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Machine Vision for Inspection
and Novelty Detection

Fabian Timm

Wo nur habe ich meinen Schlüssel hingelegt? Nach langem Grübeln können wir
uns dennoch nicht an den Ort des Schlüssels erinnern und beginnen mit der

Suche. Häufig endet diese Suche nach kurzer Zeit erfolgreich, manchmal hat
man jedoch das Gefühl, die Nadel im Heuhaufen zu suchen.

Auch wenn diese Suchaufgabe bereits schwierig erscheint, gibt es noch weit komplizier-
tere Suchaufgaben – wenn beispielsweise das Suchobjekt teilweise oder gänzlich unbekannt
ist. Solche Suchaufgaben finden wir im alltäglichen Leben, besonders aber in der indus-
triellen Produktion, wo lange und komplexe Produktionsanlagen verwendet werden. Zur
Qualitätssicherung werden dort verschiedene Inspektionssysteme eingesetzt, die beispiels-
weise Druck, Temperatur oder Feuchtigkeit messen und einen Alarm auslösen, sobald
diese Messdaten nicht den Anforderungen genügen. Treten allerdings sehr subtile, optische
Defekte auf, wird eine manuelle Kontrolle jedes einzelnes Produktes vorgenommen. Eine
manuelle Kontrolle ist besonders dann unumgänglich, wenn unbekannt ist, welche Defekte
überhaupt auftreten können; in diesen Fällen werden Experten an zahlreichen fehlerfreien
Beispielen und einigen wenigen fehlerhaften trainiert. In dieser Arbeit beschreiben wir
optische Mustererkennungsysteme die genau diese Suchaufgabe – die Detektion von belie-
bigen und unspezifizierten Abweichungen von fehlerfreien Produkten – automatisch lösen
können.

Ein Mustererkennungsystem besteht in der Regel aus drei Ebenen: Bildvorverarbeitung,
Extraktion von charakteristischen Bildeigenschaften und Klassifikation dieser Eigenschaften.
Im theoretischen Teil dieser Arbeit stellen wir für jeden der drei Bereiche neue Methoden
vor, im praktischen Teil zeigen wir dann deren Anwendung in unterschiedlichen Musterer-
kennungsystemen mit besonderem Schwerpunkt auf Inspektionssysteme zur optischen
Qualitätsprüfung.

Die Bildvorverarbeitung ist für alle nachfolgenden Schritte innerhalb eines Musterer-
kennungssystems von großer Bedeutung, denn Ungenauigkeiten, beispielsweise bei der
Bildverbesserung oder der Extraktion von relevanten Bildbereichen, können anschließend
nur schwer kompensiert werden. Wir präsentieren zwei neue Verfahren zur Bildvorverar-
beitung. Das eine Verfahren kompensiert inhomogene Ausleuchtungen und verbessert das



Bild derart, dass kein Beleuchtungsgradient mehr erkennbar ist und die Bildränder nahezu
optimal extrapoliert werden. Das andere Verfahren dient zur Extraktion von runden Objek-
ten im Bild. Wir zeigen, dass auch bei extremen Bildrauschen, Verdeckung und Reflektionen
die runden Objekte mit höher Präzision detektiert werden können. Diese Methode kann
als vorverarbeitender Schritt bei der Inspektion von Schweißpunkten, p-Elektroden von
LEDs oder auch zum Eye-Tracking eingesetzt werden.

Zur Extraktion von charakteristischen Bildeigenschaften gibt es, prinzipiell, zwei unter-
schiedliche Ansätze – entweder werden die unverarbeiteten Intensitäten der relevanten
Bildregion zeilen- oder spaltenweise in einen Vektor geschrieben oder problemspezifische
Bildmerkmale berechnet, wie beispielsweise Form oder Textur. Wir stellen vier neue Me-
thoden zur Berechnung von charakteristischen Bildeigenschaften vor. Für die Inspektion
von Schweißpunkten berechnen wir Statistiken über die Form und Gestalt von Zusam-
menhangskomponenten in einer Reihe von Binärbildern; dabei verwenden wir einerseits
Eigenschaften wie Kompaktheit, Ausdehnung oder Irregularität und anderseits Fourier
Deskriptoren. Für die Inspektion von p-Elektroden in LEDs ermitteln wir Statistiken über
die Grauwerte innerhalb eines radialen Gitters und über die Grauwerte auf radialen Projek-
tionen. Bei der Detektion von subtilen Fehlern in Texturen verwenden wir die Verteilung
von lokalen Gradienten; dazu modellieren wir die Verteilung der Beträge der Gradienten
durch eine Weibull-Verteilung und schätzen ihre Parameter. Wir konnten feststellen, dass
sich defekt-freie Bildregionen im Raum der Weibull-Parameter in einer bestimmten Region
befinden, wohingegen defekte Bildregionen signifikant davon abweichen.

