,M}, M ∈ N.

Temporal discretization with Milstein scheme - Diffusion B

For the estimation of the error resulting from the discretization of the stochastic integrals, we
compute for all m ∈ {1, . . . ,M}, M,K ∈ N

E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

(
eA(tm−s)B(Xs)− eA(tm−tl)B(Xtl)

)
dWK

s

−
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]

=

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
+ E

[∥∥∥m−2∑
l=0

∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
B(Xs) dWK

s

∥∥∥2

H

]
+ E

[∥∥∥ ∫ tm

tm−1

(
eA(tm−s) − eA(tm−tm−1)

)
B(Xs) dWK

s

∥∥∥2

H

]
≤ CT

(
M−2γ +

(
sup

j∈J\JK
ηj

)2α)
, (3.29)
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where

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
=

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl)
(
B′(Xtl)(Xs −Xtl)

+
1

2

∫ 1

0

(∫ r

0
B′′(Xtl + u(Xs −Xtl))

(
Xs −Xtl , Xs −Xtl

)
r du

)
dr
)

dWK
s

−
∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
≤

m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥eA(tm−tl)B′(Xtl)
(

(Xs −Xtl)−
∫ s

tl

B(Xtl) dWK
r

)
+ eA(tm−tl) 1

2

∫ 1

0

(∫ r

0
B′′(Xtl + u(Xs −Xtl))

(
Xs −Xtl , Xs −Xtl

)
du
)
r dr

∥∥∥2

LHS(V0,H)

]
ds

due to Itô’s isometry.

With Theorem 2.3 and Theorem 2.7, we obtain for all m ∈ {1, . . . ,M}, M,K ∈ N

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
≤ 2

m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥eA(tm−tl)B′(Xtl)
(

(Xs −Xtl)−
(∫ s

tl

B(Xtl) dWK
r

))∥∥∥2

LHS(V0,H)

]
ds

+
m−1∑
l=0

∫ tl+1

tl

E

[∥∥eA(tm−tl)
∥∥2

L(H)
‖Xs −Xtl‖

4
H

·
∫ 1

0

(∫ r

0

∥∥B′′(Xtl + u(Xs −Xtl))
∥∥2

L(2)(H,LHS(V0,H))
du
)
r dr

]
ds

≤ C
m−1∑
l=0

(∫ tl+1

tl

E

[∥∥∥eA(tm−tl)B′(Xtl)
(

(Xs −Xtl)−
(∫ s

tl

B(Xtl) dWK
r

))∥∥∥2

LHS(V0,H)

]
ds

+
h1+min(4γ,2)

1 + min(4γ, 2)

)
.

Next, we plug in the expression for the mild solution, use (C3), and get for all m ∈ {1, . . . ,M},
M,K ∈ N

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−tl)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
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≤ C
m−1∑
l=0

(∫ tl+1

tl

E

[∥∥∥eA(tm−tl)B′(Xtl)
((
eA(s−tl) − I

)
Xtl +

∫ s

tl

eA(s−u)F (Xu) du

+

∫ s

tl

eA(s−u)B(Xu) d(Wu −WK
u ) +

∫ s

tl

(
eA(s−u) − I

)
B(Xu) dWK

u

+

∫ s

tl

(B(Xu)−B(Xtl)) dWK
u

)∥∥∥2

LHS(V0,H)

]
ds+ h1+min(4γ,2)

)
≤ C

m−1∑
l=0

(∫ tl+1

tl

E
[∥∥(eA(s−tl) − I

)
Xtl

∥∥2

H

]
ds+

∫ tl+1

tl

E

[∥∥∥ ∫ s

tl

eA(s−u)F (Xu) du
∥∥∥2

H

]
ds

+

∫ tl+1

tl

E

[∥∥∥ ∫ s

tl

eA(s−u)B(Xu) d(Wu −WK
u )
∥∥∥2

H

]
ds

+

∫ tl+1

tl

E

[∥∥∥ ∫ s

tl

(
eA(s−u) − I

)
B(Xu) dWK

u

∥∥∥2

H

]
ds

+

∫ tl+1

tl

E

[∥∥∥ ∫ s

tl

(B(Xu)−B(Xtl)) dWK
u

∥∥∥2

H

]
ds+ h1+min(4γ,2)

)
.

The proof of∫ tl+1

tl

E

[∥∥∥ ∫ s

tl

eA(s−u)B(Xu) d(Wu −WK
u )
∥∥∥2

H

]
ds ≤ CTh

(
sup

j∈J\JK
ηj

)2α
,

for all l ∈ {0, . . . ,M − 1}, M,K ∈ N, can be found in the next part on page 55.

With Theorem 2.3, (C1)–(C4), by Hölder’s inequality, and Itô’s isometry, we obtain for all
m ∈ {1, . . . ,M}, M,K ∈ N

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−s) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−s)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
≤

m−1∑
l=0

(∫ tl+1

tl

∥∥(−A)−γ
(
eA(s−tl) − I

)∥∥2

L(H)
E
[
‖(−A)γXtl‖

2
H

]
ds

+

∫ tl+1

tl

(s− tl)
(∫ s

tl

E
[
‖eA(s−u)F (Xu)‖2H

]
du
)

ds+ CTh
(

sup
j∈J\JK

ηj

)2α

+

∫ tl+1

tl

(∫ s

tl

∥∥(−A)−δ
(
eA(s−u) − I

)∥∥2

L(H)
E
[
‖(−A)δB(Xu)‖2LHS(V0,H)

]
du
)

ds

+

∫ tl+1

tl

(∫ s

tl

E
[
‖ (B(Xu)−B(Xtl)) ‖

2
LHS(V0,H)

]
du
)

ds+ h1+min(4γ,2)

)
≤

m−1∑
l=0

(∫ tl+1

tl

(s− tl)2γ E
[
‖(−A)γXtl‖

2
H

]
ds

+

∫ tl+1

tl

(s− tl)
(∫ s

tl

C E
[
‖F (Xu)‖2H

]
du
)

ds+ CTh
(

sup
j∈J\JK

ηj

)2α
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+

∫ tl+1

tl

(∫ s

tl

(s− u)2δ E
[
‖B(Xu)‖2LHS(V0,Hδ)

]
du
)

ds

+

∫ tl+1

tl

(∫ s

tl

E
[
‖ (B(Xu)−B(Xtl)) ‖

2
LHS(V0,H)

]
du
)

ds+ h1+min(4γ,2)

)
and

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−s) (B(Xs)−B(Xtl)) dWK
s

−
∫ tl+1

tl

eA(tm−s)B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
dWK

s

∥∥∥2

H

]
≤ C

m−1∑
l=0

(
h2γ+1 + h3 + CT h

(
sup

j∈J\JK
ηj

)2α
+ h2δ+2 +

∫ tl+1

tl

(∫ s

tl

(u− tl)min(2γ,1) du
)

ds

+ h1+min(4γ,2)

)
≤ C

m−1∑
l=0

(
h2γ+1 + h3 + h2δ+2 + CTh

(
sup

j∈J\JK
ηj

)2α
+ hmin(2γ,1)+2 + h1+min(4γ,2)

)
≤ CT

((
sup

j∈J\JK
ηj

)2α
+ h2γ

)
,

where we used 2 + min(2γ, 1) ≥ 1 + min(4γ, 2).

The second term in (3.29) is estimated for allm ∈ {1, . . . ,M},M,K ∈ N, using the independence
of the increments of the Q-Wiener process in time, the Itô isometry, Theorem 2.7, and (C1)–(C4)

E

[∥∥∥m−2∑
l=0

∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
B(Xs) dWK

s

∥∥∥2

H

]

=
m−2∑
l=0

E

[∥∥∥ ∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
B(Xs) dWK

s

∥∥∥2

H

]

≤
m−2∑
l=0

∫ tl+1

tl

∥∥(−A)−δ
(
eA(tm−s) − eA(m−tl)

)∥∥2

L(H)
E
[
‖(−A)δB(Xs)‖2LHS(V0,H)

]
ds

≤ C
m−2∑
l=0

∫ tl+1

tl

∥∥(−A)1−δeA(tm−s)
∥∥2

L(H)

∥∥(−A)−1
(
I − eA(s−tl)

)∥∥2

L(H)
ds

≤ Ch2
m−2∑
l=0

∫ tl+1

tl

(tm − s)2(δ−1) ds = Ch2
m−2∑
l=0

(
(tm − tl+1)2δ−1 − (tm − tl)2δ−1

)
= Ch2

(
(tm − tm−1)2δ−1 − (tm)2δ−1

)
≤ CTh2δ+1 ≤ CTh2γ .

Finally, we obtain by conditions (C1), (C3), Theorem 2.3, and Theorem 2.7 for allm ∈ {1, . . . ,M},
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M,K ∈ N

E

[∥∥∥ ∫ tm

tm−1

(
eA(tm−s) − eA(tm−tm−1)

)
B(Xs) dWK

s

∥∥∥2

H

]
≤ C

∫ tm

tm−1

‖eA(tm−s)‖2L(H)

∥∥(−A)−δ
(
I − eA(s−tm−1)

)∥∥2

L(H)
E
[
‖(−A)δB(Xs)‖2LHS(V0,H)

]
ds

≤ Ch2δ+1 ≤ Ch2γ .

Approximation of the Q-Wiener process
Next, we prove the error estimate resulting from the approximation of the Q-Wiener process and
employ

d(Ws −WK
s ) =

∑
j∈J\JK

√
ηj ẽj dβjs

for all s ∈ [0, T ], K ∈ N.
For all l ∈ {0, . . . ,M − 1}, M,K ∈ N, s ∈ [0, T ], it holds

E

[∥∥∥ ∫ s

tl

eA(s−u)B(Xu) d(Wu −WK
u )
∥∥∥2

H

] 1
2

= E

[∥∥∥ ∑
j∈J\JK

∫ s

tl

eA(s−u)B(Xu)
√
ηj dβjuẽj

∥∥∥2

H

] 1
2

=

( ∑
j∈J\JK

ηj

∫ s

tl

E
[∥∥eA(s−u)B(Xu)Q−αQαẽj

∥∥2

H

]
du

) 1
2

=

( ∑
j∈J\JK

η2α+1
j

∫ s

tl

E
[∥∥eA(s−u)B(Xu)Q−αẽj

∥∥2

H

]
du

) 1
2

≤
((

sup
j∈J\JK

ηj

)2α
∫ s

tl

E
[∑
j∈J

ηj
∥∥eA(s−u)B(Xu)Q−αẽj

∥∥2

H

]
du

) 1
2

=

((
sup

j∈J\JK
ηj

)2α
∫ s

tl

E
[∥∥eA(s−u)B(Xu)Q−α

∥∥2

LHS(V0,H)

]
du

) 1
2

.

By assumptions (C1), (C3), and Theorem 2.3, we get

E

[∥∥∥ ∫ s

tl

eA(s−u)B(Xu) d(Wu −WK
u )
∥∥∥2

H

] 1
2

≤
((

sup
j∈J\JK

ηj

)2α
∫ s

tl

‖(−A)ϑeA(s−u)‖2L(H)E
[∥∥(−A)−ϑB(Xu)Q−α

∥∥2

LHS(V0,H)

]
du

) 1
2

≤
(
C
(

sup
j∈J\JK

ηj

)2α
∫ s

tl

(s− u)−2ϑ du

) 1
2

=

(
C
(

sup
j∈J\JK

ηj

)2α (tl − s)−2ϑ+1

2ϑ− 1

) 1
2

all s ∈ [0, T ], l ∈ {0, . . . ,M − 1}, M,K ∈ N.
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Proof of (3.28)
Due to the expression for the iterated integral in (3.11), Hölder’s inequality, and Itô’s isometry,
it holds for all m ∈ {1, . . . ,M}, M,N,K ∈ N

E
[
‖X̄tm − Ȳtm‖2H

]
= E

[∥∥∥PN(m−1∑
l=0

∫ tl+1

tl

eA(tm−tl) (F (Xtl)− F (Yl)) ds

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl) (B(Xtl)−B(Yl)) dWK
s

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)
(
B′(Xtl)

(∫ s

tl

B(Xtl) dWK
r

)
−B′(Yl)

(∫ s

tl

B(Yl) dWK
r

))
dWK

s

)∥∥∥2

H

]

≤ 3

(
Mh

m−1∑
l=0

∫ tl+1

tl

E
[
‖eA(tm−tl) (F (Xtl)− F (Yl)) ‖2H

]
ds

+
m−1∑
l=0

∫ tl+1

tl

E
[
‖eA(tm−tl) (B(Xtl)−B(Yl)) ‖2LHS(V0,H)

]
ds

+
m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥B′(Xtl)
(∫ s

tl

B(Xtl) dWK
r

)
−B′(Yl)

(∫ s

tl

B(Yl) dWK
r

)∥∥∥2

LHS(V0,H)

]
ds

)

≤ CTh
m−1∑
l=0

E
[
‖F (Xtl)− F (Yl)‖2H

]
+ Ch

m−1∑
l=0

E
[
‖B(Xtl)−B(Yl)‖2LHS(V0,H)

]
+
m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥B′(Xtl)
( ∑
j∈JK

∫ s

tl

B(Xtl)ẽj
√
ηj dβjr

)
−B′(Yl)

( ∑
j∈JK

∫ s

tl

B(Yl)ẽj
√
ηj dβjr

)∥∥∥2

LHS(V0,H)

]
ds.

By assumptions (C1), (C2), (C3), and the properties of the independent Brownian motions
(βjt )t∈[0,T ], j ∈ JK , we obtain for all m ∈ {1, . . . ,M}, M,K ∈ N

E
[
‖X̄tm − Ȳtm‖2H

]
≤ CTh

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
+ Ch

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
+ C

m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥B′(Xtl)
( ∑
j∈JK

B(Xtl)ẽj
√
ηj(β

j
s − β

j
tl

)
)

−B′(Yl)
( ∑
j∈JK

B(Yl)ẽj
√
ηj(β

j
s − β

j
tl

)
)∥∥∥2

LHS(V0,H)

]
ds

and

E
[
‖X̄tm − Ȳtm‖2H

]
≤ CTh

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
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+ C

m−1∑
l=0

∫ tl+1

tl

E
[∥∥ ∑

j∈JK

√
ηj
(
B′(Xtl) (B(Xtl)ẽj)−B

′(Yl) (B(Yl)ẽj)
)
(βjs − β

j
tl

)
∥∥2

LHS(V0,H)

]
ds

≤ CTh
m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
+ C

m−1∑
l=0

∫ tl+1

tl

∑
j∈J

ηjE
[
‖B′(Xtl) (B(Xtl)ẽj)−B

′(Yl) (B(Yl)ẽj) ‖2LHS(V0,H)

]
E
[
(βjs − β

j
tl

)2
]

ds

≤ CTh
m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
+ C

m−1∑
l=0

∫ tl+1

tl

E
[
‖B′(Xtl) (B(Xtl))−B

′(Yl) (B(Yl)) ‖2
L
(2)
HS(V0,H)

]
(s− tl) ds

≤ CTh
m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
.

Approximation of the derivative
It remains to show that the approximation of the derivative does not distort the convergence
order. In the proof, we need the following lemma.

Lemma 3.1
Under assumptions (C1)–(C4), it holds for all p ∈ [2,∞), M,N,K ∈ N, and some constant
Cp,T,Q > 0, independent of M,N,K,

sup
m∈{0,...,M}

(
E
[
‖Ym‖pHδ

]) 1
p ≤ Cp,T,Q

(
1 +

(
E
[
‖ξ‖pHδ

]) 1
p
)
.

Proof of Lemma 3.1.
We prove this estimate iteratively. Therefore, assume that for fixed m ∈ N it holds

(
E
[
‖Yl‖pHδ

]) 1
p ≤ Cp,T,Q

(
1 +

(
E
[
‖ξ‖pHδ

]) 1
p
)

for all l ∈ {0, . . . ,m− 1}, p ∈ [2,∞).

By the triangle inequality, we get for all m ∈ {1, . . . ,M}, M,K ∈ N, and p ∈ [1,∞)

(
E
[
‖Ym‖pHδ

]) 2
p

≤ C
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E
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l=0

(
E
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]) 1
p

+

(
E
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s
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Hδ

]) 1
p

+

m−1∑
l=0

(
E

[∥∥∥eA(tm−tl) 1√
h

(
B
(
Yl +

√
h

2
PNB(Yl)∆W

K
l

)
−B(Yl)

)
∆WK

l

∥∥∥p
Hδ

]) 1
p
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+
m−1∑
l=0

(
E

[∥∥∥eA(tm−tl)
∑
j∈JK

B̄(Yl, h, j)
∥∥∥p
Hδ

]) 1
p

)2

.

By Hölder’s inequality and Theorem 2.6, we obtain for all p ∈ [2,∞) and m ∈ {1, . . . ,M},
M,K ∈ N

(
E
[
‖Ym‖pHδ

]) 2
p

≤ C
(
E
[
‖X0‖pHδ

]) 2
p + C

(m−1∑
l=0
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tl

E
[∥∥(−A)δeA(tm−tl)F (Yl)

∥∥p
H

]
ds

) 1
p

h
1− 1

p

)2

+ C

∫ tm

t0

(
E

[∥∥∥m−1∑
l=0

eA(tm−tl)B(Yl)1[tl,tl+1)(s)
∥∥∥p
LHS(V0,Hδ)

]) 2
p

ds

+ C

(m−1∑
l=0

(tm − tl)−δ
(

E

[∥∥∥ 1√
h

(
B
(
Yl +

√
h

2
PNB(Yl)∆W

K
l

)
−B(Yl)

)
∆WK

l

∥∥∥p
H

]) 1
p
)2

+ C

(m−1∑
l=0

∑
j∈JK

(
E
[∥∥(−A)δeA(tm−tl)B̄(Yl, h, j)

∥∥p
H

]) 1
p

)2

.

Now, we concentrate on

B̄(Yl, h, j) =
(
B
(
Yl −

h

2
PNB(Yl)

√
ηj ẽj

)
−B(Yl)

)√
ηj ẽj

and use the following Taylor expansions for all l ∈ {0, . . . ,M}, j ∈ JK , M,N,K ∈ N

B
(
Yl +

√
h

2
PNB(Yl)∆W

K
l

)
∆WK

l

= B(Yl)∆W
K
l +B′(ξ(Yl,∆W

K
l ))

(√h
2
PNB(Yl)∆W

K
l ,∆W

K
l

)
B
(
Yl −

h

2
PNB(Yl)

√
ηj ẽj

)√
ηj ẽj

= B(Yl)
√
ηj ẽj +B′(ξ(Yl, j))

(
− h

2
PNB(Yl)

√
ηj ẽj ,

√
ηj ẽj

)
. (3.30)

Precisely, we have

ξ(Yl,∆W
K
l ) = Yl + θ

√
h

2
PNB(Yl)∆W

K
l

and

ξ(Yl, j) = Yl − θ
h

2
PNB(Yl)

√
ηj ẽj

for some θ ∈ (0, 1) and all l ∈ {0, . . . ,M}, j ∈ JK , M,K ∈ N.

As ξ(Yl,∆WK
l ) ∈ HN , ξ(Yl, j) ∈ HN for all l ∈ {0, . . . ,M}, j ∈ JK , M,K,N ∈ N, it holds

ξ(Yl,∆W
K
l ), ξ(Yl, j) ∈ Hβ for arbitrary l ∈ {0, . . . ,M}, j ∈ JK , M,K,N ∈ N.
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Due to (C1)–(C3), Theorem 2.3, and Theorem 2.6, we get

(
E
[
‖Ym‖pHδ

]) 2
p

≤ C
(
E
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‖X0‖pHδ

]) 2
p + Ch
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(tm − tl)−δp ds
) 2
p (

E
[
‖F (Yl)‖pH

]) 2
p

+ Cp

m−1∑
l=0

∫ tl+1

tl

(
E

[∥∥∥m−1∑
l=0

eA(tm−tl)B(Yl)1[tl,tl+1)(s)
∥∥∥p
LHS(V0,Hδ)
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√
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K
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p
V
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p

+ CM
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2
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√
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]) 1
p
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(
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(
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p
(
1 +

(
E
[
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]) 2
p
)

+ C
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(
E
[
‖B(Yl)‖pLHS(V0,Hδ)

]) 2
p
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tl
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∥∥2
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(

E
[
‖B′(ξ(Yl,∆WK

l ))‖pL(H,L(V,H))‖B(Yl)∆W
K
l ‖

p
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l ‖
p
V

]) 2
p

+ CM
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l=0
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√
ηjh
(
E
[
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√
ηj ẽj‖pHδ

]) 1
p
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≤ C
(
E
[
‖X0‖pHδ

]) 2
p + h1−2δCp,T

m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Yl‖pHδ

]) 2
p
)

+ Cp

m−1∑
l=0

h (tm − tl)−2δ (1 +
(
E
[
‖Yl‖pHδ

]) 2
p
)

+ CpMh−2δ
m−1∑
l=0

(m− l)−2δ
(
E
[
(1 + ‖Yl‖pHδ)‖∆W

K
l ‖

2p
V

]) 2
p

+ Cp,Th
1−2δ

m−1∑
l=0

(m− l)−2δ

( ∑
j∈JK

√
ηj

(
E
[
(1 + ‖Yl‖pHδ)‖

√
ηj ẽj‖pV

]) 1
p

)2

.

for all m ∈ {1, . . . ,M}, M,K,N ∈ N, p ∈ [2,∞).

Similar as in [31], we obtain for δ ∈ (0, 1
2) and all m ∈ {1, . . . ,M}, M ∈ N

m−1∑
l=0

(m− l)−2δ =
m∑
l=1

1

l2δ
≤ 1 +

∫ M

1

1

r2δ
dr = 1 +

M1−2δ − 1

1− 2δ
≤ M1−2δ

1− 2δ
. (3.31)

Therefore, we get for all m ∈ {1, . . . ,M}, M ∈ N, p ∈ [2,∞)

(
E
[
‖Ym‖pHδ

]) 2
p ≤C

(
E
[
‖X0‖pHδ

]) 2
p + h1−2δCT,p,Q

m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Yl‖pHδ

]) 2
p
)
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≤C
(
E
[
‖X0‖pHδ

]) 2
p + CT,p,Q + h1−2δCT,p,Q

m−1∑
l=0

(m− l)−2δ
(
E
[
‖Yl‖pHδ

]) 2
p .

By the discrete Gronwall Lemma, we finally obtain for all m ∈ {1, . . . ,M}, M ∈ N, p ∈ [2,∞)

(
E
[
‖Ym‖pHδ

]) 2
p ≤

(
C
(
E
[
‖X0‖pHδ

]) 2
p + CT,p,Q

)
eCT,p,Qh

1−2δ
∑m−1
l=0 (m−l)−2δ

≤CT,p,Q
(

1 +
(
E
[
‖X0‖pHδ

]) 2
p

)
.

For the cDFMM scheme with

B̄(Yl, h, j) =
(
b
(
·, Yl −

h

2
PNb(·, Yl)

)
− b(·, Yl)

)
ηj ẽ

2
j

for all l ∈ {0, . . . ,M}, j ∈ JK , M,N,K ∈ N, the result follows analogously.

With this at hand, we can prove the last estimate in (3.27) for all m ∈ {1, . . . ,M}, M,N,K ∈ N

E
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]
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We are left with
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for all m ∈ {1, . . . ,M}, M,N,K ∈ N. Again, we consider

B̄(Yl, h, j) =
(
B
(
Yl −

h

2
PNB(Yl)

√
ηj ẽj

)
−B(Yl)

)√
ηj ẽj

for all l ∈ {0, . . . ,M}, j ∈ JK ,M,N,K ∈ N first and use Taylor approximations similar to (3.30).

For legibility, we define Sl :=
√
h

2 PNB(Yl)∆W
K
l , S̃lj := h

2PNB(Yl)
√
ηj ẽj for all l ∈ {0, . . . ,M},

j ∈ JK , M,N,K ∈ N, and insert these expressions. This implies
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for all m ∈ {1, . . . ,M}, M,N,K ∈ N.
Then, we obtain by assumptions (C1) and (C3) for all m ∈ {1, . . . ,M}, M,N,K ∈ N
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With (C1)–(C4) again and the fact that Q is trace class, we get for allm ∈ {1, . . . ,M},M,K ∈ N
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‖Ȳtm − Ym‖2H

]
≤
(
C

m−1∑
l=0

√
h

4

((
E
[
‖B(Yl)‖4L(V,Hδ)

‖∆WK
l ‖6V

]) 1
2

)2
+
(
C

m−1∑
l=0

∑
j∈JK

h2

4
η

3
2
j

(
E
[
‖B(Yl)‖4L(V,Hδ)

]) 1
2

)2

≤
(
C
m−1∑
l=0

√
h
(
1 + E

[
‖Yl‖4Hδ

]) 1
2
(
E
[
‖∆WK

l ‖6V
]) 1

2

)2
+
(
C
m−1∑
l=0

∑
j∈JK

h2η
3
2
j

(
1 + E

[
‖Yl‖4Hδ

]) 1
2

)2

≤
(
C
m−1∑
l=0

h2
(
C
(
1 + E

[
‖Yl‖4Hδ

])) 1
2

)2
+
(
C
m−1∑
l=0

(
sup
j∈JK

√
ηj

)
trQh2

(
1 + E

[
‖Yl‖4Hδ

]) 1
2

)2

≤
(
C

m−1∑
l=0

h2
)2

+
(
C
m−1∑
l=0

(
sup
j∈J

√
ηj

)
trQh2

)2
≤ CT,Qh2.

This proves the error estimate for the general case.

Now, let l ∈ {0, . . . ,M}, j ∈ JK , M,N,K ∈ N; for

B̄(Yl, h, j) =
(
b
(
·, Yl −

h

2
PNb(·, Yl)

)
− b(·, Yl)

)
ηj ẽ

2
j ,

we use
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(
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2
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and the estimate

E
[
‖Ȳtm − Ym‖2H

]
≤ CT,Qh2

follows for all m ∈ {0, . . . ,M}, M ∈ N, as above.

Proof of Theorem 3.2

Theorem (Convergence of EES)
Let assumptions (C1)–(C4) be fulfilled. Then, there exists a constant CT ∈ (0,∞), independent
of N , K, andM , such that for (Y EES

m )0≤m≤M , defined by the exponential Euler scheme in (3.13),
it holds(

E
[∥∥Xtm − Y EES

m

∥∥2

H

]) 1
2 ≤ CT

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min( 1

2
,γ,2(γ−β))

)
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. The parameter values are determined by (C1)–
(C4).
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Proof of Theorem 3.2.
We use the following notation throughout the proof

Xtm =eAtmX0 +
m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F (Xs) ds+
m−1∑
l=0

∫ tl+1

tl

eA(tm−s)B(Xs) dWs,

X̄tm =PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F (Xtl) ds+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Xtl) dWK
s

)
,

and

Ym = Y EES
m

= PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F (Y EES
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y EES
l ) dWK

s

)

for all m ∈ {1, . . . ,M} and M , N , K ∈ N.
In the following, we compute the error estimate in several parts according to

(
E
[
‖Xtm − Ym‖2H

]) 1
2 =

(
E
[
‖Xtm − PNXtm + PNXtm − X̄tm + X̄tm − Ym‖2H

]) 1
2 (3.32)

for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N.

Throughout the proof we use some generic constant C which may change in each step.
The first term accounts for the projection PN : H → HN , N ∈ N, and can be estimated
independently of the numerical scheme. We obtain this estimate as in the proof of Theorem 3.1
on page 47, see also [35],

(
E
[
‖Xtm − PNXtm‖2H

]) 1
2 ≤ C

(
inf

i∈I\IN
λi

)−γ
(3.33)

for all m ∈ {0, 1, . . . ,M} and all N,M ∈ N.
The remaining terms arise due to the approximation in time and the approximation of the Q-
Wiener process.

Similar as in the proof of Theorem 3.1 and [35], we show for allm ∈ {1, . . . ,M} andM,N,K ∈ N,

(
E
[
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(
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)
dWK

s

)
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M−min( 1

2
,γ,2(γ−β)) +

(
sup

j∈J\JK
ηj

)α)
(3.34)

and

E
[
‖X̄tm − Ym‖2H

]
≤ CT
M

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
separately.

The estimate for the first term in (3.34) can be obtained analogously as in the proof of the
derivative free Milstein scheme, see page 48 or [35],

(
E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xs)− F (Xtl)) ds
∥∥∥2

H

]) 1
2

≤ CTM−min(2(γ−β),γ) (3.35)

for all m ∈ {1, . . . ,M}, M ∈ N.

Next, we analyze the second term in (3.34) in several steps. This yields

E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

(
eA(tm−s)B(Xs)− eA(tm−tl)B(Xtl)

)
dWK

s

∥∥∥2

H

]

≤ CE

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (B(Xs)−B(Xtl)) dWK
s

∥∥∥2

H

]

+ CE

[∥∥∥m−2∑
l=0

∫ tl+1

tl

(
eA(tm−s) − eA(tm−tl)

)
B(Xtl) dWK

s

∥∥∥2

H

]
+ CE

[∥∥∥ ∫ tm

tm−1

(
eA(tm−s) − eA(tm−tm−1)

)
B(Xtm−1) dWK

s

∥∥∥2

H

]
≤ CT

(
M−min(1,2γ) +

(
sup

j∈J\JK
ηj

)2α)
for all m ∈ {1, . . . ,M}, M,K ∈ N.
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For the first part, we obtain by Theorem 2.7, (C1), (C3), and Jensen’s inequality

E

[∥∥∥m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (B(Xs)−B(Xtl)) dWK
s

∥∥∥2

H

]

=

m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−s) (B(Xs)−B(Xtl)) dWK
s

∥∥∥2

H

]

=
m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

eA(tm−s)
(∫ 1

0
B′(Xtl + r(Xs −Xtl))(Xs −Xtl) dr

)
dWK

s

∥∥∥2

H

]

≤
m−1∑
l=0

∫ tl+1

tl

E

[∥∥∥eA(tm−s)
∫ 1

0
B′(Xtl + r(Xs −Xtl))(Xs −Xtl) dr

∥∥∥2

LHS(V0,H)

]
ds

≤
m−1∑
l=0

∫ tl+1

tl

CE

[(∫ 1

0

∥∥B′(Xtl + r(Xs −Xtl))
∥∥
L(H,LHS(V0,H))

‖Xs −Xtl‖H dr
)2
]

ds

≤ C
m−1∑
l=0

∫ tl+1

tl

E
[
‖Xs −Xtl‖

2
H

]
ds ≤

m−1∑
l=0

∫ tl+1

tl

(s− tl)2 min(γ, 1
2

) ds

=

m−1∑
l=0

h2 min(γ, 1
2

)+1 ≤ CThmin(2γ,1)

for all m ∈ {1, . . . ,M}, M,K ∈ N.
The proof of the second and third part as well as the last term in (3.34) are the same as for the
cDFM, see the estimates on pages 54 to 55.

Finally, we estimate the last term in (3.32) by Hölder’s inequality and Itô’s isometry. We get

E
[
‖X̄tm − Ym‖2H

]
=E

[∥∥∥PN(m−1∑
l=0

∫ tl+1

tl

eA(tm−s) (F (Xtl)− F (Yl)) ds

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl) (B(Xtl)−B(Yl)) dWK
s

)∥∥∥2

H

]

≤2Mh
m−1∑
l=0

∫ tl+1

tl

E
[∥∥eA(tm−s) (F (Xtl)− F (Yl))

∥∥2

H

]
ds

+ 2

m−1∑
l=0

∫ tl+1

tl

E
[∥∥eA(tm−tl) (B(Xtl)−B(Yl))

∥∥2

LHS(V0,H)

]
ds

≤CTh
m−1∑
l=0

E
[
‖F (Xtl)− F (Yl)‖2H

]
+ Ch

m−1∑
l=0

E
[
‖B(Xtl)−B(Yl)‖2LHS(V0,H)

]
≤CTh

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
(3.36)

for all m ∈ {1, . . . ,M}, M,N,K ∈ N.
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Combining (3.33), (3.34), and (3.36), we get

E
[
‖Xtm − Ym‖2H

]
≤CT

((
inf

i∈I\IN
λi

)−2γ
+
(

sup
j∈I\IK

ηj

)2α
+M−2 min( 1

2
,γ,2(γ−β))

)
+
CT
M

m−1∑
l=0

E
[
‖Xtl − Yl‖

2
H

]
≤CT

((
inf

i∈I\IN
λi

)−2γ
+
(

sup
j∈I\IK

ηj

)2α
+M−2 min( 1

2
,γ,2(γ−β))

)
for all m ∈ {0, . . . ,M}, M,N,K ∈ N by Gronwall’s Lemma.

3.6 Numerical Analysis

In this section, we give some examples to illustrate and confirm the theoretical results derived
in the previous sections. We compare the commutative derivative-free Milstein scheme to the
linear implicit and exponential Euler scheme as well as the Milstein scheme in the following and
illustrate its superiority in a general setting. We begin with an example that allows for an exact
solution and show that all the schemes approximate this process with the expected orders of
convergence. Then, we present an example where the operator B is pointwise multiplicative in
the Q-Wiener process. Furthermore, we investigate various equations in a more general setting
to compare the effective order of convergence of the cDFM with the benchmark schemes.

Explicit Solution
We begin with the equation introduced in Example 3.1. That is, we solve

dXt = ∆Xt dt+Xt dβt, t ∈ (0, 1],

X0(x) =
√

2
∑
n∈N

1

n2
sin(nπx), x ∈ (0, 1),

Xt(0) = Xt(1) = 0, t ∈ (0, 1],

where (βt)t∈[0,T ] is a scalar Brownian motion and H = L2((0, 1),R), V = R.

We need to identify the parameters introduced in (C1)–(C4) as these determine the order of
convergence. Since A = ∆, it holds ei(x) =

√
2 sin(iπx), x ∈ (0, 1), and λi = i2π2 for all i ∈ N.

Thus, we can read off ρA as ρA = 2. Moreover, we get δ ∈ (0, 1
2) by [34] as b(x, y(x)) = y(x)

for all x ∈ [0, 1], y ∈ H. We select the maximal value for δ and obtain by Theorem 3.1 that
qcDFM = qMIL = γ ∈ [1

2 , 1); from Theorem 3.2, we get qEES = 1
2 for the exponential Euler

scheme. We choose γ = 1− ε for some ε > 0 in the following. The parameters ρQ and α are not
relevant in this setting as there is no error due to an approximation of the Q-Wiener process.
Here, the diffusion operator B is pointwise multiplicative in the stochastic process. Therefore,
the multiplicative version of the cDFM is applicable and we expect the cDFMM and the Mil-
stein scheme to converge with the same order error(cDFMM) = error(MIL) = O

(
c̄−

2
3

+ε
)
, see
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equation (3.26). For this special case, the Runge-Kutta type scheme in [71] is applicable and
is simulated here as well. The effective order of convergence is expected to be the same as for
the other two schemes. Moreover, we choose N = 2, 22, . . . , 26 and M = N2. For the linear
implicit and the exponential Euler scheme, we expect a lower effective order of convergence of
error(LIE) = error(EES) = O

(
c̄−

2
5

+ε
)
and set M = N4.

We simulate 300 paths to determine the mean-square error. In the following Figure 3.1, the
dashed and dotted lines represent the expected effective orders of convergence - these are attained
for all the schemes.
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Figure 3.1: Error for N = 2, 4, 8, 16, 32, 64 and 300 paths for multiplicative SPDE with exact
solution in log-log scale.

For the equations considered below, no explicit solutions exist to the best of our knowledge.
Therefore, we compare the numerical schemes with an approximation computed with small step
size h = T

M , M ∈ N, and large N,K in the following.

Pointwise Multiplicative Operator
We consider an example that has been analyzed in [35] and [71]. Again, this equation involves
a diffusion operator that is pointwise multiplicative. In the following analysis, we show that the
cDFMM obtains the same order of convergence as the Milstein scheme and the derivative-free
version in [71].
For T = 1, we investigate the equation

dXt =

(
1

100
∆Xt + 1−Xt

)
dt+

1−Xt

1 +X2
t

dWt, t ∈ (0, T ],

on H = V = L2((0, 1),R) with X0(x) = 0 and Xt(0) = Xt(1) = 0 for all t ∈ (0, 1], x ∈ (0, 1).
As A is the Laplacian, we get λi = 1

100π
2i2, ei(x) =

√
2 sin(iπx) for all x ∈ (0, 1), i ∈ N.

Furthermore, we set ηj = j−2 and ẽj = ej for all j ∈ N. We do not analyze the equation at this
point and refer the reader to [35] for more details. The analysis in [35] yields β = 1

5 , α ∈ (0, 3
4),
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γ ∈ (1
2 ,

3
4), and an expected error of

(
E

[ ∫ 1

0

∣∣XT (x)− Y N,M,K
M (x)

∣∣2 dx

]) 1
2

≤ C ·N r− 3
2 ,

for r ∈ (0,∞). Here, M = N3, K = N are chosen for the linear implicit and exponential
Euler and M = N2, K = N for the other schemes according to Section 3.4. As a substitute for
the exact solution, we use an approximation computed with an implicit version of the Milstein
scheme, introduced in [12], with NX = KX = 28 and MX = 221.
As this equation is pointwise multiplicative in the Q-Wiener process, the cDFMM is expected to
converge with the same order as the Milstein scheme and the Runge-Kutta type scheme by [71].
In this setting, both schemes are very efficient and the cDFMM does not attain an improved
effective order of convergence. All higher order schemes are expected to outperform the linear
implicit and exponential Euler schemes, however. This is confirmed in Figure 3.2.
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Figure 3.2: Error of Milstein, Runge-Kutta type (RK), multiplicative commutative derivative-free
Milstein scheme, linear implicit Euler and exponential Euler scheme for N = 2, 4, 8, 16, 32, 64, 128
and 200 paths in log-log scale.

Numerical Analysis of Effective Order of Convergence
Let us now concentrate on equations that are not pointwise multiplicative in the Q-Wiener
process, that is, we do not assume B(y(x))v = b(x, y(x)) · v(x), b : (0, 1)d × R → R, y ∈ Hβ ,
v ∈ V0, x ∈ (0, 1)d, d = 1, 2, 3. If, for example, the diffusion operator B is an integral or
derivative operator this condition is not fulfilled. For these SPDEs, the commutative derivative-
free Milstein scheme is superior in terms of the effective order of convergence. Here, we focus on
integral operators B to illustrate this advantage.
First, we introduce the notation and define the operators that we are concerned about in this
section. Let µij : Hβ → R, φkij : Hβ → R for all i, k ∈ I, j ∈ J and define

B(y)u =
∑
i∈I

∑
j∈J

µij(y)〈u, ẽj〉V ei,
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B′(y) (B(y)v, u) =
∑
i∈I

∑
j∈J

Dµij(y)(B(y)v)〈u, ẽj〉V ei

=
∑
i∈I

∑
j∈J

∑
k∈I

φkij(y)〈B(y)v, ek〉H〈u, ẽj〉V ei

=
∑
i,k∈I

∑
j,r∈J

φkij(y)µkr(y)〈v, ẽr〉V 〈u, ẽj〉V ei

for y ∈ Hβ , u, v ∈ V0, where Dµij : Hβ → L(H,R) denotes the Fréchet derivative of µij for
all i ∈ J , j ∈ J . Note, the functionals µij , φkij , i, k ∈ I, j ∈ J have to be chosen such that
B(y)u ∈ H and B′(y) (B(y)v, u) ∈ H for all y ∈ Hβ , u, v ∈ V0.

Before we consider some sample SPDEs, we rewrite the numerical schemes such that they fit this
notation. Let us fix some N,M,K ∈ N throughout this section and let m ∈ {0, . . . ,M − 1}. For
the Milstein scheme, we get

Y N,M,K
m+1 =PN

(
eAh
(
Y N,M,K
m + hF (Y N,M,K

m ) +
∑
i∈I

∑
j∈JK

µij(Y
N,M,K
m )

√
ηj∆β

j
mei

+
1

2

∑
i∈I

∑
j∈JK

∑
k∈I

φkij(Y
N,M,K
m )

∑
r∈JK

µkr(Y
N,M,K
m )

√
ηr∆β

r
m
√
ηj∆β

j
mei

− h

2

∑
i∈I

∑
j∈JK

∑
k∈I

ηjφ
k
ij(Y

N,M,K
m )µkj(Y

N,M,K
m )ei

))

and for the commutative derivative-free Milstein scheme, we obtain

Y N,M,K
m+1

= PN

(
eAh
(
Y N,M,K
m + hF (Y N,M,K

m ) +
∑
i∈I

∑
j∈J

µij(Y
N,M,K
m )〈∆WK

m , ẽj〉V ei

+
1√
h

∑
i∈I

∑
j∈J

(
µij

(
Y N,M,K
m +

√
h

2
PN

(∑
k∈I

∑
l∈J

µkl(Y
N,M,K
m )〈∆WK

m , ẽl〉V ek
))

− µij(Y N,M,K
m )

)
〈∆WK

m , ẽj〉V ei

+
∑
i∈I

∑
j∈JK

(
µij

(
Y N,M,K
m − h

2
PN

(√
ηj
∑
k∈I

µkj(Y
N,M,K
m )ek

))
− µij(Y N,M,K

m )
)√

ηjei

))

= PN

(
eAh
(
Y N,M,K
m + hF (Y N,M,K

m ) +
∑
i∈I

∑
j∈JK

µij(Y
N,M,K
m )

√
ηj∆β

j
mei

+
1√
h

∑
i∈I

∑
j∈JK

(
µij

(
Y N,M,K
m +

√
h

2
PN

(∑
k∈I

∑
l∈JK

µkl(Y
N,M,K
m )

√
ηl∆β

l
mek

))
− µij(Y N,M,K

m )
)√

ηj∆β
j
mei

+
∑
i∈I

∑
j∈JK

(
µij

(
Y N,M,K
m − h

2
PN

(√
ηj
∑
k∈I

µkj(Y
N,M,K
m )ek

))
− µij(Y N,M,K

m )
)√

ηjei

))
.
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Finally, we get for the linear implicit Euler scheme

Y LIE
m+1 =PN

((
I − hA

)−1(
Y LIE
m + hF (Y LIE

m ) +
∑
i∈I

∑
j∈JK

µij(Y
LIE
m )

√
ηj∆β

j
mei

))

and the exponential Euler scheme reads

Y EES
m+1 = PN

(
eAhY EES

m +A−1
(
eAh − I

)
F (Y EES

m ) + eAh
∑
i∈I

∑
j∈JK

µij(Y
EES
m )

√
ηj∆β

j
mei

)
.

The Runge-Kutta type scheme by [71] is not applicable in this setting.