Im letzten Schritt eines Mustererkennungssystems werden die extrahierten Bildeigen-
schaften klassifiziert und, im Falle einer industriellen Inspektion, entschieden, ob das
Produkt fehlerhaft oder fehlerfrei ist. Gewöhnlich werden dazu Methoden eingesetzt, die
den Merkmalsraum so in zwei Halbräume (fehlerhaft vs. fehlerfrei) einteilt, dass der Klassi-
fikationsfehler auf Trainingsdaten und Testdaten minimiert wird. Hierfür müssen allerdings
ausreichend Daten von beiden Klassen vorliegen – besonders in industriellen, aber auch in
medizinischen Anwendungen können selten ausreichend negative Daten akquiriert werden.
In dieser Arbeit verwenden wir deshalb Methoden zum Lernen der positiven Beispiele und
zur anschließenden Detektion von Ausreißern. Somit kommen wir nahezu ohne negative
Beispiele aus, können aber gleichzeitig beliebige und auch unbekannte negative Beispiele
erkennen. Wir haben einen neuen, simplen Algorithmus zur Lösung dieses Lernproblems
entwickelt, der vergleichbare Ergebnisse hinsichtlich Performanz und Geschwindigkeit zu
aktuellen Lösungsalgorithmen erzielt – unser Algorithmus kann allerdings ohne besondere
Bibliotheken, ausschließlich mit Standard-Operatoren und in wenigen Zeilen implementiert
werden.

Im zweiten Teil dieser Arbeit beschreiben wir Musterkennungssysteme für verschiedene,
industrielle Anwendungen und verwenden die im ersten Teil beschriebenen Methoden
zur Vorverarbeitung, Merkmalsextraktion und Klassifikation. Außerdem zeigen wir, dass
unsere Methoden auch in nicht-industriellen Anwendungen verwendet werden können.



Wenn ich mein Leben noch einmal leben könnte,
würde ich mehr Fehler machen.

Ich würde bis zum Äußersten gehen.
Ich würde alberner und verrückter sein

und würde mehr Chancen wahrnehmen.
Ich würde mehr unternehmen,

würde mehr Berge besteigen,
in mehr Flüssen schwimmen

und mehr Sonnenuntergänge beobachten.

Nadine Stair (im Alter von 85 Jahren)
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Introduction

Now where did I put my watch? Everybody knows the feeling of searching desperately
for something particular—a key, remote control, or some other small object. Since
we have forgotten where we put that object, we start searching everywhere—in the
house, in the jacket, or in the pocket. Sometimes this search seems like looking for a
needle in a haystack that contains several objects similar to the one we are searching
for. Fortunately, we usually find the desired object sooner or later.

Searching for a particular object is already difficult, but it can even be more difficult
if we start searching for an unknown object; for example, finding a software bug can
sometimes take a couple of hours or even days, since we do not know what exactly
may cause the problem; in medicine, the pathogen can often be identified within few
days, but searching for the source of the pathogene sometimes takes weeks or months,
as it is currently the case for the mutated E. coli; in industrial manufacturing a large
production line often contains various machines and a defective product may be caused
by a single machine or by subtle changes at several machines. Therefore, a huge effort
is being made on monitoring and controlling production lines to provide the desired
quality, especially for manufacturing processes that require very high quality, such as in
the automotive industry. Even though we can monitor manufacturing by analysing data
from various sensors, such as pressure, temperature, or humidity, defects that affect the
appearance can only be measured by optical inspection, i.e. machine vision systems.

Various machine vision systems for optical inspection during manufacturing have
been developed; for example, we can track products through manufacturing by high-
performance digit recognition or data matrix code recognition; we can automatically
analyse geometry and shape to ensure that parts can be joined properly; we can verify
colour to guarantee consistent appearance over time, which can be very difficult, for
instance, in the case of metallic paint.

However, sophisticated machine vision problems such as the inspection of highly
structured surfaces, where defects are specified weakly and the surface shows diverse
structures, still require a manual inspection. Humans can even detect defects if they have
only seen a single example of a defective sample before, and they are able to identify
defects that differ from any defect example they have seen before. Even though manual
inspection yields acceptable performance and robustness, it is not only costly and
time-consuming, but the production is no longer fully reproducible due to variations in
human performance.
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Four major issues have to be solved for the development of a machine vision system
for surface inspection. First, we must develop methods for detecting surface defects
that are only roughly specified, but at the same time we must ensure that unknown
types of defects are detected as well. Therefore, we have to compute characteristic
features that can capture small deviations from the original surface, and we then have
to classify these features to identify known and unknown defects. Second, we have to
cope with highly structured images such as metallic or highly reflective surfaces and,
third, image noise makes an automated inspection of such highly structured images
even more difficult. Fourth, defects are rare and only weakly labelled; to detect every
possible defect we can therefore only perform novelty-detection based on characteristic
image properties of defect-free samples.

For most applications, a machine vision system consists of three stages after the
image has been acquired: First, the image is preprocessed to reduce noise, improve
image quality, or extract regions of interest, for example; second, characteristic image
features, often specifically designed for the application, are extracted; finally, the objects
are classified to distinguish defective image regions from defect-free regions.