We fix the framework for the sample equations and choose I = J = N. Let T = 1 and
H = V = L2((0, 1),R). Assume A = ∆

100 with λi = 1
100π

2i2, ei(x) =
√

2 sin(iπx) for all
x ∈ (0, 1), i ∈ N, and Dirichlet boundary conditions Xt(0) = Xt(1) = 0 for all t ∈ (0, T ]. We
consider {ei, i ∈ N} as orthonormal basis of H. Moreover, we set F (y) = 1 − y for y ∈ Hβ

and X0(x) = 0 for all x ∈ (0, 1). Let Q be a trace class operator and let (Wt)t∈[0,T ] denote a
Q-Wiener process in V . The eigenvalues of Q are denoted by ηj and the corresponding eigen-
functions by ẽj for all j ∈ N; we choose ηj = j−3 and ẽj = ej for all j ∈ N. We approximate the
mild solution to various SPDEs in the following and, if not stated differently, assume this setting.

It is easily verified that conditions (C1), (C2), and (C4) hold in this context, see also [35].
We have to confirm that assumptions (C3) and (C5) are fulfilled. Therefore, we transfer these
conditions to our framework and derive their dependence on the functionals µij(y) and φkij(y)

for i, k ∈ I, j ∈ J , y ∈ Hβ .
We start with (C3) and rewrite ‖B(y)‖L(V,Hδ) for y ∈ Hδ. We assume that µij , i ∈ I, j ∈ J and
δ ∈ (0, 1

2) are chosen such that B(Hδ) ⊂ L(V,Hδ). For y ∈ Hδ, we obtain

‖B(y)‖L(V,Hδ) = sup
v∈V
‖v‖V =1

‖B(y)v‖Hδ = sup
v∈V
‖v‖V =1

∥∥∥∑
i∈I

∑
j∈J

µij(y)〈v, ẽj〉V ei
∥∥∥
Hδ

= sup
v∈V
‖v‖V =1

∥∥∥(−A)δ
∑
i∈I

∑
j∈J

µij(y)〈v, ẽj〉V ei
∥∥∥
H

= sup
v∈V
‖v‖V =1

∥∥∥∑
k∈I

λδk〈
∑
i∈I

∑
j∈J

µij(y)〈v, ẽj〉V ei, ek〉Hek
∥∥∥
H

= sup
v∈V
‖v‖V =1

∥∥∥∑
k∈I

λδk
∑
j∈J

µkj(y)〈v, ẽj〉V ek
∥∥∥
H

≤ sup
v∈V
‖v‖V =1

(∑
k∈I

∑
j∈J

λδk|µkj(y)||〈v, ẽj〉V |
)
≤
∑
k∈I

∑
j∈J

λδk|µkj(y)|. (3.37)

Condition (C3) requires ‖B(y)‖L(V,Hδ) ≤ C(1+‖y‖Hδ). This is analyzed for the specific examples
below.
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Moreover, we rewrite

‖B′(z)B(z)−B′(w)B(w)‖2
L
(2)
HS(V0,H)

=
∑
k,l∈J

∥∥√ηk√ηl (B′(z)(B(z)ẽk, ẽl)−B′(w)(B(w)ẽk, ẽl)
)∥∥2

H

=
∑
k,l∈J

ηkηl

∥∥∥ ∑
i,r∈I

φril(z)〈
∑
j1∈I

∑
j2∈J

µj1j2(z)〈ẽk, ẽj2〉V ej1 , er〉Hei

−
∑
i,r∈I

φril(w)〈
∑
j1∈I

∑
j2∈J

µj1j2(w)〈ẽk, ẽj2〉V ej1 , er〉Hei
∥∥∥2

H

=
∑
k,l∈J

ηkηl
∑

i,r1,r2∈I

(
φr1il (z)µr1k(z)− φ

r1
il (w)µr1k(w)

) (
φr2il (z)µr2k(z)− φ

r2
il (w)µr2k(w)

)
for w, z ∈ Hγ .

Next, we examine the conditions on the derivatives of B. We denote the Fréchet derivative of
φkij in direction of er, i, k, r ∈ I, j ∈ J as φ̂rijk and obtain for all y ∈ Hβ , z, w ∈ H

‖B′(y)‖L(H,L(V,H)) = sup
w∈H
‖w‖H=1

‖B′(y)w‖L(V,H) = sup
w∈H,v∈V

‖w‖H=1,‖v‖V =1

‖B′(y)(w, v)‖H

= sup
w∈H,v∈V

‖w‖H=1,‖v‖V =1

∥∥∥ ∑
i,k∈I

∑
j∈J

φkij(y)〈w, ek〉H〈v, ẽj〉V ei
∥∥∥
H

≤ sup
w∈H,v∈V

‖w‖H=1,‖v‖V =1

( ∑
i,k∈I

∑
j∈J
|φkij(y)||〈w, ek〉H ||〈v, ẽj〉V |

)
≤
∑
i,k∈I

∑
j∈J
|φkij(y)| (3.38)

and for the second derivative, we get

‖B′′(y)‖L(2)(H,L(V,H)) = sup
z∈H
‖z‖H=1

‖B′′(y)z‖L(H,L(V,H)) = sup
z,w∈H

‖z‖H=‖w‖H=1

‖B′′(y)(z, w)‖L(V,H)

= sup
z,w∈H,v∈V

‖z‖H=‖w‖H=‖v‖V =1

∥∥∥ ∑
i,r,l∈I

∑
j∈J

φ̂lijr(y)〈z, el〉H〈w, er〉H〈v, ẽj〉V ei
∥∥∥
H

≤ sup
z,w∈H,v∈V

‖z‖H=‖w‖H=‖v‖V =1

( ∑
i,r,l∈I

∑
j∈J
|φ̂lijr(y)||〈z, el〉H ||〈w, er〉H ||〈v, ẽj〉V |

)
≤
∑
i,r,l∈I

∑
j∈J
|φ̂lijr(y)|. (3.39)

The last condition in (C3) reads

‖(−A)−ϑB(z)Q−α‖LHS(V0,H) =
(∑
k∈J
‖(−A)−ϑB(z)Q−α+ 1

2 ẽk‖2H
) 1

2

=
(∑
k∈J

η1−2α
k

∥∥∥∑
i∈I

λ−ϑi 〈B(z)ẽk, ei〉Hei
∥∥∥2

H

) 1
2
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=
(∑
k∈J

η1−2α
k

∥∥∥∑
i∈I

λ−ϑi µik(z)ei

∥∥∥2

H

) 1
2

=
(∑
k∈J

η1−2α
k

∑
i∈I

λ−2ϑ
i µ2

ik(z)
) 1

2 (3.40)

for z ∈ Hγ .

We need assumption (C5) to rewrite the iterated stochastic integral as in equation (3.11). There-
fore, condition (C5) reads ∑

k∈I
φkim(y)µkn(y) =

∑
k∈I

φkin(y)µkm(y) (3.41)

for all y ∈ Hβ , i ∈ I, m,n ∈ JK , K ∈ N in this framework.
Now, we analyze some specific examples and investigate the effective order of convergence nu-
merically. We prove (C3) and (C5) based on the preparatory work for each equation.

Example 1 - Linear Equation

Let µ : Hβ → R be given by µij(y) = 〈y,ei〉H
i4+j4

; we obtain φkij(y) =

{
0, k 6= i

1
i4+j4

, k = i
for all i, k ∈ I,

j ∈ J , y ∈ Hβ .

Before we investigate the results of the numerical simulations, we show step by step that (C3) is
fulfilled. By (3.37), we get for y ∈ Hβ

‖B(y)‖L(V,Hδ) ≤
∑
k∈I

∑
j∈J

λδk|µkj(y)| =
∑
k∈I

∑
j∈J

( 1

100
π2k2

)δ |〈y, ek〉H |
k4 + j4

≤ C
∑
k∈I

∑
j∈J

1

k2−2δ

1

j2
‖(−A)−δ‖L(H)‖y‖Hδ .

We obtain ‖B(y)‖L(V,Hδ) ≤ C(1 + ‖y‖Hδ) for all y ∈ Hδ and δ ∈ (0, 1
2) due to Theorem 2.3.

For

‖B′(z)B(z)−B′(w)B(w)‖2
L
(2)
HS(V0,H)

=
∑
k,l∈J

ηkηl
∑

i,r1,r2∈I

(
φr1il (z)µr1k(z)− φ

r1
il (w)µr1k(w)

) (
φr2il (z)µr2k(z)− φ

r2
il (w)µr2k(w)

)
we compute

‖B′(z)B(z)−B′(w)B(w)‖2
L
(2)
HS(V0,H)

=
∑
k,l∈J

1

k3

1

l3

∑
i,r1∈I

1

(i4 + l4)2
1i=r1

(〈z, er1〉H
r4

1 + k4
− 〈w, er1〉H

r4
1 + k4

)2

=
∑
k,l∈J

1

k3

1

l3

∑
i∈I

1

(i4 + l4)2

(〈z, ei〉H
i4 + k4

− 〈w, ei〉H
i4 + k4

)2
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=
∑
k,l∈J

1

k3

1

l3

∑
i∈I

1

(i4 + l4)2

(〈z − w, ei〉H
i4 + k4

)2

≤ C
∑
k,l∈J

1

k7

1

l7

∑
i∈I

1

i8
‖z − w‖2H

for v, w ∈ Hγ .
Next, we consider the Fréchet derivatives of B. It holds,

‖B′(y)‖L(H,L(V,H)) ≤
∑
i,k∈I

∑
j∈J

1

i4 + j4
1k=i ≤

∑
i∈I

∑
j∈J

1

i2
1

j2
,

that is,

‖B′(y)‖L(H,L(V,H)) <∞

for all y ∈ Hβ .
As φ̂rijk(y) = 0 for all i, k, r ∈ I, j ∈ J , and y ∈ Hβ , it follows

sup
y∈Hβ

‖B′′(y)‖L(2)(H,L(V,H)) <∞.

Finally, we determine α and ϑ such that

‖(−A)−ϑB(z)Q−α‖LHS(V0,H) ≤ C(1 + ‖z‖Hγ )

is fulfilled for z ∈ Hγ

‖(−A)−ϑB(z)Q−α‖LHS(V0,H) =
(∑
k∈J

η1−2α
k

∑
i∈I

λ−2ϑ
i µ2

ik(z)
) 1

2

=
(∑
k∈J

1

k3(1−2α)

∑
i∈I

λ−2ϑ
i

〈z, ei〉2H
(i4 + k4)2

) 1
2

≤ C
(∑
k∈J

1

k3(1−2α)+4

∑
i∈I

1

i4+4ϑ

) 1
2 ‖z‖Hγ .

We find

‖(−A)−ϑB(z)Q−α‖LHS(V0,H) ≤ C(1 + ‖z‖Hγ )

for α ∈ (0, 1), ϑ ∈ (0, 1
2), and all z ∈ Hγ .

The parameters in assumption (C3) are therefore given by: δ, ϑ ∈ (0, 1
2), α ∈ (0, 1). We choose

the maximal value for δ and β = 0, which implies γ ∈ [1
2 , 1) and qcDFM = γ. Then, we select

qcDFM = γ = α = 1− ε for some arbitrary ε > 0.
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It remains to verify (C5). We get

∑
k∈I

φkim(y)µkn(y) =
∑
k∈I

1

i4 +m4
1k=i

〈y, ek〉H
k4 + n4

=
1

i4 +m4

〈y, ei〉H
i4 + n4

=
∑
k∈I

1

i4 + n4
1k=i

〈y, ek〉H
k4 +m4

=
∑
k∈I

φkin(y)µkm(y)

for all i ∈ I, n,m ∈ JK , K ∈ N, y ∈ Hβ .

The remaining parameters in the error estimate are ρQ = 3 and ρA = 2; this yields K = N
2
3

and M = N2 for the cDFM and the Milstein scheme according to (3.18). In the exponential
and linear implicit Euler scheme, we need to take M = N4, however. Then we compute the
effective order of convergence as error(MIL(N,K,M)) = O

(
c̄−

3
7

+ε
)
and error(LIE(N,K,M)) =

error(EES(N,K,M)) = O
(
c̄−

6
17

+ε
)
, whereas for the commutative derivative-free Milstein scheme,

we obtain error(cDFM(N,K,M)) = O
(
c̄−

6
11

+ε
)
for some ε > 0.

The following logarithmic plot of the error for N = 2, 22, . . . , 25 and 700 paths confirms the theo-
retical results in Section 3.4. In order to compute the error, we compare the simulation results to
an approximation obtained with the linear implicit Euler scheme with NX = 26, KX = 24, and
MX = 220 as no explicit solution is available. As suggested by the analysis in Section 3.4, we ob-
serve a higher effective order of convergence for the cDFM than for the Milstein or Euler schemes.

Milstein cDFM
N M CC Error Std CC Error Std
2 4 24+

2
3 3.0 · 10−2 1.5 · 10−3 3 · 23+ 2

3 3.0 · 10−2 1.5 · 10−3

4 24 28+
4
3 2.5 · 10−2 3.0 · 10−4 3 · 26+ 4

3 2.5 · 10−2 3.0 · 10−4

8 26 214 1.7 · 10−2 6.0 · 10−5 3 · 210 1.7 · 10−2 6.0 · 10−5

16 28 216+
8
3 6.3 · 10−3 1.1 · 10−5 3 · 212+ 8

3 6.3 · 10−3 1.1 · 10−5

32 210 220+
10
3 1.6 · 10−3 2.0 · 10−6 3·215+ 10

3 1.6 · 10−3 2.0 · 10−6

Linear Implicit Euler Exponential Euler
N M CC Error Std CC Error Std
2 24 25+

2
3 2.2 · 10−2 4.0 · 10−3 25+

2
3 2.3 · 10−2 4.0 · 10−3

4 28 210+
4
3 2.7 · 10−2 6.5 · 10−4 210+

4
3 2.7 · 10−2 6.5 · 10−4

8 212 217 1.7 · 10−2 1.2 · 10−4 217 1.7 · 10−2 1.1 · 10−4

16 216 220+
8
3 6.1 · 10−3 2.3 · 10−5 220+

8
3 6.1 · 10−3 2.3 · 10−5

32 220 225+
10
3 1.5 · 10−3 3.9 · 10−6 225+

10
3 1.5 · 10−3 3.9 · 10−6

Table 3.3: Error and standard deviation for 700 paths for Example 1, computed with batches
of size 50 ([38, p.312]). CC denotes the computational cost needed to evaluate the term that
dominates the computational effort according to Table 3.1 for all time steps M .
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Figure 3.3: Error against computational cost for Example 1 for 700 paths and N = 2, 4, 8, 16, 32
in log-log scale.

Example 2 - Differing Bases
In contrast to the standard setting, we choose ẽj =

√
2 cos(jπx), j ∈ J , x ∈ (0, 1), here.

This example shows that we can choose different basis functions for H and V . Let µij(y) =
1
j2
∑

p∈I
〈y,ep〉H
i3+p4

for all i ∈ I, j ∈ J , y ∈ Hβ . This yields φkij(y) = 1
j2

1
i3+k4

for all i, k ∈ I, j ∈ J ,
and y ∈ Hβ .

As in the previous example, we need to check that (C3) and (C5) are fulfilled. We do not detail
these computations here as they can be conducted analogously to the above. We simply state
the ranges for the parameters, which are δ ∈ (0, 1

4), ϑ ∈ (0, 1
2), α ∈ (0, 1). We select the maximal

value for δ. For β = 0, this implies γ ∈ [1
4 ,

3
4) and, for the cDFM, we get qcDFM = γ. Then, the

optimal parameter choice is qcDFM = γ = 3
4 − ε and α = 1− ε for some ε > 0.

We verify the commutativity condition, however,

∑
k∈I

φkim(y)µkn(y) =
∑
k∈I

1

m2

1

i3 + k4

1

n2

∑
p∈I

〈y, ep〉H
k3 + p4

=
∑
k∈I

φkin(y)µkm(y)

for all i ∈ I, n,m ∈ JK , y ∈ Hβ , K ∈ N.
For this parameter setting, we derive the following relation between N,M,K from Section 3.4:
K =

√
N , M = N2 for the Milstein and commutative derivative-free Milstein scheme and

K =
√
N , M = N3 for the linear implicit and the exponential Euler. The exact solution is

replaced by an approximation obtained with the linear implicit Euler scheme for NX = 27,
KX =

√
NX , and MX = 218 as no explicit solution is available.

First, we compute the effective order of convergence of the cDFM as error(cDFM(N,K,M)) =

O
(
c̄−

3
7

+ε
)
. This rate is higher than for the other numerical schemes, which all achieve the same

rate error(MIL(N,K,M)) = error(LIE(N,K,M)) = error(EES(N,K,M)) = O
(
c̄−

1
3

+ε
)
. Again,

the expected difference in the effective order of convergence is confirmed by the following table
and plot.
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Milstein cDFM
N M CC Error Std CC Error Std
2 4 24+

1
2 3.2 · 10−2 3.0 · 10−3 3 · 23+ 1

2 3.2 · 10−2 3.0 · 10−3

4 24 29 2.5 · 10−2 5.0 · 10−4 3 · 27 2.5 · 10−2 5.0 · 10−4

8 26 212+
3
2 1.7 · 10−2 6.2 · 10−5 3 · 29+ 3

2 1.7 · 10−2 6.2 · 10−5

16 28 218 6.6 · 10−3 2.0 · 10−5 3 · 214 6.6 · 10−3 2.0 · 10−5

32 210 220+
5
2 2.0 · 10−3 7.0 · 10−6 3 · 215+ 5

2 2.0 · 10−3 7.0 · 10−6

64 212 227 4.6 · 10−4 5.4 · 10−6 3 · 221 4.6 · 10−4 5.4 · 10−6

Linear Implicit Euler Exponential Euler
N M CC Error Std CC Error Std
2 23 24+

1
2 2.4 · 10−2 4.6 · 10−3 24+

1
2 2.4 · 10−2 4.7 · 10−3

4 26 29 2.7 · 10−2 6.2 · 10−4 29 2.7 · 10−2 6.7 · 10−4

8 29 212+
3
2 1.7 · 10−2 1.6 · 10−4 212+

3
2 1.7 · 10−2 1.8 · 10−4

16 212 218 6.5 · 10−3 5.3 · 10−5 218 6.7 · 10−3 5.9 · 10−5

32 215 220+
5
2 1.9 · 10−3 7.9 · 10−6 220+

5
2 2.0 · 10−3 9.6 · 10−6

64 218 227 4.3 · 10−4 4.5 · 10−6 227 4.8 · 10−4 5.8 · 10−6

Table 3.4: Error and standard deviation for Example 2 obtained from 500 paths. CC denotes
the computational cost needed to evaluate the term that dominates the computational effort
according to Table 3.1 for all time steps M .
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Figure 3.4: Error against computational cost for Example 2 for 500 paths and N =
2, 4, 8, 16, 32, 64 in log-log scale.

Example 3 - Nonlinear Equation
Equations that are nonlinear can also be treated with the approximation schemes presented
above; we consider functionals µij : Hβ → R, i ∈ I, j ∈ J which are nonlinear in Hβ , here.
Let this functional be given as

µij(y) =
∑
p∈I

( 1

i
3
2 j2

1

i+ j + p2
1(j−1)2+1≤i,p≤j2
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+
1

j2

j−2∑
r=0

1

i
3
2

1

(r + 1)

1

i+ (r + 1) + p2
1r2+1≤i,p≤(r+1)2

)
e−〈y,ep〉

2
H ,

for φkij(y), we obtain

φkij(y) =
( 1

i
3
2 j2

1

i+ j + k2
1(j−1)2+1≤i,k≤j2 +

1

j2

j−2∑
r=0

1

i
3
2

1

(r + 1)

1

i+ (r + 1) + k2
1r2+1≤i,k≤(r+1)2

)
· e−〈y,ek〉2H (−2〈y, ek〉H)

for all i, k ∈ I, j ∈ J , and y ∈ Hβ . Here, we return to ẽj = ej for all j ∈ J .
We only elaborate on assumption (C5) here, as this condition is not verified at first glance. It
holds∑
k∈I

φkim(y)µkn(y)

=
∑
k∈I

( 1

i
3
2m2

1

i+m+ k2
1(m−1)2+1≤i,k≤m2

+
1

m2

m−2∑
r=0

1

i
3
2 (r + 1)

1

i+ (r + 1) + k2
1r2+1≤i,k≤(r+1)2

)
e−〈y,ek〉

2
H (−2〈y, ek〉H)

·
(∑
p∈I

1

k
3
2n2

1

k + n+ p2
1(n−1)2+1≤k,p≤n2

+
∑
p∈I

1

n2

n−2∑
r=0

1

k
3
2 (r + 1)

1

k + (r + 1) + p2
1r2+1≤k,p≤(r+1)21k=p

)
e−〈y,ep〉

2
H

=

min(m2,n2)∑
k=max((m−1)2,(n−1)2)+1

n2∑
p=(n−1)2+1

1

i
3
2m2

1

i+m+ k2

1

k
3
2n2

1

k + n+ p2
1(m−1)2+1≤i≤m2

· e−〈y,ek〉2H−〈y,ep〉2H (−2〈y, ek〉H)

+
n−2∑
r=0

min(m2,(r+1)2)∑
k=max((m−1)2,r2)+1

(r+1)2∑
p=(r2+1

1

m2n2

1

i
3
2

1

i+m+ k2

1

k
3
2 (r + 1)

1

k + (r + 1) + p2

· 1(m−1)2+1≤i≤m2e−〈y,ek〉
2
H−〈y,ep〉

2
H (−2〈y, ek〉H)

+
m−2∑
r=0

min(n2,(r+1)2)∑
k=max((n−1)2,r2)+1

n2∑
p=(n−1)2+1

1

m2

1

i
3
2 (r + 1)

1

i+ (r + 1) + k2

1

k
3
2n2

1

k + n+ p2

· 1r2+1≤i≤(r+1)2e
−〈y,ek〉2H−〈y,ep〉

2
H (−2〈y, ek〉H)

+

n−2∑
r=0

m−2∑
r̃=0

min((r̃+1)2,(r+1)2)∑
k=max(r̃2,r2)+1

(r+1)2∑
p=r2+1

1

m2n2

1

i
3
2 (r̃ + 1)

1

i+ (r̃ + 1) + k2

1

k
3
2 (r + 1)

· 1r̃2+1≤i≤(r̃+1)2
1

k + (r + 1) + p2
eie
−〈y,ek〉2H−〈y,ep〉

2
H (−2〈y, ek〉H)

=
m2∑

k,p=(m−1)2+1

1

i
3
2k

3
2m4

1

i+m+ k2

(−2〈y, ek〉H)

k +m+ p2
e−〈y,ek〉

2
He−〈y,ep〉

2
H1(m−1)2+1≤i≤m21m=n
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+
m2∑

k,p=(m−1)2+1

1

n2m2

1

i
3
2

1

i+m+ k2

1

k
3
2m

(−2〈y, ek〉H)

k +m+ p2
e−〈y,ek〉

2
He−〈y,ep〉

2
H1(m−1)2+1≤i≤m21m<n

+

n2∑
k,p=(n−1)2+1

1

m2

1

i
3
2n

1

i+ n+ k2

1

k
3
2n2

(−2〈y, ek〉H)

k + n+ p2
e−〈y,ek〉

2
He−〈y,ep〉

2
H1(n−1)2+1≤i≤n21n<m

+

min(n−2,m−2)∑
r=0

(r+1)2∑
k,p=r2+1

1

m2n2

1

i
3
2 (r + 1)

1

i+ (r + 1) + k2

1

k
3
2 (r + 1)

1

k + (r + 1) + p2

· 1r2+1≤i≤(r+1)2e
−〈y,ek〉2H−〈y,ep〉

2
H (−2〈y, ek〉H)

=
∑
k∈I

φkin(y)µkm(y)

for all i ∈ I, m,n ∈ JK , K ∈ N, and y ∈ Hβ . So, the equation is commutative.