In this thesis, I will present novel methods for each of these three stages, and
I will demonstrate their performance on benchmark datasets as well as real-world
applications. The methods presented in this thesis were mainly developed for industrial
applications, such as the detection of defects in texture images or the inspection of
welding seams, but I will show that some of these methods can successfully be applied
to other areas as well. This thesis is organised into two parts—theory and application.
After a brief introduction of machine vision systems for inspection and novelty detection
and a brief specification of the challenges faced in developing a machine vision system,
especially in the case of images with varying texture, the theory part describes methods
for image processing, feature extraction, and novelty detection. At the beginning of
each chapter, I will present a map that shows the methods I have developed and that
indicates at which stage of a machine vision system the methods of the current chapter
are used.

I will introduce three novel methods for image preprocessing; two of these deal
with accurate, robust, and efficient centre detection of (semi-) circular objects and can
be used in a wide range of applications such as inspection of LEDs or eye tracking.
The third method is for removing inhomogeneities in texture images; inhomogeneous
illumination is a major problem for automatic surface inspection, and it may cause
many false negatives, especially in the case of highly structured or textured images.

I have developed four novel methods for computing characteristic image features.
The first method computes so-called specularity features, which capture shape statistics
of specular reflections and can, for example, be used for surface inspection. The second
method is based on Fourier descriptors and is closely related to the specularity features;
instead of computing specifically designed shape properties such as compactness,
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irregularity, or extent, I use the Fourier descriptors of the object’s boundary and
combine them by first order statistics. The third method captures statistics of raw
intensities by placing a radial grid over the image; it can, for example, be used for
detecting subtle defects in images of light-emitting diodes. The fourth method employs
the local distribution of image gradient orientations and computes the parameters of
a Weibull fit of this distribution. These Weibull parameters have recently been used
to classify image content; in contrast, I demonstrate that Weibull features can also be
applied to describe local image characteristics and detect arbitrary deviations in texture
images.

Since it is often impossible to acquire sufficiently many negative samples, I focus,
for classifying image features, on novelty-detection approaches rather than standard
classification approaches. Moreover, studies have proven that standard classification
methods that try to separate two classes with minimum error yield poor performance
if the classes are highly unbalanced. Especially in medical and industrial applications,
only few or even no negative samples are available; in these cases, novelty detection
approaches significantly outperform standard classification approaches. Here, I intro-
duce a novelty-detection approach that is based on the maximum-margin principle
and that can be implemented within only a few lines of code. The novel approach
performs comparable to sophisticated state-of-the-art toolboxes and can also be ap-
plied to large-scale applications with high dimensions. Because of its simplicity even
practitioners or beginners in the field of machine learning, can implement the novel
algorithm—without any specific knowledge in optimisation theory.

In the applications part, I demonstrate that the novel methods, presented in the
theory part, can successfully be applied to real-world applications. First, I show that the
specularity features as well as the statistical Fourier descriptors yield high performance
for the problem of welding seam inspection. Second, I use the centre localisation
approach to detect regions of interest in images of light-emitting diodes, and I use
the radial-feature statistics to detect small, subtle defects in p-electrodes of LEDs.
Third, I show that local Weibull features can be applied to the problem of defect
detection in texture images; I demonstrate that this novel approach is neither limited to
a particular type of texture nor to a particular defect type but yields high accuracy for a
diverse spectrum of textures and defects. Finally, I show that some of our methods can
successfully be applied to non-industrial applications such as the problem of accurate
eye centre localisation, which can be used as part of an eye tracker.

Some of the results presented in this thesis were developed as part of a group
effort and many of the proposed methods have already been integrated into industrial
systems. Therefore, I will, at the beginning of the corresponding section, identify which
contributions are my own. For the sake of consistency, I will use the pronoun “we”
throughout, even when describing results that are solely my own.
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An overview of the methods used in this thesis is given below; all methods have
newly been developed except for the kernel density estimator, kernel PCA, and libSVM:
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Part I.

Machine Vision Theory





1. A Brief Overview

Over the past 30 years, texture analysis has become an important task in machine vision
and can roughly be divided into three groups according to the application: texture
classification, texture segmentation, and texture synthesis. We can recognise different
types of texture, but we can hardly describe the specific properties of texture; hence, it
is very difficult to define the term “texture” at all. Since we do not want to elaborate on
methods for texture analysis here, we refer to [106], for instance.

In this thesis, we focus on machine vision systems for the detection of small and subtle
defects in texture images. This can be interpreted as both texture classification and
texture segmentation. Since we measure local deviations from the original texture, we
can not only detect a defective image, but we can also localise the defect, which can then
be used for further analysis and cause studies, e.g. statistical maps of defective regions.
However, we have to make a compromise between accuracy of defect localisation and
computation time. Moreover, the machine vision system must yield a good balance
between high detection rate for defects on the one hand and at the same time it must not
yield many false negatives, which is very challenging, especially when the defect-free
texture varies strongly.

Even though many methods for the detection of defects in texture images have been
proposed—surveys can be found in [115, 62, 61, 83], for example—two major issues
remain. First, these methods have often been developed for a particular application
such as the inspection of TFT panels or the inspection of semi-conductor components
and are therefore highly adapted to the particular dataset, which is, unfortunately, not
made publicly available; hence, a fair comparison of recent approaches to the problem
of texture defect detection is missing. Second, the definition of the problem varies
significantly; in some cases, texture defect detection is treated as unsupervised learning
of arbitrary defective regions in texture images in the absence of negative samples; in
other cases, it is treated as a supervised learning task with sufficiently many negative
samples.