Assumption (C3) holds true with δ ∈ (0, 1
4), ϑ ∈ (0, 1

2), α ∈ (0, 1), and β = 0, which yields
qcDFM = γ ∈ [1

4 ,
3
4) for a maximal δ. These are the same parameters as in the preceding example.

Therefore, we obtain K =
√
N , M = N2 for the Milstein and commutative derivative-free Mil-

stein scheme and K =
√
N , M = N3 for the other schemes. Naturally, for the effective orders of

convergence we expect error(MIL(N,K,M)) = error(LIE(N,K,M)) = error(EES(N,K,M)) =

O
(
c̄−

1
3

+ε
)
and error(cDFM(N,K,M)) = O

(
c̄−

3
7

+ε
)
again.

In the computation of the mean square-error, we employ an approximation obtained with the
linear implicit Euler scheme for NX = 27, KX =

√
NX , and MX = 218.

Milstein cDFM
N M CC Error Std CC Error Std
2 4 24+

1
2 2.9 · 10−2 2.3 · 10−3 3 · 23+ 1

2 2.8 · 10−2 2.1 · 10−3

4 24 29 2.5 · 10−2 3.8 · 10−4 3 · 27 2.5 · 10−2 3.9 · 10−4

8 26 212+
3
2 1.7 · 10−2 6.3 · 10−5 3 · 29+ 3

2 1.7 · 10−2 6.4 · 10−5

16 28 218 6.6 · 10−3 1.2 · 10−5 3 · 214 6.6 · 10−3 1.2 · 10−5

32 210 220+
5
2 1.9 · 10−3 3.5 · 10−6 3 · 215+ 5

2 1.9 · 10−3 3.5 · 10−6

64 212 227 4.4 · 10−4 1.2 · 10−6 3 · 221 4.4 · 10−4 1.2 · 10−6

Linear Implicit Euler Exponential Euler
N M CC Error Std CC Error Std
2 23 24+

1
2 1.8 · 10−2 1.7 · 10−3 24+

1
2 1.9 · 10−2 1.7 · 10−3

4 26 29 2.6 · 10−2 3.8 · 10−4 29 2.6 · 10−2 4.5 · 10−4

8 29 212+
3
2 1.7 · 10−2 8.2 · 10−4 212+

3
2 1.7 · 10−2 1.0 · 10−4

16 212 218 6.4 · 10−3 1.2 · 10−5 218 6.6 · 10−3 1.8 · 10−5

32 215 220+
5
2 1.9 · 10−3 4.9 · 10−6 220+

5
2 2.0 · 10−3 5.1 · 10−6

64 218 227 4.2 · 10−4 2.6 · 10−7 227 4.9 · 10−4 2.2 · 10−6

Table 3.5: Error and standard deviation for Example 3 obtained from 500 paths. CC denotes
the computational cost needed to evaluate the term that dominates the computational effort
according to Table 3.1 for all time steps M .
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Figure 3.5: Error against computational cost for Example 3 for 500 paths and N =
2, 4, 8, 16, 32, 64 in log-log scale.

The various examples that we investigated confirm the theory developed and described in Section
3.2 to Section 3.5. For equations that are pointwise multiplicative, the cDFMM and the Milstein
scheme converge with the same order. For general SPDEs of type (1.1), however, we observe
the predicted increase in the effective order of convergence for the commutative derivative-free
Milstein scheme.

3.7 Some Notes on Implementation

As there are various spaces that have to be approximated or discretized in the numerical schemes
that we introduced in the last sections, we outline their implementation for clarification. Let
us fix M,N,K ∈ N; additionally to the projections PN , PK , described in the derivation of the
algorithm above, we need to discretize the underlying space. If H = L2((0, 1),R), for example,
we specify a grid on the interval (0, 1) by the grid points xj = j

Nx+1 , j ∈ {1, . . . , Nx}, Nx ∈ N.

We define the numerical method by some operator Φ : HN × VK × R→ H as

Y K,M
m+1 = eAhY N,K,M

m + Φ(Y N,K,M
m ,∆WK,M

m , h)

for all m ∈ {0, . . . ,M − 1}. For the exponential Euler scheme, for example, we have

Φ(Y N,K,M
m ,∆WK,M

m , h) = A−1(eAh − I)F (Y N,K,M
m ) + eAhB(Y N,K,M

m )∆WK,M
m

for all m ∈ {0, . . . ,M − 1}.

Now, let an initial condition X0 =
∑

i∈I ciei with ci ∈ R for all i ∈ I be given, that is, we know
the coefficients ci = 〈X0, ei〉H , for all i ∈ I. Furthermore, assume that we have computed an
approximation Y K,M

m of the solution at time tm = m · h for some m ∈ {0, . . . ,M − 1} and have
calculated the corresponding Fourier coefficients 〈Y K,M

m , ei〉H for all i ∈ IN .
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For all m ∈ {1, . . . ,M}, M,N,K ∈ N, the solution in the next step is then obtained as

1. Compute the projection of Y K,M
m at grid points xj , j ∈ {1, . . . , Nx}, as

Y N,K,M
m (xj) = PNY

K,M
m (xj) =

∑
i∈IN

〈Y K,M
m , ei〉Hei(xj).

2. Draw K random variables εk ∼ N(0, 1), k ∈ {1, . . . ,K}, and project the Q-Wiener process
as

∆WK,M
m (xj) =

∑
k∈JK

√
ηk
√
hεkẽk(xj)

at all grid points xj , j ∈ {1, . . . , Nx}.

3. Compute the solution in the next time step at all grid points xj , j ∈ {1, . . . , Nx}, with the
numerical scheme

Y K,M
m+1 (xj) = eAhY N,K,M

m (xj) + Φ(Y N,K,M
m (xj),∆W

K,M
m (xj), h).

4. Calculate the Fourier coefficients 〈Y K,M
m+1 , ei〉H , i ∈ IN . If again, for example, H =

L2((0, 1)), we employ a quadrature rule such as

〈Y K,M
m+1 , ei〉H ≈

1

Nx + 1

Nx∑
j=1

ei(xj)Y
K,M
m+1 (xj)

for all i ∈ IN .

This sequence is repeated until we reach 〈Y K,M
M , ei〉H , i ∈ IN ; then, we conduct step 1. once

more to obtain Y N,K,M
M .

In the error analysis, we are interested in the term
(
E
[
‖XT −Y N,M,K

M ‖2H
]) 1

2 for allM,N,K ∈ N.
We stay with the example from above and fix H = L2((0, 1),R). Denote by P ∈ N the number
of paths that we simulate and by Y p

M and Xp
T the discrete approximation, obtained as described

above, and the solution process at time T computed in simulation p, p ∈ {1, . . . , P}. Then, we
approximate the error as

(
E

[ ∫ 1

0

∣∣XT (x)− Y N,M,K
M (x)

∣∣2 dx

]) 1
2

≈
(

1

P

1

(Nx + 1)

P∑
p=1

Nx∑
j=1

|Xp
T (xj)− Y p

M (xj)|2
) 1

2

.

This is just a basic composite trapezoidal rule, [17, Chapter 9]. We refrain from analyzing or
improving the approximation at this point by choosing, for example, another quadrature rule as
this part is not specific for SPDEs and therefore not the focus of our work. In the numerical
analyses in Section 3.6 and Section 4.4, we chose Nx = N . These examples show that the
approximation of the inner product with the composite trapezoidal rule does not reduce the
order of convergence below the expected value.
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4
Non-Commutative SPDEs:

Numerical Schemes with Higher Orders

If the commutativity condition (C5) is not fulfilled for a SPDE of type (1.1), it is not possible
to rewrite the iterated stochastic integrals∫ t

s
B′(Xs)

(∫ r

s
B(Xs) dWK

u

)
dWK

r , (4.1)

s, t ∈ [0, T ], s ≤ t, K ∈ N, as in equation (3.11); thus, the commutative derivative-free Milstein
scheme is not applicable. Therefore, we need to analyze and approximate these iterated integrals
to obtain a numerical scheme for such equations. If not stated differently, we assume the setting
presented in Section 3.1 throughout this chapter.

Below, we introduce two algorithms to approximate stochastic integrals of type (4.1). In a
second step, these methods are incorporated in a derivative-free Milstein scheme to approximate
equation (1.1). We analyze the strong convergence for both combinations and compare the
methods analytically and numerically to the exponential Euler scheme.

4.1 Approximation of Iterated Stochastic Integrals

The schemes that we propose to approximate the stochastic double integrals derive from the
methods developed by Kloeden, Platen, and Wright in [39] and Wiktorsson in [75] for finite
dimensional SODEs; they are based on the truncation of a series representation of the Brownian
bridge process. We transfer these schemes to our setting and adjust the proofs. For Algorithm
1, based on [39], we obtain an estimate for the sum of squared errors instead of the maximal
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4.1. Approximation of Iterated Stochastic Integrals

error only, whereas the error estimate for Algorithm 2, adapted from [75], differs in the setting
of SPDEs driven by a Q-Wiener process of trace class.

In order to devise algorithms to approximate the iterated stochastic integral (4.1) in the setting
of SPDEs, we define the operators B ∈ L(V,H)0, G ∈ L(H,L(V,H)0). Furthermore, we assume
(Wt)t∈[0,T ] to be a Q-Wiener process with finite trace. These assumptions are imposed on SPDE
(1.1) to derive the numerical schemes in Sections 3.3 and 4.2 as well and are therefore not limiting.

In the following, we denote the iterated stochastic integrals by

I(i,j)(h) := I(i,j)(t, t+ h) =

∫ t+h

t

∫ s

t
dβir dβjs , (4.2)

for all i, j ∈ J , h > 0, t, t+ h ∈ [0, T ].
As (Wt)t∈[0,T ] is an infinite dimensional stochastic process, represented by an infinite sum (2.5),
we truncate this series such that it can be simulated with a numerical scheme. We denote this
approximation by (WK

t )t∈[0,T ], K ∈ N, which is defined in (3.10).
Thereby, we can express the iterated stochastic integral for any h > 0, t, t + h ∈ [0, T ], K ∈ N,
as ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s =

∫ t+h

t
G
(∫ s

t
B
∑
i∈JK

√
ηiẽi dβir

) ∑
j∈JK

√
ηj ẽj dβjs

=

∫ t+h

t

∫ s

t

∑
i∈JK

√
ηi dβir

∑
j∈JK

√
ηj dβjs G

(
Bẽi, ẽj

)
=
∑
i∈JK

∑
j∈JK

√
ηi
√
ηjI(i,j)(h) G

(
Bẽi, ẽj

)
.

For simplicity of notation, we assume JK = {1, . . . ,K} and η1 > η2 > . . . > ηK , K ∈ N, in this
chapter. Consequently, we aim at devising a scheme to approximate

IQ(i,j)(h) :=
√
ηi
√
ηj

∫ t+h

t

∫ s

t
dβir dβjs (4.3)

for all i, j ∈ {1, . . . ,K}, K ∈ N, h > 0, t, t+ h ∈ [0, T ].

Algorithm 1
In order to define Algorithm 1, we mainly adjust the scheme of [39] to our setting. Moreover,
we obtain an estimate for the sum of squared errors, similar to (4.4) below, which remains inde-
pendent of the number of Brownian motions driving the equation.

In the setting of SODEs, we denote the approximation of the stochastic double integral (4.2)
with the algorithm derived in [39] by Ĩ(i,j)(h) for all i, j ∈ {1, . . . ,K}, K ∈ N, h > 0; here, the
integer K ∈ N represents the number of independent Brownian motions (βjt )t≥0, j ∈ {1, . . . ,K},
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4.1. Approximation of Iterated Stochastic Integrals

in the SODE that is to be approximated. In [38] and [39], the authors showed that for any h > 0

the simulation error can be estimated as

max
i,j∈{1,...,K}

E
[
|Ĩi,j(h)− Ii,j(h)|2

]
≤ Ch

2

D
, (4.4)

where D ∈ N is the integer at which the series representation of Ii,j(h), i, j ∈ {1, . . . ,K}, K ∈ N,
h > 0, is truncated to obtain the approximation.

The following derivation is taken from [39] to a large extent. We derive an approximation of the
Brownian bridge process (βjs − s

tβ
j
t )0≤s≤t for all j ∈ {1, . . . ,K}, K ∈ N, t ∈ [0, T ] by its Fourier

series first. Therewith, we obtain an approximation of IQ(i,j)(t, t + h) for all i, j ∈ {1, . . . ,K},
K ∈ N, h > 0, t, t + h ∈ [0, T ], depending on realizations of the increments of the Brownian
motion ∆βjh = βjt+h − β

j
t , j ∈ {1, . . . ,K}, K ∈ N, h > 0.

The series expansion, which converges in L2(Ω), reads

βjs −
s

t
βjt =

1

2
aj0 +

∞∑
r=1

(
ajr cos

(2rπs

t

)
+ bjr sin

(2rπs

t

))
(4.5)

with

ajr =
2

t

∫ t

0
(βju −

u

t
βjt ) cos

(2rπu

t

)
du,

bjr =
2

t

∫ t

0
(βju −

u

t
βjt ) sin

(2rπu

t

)
du

for all j ∈ {1, . . . ,K}, K ∈ N, r ∈ N0, and all 0 ≤ s ≤ t ≤ T .
By simple computations, we obtain

E
[
ajr
]

= E
[
bjr
]

= 0, (4.6)

E
[
aira

j
r

]
= E

[
birb

j
r

]
= E

[
airb

i
k

]
= E

[
airb

i
r

]
= 0, (4.7)

for all i, j ∈ {1, . . . ,K}, i 6= j, K ∈ N, r, k ∈ N, and

E
[
ajra

j
k

]
=

1

r2π2
E

[ ∫ t

0
cos
(2rπs

t

)
cos
(2kπs

t

)
ds

]
=

 0, k 6= r

t
2π2r2

, k = r,
(4.8)

E
[
bjrb

j
k

]
=

 0, k 6= r

t
2π2r2

, k = r,
(4.9)

for all j ∈ {1, . . . ,K}, K ∈ N r, k ∈ N.
We rearrange expression (4.5) and truncate the series at some index D ∈ N. This yields the
following approximation of the Brownian motions (βjs)0≤s≤t for all j ∈ {1, . . . ,K} and all s, t ∈
[0, T ], s ≤ t

βjs(D) =
s

t
βjt +

1

2
aj0 +

D∑
r=1

(
ajr cos

(2rπs

t

)
+ bjr sin

(2rπs

t

))
. (4.10)
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In fact, we are interested in computing an integral with respect to this process; it converges
to the Stratonovich integral J(h) for D → ∞ according to Wong and Zakai [76, 77] and [38,
Chapter 6.1]. Therefore, we obtain an approximation J̃Q(i,j)(h), i, j ∈ {1, . . . ,K}, K ∈ N, h > 0

for the stochastic double integral in the Stratonovich sense from which we obtain the Itô integral
ĨQ(i,j)(h), i, j ∈ {1, . . . ,K}, h > 0, as

IQ(i,j)(h) = JQ(i,j)(h)− 1

2
hηi1i=j ,

see [38, p.174].
From [38, p.171], we know

IQ(i,i)(h) =
ηi
(
∆βih)2 − ηih

2

for all i ∈ {1, . . . ,K}, k ∈ N, h > 0; therefore, we have to approximate J̃Q(i,j)(h) or ĨQ(i,j)(h), respec-
tively, for i, j ∈ {1, . . . ,K}, i 6= j, K ∈ N, only. As ĨQ(i,j)(h) = J̃Q(i,j)(h) for all i, j ∈ {1, . . . ,K},
i 6= j, K ∈ N, h > 0, we obtain an approximation of the Itô integral directly by integrating with
respect to the process given by (4.10).

Since
∫ t

0 f(u) dβju = f(t)βjt−
∫ t

0 f
′(u)βju du for a continuously differentiable function f : [0, t]→ R,

see [38, p.89], and aj0 = 2
t

∫ t
0 β

j
u du− βjt for all j ∈ {1, . . . ,K}, t ∈ [0, T ], the iterated stochastic

integral can be computed as

IQ(i,j)(h) =IQ(i,j)(0, h) =
√
ηi
√
ηj

∫ h

0

∫ u

0
dβiτ dβju =

√
ηi
√
ηj

∫ h

0
βiu dβju

=
√
ηi
√
ηj

∫ h

0

(
u

h
βih +

1

2
ai0 +

∞∑
r=1

(
air cos

(2rπu

h

)
+ bir sin

(2rπu

h

)))
dβju

=
√
ηi
√
ηj

(βih
h

∫ h

0
u dβju +

1

2
ai0β

j
h +

∫ h

0

( ∞∑
r=1

air cos
(2rπu

h

)
+ bir sin

(2rπu

h

))
dβju

)
=
√
ηi
√
ηj

(βih
h

∫ h

0
u dβju +

1

2
ai0β

j
h

+
∞∑
r=1

(
air

(
βjh +

∫ h

0

2rπ

h
sin
(2rπu

h

)
βju du

)
− bir

∫ h

0

2rπ

h
cos
(2rπu

h

)
βju du

))
=
√
ηi
√
ηj

(1

2
βihβ

j
h −

1

2
(aj0β

i
h − ai0β

j
h) +

∞∑
r=1

(
air

(
βjh + rπ

(
bjr −

βjh
rπ

))
− 2rπ

h
bir
h

2
ajr

))
=
√
ηi
√
ηj

(1

2
βihβ

j
h −

1

2
(aj0β

i
h − ai0β

j
h) + π

∞∑
r=1

r(airb
j
r − birajr)

)
for all i, j ∈ {1, . . . ,K}, i 6= j, K ∈ N, h > 0.
Following [39] and [75], we do not approximate the stochastic double integral but the Lévy
stochastic area integrals

AQ(i,j)(h) =
√
ηi
√
ηj

(
− 1

2
(aj0β

i
h − ai0β

j
h) + h

π

h

∞∑
r=1

r(airb
j
r − birajr)

)
(4.11)
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for all i, j ∈ {1, . . . ,K}, i 6= j, h > 0, instead. Furthermore, we only need to simulate AQ(i,j)(h)

for i, j ∈ {1, . . . ,K} with i < j. This is sufficient due to the following relations, see [75],

IQ(i,j)(h) =

√
ηi
√
ηj∆β

i
h ∆βjh − hηiδij

2
+AQ(i,j)(h) P -a.s. (4.12)

AQ(j,i)(h) = −AQ(i,j)(h) (4.13)

AQ(i,i)(h) = 0 (4.14)

for all i, j ∈ {1, . . . ,K}, h > 0.
In the following, we use the descriptive notation from [75], which follows directly from (4.11) and
(4.6)-(4.9) and was introduced in [39], to simulate

AQ(i,j)(h) =
h

2π

∞∑
r=1

1

r

(
Uri

(
Zrj +

√
2

h

√
ηj∆β

j
h

)
− Urj

(
Zri +

√
2

h

√
ηi∆β

i
h

))
(4.15)

with random variables Uri ∼ N(0, ηi), Zri ∼ N(0, ηi), and ∆βih ∼ N(0, h) that are all indepen-
dent for i, j ∈ {1, . . . ,K}, r ∈ N, h > 0.

We denote

ar(i,j)(h) := Uri

(
Zrj +

√
2

h

√
ηj∆β

j
h

)
− Urj

(
Zri +

√
2

h

√
ηi∆β

i
h

)
(4.16)

for all i, j ∈ {1, . . . ,K}, r ∈ N, h > 0 and define the index set

IA = ((1, 2), . . . , (1,K), . . . , (l, l + 1), . . . , (l,K), . . . , (K − 1,K))

= (I1, . . . , IL) (4.17)

for L = K(K−1)
2 . As mentioned above, we only need to approximate AQI (h), h > 0 for I ∈ IA.

We truncate the series in (4.15) at some index D ∈ N to obtain the approximation. For Ik ∈ IA
with Ik = (i, j), i, j ∈ {1, . . . ,K}, K ∈ N, k ∈ {1, . . . , L}, we define

a
(D)
Ik

(h) :=
D∑
r=1

1

r

(
Uri

(
Zrj +

√
2

h

√
ηj∆β

j
h

)
− Urj

(
Zri +

√
2

h

√
ηi∆β

i
h

))
=

D∑
r=1

1

r
arIk(h)

for all h > 0 and get an approximation of the vector of area integrals as

Ã(h) :=
h

2π

(
a

(D)
(1,2)(h), . . . , a

(D)
(1,K)(h), . . . , a

(D)
(l,l+1)(h), . . . , a

(D)
(l,K)(h), . . . , a

(D)
(K−1,K)(h)

)T
=

h

2π

((
a

(D)
I (h)

)
I∈IA

)T
. (4.18)

For all h > 0, we define the vector of truncation errors as

RD(h) :=
h

2π

(( ∞∑
r=D+1

1

r
arI(h)

)
I∈IA

)T
. (4.19)
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Now, we formulate Algorithm 1. The notation in the following instruction is taken from [75] to
some extent, as the scheme can be efficiently implemented this way. For some h > 0, D,K ∈ N

1. Simulate

∆WQ
h =

(√
η1∆β1

h, . . . ,
√
ηK∆βKh

)T ∼ N(0K , hC)

with C = diag(η1, . . . , ηK)

2. Approximate Ã(h) as

Ã(h) =
h

2π

((
a

(D)
I (h)

)
I∈IA

)T
=

h

2π

D∑
r=1

1

r
HK

(
Ur ⊗

(
Zr +

√
2

h
∆WQ

h

)
−
(
Zr +

√
2

h
∆WQ

h

)
⊗ Ur

)
where Uk = (Uk1, . . . , UkK)T ∼ N(0K , C), Zk = (Zk1, . . . , ZkK)T ∼ N(0K , C) for all

k ∈ {1, . . . , D} and

HK =



0K−1×1 IK−1 0K−1×K(K−1)

0K−2×K+2 IK−2 0K−2×K(K−2)
...

...
...

0K−l×(l−1)K+l IK−l 0K−l×K(K−l)
...

...
...

01×(K−2)K+K−1 1 01×K


3. Define AQ = 0K×K and set AQ

Ik
= Ã(h)k for Ik ∈ IA, k ∈ {1, . . . , L}. Compute

ĨQ = (ĨQ(i,j))i,j∈{1,...,K} = AQ −
(
AQ
)T

+
∆WQ

h (∆WQ
h )T

2
− h

2
C

Now, we determine the truncation error for this approximation method.

Theorem 4.1 (Convergence of Algorithm 1)
Assume that Q is a trace class operator and (Wt)t∈[0,T ] a Q-Wiener process. Furthermore, let
B ∈ L(V,H)0 and G ∈ L(H,L(V,H)0). Then, it holds

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK

ĨQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]
≤ CQ

h2

π2D

for some CQ > 0 and some arbitrary h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof. The proof is given in Section 4.3.

Note, that this estimate is independent of K.
For completeness, we state the following lemma. We want to emphasize that in the numerical
scheme we compare the approximation of the iterated stochastic integral to the integral with
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respect to (WK
t )t∈[0,T ], K ∈ N, that is, we employ Theorem 4.1. The following estimate is not

part of the proof of convergence of the derivative-free Milstein scheme in Section 4.3 and does,
therefore, not imply a reduction in the order of convergence.

Lemma 4.1
Let B ∈ L(V,H)0, G ∈ L(H,L(V,H)0), and let (Wt)t∈[0,T ] be a Q-Wiener process of trace class.
Then, it holds

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWr

)
dWs −

∑
i∈JK

∑
j∈JK

ĨQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]
≤ CQh2 + CQ

h2

π2D

for some CQ > 0 and some arbitrary h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof. For a proof we refer to Section 4.3.

Algorithm 2
First, we consider SODEs again and denote the approximation of the iterated stochastic integral
(4.2) with the scheme in [75] by Î(i,j)(h) for all i, j ∈ {1, . . . ,K}, K ∈ N, h > 0. In the
finite dimensional case, the error resulting from the approximation of I(i,j)(h) by Î(i,j)(h) for all
i, j ∈ {1, . . . ,K}, K ∈ N, h > 0 is

K∑
i,j=1
i<j

E
[∣∣I(i,j)(h)− Î(i,j)(h)

∣∣2] ≤ 5h2

24π2D2
K2(K − 1), (4.20)

where D ∈ N is again the index at which the sum is truncated such that we obtain the ap-
proximation of the iterated stochastic integral and K is the number of independent Brownian
motions, see [75] for details and a proof.
In the numerical approximation of SODEs, D is chosen such that the overall order of conver-
gence is not distorted; for example, D ≥

√
5K2(K−1)√

24π2h
is selected in the Milstein scheme, [50, 75].

Therefore, the simulation of the iterated integrals is costly; precisely, we have to compute DM
terms to obtain Î(i,j)(h), h = T

M , for all i, j ∈ {1, . . . ,K}, K ∈ N, and all time steps, where
M ∈ N is the number of time steps used to approximate the solution of the SODE. This adds
computational cost of order M

3
2 to the total effort, consult [38] or [75] for more details on this

issue.
The error estimate (4.20) depends on the number of Brownian motions K ∈ N as well. This
suggests that the computational cost increases much faster in the setting of SPDEs as the num-
ber of independent Brownian motions is, in general, not fixed. The eigenvalues of the Q-Wiener
process are, however, not incorporated in the error estimate yet. The fact that we integrate
with respect to a Q-Wiener process in the setting of SPDEs, where Q as a trace class opera-
tor, yields an error estimate which depends on the rate of decay of the eigenvalues ηj , j ∈ J , of Q.

The following derivation is based on [75]. As before, the series (4.18) is truncated at some index
D ∈ N. The tail sum RD, however, is approximated by a multivariate normal distributed random
vector additionally, as described in [75].
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Now, we determine the distribution of the tail sum; we compute the covariance matrix of(
arI(h)

)
I∈IA

conditional on Zr = (Zr1, . . . , ZrK) and ∆WQ
h = (

√
η1∆β1

h, . . . ,
√
ηK∆βKh )T for

each r ∈ N, h > 0, K ∈ N

Σr
|Zr,∆WQ

h

:=


Var(arI1) Cov(arI1a

r
I2

) . . . Cov(arI1a
r
IL

)

Cov(arI1a
r
I2

) Var(arI2)
...

. . . Cov(arIL−1
arIL)

Cov(arI1a
r
IL

) Var(arIL)

 (4.21)

with

Var(arIk) = ηi

(
Zrj +

√
ηj

√
2

h
∆βjh

)2
+ ηj

(
Zri +

√
ηi

√
2

h
∆βih

)2

for all Ik = (i, j) ∈ IA, k ∈ {1, . . . , L}, i, j ∈ {1, . . . ,K}, K ∈ N, r ∈ N.
We define dri := Zri +

√
ηi

√
2
h∆βih, i ∈ {1, . . . ,K}, K ∈ N, r ∈ N and get for all Ik = (i, j) ∈ IA,

Il = (m,n) ∈ IA, k, l ∈ {1, . . . , L}, l 6= k, i, j,m, n ∈ {1, . . . ,K}, K ∈ N,

Cov(arIka
r
Il

) = E
[(
Uri(Zrj +

2

h

√
ηj∆β

j
h)− (Zri +

2

h

√
ηi∆β

i
h)Urj

)
·
(
Urn(Zrm +

2

h

√
ηm∆βmh )− (Zrn +

2

h

√
ηn∆βnh )Urm

)∣∣∣Zr,∆WQ
h

]

=



0, i 6= n,m, j 6= n,m

ηid
r
jd
r
m, i = n

−ηidrjdrn, i = m

−ηjdridrm, j = n

ηjd
r
id
r
n, j = m.

This implies

RD(h)|Z,∆WQ
h
∼ N

(
0L,
( h

2π

)2
∞∑

r=D+1

1

r2
Σr
|Zr,∆WQ

h

)
for Z = (Zr)r∈N and D ∈ N. Hence, we can approximate the tail sum by simulating a random
vector

VD(h) =
2π

h

( ∞∑
r=D+1

1

r2
Σr
|Zr,∆WQ

h

)− 1
2

RD(h)

with VD(h)|Z,∆WQ
h
∼ N(0L, IL×L) and

RD(h) =
h

2π

( ∞∑
r=D+1

1

r2
Σr
|Zr,∆WQ

h

) 1
2

VD(h) (4.22)

for arbitrary D ∈ N.
It remains to examine, how the covariance matrix evolves with D → ∞. For some D ∈ N, we
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define

Σ(D+) :=
( ∞∑
r=D+1

1

r2

)−1
∞∑

r=D+1

1

r2
Σr
|Zr,∆WQ

h

(4.23)

and

Σ(∞) := E
[
Σ1
|Z1,∆WQ

h

∣∣∣∆WQ
h

]
(4.24)

with diagonal elements

Σ
(∞)
kk = 2ηiηj +

2

h
ηiηj(∆β

j
h)2 +

2

h
ηiηj(∆β

i
h)2

and

Σ
(∞)
kl =



0, i 6= n,m, j 6= n,m

2
hηi
√
ηj
√
ηm∆βjh∆βmh , i = n,

− 2
hηi
√
ηj
√
ηn∆βjh∆βnh , i = m,

− 2
hηj
√
ηi
√
ηm∆βih∆βmh , j = n,

2
hηj
√
ηi
√
ηn∆βih∆βnh , j = m,

for all k, l ∈ {1, . . . , L}, l 6= k with Ik = (i, j), Il = (m,n), Ik, Il ∈ IA, i, j,m, n ∈ {1, . . . ,K},
K ∈ N.
From the proof of Theorem 4.2 below, we have

lim
D→∞

E
[
‖Σ(D+) − Σ(∞)‖2F

]
= 0,

where F denotes the Frobenius norm. Thus it follows

2π

h

( ∞∑
r=D+1

1

r2

)− 1
2
RD(h)

d−→ ζ ∼ N
(
0L,Σ

(∞)
)

for D −→∞.

Combining the above, we obtain an algorithm very similar to the one in [75], where steps 1, 2,
and 4 equal Algorithm 1. For some h > 0, D,K ∈ N

1. Simulate

∆WQ
h =

(√
η1∆β1

h, . . . ,
√
ηK∆βKh

)T ∼ N(0K , hC)

with C = diag(η1, . . . , ηK)

2. Approximate Ã(h) as

Ã(h) =
h

2π

((
a

(D)
I (h)

)
I∈IA

)T
=

h

2π

D∑
r=1

1

r
HK

(
Ur ⊗

(
Zr +

√
2

h
∆WQ

h

)
−
(
Zr +

√
2

h
∆WQ

h

)
⊗ Ur

)
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with Uk ∼ N(0K , C), Zk ∼ N(0K , C), k ∈ {1, . . . , D} and

HK =



0K−1×1 IK−1 0K−1×K(K−1)

0K−2×K+2 IK−2 0K−2×K(K−2)
...

...
...

0K−l×(l−1)K+l IK−l 0K−l×K(K−l)
...

...
...

01×(K−2)K+K−1 1 01×K


3. Simulate VD(h) ∼ N(0L, IL×L) and compute

Â(h) = Ã(h) +
h

2π

( ∞∑
r=D+1

1

r2

) 1
2
√

Σ(∞)VD(h) (4.25)

4. Define AQ = 0K×K and set AQ
Ik

= Â(h)k for Ik ∈ IA, k ∈ {1, . . . , L}. Compute

ÎQ = (ÎQ(i,j))i,j∈{1,...,K} = AQ −
(
AQ
)T

+
∆WQ

h (∆WQ
h )T

2
− h

2
C

Note, that the matrix
√

Σ(∞) has to be computed by a Cholesky decomposition. Next, we analyze
the error resulting from this algorithm.

Theorem 4.2 (Convergence of Algorithm 2)
Assume that Q is a trace class operator and (Wt)t∈[0,T ] a Q-Wiener process. Furthermore, let
B ∈ L(V,H)0 and G ∈ L(H,L(V,H)0). Then, it holds

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK

ÎQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]
≤ CQ

h2

D2
η−1
K

for some CQ > 0 and all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof. Again, the proof is detailed in Section 4.3

Remark 4.1
Note, that if (Wt)t∈[0,T ] is a cylindrical Wiener process, we obtain the same estimate (4.20) as
in the finite dimensional case.

In general, we obtain convergence for K,M → ∞ if we choose h = T
M and D > η

− 1
2

K h1−θ for
some θ > 0. For Algorithm 1, we require D > h2−θ, instead. However, we need a more careful
choice of D to maintain the rate of convergence of the numerical scheme developed in the next
section. This issue is detailed in the following.

90



4.2. Error Analysis and Computational Cost

4.2 Error Analysis and Computational Cost

Consider a numerical scheme with strong order of convergence q > 0 in the time step h = T
M ,

T > 0, M ∈ N to approximate the mild solution to equation (1.1). We aim at simulating the
iterated stochastic integrals such that the order of convergence is not reduced. Therefore, we
need to choose D ≥ M2q−1 for Algorithm 1, whereas Algorithm 2 requires D ≥ M q− 1

2 η
− 1

2
K , see

Theorem 4.1 and Theorem 4.2. The error estimates for the iterated stochastic integrals in the
last section show that it depends on the relation of N,M,K ∈ N and therewith the parameters
γ, α, ρA, ρQ which of the two approximation algorithms is superior in the infinite dimensional
setting - Table 4.1 summarizes these results. This contrasts the approximation of SODEs in
finite dimensions, where the number of independent Brownian motions is fixed and therefore the
algorithm developed in [75] involves less computational effort.

In the following, we develop a derivative-free Milstein scheme for the case that the operator B′B
is not commutative, that is, (C5) does not hold. We show that the scheme that we propose
below is more efficient for most parameter constellations than the exponential Euler scheme if
qEES < qDFM , which holds in general.
In contrast to the commutative equation, we approximate the derivative by one term only,
compare Section 3.3. The discrete approximation process that is obtained with this scheme is
denoted by (Y Q

m )0≤m≤M , M ∈ N. The derivative-free Milstein scheme (DFM) reads Y Q
0 = PNξ

and

Y Q
m+1 =PN

(
eAhY Q

m + heAhF (Y Q
m ) + eAhB(Y Q

m )∆WK,M
m

+ eAh
∑
j∈JK

(
B
(
Y Q
m +

∑
i∈JK

PNB(Y Q
m )ẽiĪ

Q
(i,j)(h)

)
−B

(
Y Q
m )
)
ẽj

)
(4.26)

for all m ∈ {0, . . . ,M − 1}, N,M,K ∈ N. Here, ĪQi,j(h) denotes the approximation of IQi,j(h)

obtained with Algorithm 1 or Algorithm 2 for all i, j ∈ JK , h > 0, K ∈ N. If the iterated integral
is approximated by Algorithm 1, we call the scheme DFM1, whereas if we employ Algorithm 2,
it is denoted as DFM2.
In order to prove the error estimate below, we need to impose one of the following assumptions
additionally.

(C6a) Q
1
2 is a trace class operator.

(C6b) Q is a trace class operator and supy∈Hβ ‖B(y)‖L(V,H) < C for some C > 0.

Therewith, we can show the convergence of the derivative-free Milstein scheme.

Theorem 4.3 (Convergence of DFM)
Let assumptions (C1)–(C4) and (C6a) or (C6b) be fulfilled. Then, there exists a constant CT,Q ∈
(0,∞), independent of N , K, M , and D, such that for (Y Q

m )0≤m≤M , defined by the DFM in
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(4.26), it holds

(
E
[∥∥Xtm − Y Q

m

∥∥2

H

]) 1
2 ≤ CT,Q

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ) + E(D)

)
for all m ∈ {0, 1, . . . ,M} and all N,K,M,D ∈ N. The error term E(D) is determined by
Algorithm 1 or 2 and given in Theorem 4.1 or Theorem 4.2, respectively. The parameters are
determined by (C1)–(C4) and (C6).

Proof. The proof of Theorem 4.3 is stated in Section 4.3.

This is the same estimate as for the commutative derivative-free Milstein scheme, see Theorem
3.1, if D ∈ N is chosen carefully. The computational cost, however, increases as we have to
simulate the iterated integrals.

Next, we determine the effective order of convergence for these schemes. Below, we assume
ηj ≤ Cj−ρQ for some ρQ, C > 0 and all j ∈ JK , K ∈ N. As for the commutative scheme, we
minimize the error (3.8) such that the computational cost does not exceed some specified value
c̄ > 0. For Algorithm 1, the condition on the computational cost reads 3MNK+M2q K(K−1)

2 = c̄

with q = min(2(γ − β), γ). We obtain different results depending on the parameters; as a
reasonable choice for N,M,K, we get

M = O
(
c̄

αρQ
2q(αρQ+1)

)
, N = O

(
c̄

αρQ
2γρA(αρQ+1)

)
, K = O

(
c̄

1
2(αρQ+1)

)
if 2αρQγρA + γρA−αρQ > 0 and q > αρQγρA

2αρQγρA+γρA−αρQ . In this case, we obtain for the effective
order of convergence

err(DFM1) = O
(
c̄
−

αρQ
2(αρQ+1)

)
. (4.27)

For any other parameter set, we obtain as for the commutative scheme

M = O
(
c̄

γρAαρQ
(αρQ+γρA)q+γρAαρQ

)
, N = O

(
c̄

qαρQ
(αρQ+γρA)q+γρAαρQ

)
, K = O

(
c̄

qγρA
(αρQ+γρA)q+γρAαρQ

)
and the effective order of convergence equals

err(DFM1) = O
(
c̄
−

qγρAαρQ
(αρQ+γρA)q+γρAαρQ

)
. (4.28)

Concerning Algorithm 2, the condition on the computational cost is 3MNK+M q+ 1
2 η
− 1

2
K

K(K−1)
2 =

c̄. If
√

Σ(∞) is not explicitly computable but obtained by a Cholesky decomposition instead, we
get an additional term in the computational cost. We want to keep this analysis independent of
this factor, however, and do not include the effort to calculate

√
Σ(∞) in this analysis.

We get different results subject to the parameter constellation. Precisely, if 2αρQγρA+ρQγρA+

2(γρA − αρQ) > 0 and q > αρQγρA
2αρQγρA+ρQγρA+2(γρA−αρQ) , we obtain

M = O
(
c̄

2αρQ
(2αρQ+ρQ+4)q+αρQ

)
, N = O

(
c̄

2αρQq

γρA((2αρQ+ρQ+4)q+αρQ)

)
, K = O

(
c̄

2q
(2αρQ+ρQ+4)q+αρQ

)
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with effective order of convergence

err(DFM2) = O
(
c̄
−

2αρQq

(2αρQ+ρQ+4)q+αρQ

)
. (4.29)

Any other parameter constellation yields the same effective order as the commutative scheme,
see (4.28).

We compare the effective order of convergence across the parameter sets to determine which
scheme to use for a given equation. The benchmark scheme is the exponential Euler scheme
whose effective order of convergence is

err(EES) = O
(
c̄
−

qγρAαρQ
(αρQ+γρA)q+γρAαρQ

)
,

as described in Section 3.4. Here the parameter q equals q = qEES = min(γ, 1
2 , 2(γ − β)). We

are mainly interested in treating cases where qEES < qDFM , which we assume from now on.
Table 4.1 clearly illustrates how the decision on the preferred scheme depends on the underlying
parameters q, α, γ, ρA, ρQ and that it cannot be universally identified. The EES is outperformed
by the DFM for most parameter constellations, however. We merely compare the effective or-
der of convergence for the case that 2αρQγρA + γρA − αρQ > 0 and q > αρQγρA

2αρQγρA+γρA−αρQ or
2αρQγρA + ρQγρA + 2(γρA − αρQ) > 0 and q > αρQγρA

2αρQγρA+ρQγρA+2(γρA−αρQ) does not hold. In
this case, the superiority of the DFM1 or DFM2 follows as in Section 3.4 for the commutative
derivative-free Milstein scheme. The results for other parameter constellations are summarized
in Table 4.1.