In this thesis, we define the problem of defect detection in texture images with the
following challenges: (i) defect-free regions show a certain type of texture that can
significantly vary, (ii) defective regions show a texture that can be arbitrary, but that is
different compared to defect-free regions, (iii) only few negative samples are available,
(iv) negative samples contain small, subtle, and weakly labelled defects. Since we only
have sufficiently many defect-free samples, we apply learning schemes that try to
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describe the class of all positive samples and that detect every negative sample as an
outlier. Moreover, we will apply our methods not only to real-world applications, but
also to a benchmark dataset that has recently been published by the company Robert
Bosch GmbH.
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2. Image Preprocessing
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Parts of this chapter are joint work with others. Sascha Klement and I came up with idea of removing
inhomogeneous illumination in texture images; we contributed approximately equally to refining that
idea and Sascha Klement did most of the implementation. The idea for accurate centre localisation, the
derivation of the methods, and their implementation were completely made by myself. Some of the work
described in this chapter has been previously published in [57, 99, 100]. Parts of the proposed methods
have been integrated into industrial applications (see Part II) and commercial software products [3].
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2.1. Introduction

Image preprocessing has become a large field of research with a wide range of methods
for different applications. In general, image preprocessing is performed after retrieving
image data, and it strongly influences further feature extraction and classification;
hence, techniques for image preprocessing must be efficient, but accurate. Preprocessing
methods can be separated into several groups according to their semantic level, e.g.
pixel-based or content-based.

Modifications of brightness, contrast, or dynamic range are most frequently used
to enhance a single image; sophisticated techniques such as image registration, image
warping, or image stitching must be used to process a sequence of images, for example
when analysing satellite image data or when using stereo vision systems. When the
image is composed of various parts, the region of interest (roi) must be detected before
characteristic image features can be computed; in some cases an accurate detection of
the roi can even be more complicated than feature extraction and classification.

In this chapter, we will introduce approaches for two different areas—accurate roi
detection and image enhancement. First, we propose two novel methods for the accurate
localisation of (semi-) circular objects; the first method is based on the distribution of
image gradients and can be computed very efficiently; the second method determines
the optimal centre by analysing the intensity variations radially. For both we mathe-
matically formulate a cost-function; for the gradient-based approach we also derive
an incremental algorithm. A comprehensive comparison with state-of-the-art methods
is presented in Part II, where we demonstrate that our methods can successfully be
applied to real-world applications.

Second, we propose a novel approach for the problem of illumination correction
and optimised image stitching, which can be used for virtual material design or as
preprocessing for surface inspection. With standard filtering images will show artefacts
at the image borders—mostly visible in the case of image stitching. Our novel method
not only removes inhomogeneities accurately without boundary artefacts, but it also
qualifies for realtime applications. The novel approach is presented within a framework
that theoretically allows any type of boundary conditions, however, we will demonstrate
that in most cases linear or polynomial extrapolation already yields accurate results.

2.2. Accurate Centre Localisation

The problem of object detection and in particular the problem of detecting the centre of
a (semi-) circular object has been widely addressed in various research fields such as
industrial imaging (surface inspection), medical imaging (cell tracking), or vision science
(eye tracking), for example. We want to address the problem of centre localisation with
a special focus on robustness. Strong distortions such as noise, occlusions, reflections,
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or blur complicate an accurate detection of the object’s centre—sometimes the centre is
hard to detect even manually (see Figure 2.1).

One of the well-known approaches for the detection of circles is the Hough trans-
form [47, 29, 56, 75]. The Hough transform approach is a voting-based technique and
motivated by the idea that each sample, e.g. a contour point obtained by edge detection
or a point in a binary image, contributes to a globally consistent solution. Over the past
35 years, several modifications have been proposed to improve the Hough transform in
terms of accuracy and efficiency [49, 56, 53]; a good survey on Hough transforms was
presented by Illingworth and Kittler [48]. However, several comparative studies show
that the information about edges in an image is insufficient to detect circles accurately,
especially in the presence of noise [8, 117]. To overcome this problem, Ceccaralli et al.
proposed a method that avoids the detection of edges, but tries to detect a circular
object by using a template matching mechanism that retains the information about pixel
intensity [14]. In particular, template matching is performed between the direction of
the gradient at each image position and the gradient direction of an ideal circle whose
radius varies in a given interval. However, template matching is often computationally
inefficient and the performance depends on the quality of the template and, especially,
the noise level.

Furthermore, isophote properties have been used for object detection [67] and eye
centre localisation [108]. The latter employs a voting scheme like the Hough transform,
where, for every pixel, the centre of the osculating circle of the isophote is computed
from smoothed derivatives of the image brightness. However, these voting-based
approaches are also inefficient and lead to the problem of analysing the voting-space,
which may contain many local maxima; post-processing techniques must then be
applied to identify a single maximum.

We propose two novel approaches that accurately localise the centre of a (semi-)
circular object, even in case of strong noise and low contrast images; the first approach
is based on image gradients with a novel objective function, which has to be maximised
and for which we develop a simple and fast iterative algorithm; the second approach

Figure 2.1.: Artificial and real-world images of circular objects with various image distortions
such as noise, motion blur, occlusions, or reflections. In these scenarios, a method for accurate
centre localisation must be extremely robust.
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is inspired by the concept of isophotes, for which we derive an objective function
based on the definition of radial symmetry. Geometrically, given the optimal centre, the
intensities, considered as radially, of a circle vary only slightly; whereas for incorrect
centres, the radial intensities vary significantly. Therefore, the centre is the location
where the mean variation of intensities over several radii reaches its minimum. In this
section, we apply the two novel approaches to synthetic images and we compare to an
approach based on the Hough transform; in Part II, we apply the approaches to the
problem of LED inspection and eye centre detection.

2.2.1. Edge-based approach

As a reference method, we use the Hough transform [47, 29] for the detection of a
circular object and apply the following steps to obtain the object’s centre (see Figure 2.2):
(i) edge detection to obtain the object’s contour, (ii) computing the accumulator array
in a predefined space, and (iii) evaluating the maximum of the accumulator array.
Since we assume that the circular object is completely located inside the image, the
accumulator array is evaluated for cx ∈ [1, W], cy ∈ [1, H], and r ∈ [1, 0.5 × min(W, H)].
The only remaining parameter is the accuracy in each dimension of the accumulator,
which we set to 0.5 to achieve sub-pixel accuracy. We apply the Canny algorithm with
standard parameters to obtain contour points (Gaussian smoothing with σ = 1 and
size 5 × 5, the high threshold t is automatically computed from the cumulated sum of
the distribution of gradient magnitudes, and the low threshold is computed by 0.4 × t).
We search for the total maximum in the accumulator space in case of images containing
a circle, and we search for two maxima with significantly different radii, to increase
robustness, in case of images containing an annulus. To reduce noise, the input image is
smoothed by convolution with a Gaussian filter (5 × 5, σ = 1) for the Hough transform
approach as well as for the following approaches.

smoothed input image detected edges accumulator array detected centre

Figure 2.2.: Centre localisation based on the Hough transform. First, an edge detection algo-
rithm is applied to the smoothed input image to obtain contour points; then, based on these
contour points the accumulator array is computed; finally, the location of the maximum in the
accumulator array is used as centre estimate.

8



2.2.2. Gradient-based approach

Instead of using only the location of points on the object’s contour, we can also use
contour orientation; we therefore analyse the orientation of image gradients at positions
of high variances of grey values, e.g. edges and corners. Figure 2.3 shows that the
normalised displacement vector between a centre candidate c and a contour point xi
should have the same orientation (except for the sign) as the gradient gi at xi if c is the
true centre. We quantify the connection between a centre, the displacement vectors, and
the image gradient orientations by computing the dot product between the normalised
displacement vectors di and the image gradients gi. The optimal centre c∗ of a circular
object in an image with N pixels at positions xi, i ∈ {1, ..., N}, is then given by

c∗ = arg max
c

J(c) , (2.1)

J(c) =
1
N

N

∑
i=1

�
dT

i gi

�2
, di =

xi − c
�xi − c� 2

. (2.2)

The displacement vectors di are scaled to unit length to be invariant to translations;
the gradients gi are scaled to unit length to account for strong highlights; furthermore,
small image gradients can be ignored to increase efficiency. Figure 2.4 shows, exem-
plarily, the objective function J(c); it yields a smooth function with a significant global
maximum; farther from the global maximum, however, small local maxima may exist;
hence, we must identify reasonable starting positions to guarantee convergence for an
iterative scheme. Figure 2.4(c) indicates that positions with significantly large gradient
magnitudes, i.e. contour points, can be used as starting positions.

gi

c xi

wrong centre

gi

c xi

correct centre

Figure 2.3.: Gradient-based approach for centre localisation. Left: The centre c is located such
that the orientation of the displacement vector (xi − c) differ from the absolute orientation of
the gradient vector gi at position xi; thus, the dot product between the displacement vector and
its gradient vector gi is large only for few positions xi. Right: The centre is located correctly and
the sum of dot products reaches its maximum.
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(a) input image (b) image gradients (c) gradient magnitude (d) objective function J(c)

Figure 2.4.: The low-pass filtered input image containing one annulus (a), its image gradients
plotted as vectors (b), the gradient magnitudes where large values are red/white and small
values are blue/black (c), and the corresponding objective function in the xy-plane (d).

Instead of evaluating J for several centres c, we propose a gradient ascent approach
for determining the maximum. The derivatives with respect to c = (c1, c2)T are

∂J
∂ck

=
2
N

N

∑
i=1

(xik − ck) e2
i − gik ei n2

i
n4

i
, (2.3)

where

ni = �xi − c�2 , ei = (xi − c)Tgi, gi = (gi1, gi2)
T , xi = (xi1, xi2)

T . (2.4)

The iterative scheme for centre localisation based on image gradients is summarised
in Algorithm 2.1; within each iteration step we compute a stepsize s using Armijo’s
rule [77], which is a common strategy for computing an efficient step size. Since the
area around the global maximum of the objective function (see Figure 2.4(d)) can be
narrow and the position of the largest magnitude can be outside the convergence area,
especially for noisy images, we apply the outer iteration loop m times and determine
the centre with the largest objective value as the optimal centre. Alternatively, we can
also create a centre map of all detected centres, we can smooth this centre map to
increase robustness, and we can determine the maximum of this smoothed centre map
as the optimal centre; however, we then have to introduce new parameters such as the
size of the bins or the parameters of the smoothing filter.