We do want to emphasize again the contrast to the approximation of finite dimensional SODEs
with numerical schemes that involve an approximation of stochastic double integral; for SPDEs,
we do not have a preference for one of the schemes DFM1 or DFM2 independently of the equation
to be solved. The overview in Table 4.1 clearly illustrates the dependence on the parameters
q, α, γ, ρA, ρQ. Note, for completeness, that for the Exponential Euler scheme, assumptions (C6a)
and (C6b) as well as parts of (C3) are not required to hold. Therefore, for those equations that
do not fulfill these conditions, this scheme might be beneficial.
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Conditions Scheme EOC

2αρQγρA + ρQγρA + 2(γρA − αρQ) ≤ 0, 2αρQγρA + γρA − αρQ ≤ 0

q ≥ α(2q − 1) DFM1∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q < α(2q − 1) DFM2∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

2αρQγρA + ρQγρA + 2(γρA − αρQ) ≤ 0, 2αρQγρA + γρA − αρQ > 0

q ≤ αρQγρA
2αρQγρA+γρA−αρQ

q ≥ α(2q − 1) DFM1∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q < α(2q − 1) DFM2∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q >
αρQγρA

2αρQγρA+γρA−αρQ DFM2 qγρAαρQ
(αρQ+γρA)q+γρAαρQ

2αρQγρA + ρQγρA + 2(γρA − αρQ) > 0, 2αρQγρA + γρA − αρQ ≤ 0

q ≤ αρQγρA
2αρQγρA+ρQγρA+2(γρA−αρQ)

q ≥ α(2q − 1) DFM1∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q < α(2q − 1) DFM2∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q >
αρQγρA

2αρQγρA+ρQγρA+2(γρA−αρQ) DFM1 qγρAαρQ
(αρQ+γρA)q+γρAαρQ

2αρQγρA + ρQγρA + 2(γρA − αρQ) > 0, 2αρQγρA + γρA − αρQ > 0, γρA > ρQ(α− γρA)

q ≤ αρQγρA
2αρQγρA+ρQγρA+2(γρA−αρQ)

q ≥ α(2q − 1) DFM1∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q < α(2q − 1) DFM2∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

αρQγρA
2αρQγρA+ρQγρA+2(γρA−αρQ) < q ≤ αρQγρA

2αρQγρA+γρA−αρQ DFM1 qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q >
αρQγρA

2αρQγρA+γρA−αρQ

q ≥ α(2q − 1)
αρQ > γρA DFM1 αρQ

2(αρQ+1)

αρQ ≤ γρA EES αρQγρAqEES

(αρQ+γρA)qEES+αρQγρA

q < α(2q − 1)
q >

αρQγρA
d1

DFM2 2αρQq
(2αρQ+ρQ+4)q+αρQ

q ≤ αρQγρA
d1

EES αρQγρAqEES

(αρQ+γρA)qEES+αρQγρA

2αρQγρA + ρQγρA + 2(γρA − αρQ) > 0, 2αρQγρA + γρA − αρQ > 0, γρA ≤ ρQ(α− γρA)

q ≤ αρQγρA
2αρQγρA+γρA−αρQ

q ≥ α(2q − 1) DFM1∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q < α(2q − 1) DFM2∗ qγρAαρQ
(αρQ+γρA)q+γρAαρQ

αρQγρA
2αρQγρA+γρA−αρQ < q ≤ αρQγρA

2αρQγρA+ρQγρA+2(γρA−αρQ) DFM2 qγρAαρQ
(αρQ+γρA)q+γρAαρQ

q >
αρQγρA

2αρQγρA+ρQγρA+2(γρA−αρQ)

q ≥ α(2q − 1)
αρQ > γρA DFM1 αρQ

2(αρQ+1)

αρQ ≤ γρA EES αρQγρAqEES

(αρQ+γρA)qEES+αρQγρA

q < α(2q − 1)
q >

αρQγρA
d1

DFM2 2αρQq
(2αρQ+ρQ+4)q+αρQ

q ≤ αρQγρA
d1

EES αρQγρAqEES

(αρQ+γρA)qEES+αρQγρA

Table 4.1: This overview identifies the numerical scheme which is selected to approximate a given
non-commutative SPDE of type (1.1). The scheme that is indicated is chosen by its effective
order of convergence (EOC). For some parameter sets, there is no difference in the order of
convergence; in this case, the computational cost is consulted as an additional factor (indicated
by ∗). We define d1 = 2αρQγρA − ρQγρA − 2(γρA − αρQ) and assume qEES < q = qDFM .
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4.3 Proofs

In the following proofs we use some generic constant C which may change from line to line.

Proof of Theorem 4.1

Theorem (Convergence of Algorithm 1)
Assume that Q is a trace class operator and (Wt)t∈[0,T ] a Q-Wiener process. Furthermore, let
B ∈ L(V,H)0 and G ∈ L(H,L(V,H)0). Then, it holds

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK

ĨQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]
≤ CQ

h2

π2D

for some CQ > 0 and some arbitrary h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof of Theorem 4.1.
For all h > 0, t, t+ h ∈ [0, T ], K ∈ N, we get

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK

ĨQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]

= E

[∥∥∥ ∑
i∈JK

∑
j∈JK

IQ(i,j)(h) G
(
Bẽi, ẽj

)
−
∑
i∈JK

∑
j∈JK
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as E
[
IQ(i,j)(h)IQ(m,n)(h)

]
= 0 for all i, j,m, n ∈ JK with (i, j) 6= (m,n), K ∈ N, see [38]. The same

holds for the approximations ĨQ(i,j)(h), i, j ∈ JK , K ∈ N, h > 0.
By the assumptions on B and G, we obtain

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK
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)∥∥∥2

H

]
≤
∑
i∈JK

∑
j∈JK

E
[
(IQ(i,j)(h)− ĨQ(i,j)(h))2
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E
[
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]
for all h > 0, t, t+ h ∈ [0, T ], K ∈ N.
Due to (4.12)-(4.14), it is enough to examine AQ(i,j)(h), ÃQ(i,j)(h), h > 0, for i, j ∈ JK , K ∈ N,
with i < j. This implies
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≤ C
∑
i∈JK

∑
j∈JK

E
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]
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[
(AQ(i,j)(h)− ÃQ(i,j)(h))2

]
(4.30)

for all h > 0, t, t+ h ∈ [0, T ], K ∈ N.
By (4.11) and the properties of ajr, bjr, r ∈ N, j ∈ JK , K ∈ N, given in (4.6)-(4.9), we obtain

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK
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r2ηiηjE
[
(airb

j
r)
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j
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2
]

= 4Ch2π
2

h2

∑
i,j∈JK
i<j

∞∑
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r2ηiηj

( h

2π2r2

)2

≤ C (trQ)2
∞∑

r=D+1

h2

π2r2

for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.
As in [39], we finally estimate

∞∑
r=D+1

1

r2
≤
∫ ∞
D

1

s2
ds =

1

D

and in total, we obtain
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]

≤ C (trQ)2 h2

Dπ2
(4.31)

for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof of Lemma 4.1

Lemma
Let B ∈ L(V,H)0, G ∈ L(H,L(V,H)0), and let (Wt)t∈[0,T ] be a Q-Wiener process of trace class.
Then, it holds
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for some CQ > 0 and some arbitrary h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof of Lemma 4.1.
We determine the error resulting from the projection of the Q-Wiener process in (3.10) combined
with the approximation of the iterated integrals. For all h > 0, t, t + h ∈ [0, T ], K ∈ N, we
decompose the error such that
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]
. (4.32)

The second term can be estimated as stated in the proof of Theorem 4.1. By Itô’s isometry and
the properties of the operators B and G, we get for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N
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ηiηj
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E
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]
dr ds+ trQ
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.

By the assumptions on B, we further obtain

E

[∥∥∥ ∫ t+h

t
G
(∫ s

t
B dWr

)
dWs −

∑
i∈JK

∑
j∈JK
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π2D
≤ CQh2 + trQ
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π2D
.

for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof of Theorem 4.2

Theorem (Convergence of Algorithm 2)
Assume that Q is a trace class operator and (Wt)t∈[0,T ] a Q-Wiener process. Furthermore, let
B ∈ L(V,H)0 and G ∈ L(H,L(V,H)0). Then, it holds
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for some CQ > 0 and all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.

Proof of Theorem 4.2.
As in the proof of Theorem 4.1, particularly equation (4.30), we obtain
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for all h > 0, t, t+ h ∈ [0, T ], K ∈ N.

Let ‖ · ‖F denote the Frobenius norm; with the expressions for RD(h) in (4.22), Σ(D+) in (4.23),
and the definition of the algorithm (4.25), we get
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for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N. Here, we used that VD(h)|Z,∆WQ

h
∼ N(0L, IL×L) for all

h > 0, D,L ∈ N.

Next, we employ the following lemma from [75].

Lemma 4.2
Let A and C be symmetric positive definite matrices and denote the smallest eigenvalue of matrix
C by λmin. Then, it holds

‖A
1
2 − C

1
2 ‖2F ≤

1√
λmin

‖A− C‖2F .
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Proof of Lemma 4.2. A proof can be found in [75, Lemma 4.1].

As stated above, we assume η1 > η2 > . . . > ηK for all K ∈ N. We decompose Σ(∞) for some
K ∈ N as

Σ(∞) = 2ηK−1ηKIL×L + Σ̂(∞)

to determine its smallest eigenvalue.
The matrix Σ̂(∞) is defined as follows; for the diagonal elements, we get

Σ̂
(∞)
kk = Σ

(∞)
kk − 2ηK−1ηK = 2(ηiηj − ηK−1ηK) +

2

h
ηiηj(∆β

j
h)2 +

2

h
ηiηj(∆β

i
h)2

for all k ∈ {1, . . . , L} with Ik = (i, j), i, j ∈ JK , Ik ∈ IA, K ∈ N, and h > 0.
For entries other than the diagonal elements, we get Σ̂

(∞)
kl = Σ

(∞)
kl for all Ik = (i, j), Il = (m,n),

i, j,m, n ∈ JK , ik, il ∈ IA, k, l ∈ {1, . . . , L}, K ∈ N.
As the matrix Σ̂(∞) is positive semi-definite, the smallest eigenvalue λmin of Σ(∞) fulfills λmin ≥
2η2
K for all K ∈ N.

The covariance matrices Σ(D+) and Σ(∞) are symmetric positive definite and we get by Lemma
4.2 and the definitions of Σ(D+), Σ(∞) in (4.23) and (4.24), respectively,

E

[∥∥∥ ∫ t+h

t
G
(
B

∫ s

t
dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK
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for all h > 0, t, t+ h ∈ [0, T ], D,K,L ∈ N.
Moreover, we obtain for all h > 0, t, t+ h ∈ [0, T ], D,K,L ∈ N
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Next, we compute the expectation; we insert the expressions for Σr
|Zr,∆WQ

h

, r ∈ N, and Σ(∞), see
(4.21) and (4.24), and split the sum into diagonal entries and the remaining part of the matrix.
This yields for all h > 0, t, t+ h ∈ [0, T ], D,K,L ∈ N
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(4.33)

We compute the terms in (4.33) separately and obtain
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= E
[(
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i
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ηjηm +
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for all i, j,m, n ∈ JK , K ∈ N with i < j,m < n. For the other terms of this type, we get similar
results.

Moreover, we obtain for all D ∈ N
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In total, we get for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N

E

[∥∥∥ ∫ t+h

t
G
(
B

∫ s

t
dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK
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j ηiηm1j=n1i 6=m + η2

j ηiηn1j=m1i 6=n

))

≤ C h2

ηKπ2

2

3D2

∑
i,j∈JK
i<j

(
20η2

i η
2
j + 5η2

i ηj
∑
m∈JK
m 6=j,m6=i

ηm + 5η2
j ηi

∑
m∈JK
m 6=j,m6=i

ηm

)
.

Finally, this implies

E

[∥∥∥ ∫ t+h

t
G
(
B

∫ s

t
dWK

r

)
dWK

s −
∑
i∈JK

∑
j∈JK

ÎQ(i,j)(h) G
(
Bẽi, ẽj

)∥∥∥2

H

]

≤ C h2

ηKπ2

2

3D2

(
20
(

sup
j∈JK

ηj

)2(
trQ

)2
+ 10

(
sup
j∈JK

ηj

)(
trQ

)3)
≤ CQ

h2

ηKD2
(4.34)

for all h > 0, t, t+ h ∈ [0, T ], D,K ∈ N.
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Proof of Theorem 4.3

Theorem (Convergence of DFM)
Let assumptions (C1)–(C4) and (C6a) or (C6b) be fulfilled. Then, there exists a constant CT,Q ∈
(0,∞), independent of N , K, M , and D, such that for (Y Q

m )0≤m≤M , defined by the DFM in
(4.26), it holds

(
E
[∥∥Xtm − Y Q

m

∥∥2

H

]) 1
2 ≤ CT,Q

((
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ) + E(D)

)
for all m ∈ {0, 1, . . . ,M} and all N,K,M,D ∈ N. The error term E(D) is determined by
Algorithm 1 or 2 and given in Theorem 4.1 or Theorem 4.2, respectively. The parameters are
determined by (C1)–(C4) and (C6).

Proof of Theorem 4.3.
Throughout the proof, we use the following notation for all m ∈ {0, . . . ,M}, M,N,K ∈ N,

Xtm =eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−s)F (Xs) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−s)B(Xs) dWs,

YMIL
m =PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (YMIL
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(YMIL
l ) dWK

s

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(YMIL
l )

(∫ s

tl

B(YMIL
l ) dWK

r

)
dWK

s

)
,

Ȳm =PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s

+
m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Y Q
l )
(∫ s

tl

B(Y Q
l ) dWK

r

)
dWK

s

)
,

and

Ym =PN

(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s

+

m−1∑
l=0

∑
j∈JK

eA(tm−tl)
(
B
(
Y Q
l +

∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl)

)
ẽj −B(Yl)ẽj

))

with hl := tl+1 − tl for all l ∈ {0, . . . ,m− 1}.

We estimate the error in several parts according to

(
E
[
‖Xtm − Y Q

m ‖2H
]) 1

2

=
(

E
[
‖Xtm − YMIL

m + YMIL
m − Ym + Ym − Y Q

m ‖2H
]) 1

2

≤
(

E
[
‖Xtm − YMIL

m ‖2H
]) 1

2
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+
(

E
[
‖YMIL

m − Ȳm + Ȳm − Ym + Ym − Y Q
m ‖2H

]) 1
2

≤
(

E
[
‖Xtm − YMIL

m ‖2H
]) 1

2

+
(

E
[
‖YMIL

m − Ȳm‖2H
]) 1

2
+
(

E
[
‖Ȳm − Ym‖2H

]) 1
2

+
(

E
[
‖Ym − Y Q

m ‖2H
]) 1

2

for all m ∈ {0, . . . ,M}, N,M ∈ N.
The first part, which is the error resulting from the approximation with the Milstein scheme,
is estimated in the same way as for the commutative scheme. For details, read the proof of
Theorem 3.1 in Section 3.5.

We prove the following lemma on the moments of the approximation process (Y Q
m )m∈{0,...,M},

M ∈ N, which will be used throughout the proof if (C6b) does not hold. For now, we denote the
approximation of IQ(i,j)(hl) by Ī

Q
(i,j)(hl) for all l ∈ {0, . . . ,M}, i, j ∈ JK ,M,K ∈ N, independently

of the algorithm that is employed to approximate it. We distinguish Algorithm 1 and Algorithm
2 during the proof.

Lemma 4.3
Let conditions (C1)–(C4) and (C6a) be fulfilled; then, it holds for some arbitrary M,N,K ∈ N
and some constant Cp,T,Q > 0, independent of M,N,K,

sup
m∈{0,...,M}

(
E
[
‖Y Q

m ‖
p
Hδ

]) 1
p ≤ Cp,T,Q

(
1 +

(
E
[
‖X0‖pHδ

]) 1
p
)

for all p ∈ [2,∞).

Proof of Lemma 4.3.
For m ∈ {1, . . . ,M}, M ∈ N, we assume that the statement has been proved for all Y Q

l with
l ∈ {0, . . . ,m− 1}.

The triangle inequality implies for all m ∈ {1, . . . ,M}, M,N,K ∈ N, and p ∈ [1,∞)

(
E
[
‖Y Q

m ‖
p
Hδ

]) 2
p

≤

(
C
(
E
[
‖X0‖pHδ

]) 1
p +

m−1∑
l=0

(
E

[∥∥∥ ∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds

∥∥∥p
Hδ

]) 1
p

+

(
E

[∥∥∥ ∫ tm

t0

m−1∑
l=0

eA(tm−tl)B(Y Q
l )1[tl,tl+1)(s) dWK

s

∥∥∥p
Hδ

]) 1
p

+

(
E

[∥∥∥m−1∑
l=0

eA(tm−tl)
∑
j∈JK

(
B(Y Q

l +
∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl))ẽj −B(Y Q

l )ẽj

)∥∥∥p
Hδ

]) 1
p

)2

.

By Hölders inequality, Theorem 2.6, and a Taylor expansion of the difference approximation, we
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obtain for all p ∈ [2,∞) and all m ∈ {1, . . . ,M}, M,K ∈ N

(
E
[
‖Y Q

m ‖
p
Hδ

]) 2
p

≤ Cp

((
E
[
‖X0‖pHδ

]) 2
p +

(m−1∑
l=0

(∫ tl+1

tl

E
[∥∥(−A)δeA(tm−tl)F (Y Q

l )
∥∥p
H

]
ds
) 1
p
h

1− 1
p

)2

+

∫ tm

t0

(
E

[∥∥∥m−1∑
l=0

eA(tm−tl)B(Y Q
l )1[tl,tl+1)(s)

∥∥∥p
LHS(V0,Hδ)

]) 2
p

ds

+

(
E

[∥∥∥m−1∑
l=0

(−A)δeA(tm−tl)
∑
j∈JK

B′(ξ(Y Q
l , j))

( ∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl), ẽj

)∥∥∥p
H

]) 2
p

)
.

Due to (C1)–(C3), Theorem 2.3, and since ξ(Y Q
l , j) ∈ Hβ for all l ∈ {0, . . . ,m− 1}, j ∈ JK , and

M,N,K ∈ N, we get

(
E
[
‖Y Q

m ‖
p
Hδ

]
)
) 2
p

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cph

2− 2
pM

m−1∑
l=0

(∫ tl+1

tl

(tm − tl)−δp ds
) 2
p (

E
[
‖F (Y Q

l )‖pH
]) 2

p

+ Cp

m−1∑
l=0

∫ tl+1

tl

(
E

[∥∥∥m−1∑
l=0

eA(tm−tl)B(Y Q
l )1[tl,tl+1)(s)

∥∥∥p
LHS(V0,Hδ)

]) 2
p

ds

+ CpM
m−1∑
l=0

(tm − tl)−2δ

(
E

[∥∥∥ ∑
j∈JK

B′(ξ(Y Q
l , j))

( ∑
i∈IK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl), ẽj

)∥∥∥p
H

]) 2
p

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cp,Th

1− 2
p

m−1∑
l=0

(
h(tm − tl)−δp

) 2
p (

1 +
(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)

+ Cp

m−1∑
l=0

(
E
[
‖B(Y Q

l )‖pLHS(V0,Hδ)

]) 2
p

∫ tl+1

tl

∥∥(−A)−δ
∥∥2

L(H)

∥∥(−A)δeA(tm−tl)
∥∥2

L(H)
ds

+ CpM

m−1∑
l=0

(tm − tl)−2δ

( ∑
j∈JK

(
E
[∥∥B′(ξ(Y Q

l , j))
∥∥p
L(H,L(V,H))

∥∥∥B(Y Q
l )

∑
i∈JK

ĪQ(i,j)(hl)ẽi

∥∥∥p
H

]) 1
p

)2

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + h1−2δCp,T

m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)

+ Cp

m−1∑
l=0

h(tm − tl)−2δ
(

E
[
‖B(Y Q

l )‖pLHS(V0,Hδ)

]) 2
p

+ CpMh−2δ
m−1∑
l=0

(m− l)−2δ

( ∑
j∈JK

(
E
[
‖B(Y Q

l )‖pL(V,Hδ)

]) 1
p
∑
i∈JK

(
E
[
(ĪQ(i,j)(hl))

p
]) 1

p

)2

for all m ∈ {1, . . . ,M}, M,K ∈ N and p ∈ [2,∞).

Further, we obtain by (C6a) and the distribution properties of Ī(i,j), i, j ∈ JK , see Section 4.1,

104



4.3. Proofs

for all m ∈ {1, . . . ,M}, M,K ∈ N, p ∈ [2,∞)

(
E
[
‖Y Q

m ‖
p
Hδ

]) 2
p

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cp,Th

1−2δ
m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)

+ Cph
m−1∑
l=0

(tm − tl)−2δ
(
1 +

(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)

+ CpMh−2δ
m−1∑
l=0

(m− l)−2δ
((

1 + E
[
‖Y Q

l ‖
p
Hδ

]) 1
p
∑

i,j∈JK

(
E
[
|Ī(i,j)(hl)

√
ηi
√
ηj |2p

]) 1
2p

)2

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cp,Th

1−2δ
m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)

+ CpMh−2δ
m−1∑
l=0

(m− l)−2δ
((

1 + E
[
‖Y Q

l ‖
p
Hδ

]) 1
p
∑

i,j∈JK

√
ηi
√
ηj h

)2

≤ Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cp,Th

1−2δ
m−1∑
l=0

(m− l)−2δ(1 +
(
E[‖Y Q

l ‖
p
Hδ

]
) 2
p )

+ Cp,Qh
1−2δ

m−1∑
l=0

(m− l)−2δ
(
1 +

(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p
)
.

As in equation (3.31) in the proof of Theorem 3.1, we obtain for δ ∈ (0, 1
2) and allm ∈ {1, . . . ,M},

M ∈ N
m−1∑
l=0

(m− l)−2δ ≤ M1−2δ

1− 2δ
.

Therefore, we get for all m ∈ {1, . . . ,M}, M ∈ N, p ∈ [2,∞) the estimate

(
E
[
‖Y Q

m ‖
p
Hδ

]) 2
p ≤Cp

(
E
[
‖X0‖pHδ

]) 2
p + Cp,T,Q + h1−2δCp,T,Q

m−1∑
l=0

(m− l)−2δ
(
E
[
‖Y Q

l ‖
p
Hδ

]) 2
p

and the discrete Gronwall Lemma implies

(
E
[
‖Y Q

m ‖
p
Hδ

]) 2
p ≤
(
Cp
(
E
[
‖X0‖pHδ

]) 2
p + Cp,T,Q

)
eCp,T,Q

∑m−1
l=0 (m−l)−2δh1−2δ

≤Cp,T,Q
(
1 +

(
E
[
‖X0‖pHδ

]) 2
p
)

for all m ∈ {1, . . . ,M}, M ∈ N, p ∈ [2,∞).