Figure 2.5 shows that the algorithm is fast and yields accurate results even for noisy
and low contrast images. The accuracy and performance of our algorithm can be
controlled by changing the number of trials m and the maximum number of iterations
tmax for each trial. We can further improve performance by reducing the number of
image gradients, for example, by ignoring image gradients with magnitude below a
(predefined) threshold, e.g. the mean magnitude over all image gradients. We simply
compute partial derivatives of the low-pass filtered image I by g = ( ∂I

∂x , ∂I
∂y )

T to obtain
image gradients.
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c = centreLocalisation(G,X , m, tmax, W, H)

Input: G image gradients gi, i = {1, . . . , N}
X position of image gradients xi, i = {1, . . . , N}
m number of trials
tmax maximum number of iterations
W, H image width and height

Output: c centre

θ ← 10−2 � threshold to check convergence
C ← {} � initialise set of detected centres
for i ← 1, . . . , m do

c ← getInitialCentre(i) � position of the ith largest magnitude
for j ← 1, . . . , tmax do

cold ← c � remember centre
g ← computeGradient(c,G,X ) � compute gradient according to Eq. 2.3
s ← computeStepsize(c,G,X , g) � stepsize, computed via Armijo’s rule [77]
c ← c + s g � perform gradient ascent step
if bordersReached(c, W, H) then

break � stop, if diverged to image borders
end if
if �c − cold� ≤ θ then

j ← computeObjective(c,G,X ) � compute value of objective function 2.2
C ← (c, j) � add detected centre and its objective value to the set
break � stop, if converged

end if
end for

end for
c ← arg max(c,j)∈C j � determine detected centre with maximum value

Algorithm 2.1 (centreLocalisation): Acurate centre localisation based on the orientation of
image gradients. To reduce computation time, G and X should only contain image gradients
with large magnitudes, e.g. larger than mean gradient magnitude.

11



2 4 6 8 10

10−1

100

101

iteration

Eu
cl

id
ea

n
di

st
an

ce

5 10 15 20
10−1

101

103

iteration

Eu
cl

id
ea

n
di

st
an

ce

5 10 15 20 25 30

101

iteration

Eu
cl

id
ea

n
di

st
an

ce

Figure 2.5.: Application of Algorithm 2.1 to low-contrast images (150 × 150 px) with different
types of distortions (first row: white noise, second row: motion blur, third row: speckle noise).
The detected centres are shown by crosses, the correct centres by circles, and starting positions
for the incremental algorithm by plus symbols. The first column shows low-contrast input
images, the second column shows the input images after smoothing (with a Gaussian filter of
size 9 × 9 and with σ = 3) and stretched to full range, and the third column shows the error
(Euclidean distance) between a current centre estimate and the true centre. Top row: In case of
white noise, the structure of the ring and its image gradients are well-preserved and with m = 5
trials all starting positions converge to the same centre, which is very close to the optimum
(error < 0.1 px); convergence is very fast, with 6 iterations on average. Second row: Even if the
ring structure and the image gradients are partially distorted, e.g. by motion blur, the estimation
is accurate (error < 1 px); although few starting positions diverged to the image borders, some
converged to an almost optimal estimation; again, convergence is fast with 15 iterations on
average. Last row: In case of speckle noise, the image gradients are locally distorted such that
the centre estimation is not as accurate as for the former images; however, the error is less than
2 px and most of the starting positions converged to the same solution; once more, convergence
is fast with 15 iterations on average.
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2.2.3. Symmetry-based approach

In case of higher image degradations, e.g. low contrast in combination with strong noise,
gradient information is insufficient for estimating the centre accurately. We, therefore,
propose a second approach for centre estimation, which is based on the minimisation
of radial intensity variations.

Assume we have an annulus with only few colour variations inside, then there are
several isophotes, i.e. contours of equal intensity, sharing the same centre. Thus, the
mean radial colour variation reaches its minimum for the correct centre. Based on this
observation, we define the notion of radial symmetry R for a particular centre c in the
image I by

R(c) =
1
L

L

∑
j=1

���� 1
M

M

∑
i=1

�
I∗c (i, j)− µj

�2 , (2.5)

with

I∗c (y, x) = I
�

atan
�

y − cy

x − cx

�
, �x − c�2

�
, and (2.6)

µj =
1
M

M

∑
i=1

I∗(i, j) , (2.7)

where I∗ is the polar transform of image I with the origin at c, M is the number of
slices, L is the number of samples on each slice, and µj is the mean value of distance j
over all slices/orientations. Figure 2.6 shows the definition of a slice sk, which captures
intensities along a particular orientation and with respect to a particular centre c.

I I∗c

c

sk
y

x

α

d

sk

I I∗c

c

y

x

α

d

Figure 2.6.: Transformation 2.6 applied to an example image I. The accuracy of the transforma-
tion is determined by the number of equally spaced samples, with a distance d from the current
centre, on each slice and the number of slices/angles α. Left: Due to high variations of the
intensities in direction α for given d, R(c) is large for incorrect centres. Right: The transformed
annulus appears as a strip with no vertical intensity variations; hence, R(c) reaches its minimum
for the correct centre.
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(a) low-pass filtered input image

−60

−40

−20

0

(b) objective function R(c = (x, y)) evaluated in the
(x, y) image space

Figure 2.7.: Left: Example image and the centre that has been detected by minimising radial in-
tensity variations. Right: The inverted objective function R(c) in the xy-plane shows a significant
maximum.

Then, the optimal centre c∗ is given by

c∗ = arg min
c

R(c) . (2.8)

Since an iterative scheme for solving Problem 2.8 cannot be derived in closed-form,
we evaluate R on a predefined grid; the grid position with minimum R, then, yields the
estimated centre. The accuracy of the centre estimation is determined by the resolution
of the grid on which R is evaluated; however, the computation time grows quadratically
with the resolution of the grid. If not otherwise noted, we compute R on the same grid
that is used for the Hough transform, i.e. a resolution of 0.5 on both axis, to ensure a fair
comparison. Figure 2.7 shows an example of the objective function and the estimated
centre.

2.2.4. Results With Synthetic Images

We evaluate the performance of the three approaches on a synthetic dataset with
images of 150 × 150 px containing a randomly centred annulus or circle of fixed size;
the grey values of the annulus/circle were uniformly distributed within the interval
[40, 70] and the grey values of the background within [50, 80]. Figure 2.8 shows that
the images contain white noise and that the contrast is very limited. We further added
multiplicative noise (speckle) and motion blur; in total, our synthetic dataset contains
600 images, 100 images for each type of noise and for each object (annulus/circle). We
compare the performance of the different approaches by computing the mean Euclidean
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Figure 2.8.: Example synthetic images containing an annulus or a circle with different types
of distortions: white noise, speckle noise, and motion blur; for comparison, the images are
stretched to full range.

distance between the correct centre and the estimated centre as well as the standard
deviation.

We apply the gradient-based approach with m =50 trials and tmax = 100 iterations
per trial to obtain the centre estimate with maximum value. Even though the values of
m and tmax we have used previously, compare Figure 2.5, were significantly smaller, we,
here, use a larger number of trials and iterations to increase robustness. Note that the
maximum number of iterations is only reached in few cases, since we stop the iterative
maximisation if the position does not change significantly.

Since the variance-based approach requires the evaluation of several centre candidates,
we evaluate the objective function R(c) on the same grid that is used for the Hough
transform approach, i.e. a resolution of 0.5 on both axis; finally, we identify the position
with minimum value. The intensity values are radially analysed with 100 slices sk; each
slice has a length of 75 px, which is half the image size, and contains 100 equally spaced
positions; the intensity for these positions is computed by bilinear interpolation.

Table 2.1 shows the results for the 600 synthetic images. In general, the performance
on images containing an annulus is superior compared to the performance on images
containing a circle; an annulus has two contours and, therefore, shows almost twice
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Table 2.1.: Performance comparison for 6 datasets, each consisting of 100 artificially created
images with low-contrast and different types of noise. The mean error (in pixel) is evaluated
over the 100 images for each method; standard deviations are depicted in parentheses. The
symmetry-based approach significantly outperforms the other approaches with a minimum
error of 0.07 px for images containing an annulus and with white noise; even the maximum
error of the symmetry-based approach for images with a circle and speckle noise is below 1 px,
which demonstrates its robustness, especially, for strong image degradations.

(a) white noise

method circle annulus

Hough transform 0.91 (0.55) 0.79 (0.62)
gradient-based 1.01 (0.63) 0.78 (0.49)
symmetry-based 0.71 (0.11) 0.07 (0.16)

(b) speckle noise

circle annulus

9.89 (13.74) 9.39 (13.38)
8.70 (10.21) 4.64 (2.65)
0.89 (0.71) 0.59 (0.55)

(c) motion blur

method circle annulus

Hough transform 17.59 (16.44) 14.90 (14.54)
gradient-based 2.55 (1.66) 1.64 (1.35)
symmetry-based 0.52 (0.59) 0.21 (0.42)

as many gradients as a circle; consequently, accuracy improves for our two novel
approaches as well as for the Hough transform approach in case of annulus images.

In case of images with white noise the Hough transform and the gradient-based
approach yield comparable results with a mean error rate of approximately 1 px for
images containing a circle and a mean error rate of 0.79 px for images containing an
annulus. The approach based on radial symmetry significantly outperforms the other
approaches with an mean error rate of 0.71 px (circle) and 0.07 px (annulus).

In case of images with speckle noise the performance of all approaches decreases,
but the symmetry-based approach yields significantly better results with a mean error
of still below one pixel. The Hough transform and the gradient approach perform
comparable for circles (error: 8–10 px). In case of annulus images the gradient approach
clearly outperforms the Hough transform, since the number of large image gradients is
almost twice compared to images containing a circle; hence, the gradient approach is
more robust to speckle noise.