Now, we continue with the proof of Theorem 4.3. The estimate of E
[
‖YMIL

m − Ȳm‖2H
]
can be

obtained as in Theorem 3.1 on page 56 for all m ∈ {0, . . . ,M}, M,K ∈ N. We get

E
[
‖YMIL

m − Ȳm‖2H
]
≤ CTh

m−1∑
l=0

E
[
‖YMIL

l − Y Q
l ‖

2
H

]
(4.35)
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for all m ∈ {0, . . . ,M}, M,N,K ∈ N.

For the next term, we obtain

E
[
‖Ȳm − Ym‖2H

]
=

E

[∥∥∥PN(eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s

)
+ PN

( ∑
i,j∈JK

√
ηj
√
ηi

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B′(Y Q
l )
(∫ s

tl

B(Y Q
l )ẽi dβir

)
ẽj dβjs

)

− PN
(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s

)
− PN

(m−1∑
l=0

eA(tm−tl)
∑
j∈JK

(
B
(
Y Q
l +

∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)
ẽj −B(Y Q

l )ẽj

))∥∥∥2

H

]

=E

[∥∥∥PN(m−1∑
l=0

∑
i,j∈JK

√
ηj
√
ηie

A(tm−tl)B′(Y Q
l )
(
B(Y Q

l )ẽi, ẽj
)
I(i,j)(hl)

)

− PN
(m−1∑
l=0

eA(tm−tl)
∑
j∈JK

(
B
(
Y Q
l +

∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)
ẽj −B(Y Q

l )ẽj

))∥∥∥2

H

]

for all m ∈ {1, . . . ,M}, M,N,K ∈ N.
A Taylor approximation of second order of the second term, similar to (3.30), assumption (C3),
and the triangle inequality imply

E
[
‖Ȳm − Ym‖2H

]
≤ E

[∥∥∥m−1∑
l=0

eA(tm−tl)
∑
j∈JK

1

2

∫ 1

0

∫ r

0
B′′
(
Y Q
l + u

∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)

( ∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl),
∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)
ẽj r dudr

∥∥∥2

H

]

≤ E

[(m−1∑
l=0

∑
j∈JK

1

2

∫ 1

0

∫ r

0

∥∥∥eA(tm−tl)B′′
(
Y Q
l + u

∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)

( ∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl),
∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)
ẽj

∥∥∥
H
r dudr

)2
]

≤ CE

[(m−1∑
l=0

∑
j∈JK

∫ 1

0

∫ r

0

∥∥∥B′′(Y Q
l + u

∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
)∥∥∥

L(2)(H,L(V,H))∥∥∥ ∑
i∈JK

√
ηj
√
ηiPNB(Y Q

l )ẽiI(i,j)(hl)
∥∥∥2

H
r du dr

)2
]

≤ CE

[(m−1∑
l=0

∑
j∈JK

∥∥∥B(Y Q
l )

∑
i∈JK

√
ηj
√
ηiẽiI(i,j)(hl)

∥∥∥2

H

)2
]

for all m ∈ {1, . . . ,M}, M,N,K ∈ N.
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Assume that (C6a) holds; by condition (C3) and due to Lemma 4.3, we obtain

E
[
‖Ȳm − Ym‖2H

]
≤ CE

[(m−1∑
l=0

∑
j∈JK

‖B(Y Q
l )‖2L(V,H)

∥∥∥ ∑
i∈JK

√
ηj
√
ηiẽiI(i,j)(hl)

∥∥∥2

V

)2
]

≤ CE

[(m−1∑
l=0

∑
j∈JK

‖B(Y Q
l )‖2L(V,Hδ)

∑
i1,i2∈JK

ηj
√
ηi1
√
ηi2I(i1,j)(hl)I(i2,j)(hl)〈ẽi1 , ẽi2〉V

)2
]

= CE

[(m−1∑
l=0

∑
j∈JK

‖B(Y Q
l )‖2L(V,Hδ)

∑
i∈JK

ηjηiI
2
(i,j)(hl)

)2
]

≤ C
(m−1∑

l=0

∑
j∈JK

∑
i∈JK

(
E
[
‖B(Y Q

l )‖4L(V,Hδ)

] 1
2

)(
E
[(
ηjηiI

2
(i,j)(hl)

)2]) 1
2

)2

≤ C
(m−1∑
l=0

∑
j∈JK

∑
i∈JK

(
E
[
η2
j η

2
i I

4
(i,j)(hl)

]) 1
2
)2

for all m ∈ {1, . . . ,M}, M,K ∈ N. If (C6b) holds instead, the estimate follows similarly.

Eventually, we obtain

E
[
‖Ȳm − Ym‖2H

]
≤C
(m−1∑
l=0

∑
j∈JK

ηj
∑
i∈JK

ηi

(
E
[
I4

(i,j)(hl)
]) 1

2
)2

≤C
(m−1∑
l=0

(trQ)2h2
)2
≤ CTh2(trQ)4 (4.36)

by the distribution properties of I(i,j)(hl), l ∈ {0, . . . ,m− 1}, i, j ∈ JK for all m ∈ {1, . . . ,M},
M,K ∈ N.

Next, we determine the error that results from the approximation of the iterated stochastic

integral, that is, we estimate the term
(

E
[
‖Ym − Y Q

m ‖2H
]) 1

2 , for all m ∈ {0, . . . ,M}, M ∈ N.
We compute Taylor approximations of first order of the approximation operators of the derivative
and obtain for all m ∈ {1, . . . ,M}, M,N,K ∈ N

E
[
‖Ym − Y Q

m ‖2H
]

= E

[∥∥∥PN(eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s

+

m−1∑
l=0

∑
j∈JK

eA(tm−tl)
(
B
(
Y Q
l +

∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl)

)
ẽj −B(Y Q

l )ẽj

))

− PN
(
eAtmX0 +

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)F (Y Q
l ) ds+

m−1∑
l=0

∫ tl+1

tl

eA(tm−tl)B(Y Q
l ) dWK

s
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+

m−1∑
l=0

∑
j∈JK

eA(tm−tl)
(
B
(
Y Q
l +

∑
i∈JK

PNB(Yl)ẽiĪ
Q
(i,j)(hl)

)
ẽj −B(Y Q

l )ẽj

))∥∥∥2

H

]

= E

[∥∥∥PN(m−1∑
l=0

∑
j∈JK

eA(tm−tl)
(
B′(Y Q

l )
( ∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl), ẽj

)
+

1

2
eA(tm−tl)B′′(ξ(Y Q

l , j))
( ∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl)

)
ẽj

−B′(Y Q
l )
( ∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl), ẽj

)
− 1

2
eA(tm−tl)B′′(ξ̄(Yl, j))

( ∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl)

)
ẽj

))∥∥∥2

H

]
.

By rearranging the expression, we obtain

E
[
‖Ym − Y Q

m ‖2H
]

≤ CE

[∥∥∥m−1∑
l=0

eA(tm−tl)
(∫ tl+1

tl

B′(Y Q
l )
(∫ s

tl

B(Y Q
l ) dWK

r

)
dWK

s

−
∑

i,j∈JK

ĪQ(i,j)B
′(Y Q

l )(B(Y Q
l )ẽi, ẽj)

)∥∥∥2

H

]

+ CE

[∥∥∥m−1∑
l=0

eA(tm−tl)
∑
j∈JK

1

2(
B′′(ξ(Y Q

l , j))
( ∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl)

)
ẽj

−B′′(ξ̄(Y Q
l , j))

( ∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl)

)
ẽj

)∥∥∥2

h

]

≤ C
m−1∑
l=0

E

[∥∥∥ ∫ tl+1

tl

B′(Y Q
l )
(∫ s

tl

B(Y Q
l ) dWK

r

)
dWK

s −
∑

i,j∈JK

ĪQ(i,j)(hl)B
′(Y Q

l )(B(Y Q
l )ẽi, ẽj)

∥∥∥2

H

]

+ CM

m−1∑
l=0

( ∑
j∈JK

(
E

[∥∥∥1

2

(
B′′(ξ(Y Q

l , j))
( ∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiI

Q
(i,j)(hl)

)
ẽj

−B′′(ξ̄(Y Q
l , j))

( ∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl),

∑
i∈JK

PNB(Y Q
l )ẽiĪ

Q
(i,j)(hl)

)
ẽj

)∥∥∥2

H

]) 1
2
)2

for all m ∈ {1, . . . ,M}, M,N,K ∈ N.

The first term can be estimated as in Theorem 4.1 or Theorem 4.2, respectively. We get for
Algorithm 1

E

[∥∥∥ ∫ tl+1

tl

B′(Y Q
l )
(∫ s

tl

B(Y Q
l ) dWK

r

)
dWK

s −
∑

i,j∈JK

ĨQ(i,j)(hl)B
′(Y Q

l )(B(Y Q
l )ẽi, ẽj)

∥∥∥2

H

]

≤ CQ
h2

π2D
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and for Algorithm 2

E

[∥∥∥ ∫ tl+1

tl

B′(Y Q
l )
(∫ s

tl

B(Y Q
l ) dWK

r

)
dWK

s −
∑

i,j∈JK

ÎQ(i,j)(hl)B
′(Y Q

l )(B(Y Q
l )ẽi, ẽj)

∥∥∥2

H

]

≤ CQ
h2

D2
η−1
K

for all l ∈ {0, . . . ,m − 1}, m ∈ {1, . . . ,M}, h > 0, and M,K,D ∈ N. In the following, we
keep the proof independent of the algorithm to approximate the iterated stochastic integral and
denote this error by E(h,D) for all h > 0, D ∈ N.
Then, we get by assumption (C3)

E
[
‖Ym − Y Q

m ‖2H
]

≤C
m−1∑
l=0

E(h,D)

+ CM

m−1∑
l=0

( ∑
j∈JK

(
E
[∥∥B′′(ξ(Y Q

l , j))
∥∥2

L(2)(H,L(V,H))

∥∥ ∑
i∈JK

B(Y Q
l )ẽiI

Q
(i,j)(hl)

∥∥4

H

]) 1
2
)2

+ CM

m−1∑
l=0

( ∑
j∈JK

(
E
[∥∥B′′(ξ̄(Y Q

l , j))
∥∥2

L(2)(H,L(V,H))

∥∥ ∑
i∈JK

B(Y Q
l )ẽiĪ

Q
(i,j)(hl)

∥∥4

H

]) 1
2
)2

≤C
m−1∑
l=0

E(h,D)

+ CM
m−1∑
l=0

( ∑
j∈JK

(
E

[( ∑
i1,i2∈JK

IQ(i1,j)(hl)I
Q
(i2,j)

(hl)〈ẽi1 , ẽi2〉V
)2∥∥B(Y Q

l )
∥∥4

L(V,H)

]) 1
2
)2

+ CM

m−1∑
l=0

( ∑
j∈JK

(
E

[( ∑
i1,i2∈JK

ĪQ(i1,j)(hl)Ī
Q
(i2,j)

(hl)〈ẽi1 , ẽi2〉V
)2∥∥B(Y Q

l )
∥∥4

L(V,H)

]) 1
2
)2

≤C
m−1∑
l=0

E(h,D) + CM

m−1∑
l=0

( ∑
j∈JK

(
E

[( ∑
i∈JK

(
IQ(i,j)(hl)

)2)2∥∥B(Y Q
l )
∥∥4

L(V,H)

]) 1
2
)2

+ CM

m−1∑
l=0

( ∑
j∈JK

(
E

[( ∑
i∈JK

(
ĪQ(i,j)(hl)

)2)2∥∥B(Y Q
l )
∥∥4

L(V,H)

]) 1
2
)2

.

Due to the properties of IQ(i,j)(hl), Ī
Q
(i,j)(hl) for l ∈ {0, . . . ,M − 1}, i, j ∈ JK , M,K ∈ N,

assumptions (C3), (C6b) or (C6a), and Lemma 4.3, we obtain for all m ∈ {1, . . . ,M}, M ∈ N

E
[
‖Ym − Y Q

m ‖2H
]
≤C

m−1∑
l=0

E(h,D) + CQM

m−1∑
l=0

((
h4 E

[
‖B(Y Q

l )‖4L(V,H)

]) 1
2
)2

≤C
m−1∑
l=0

E(h,D) + CT,Q

m−1∑
l=0

h3

≤C
m−1∑
l=0

E(h,D) + CT,Qh
2. (4.37)
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Now, let ĪQ(i,j)(hl) = ĨQ(i,j)(hl) for l ∈ {0, . . . ,M}, i, j ∈ JK , M,K ∈ N, that is, we approximate
the iterated integrals by Algorithm 1. Then, we get for all m ∈ {1, . . . ,M}, M,D ∈ N

E
[
‖Ym − Y Q

m ‖2H
]
≤C

m−1∑
l=0

CQ
h2

π2D
+ CT,Qh

2 ≤ CT,Q
( h
D

+ h2
)
.

For Algorithm 2, on the other hand, we obtain

E
[
‖Ym − Y Q

m ‖2H
]
≤CQ

m−1∑
l=0

h2

D2
η−1
K + CT,Qh

2 ≤ CT,Q
( h

D2
η−1
K + h2

)
.

for all m ∈ {1, . . . ,M}, M,K,D ∈ N.

We combine estimates (4.35), (4.36), and (4.37) in order to obtain

E
[
‖YMIL

m − Y Q
m ‖2H

]
≤ CTh

m−1∑
l=0

E
[
‖YMIL

l − Y Q
l ‖

2
H

]
+ CTh

2(trQ)4 + CME(h,D) + CT,Qh
2

≤ CME(h,D) + CT,Qh
2

for all m ∈ {1, . . . ,M}, M,D ∈ N by Gronwall’s Lemma.

In total, this yields for the DFM1

(
E
[
‖Xtm − Y Q

m ‖2H
]) 1

2 ≤CT,Q
((

inf
i∈I\IN

λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ) +

√
h√
D

)
,

and for the DFM2 it holds(
E
[
‖Xtm − Y Q

m ‖2H
]) 1

2 ≤CT,Q
((

inf
i∈I\IN

λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
+M−min(2(γ−β),γ) +

√
h

D
η
− 1

2
K

)
for all m ∈ {0, . . . ,M}, M,N,K,D ∈ N.

4.4 Numerical Analysis

We illustrate the theoretical results obtained in the previous sections with some numerical simu-
lations now. Therefore, we compare the derivative-free Milstein scheme combined with Algorithm
1 or Algorithm 2 to the exponential Euler scheme in this section. We refrain from implementing
a combination of the Milstein scheme with Algorithm 1 or Algorithm 2, respectively, as the ef-
fective order of convergence of this scheme is lower than for the DFM1 and DFM2; this follows
in the same way as in Section 3.4.

Consider a setting similar to the one outlined in Section 3.6 and fix H = V = L2((0, 1),R).
Moreover, we choose F (y) = 1− y for all y ∈ Hβ , ei = ẽi =

√
2 sin(iπx) for all i ∈ N, x ∈ (0, 1),

and assume Xt(0) = Xt(1) = 0, X0(x) = 0 for all t ∈ (0, T ], x ∈ (0, 1).
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Let µij(y) =
〈y,ej〉H
ip+j4

for all i ∈ I, j ∈ J , y ∈ Hβ and some p > 2.

This implies φkij(y) =

 0, k 6= j

1
ip+j4

, k = j

for all i, k ∈ I, j ∈ J , y ∈ Hβ .

The equation does not fulfill (C5) as

∑
k∈I

φkim(y)µkn(y) =
1

ip +m4

〈y, en〉H
mp + n4

but ∑
k∈I

φkin(y)µkm(y) =
1

ip + n4

〈y, em〉H
np +m4

holds for all y ∈ Hβ and all i ∈ I, n,m ∈ JK , K ∈ N.
Conditions (C2) and (C4) are, however, obviously fulfilled.
In the following examples, we choose A = ∆

100 , that is, λi = π2i2

100 , ei =
√

2 sin(iπx) for all i ∈ N,
x ∈ (0, 1) such that (C1) holds. Next, we verify (C3). From Section 3.6, we get

‖B(y)‖L(V,Hδ) ≤
∑
k∈I

∑
j∈J

λδk|µkj(y)| ≤
∑
k∈I

∑
j∈J

1

j2
π2δ 1

k
p
2
−2δ
‖y‖H

for all y ∈ Hδ. It holds, ‖B(y)‖L(V,Hδ) ≤ C(1 + ‖y‖Hδ) for all y ∈ Hδ if δ < p−2
4 . We select the

maximal value for δ in the examples below.
Moreover, we get

‖(−A)−ϑB(z)Q−α‖LHS(V0,H) =
(∑
k∈J

η1−2α
k

∑
i∈I

λ−2ϑ
i µ2

ik(z)
) 1

2

≤
(∑
k∈J

1

kρQ(1−2α)+4

∑
i∈I

1

ip+4ϑ
‖z‖2H

) 1
2

for all z ∈ Hγ . So, ‖(−A)−ϑB(z)Q−α‖LHS(V0,H) ≤ C(1 + ‖z‖Hγ ) holds true for all z ∈ Hγ if
α <

ρQ+3
2ρQ

.

Example 1 - Similar Effective Orders for DFM1 and DFM2

First, let p = 4 and ρQ = 3. In this case, (C3) holds with δ ∈ (0, 1
2) and α ∈ (0, 1). Moreover,

(C6a) is fulfilled as ρQ > 2. These parameters yield γ ∈ [1
2 , 1) for β = 0. We select qDFM = γ =

1− ε, α = 1− ε for some ε ∈ (0, 2
5).

According to Table 4.1, we determine which scheme to use in this setting. It holds

2γρAαρQ + γρA − αρQ > 0 and 2γρAαρQ + ρQγρA + 2(γρA − αρQ) > 0.
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Next, we compute γρA > ρQ(α− γρA) and

αρQγρA
2αρQγρA + γρA − αρQ

<
3

5
< q.

Moreover, we get q > α(2q − 1), αρQ > γρA and, finally, we show

αρQγρA
2γρAαρQ + ρQγρA + 2(γρA − αρQ)

<
3

8
< q.

Therefore, in this setting, we expect the scheme DFM1 to achieve a higher effective order of
convergence.
Let us fix some N ∈ N, we obtain the relation of N,M,K as M = N2 and K = N

2
3 . For the

expected order of convergence, we get error(DFM1) = error(DFM2) = O(c̄−
3
8

+ε) for some ε > 0.
In the EES, however, we take M = N4, K = N

2
3 and obtain error(EES) = O(c̄−

6
17

+ε).

The following table and plot illustrate the results of the numerical analysis. We simulate 300
paths with the approximation schemes and compare the results to a substitute for the exact
solution. We choose an approximation computed with the linear implicit Euler scheme with
NX = 26, KX = 24, and MX = 220 for comparison. In Figure 4.1, one observes that all the
schemes converge with the expected order of convergence. Moreover, from Table 4.2 we get an
impression on the difference in the computational cost of the numerical schemes.

DFM1 DFM2

N M K CC Error Std CC Error Std

2 4 2
2
3 64 3.4 · 10−2 3.7 · 10−3 71 3.4 · 10−2 3.6 · 10−3

4 24 2
4
3 1344 2.5 · 10−2 2.1 · 10−4 1574 2.5 · 10−2 2.1 · 10−4

8 26 22 30720 1.7 · 10−2 2.7 · 10−5 30720 1.7 · 10−2 2.7 · 10−5

16 28 2
8
3 1462272 6.3 · 10−3 7.0 · 10−6 1679055 6.3 · 10−3 7.0 · 10−6

32 210 2
10
3 58753024 1.6 · 10−3 8.4 · 10−6 66832237 1.6 · 10−3 8.3 · 10−6

Linear Implicit Euler Exponential Euler

N M K CC Error Std CC Error Std

2 24 2
2
3 64 2.2 · 10−2 5.6 · 10−3 64 2.2 · 10−2 5.6 · 10−3

4 28 2
4
3 3072 2.6 · 10−2 5.1 · 10−4 3072 2.7 · 10−2 5.2 · 10−4

8 212 22 131072 1.7 · 10−2 3.9 · 10−5 131072 1.7 · 10−2 4.0 · 10−5

16 216 2
8
3 7340032 6.1 · 10−3 1.2 · 10−5 7340032 6.1 · 10−3 1.2 · 10−6

32 220 2
10
3 369098752 1.5 · 10−3 2.6 · 10−6 369098752 1.5 · 10−3 2.7 · 10−6

Table 4.2: Error and standard deviation for Example 1 obtained from 300 paths. CC denotes the
computational cost computed as CC(DFM1) = 3MNK+M2q K(K−1)

2 , CC(DFM2) = 3MNK+

M q+ 1
2K

ρQ
2
K(K−1)

2 , and CC(EES) = CC(LIE) = MNK.
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Figure 4.1: Error against computational cost for Example 1 for 300 paths and N = 2, 4, 8, 16, 32
in log-log scale.

Example 2 - Lower Computational Cost for DFM1

Now, we choose p = 3 and ρQ = 3. Therewith, we get δ ∈ (0, 1
4) and α ∈ (0, 1). As before, (C6a)

holds due to ρQ > 2. For β = 0, we get qDFM = γ ∈ [1
4 ,

3
4). We set γ = 3

4 − ε and α = 1 − ε
with ε ∈ (0, 1

10). Again, we compute

2γρAαρQ + γρA − αρQ > 0 and 2γρAαρQ + ρQγρA + 2(γρA − αρQ) > 0.

Moreover, we get γρA > ρQ(α − γρA) and αρQγρA
2γρAαρQ+γρA−αρQ < 9

14 < q. Finally, we compute
q > α(2q − 1) and αρQ > γρA. This parameter constellation suggests, see Table 4.1, that the
DFM1 converges with the highest effective order of convergence, given in (4.27).

For both DFM1 and DFM2, we get M = N2, K = N
1
2 , and error(DFM1) = O(c̄−

3
8

+ε),
error(DFM2) = O(c̄−

6
17

+ε) for some ε > 0. For the exponential Euler scheme, we have qEES = 1
2

and obtain M = N3, K = N
1
2 . The order of convergence equals error(EES) = O(c̄−

1
3

+ε).

For this example, we employ an approximation computed by the linear implicit Euler with
NX = 26, KX = 24, andMX = 218 instead of the exact solution. In Table 4.3 and Figure 4.2, we
observe that the predicted effective orders of convergence of the derivative-free Milstein schemes
and the exponential Euler scheme are outperformed. A reason might be that the estimates
in Section 3.6, leading to the choice of the parameters, are not sharp. Moreover, the DFM2
involves a higher computational effort than the DFM1 which leads to the lower effective order
of convergence.
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DFM1 DFM2

N M CC Error Std CC Error Std

2 4 56 3.0 · 10−2 2.7 · 10−3 64 3.0 · 10−2 2.7 · 10−3

4 24 448 2.5 · 10−2 5.3 · 10−4 475 2.5 · 10−2 5.3 · 10−4

8 26 6144 1.7 · 10−2 6.6 · 10−5 7430 1.7 · 10−2 6.6 · 10−5

16 28 73728 6.3 · 10−3 3.0 · 10−5 98304 6.3 · 10−3 3.0 · 10−5

32 210 1081344 1.7 · 10−3 2.6 · 10−5 1866831 1.7 · 10−3 2.6 · 10−5

Linear Implicit Euler Exponential Euler

N M CC Error Std CC Error Std

2 23 32 2.1 · 10−2 2.8 · 10−3 32 2.1 · 10−2 2.9 · 10−3

4 26 512 2.6 · 10−2 4.2 · 10−4 512 2.7 · 10−2 4.5 · 10−4

8 29 12288 1.7 · 10−2 1.5 · 10−4 12288 2.0 · 10−2 1.7 · 10−4

16 212 262144 6.2 · 10−3 3.5 · 10−5 262144 6.4 · 10−3 3.8 · 10−5

32 215 6291456 1.6 · 10−3 3.2 · 10−5 6291456 1.7 · 10−3 3.6 · 10−5

Table 4.3: Error and standard deviation for Example 2 obtained from 500 paths. CC denotes the
computational cost computed as CC(DFM1) = 3MNK+M2q K(K−1)

2 , CC(DFM2) = 3MNK+

M q+ 1
2K

ρQ
2
K(K−1)

2 , and CC(EES) = CC(LIE) = MNK.
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Figure 4.2: Error against computational cost for Example 2 for 500 paths and N = 2, 4, 8, 16, 32
in log-log scale.

Example 3 - Differing Effective Orders

Finally, we choose ρQ = 4 and p = 4. This yields α ∈ (0, 7
8), δ ∈ (0, 1

2), and qDFM = γ ∈ [1
2 , 1)

for β = 0. Here, we set γ = 1− ε and α = 7
8 − ε for some ε ∈ (0, 1

4).
We compute the following expressions to determine the optimal scheme in this setting

2γρAαρQ + γρA − αρQ > 0, 2γρAαρQ + ρQγρA + 2(γρA − αρQ) > 0,
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and
αρQγρA

2γρAαρQ + γρA − αρQ
<

14

27
< q.

Moreover, we compute γρA > ρQ(α − γρA), α(2q − 1) < q, and αρQ > γρA. By Table 4.1, we
identify the DFM1 as the optimal scheme.

For this parameter constellation, the effective order of convergence of the schemes DFM1 and
DFM2 is given in (4.27) and (4.29), respectively. This yields M = N2, K = N

4
7 for the DFM2

and error(DFM2) = O(c̄−
14
37

+ε) for some ε > 0. For the DFM1, however, we get M = N2,
K = N

4
7 and error(DFM1) = O(c̄−

7
18

+ε). Finally, for the exponential Euler scheme, we choose
M = N4, K = N

4
7 and obtain error(EES) = O(c̄−

14
39

+ε).
Here, the exact solution is replaced by an approximation computed with the linear implicit Euler
scheme for NX = 26, KX = 2

24
7 , and MX = 220.

DFM1 DFM2

N M CC Error Std CC Error Std

2 4 64 3.0 · 10−2 2.3 · 10−3 80 3.0 · 10−2 2.3 · 10−3

4 24 1344 2.5 · 10−2 3.1 · 10−4 2304 2.5 · 10−2 3.1 · 10−4

8 26 30720 1.7 · 10−2 4.6 · 10−5 55296 1.7 · 10−2 4.6 · 10−5

16 28 716800 6.3 · 10−3 9.3 · 10−6 1085440 6.3 · 10−3 9.3 · 10−6

32 210 30146560 1.6 · 10−3 9.0 · 10−6 59506688 1.6 · 10−3 9.0 · 10−6

Linear Implicit Euler Exponential Euler

N M CC Error Std CC Error Std

2 24 64 2.2 · 10−2 4.7 · 10−3 64 2.3 · 10−2 4.9 · 10−3

4 28 3072 2.7 · 10−2 4.8 · 10−4 3072 2.7 · 10−2 5.0 · 10−4

8 212 131072 1.7 · 10−2 8.3 · 10−5 131072 1.7 · 10−2 8.5 · 10−5

16 216 5242880 6.1 · 10−3 1.8 · 10−5 5242880 6.1 · 10−3 1.8 · 10−5

32 220 268435456 1.5 · 10−3 1.6 · 10−6 268435456 1.5 · 10−3 1.7 · 10−6

Table 4.4: Error and standard deviation for Example 3 obtained from 500 paths. CC denotes the
computational cost computed as CC(DFM1) = 3MNK+M2q K(K−1)

2 , CC(DFM2) = 3MNK+

M q+ 1
2K

ρQ
2
K(K−1)

2 , and CC(EES) = CC(LIE) = MNK.
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Figure 4.3: Error against computational cost for Example 3 for 500 paths and N = 2, 4, 8, 16, 32
in log-log scale.

In Examples 1, 2, and 3, the derivative-free Milstein scheme combined with Algorithm 1 or
Algorithm 2, respectively, obtains a higher effective order of convergence than the exponential
Euler scheme. This confirms the theoretical analysis that we conducted in Section 4.1 to Section
4.3. In our examples, we selected the maximal value for α and γ, which yields αρQ =

ρQ+3
2 −

ερQ ≈
ρQ+3

2 > 5
2 . On the other hand, γρA < ρA = 2. Therefore, in this kind of setting with A

denoting the Laplacian, the DFM1 always outperforms the exponential Euler scheme, see Table
4.1. Concerning the differences between the schemes DFM1 and DFM2, one has to keep in mind
that we did not include the additional computational effort that arises if the matrix

√
Σ(∞) is

computed by a Cholesky decomposition.
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5
From Local to Global Error Estimates

In the error analyses in the last chapters, we computed global error estimates for the approxi-
mation schemes directly, see Section 3.5 and Section 4.3. A different approach to obtain these
estimates is the estimation of the local error, from which the global error can be inferred.

Let T ∈ (0,∞), denote by (Xt)t∈[0,T ] the real-valued exact solution of some differential equation
and by (Ym)m∈{0,...,M}, M ∈ N, the approximation obtained with some numerical scheme.
For ODEs and SODEs, there exist well known results on the connection between local errors,
that is, the error that results by conducting one step with a numerical scheme, and the global
error of XT −YM for some fixed M ∈ N. The definitions of the local errors em, m ∈ {1, . . . ,M},
and the global error depend on the type of differential equation that is considered. For SODEs,
we compute the mean-square error, for example.

For ODEs, the order of convergence is reduced by one if the global instead of the local error is
considered, that is, for some p > 1, h := maxm∈{1,...,M} hm, and m ∈ {1, . . . ,M}, M ∈ N, we
have

em ≤ Chp+1
m ⇒ |XT − YM | ≤ C̃hp,

see [23, Chapter II, Theorem 3.4, Theorem 3.6] for the assumptions that have to be fulfilled.

For SODEs, however, it has been shown by Milstein, [50, Theorem 1.1], that the strong order of
convergence p > 1

2 is reduced by 1
2 only when passing from the local to the global error, that is,

em ≤ Chp+1 ⇒
(
E
[
|XT − YM |2

]) 1
2 ≤ C̃hp+

1
2 .
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In [8], Chen and Hong analyzed semi-discrete schemes for SPDEs of type

Ym+1 = Ŝ(h)Ym + Φ(Ym,∆W
M
m , h)

for all m ∈ {0, . . . ,M − 1}, M ∈ N, h > 0. They showed that the difference in the order of
convergence is influenced by the approximation of the semigroup eAh by some operator Ŝ(h) with
‖eAh − Ŝ(h)‖L(H) ≤ Chr for r > 0, h ≥ 0, as well. For a local error of order p ≥ 1

2 , computed in
‖ · ‖Hα for some α ≥ 0 determined by their setting, they proved

E
[
‖XT − YM‖2Hα

]
≤ Chmin(r,p− 1

2
)

in [8, Theorem 4.2].

In [14] and [32, p.157,158], however, the authors observed the same order of convergence for the
local and the global error in numerical simulations. In the following, we show that this discovery
can be proved for numerical schemes of general type

Y N,M,K
m+1 = PNS(h)Y N,M,K

m + Φ(Y N,M,K
m ,∆WK,M

m , h)

for all m ∈ {0, . . . ,M − 1}, M,N,K ∈ N and all h ∈ [hmin, 1) with hmin > 0 if we assume the
setting outlined in Section 3.1. The result can be obtained for semigroups S(t), t ≥ 0, with
‖S(t)‖L(H) < 1 for all t > hmin. In this case, the semigroup inhibits the accumulation of local
errors.

Theorem 5.1 (Local and Global Error Estimates)
Let M,N,K ∈ N be arbitrarily fixed. Assume that the local error fulfills

em ≤ Chp +
(

inf
i∈I\IN

λi

)−γ
+
(

sup
j∈J\JK

ηj

)α
(5.1)

for some p > 0, all m ∈ {1, . . . ,M}, and ‖S(t)‖L(H) < 1 for all t ∈ (0, T ]. Furthermore, we
require the numerical scheme to fulfill

E
[
‖Φ(w, u, h)− Φ(y, u, h)‖2H

]
≤ ChE

[
‖w − y‖2H

]
(5.2)

for all h > 0, w, y ∈ HN , u ∈ VK . Then, there exists a constant CT,S > 0, independent of
M,N,K, such that we obtain the global error for all h ∈ [hmin, 1), hmin > 0, as

(
E
[
‖XT − Y N,M,K

M ‖2H
]) 1

2 ≤ CT,S
(
Chp +

(
inf

i∈I\IN
λi

)−γ
+
(

sup
j∈J\JK

ηj

)α)
.

Proof.
We fix MS := ‖S(hmin)‖L(H) <1. Denote by Xt,(s,x) the solution process at time t ∈ [0, T ]

starting in Xs = x for 0 ≤ s < t, x ∈ Hγ . Yt,(s,x), s, t ∈ [0, T ], s < t, is to be understood
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analogously.
First, we rewrite the global error such that we obtain a dependence on the local error em =(
E
[
‖Xtm − Ym,(m−1,Xtm−1 )‖2H

]) 1
2 , m ∈ {1, . . . ,M}, M ∈ N. Let a > 0, then we obtain by

Young’s inequality

E
[
‖XT − YM‖2H

]
= E

[
‖XT − YM,(M−1,XtM−1

) + YM,(M−1,XtM−1
) − YM‖2H

]
≤ (1 + a)E

[
‖XT − YM,(M−1,XtM−1

)‖2H
]

+
(
1 +

1

a

)
E
[
‖YM,(M−1,XtM−1

) − YM‖2H
]

≤ (1 + a)e2
M

+
(
1 +

1

a

)
E
[
‖eAh(XtM−1 − YM−1) + Φ(XtM−1 ,∆W

K,M
M−1, h)− Φ(YM−1,∆W

K,M
M−1, h)‖2H

]
for all M,K ∈ N such that T

M ≥ hmin.
Further, we obtain with Young’s inequality for a1 > 0 and assumption (5.2)

E
[
‖XT − YM‖2H

]
≤(1 + a)e2

M +
(
1 +

1

a

)(
1 +

1

a1

)
E
[
‖eAh(XtM−1 − YM−1)‖2H

]
+
(
1 +

1

a

)
(1 + a1)E

[∥∥Φ(XtM−1 ,∆W
K,M
M−1, h)− Φ(YM−1,∆W

K,M
M−1, h)

∥∥2

H

]
≤(1 + a)e2

M +
(
1 +

1

a

)(
1 +

1

a1

)
E
[
‖eAh(XtM−1 − YM−1)‖2H

]
+
(
1 +

1

a

)
(1 + a1)ChE

[
‖XtM−1 − YM−1‖2H

]
for all M,K ∈ N such that T

M ≥ hmin.
For legibility, let c1 :=

(
1 + 1

a

)(
1 + 1

a1

)
and c2 :=

(
1 + 1

a

)
(1 + a1). Therewith, we get for all

M,K ∈ N with T
M ≥ hmin the estimate

E
[
‖XT − YM‖2H

]
≤ (1 + a)e2

M + c1M
2
SE
[
‖XtM−1 − YM−1‖2H

]
+ c2ChE

[
‖XtM−1 − YM−1‖2H

]
.

Now, we replace E
[
‖XtM−1 − YM−1‖2H

]
in the second term inductively. This yields

E
[
‖XT − YM‖2H

]
≤ (1 + a)e2

M + c1M
2
S

(
(1 + a)e2

M−1 + c1M
2
SE
[
‖XtM−2 − YM−2‖2H

]
+ c2ChE

[
‖XtM−2 − YM−2‖2H

])
+ c2ChE

[
‖XtM−1 − YM−1‖2H

]
= (1 + a)e2

M + c1M
2
S(1 + a)e2

M−1 + c2
1M

4
SE
[
‖XtM−2 − YM−2‖2H

]
+ c1M

2
Sc2ChE

[
‖XtM−2 − YM−2‖2H

]
+ c2ChE

[
‖XtM−1 − YM−1‖2H

]
≤ (1 + a)e2

M + c1M
2
S(1 + a)e2

M−1 + c2
1M

4
S

(
(1 + a)e2

M−2

+ c1M
2
SE
[
‖XtM−3 − YM−3‖2H

]
+ c2ChE

[
‖XtM−3 − YM−3‖2H

])
+ c1M

2
Sc2ChE

[
‖XtM−2 − YM−2‖2H

]
+ c2ChE

[
‖XtM−1 − YM−1‖2H

]
= (1 + a)e2

M + c1M
2
S(1 + a)e2

M−1 + c2
1M

4
S(1 + a)e2

M−2

+ c3
1M

6
SE
[
‖XtM−3 − YM−3‖2H

]
+ c2

1M
4
Sc2ChE

[
‖XtM−3 − YM−3‖2H

]
+ c1M

2
Sc2ChE

[
‖XtM−2 − YM−2‖2H

]
+ c2ChE

[
‖XtM−1 − YM−1‖2H

]
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≤ . . . ≤ (1 + a)e2
M + (1 + a)

M−1∑
i=0

ci+1
1 M

2(i+1)
S e2

M−1−i

+ c2Ch
M−1∑
i=0

ci1M
2i
S E
[
‖XtM−1−i − YM−1−i‖2H

]
for all M,K ∈ N such that T

M ≥ hmin.
We need c1M

2
S < 1 to hold in the following; this can be obtained by choosing c1 = (1+ 1

a)(1+ 1
a1

) <
1
M2
S
which is possible for all h ∈ [hmin, 1) as MS < 1. Furthermore, as the local error e2

m does not
depend on m for all m ∈ {0, . . . ,M}, M ∈ N, see (5.1), we denote this term by E . Therewith,
we get by Gronwall’s Lemma

E
[
‖XT − YM‖2H

]
≤ (1 + a)E + (1 + a)E

M−1∑
i=0

ci+1
1 M

2(i+1)
S + c2Ch

M−1∑
i=0

E
[
‖XtM−1−i − YM−1−i‖2H

]
≤ (1 + a)E + (1 + a)E 1

1− c1M2
S

+ c2Ch
M−1∑
m=0

E
[
‖Xtm − Ym‖2H

]
≤ Cc1,MS

(1 + a)Eec2CT

≤ CT,MS

(
Ch2p +

(
inf

i∈I\IN
λi

)−2γ
+
(

sup
j∈J\JK

ηj

)2α)
for all M,N,K ∈ N such that T

M ≥ hmin.

Remark 5.1
The condition ‖S(t)‖L(H) < 1 is crucial for this estimate as the smoothing effect of the semigroup
is the main difference compared to SODEs. However, we have to bound h ≥ hmin > 0 away from
zero as ‖S(0)‖L(H) = 1.
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6
Conclusion and Remarks

As indicated by their effective order of convergence, derivative-free numerical schemes of higher
orders efficiently approximate the mild solution (Xt)t∈[0,T ] to SPDEs of type (1.1). This rate is
determined by combining the theoretical order with the computational cost (CC) according to

min
N,M,K

(
sup

m∈{0,...,M}
E
[∥∥Xtm − YM,N,K

m

∥∥2

H

]) 1
2 such that CC = c̄

for some c̄ > 0. The optimization problem yields a convergence rate in terms of the computational
cost c̄; it is this parameter that actually determines the scheme that is superior with respect to the
overall computational cost. We derived this value for various approximation schemes and showed
that for general equations the effective order of convergence is higher for the derivative-free
Milstein schemes than for the Milstein or the exponential Euler scheme. We developed differing
schemes for equations that are commutative and equations that do not fulfill this assumption. For
commutative equations, the simulation of the scheme is straightforward due to expression (3.11),
and the results are summarized in Table 3.2. If the SPDE is not commutative, we cannot rewrite
the iterated stochastic integrals in terms of increments of the Q-Wiener process. Therefore,
the approximation of these SPDEs requires the simulation of these integrals. We presented two
algorithms to approximate iterated stochastic integrals of type∫ t

s
B′(Xs)

(∫ r

s
B(Xs) dWK

u

)
dWK

r

for s, t ∈ [0, T ], s ≤ t, K ∈ N. For details on Algorithm 1 or Algorithm 2, we refer to page
86 and page 89. The approximation schemes that we derived obtain higher theoretical as well
as, for most parameter constellations, effective orders of convergence than the exponential Euler
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scheme, see Theorem 4.3 and Table 4.1. Algorithm 2, however, could be improved in terms
of the computational effort if one obtained a closed form for the matrix

√
Σ(∞), see equation

(4.24). In this case, there would be no need for a numerical algorithm to compute the Cholesky
decomposition of Σ(∞).

We proved estimates on the global error of the approximation methods directly. A different
approach to show the convergence of the numerical schemes is the estimation of the local error.
In a second step, the global error can then be inferred from this estimate. For ODEs and SODEs,
there exist universal results on the connection of these two error terms, see [23] and [50]. We
stated some ideas on the relation of local and global error estimates for SPDEs; these are in line
with empirical results from [32]. However, we are restricted to a step size h > hmin, hmin > 0.
So far, there exists no general result on this relationship which is consistent with the numerical
findings.

As the focus of this work was on the strong convergence of the numerical methods, it remains to
analyze the weak convergence of derivative-free approximation schemes. There exists literature
on the weak approximation of SPDEs, for example, [10, 15, 16, 29, 72], but there are no results
on derivative-free schemes so far.
Further research could focus on the systematic derivation of higher order schemes that are free
of derivatives as well. That is, one could investigate how to transfer the general idea of Runge-
Kutta schemes from other types of differential equations to SPDEs. In view of this, [32] is to
be mentioned. In this work, Jentzen and Kloeden derived Taylor expansions of arbitrary order
for the mild solution of SPDEs. Moreover, Hochbruck und Ostermann developed exponential
Runge-Kutta schemes for parabolic PDEs in [27]. These works constitute a promising basis for
research in this direction.
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Notation

(H, 〈·, ·〉H), (V, 〈·, ·〉V ) are real separable Hilbert spaces

L(V,H) :=
{
B : V → H |B is linear and bounded

}
L(V ) := L(V, V )

Hr := D((−A)r), r ∈ [0,∞) p.14

LHS(V,H) :=
{
B ∈ L(V ) :

(∑
j∈N
‖Bẽj‖2H

) 1
2
<∞, ẽj , j ∈ N, basis of V

}
p.18

V0 := Q
1
2V p.19

E :=
{

(Ψt)t∈[0,T ] ∈ L(V,H) : (Ψt)t∈[0,T ] elementary
}

p.19

N 2
W (0, T ;H) =

{
Y : [0, T ]× Ω→ LHS(V0, H) | Y is PT − B(LHS(V0, H))−measurable

and E
[ ∫ T

0

∥∥Ys∥∥2

LHS(V0,H)
ds
]
<∞

}
p.19

NW (0, T ;H) =
{
Y : [0, T ]× Ω→ LHS(V0, H) | Y is PT − B(LHS(V0, H))−measurable

and P
(∫ T

0
‖Ys‖2LHS(V0,H) ds <∞

)
= 1
}

p.20

L(V,H)0 :=
{
T |V0 |T ∈ L(V,H)

}
p.34

L(2)(H,L(V,H)) = L(H,L(H,L(V,H)) p.34

L
(2)
HS(V0, H) = LHS(V0, LHS(V0, H)) p.34
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