In case of images with motion blur the object’s shape and contour partially change
such that the Hough transform cannot detect the correct centre accurately (mean error
for circles: 17.59 px, for annuli: 14.90 px); in constrast, the gradient and the symmetry
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approach yields accurate results. Since the symmetry-based approach can compensate
for partial distortions of the contour, it outperforms significantly the other two methods
(error of 0.52 px for circles and 0.21 px for annuli).

In total, the radial symmetry approach achieves the best overall performance for
noisy and low contrast images with an error of less than 1 px on average, and the
gradient-based approach outperforms the Hough transform in all cases of higher image
degradations.

Concerning the computation time, the two novel approaches yield superior perfor-
mance compared to the Hough transform as they reduced the computation time by a
factor of 2 (symmetry-based approach) and by a factor 8 (gradient-based approach).

2.2.5. Discussion

We have shown that the centre of a circular object can accurately be detected for low-
contrast and noisy images. Even if the shape of the object is corrupted, we can determine
the object’s centre with an error of less than 1 px. We used two novel approaches for
the centre localisation; the first approach is based on the orientation of image gradients
with a novel objective function, which is maximised by a simple and fast gradient ascent
technique; the second approach is based on the observation that radial intensities of a
circular object show small variations for the correct centre and large variation for an
incorrect centre.

Compared to existing methods, the gradient-based method directly incorporates the
potential centre into the objective function and leads to a very simple cost-function,
which is based on dot products only; hence, we avoid an exhaustive search and
compute the centre efficiently. If, however, the image gradients of the object’s contour
are extensively distorted and its shape changes entirely, the performance of the gradient-
based method decreases; in these cases, the symmetry-based method should be applied,
since it does not employ image gradients.

We created synthetic, low contrast images with a randomly centred annulus or circle
of fixed size. Furthermore, we added three different types of noise: white noise, speckle
noise, and motion blur. We extensively compared the accuracy of our approaches with
an approach based on the Hough transform.

The radial symmetry approach achieved the best overall performance (mean error:
0.49 px) and the gradient-based approach outperforms the Hough transform in all cases
of higher image degradations. Our novel approaches reduce the computation time
considerably compared the Hough transform approach, and we can easily control com-
putation time by changing the parameters, e.g. the accuracy of the slices or the number
of iterations, such that both approaches can be applied to a wide range of applications
such as eye tracking or object tracking in real-time. In industrial applications where the
centre must be estimated precisely, e.g. calibration or inspection, the variance approach
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can provide the most accurate centre estimations. We will demonstrate the performance
of the novel approaches for real-world datasets in Part II, where we successfully use
them for the inspection of leds and for accurate eye centre localisation.

The disadvantage of our variance-based approach is that it requires the evaluation of
several centre candidates and an automatic preselection of reasonable centre candidates
can be difficult and may lead to inaccurate estimations. It is a question for future
research to investigate whether the optimal solution can be obtained more efficiently,
for example, by approximating the partial derivatives to derive an iterative scheme.
Moreover, we can also use a combination of both approaches, e.g. the gradient-based
approach is applied to select centre candidates that are used as input for the variance-
based approach.

2.3. Illumination Correction

Digital images suffer from various deficiencies of the hardware that was used for image
acquisition, including sensor, lenses, and, especially, illumination. Even with a perfect
sensor, a lens without aberrations, and a perfectly homogeneous illumination, the image
may still show an intensity falloff towards the corners of the image due to natural
vignetting. In general, the illumination inhomogeneity is much more complex [4] and
cannot be described with a simple model.

In various applications, such as 3D-texture mapping, aerial photography, or as-
tronomy, illumination gradients must be removed when creating image mosaics or
registering image sequences. Without correction, artefacts may clearly be visible and
mislead further image processing or pattern recognition systems. In the case of surface
inspection, for example, small and subtle defects must be detected and inhomogeneities
can lead to a large number of missed defects.

The problem of illumination correction has been addressed by many authors, mostly
with respect to a particular illumination artefact; vignetting correction methods have
been proposed in [119] and [55], for example; in magnetic resonance imaging, a method
based on information minimisation has been proposed, where the correction com-
ponents are modelled as combinations of smoothly varying basis functions [68]; in
face recognition, methods for illumination compensation have been proposed as a
preprocessing step [2, 66], primarily to find a more invariant face representation; more
recently, a non-parametric shading correction method has been proposed in [85]. An
overview of stitching and blending methods can be found in [65], for example.

We aim for an illumination correction method that removes inhomogeneities accu-
rately and that qualifies for real-time applications such as virtual material design. Hence,
we focus on a simple method based on lowpass filtering using Gaussian pyramids and
appropriate image extrapolation to avoid boundary artefacts.
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2.3.1. The Gaussian Pyramid

For more than two decades, pyramid methods have been used for image processing
tasks such as image enhancement, compression, interpolation and extrapolation of
missing image data, and numerous others [78].

Given a grey-level input image with intensity values G0(x, y) at discrete locations
x ∈ [0, m − 1] and y ∈ [0, n − 1] the Gaussian pyramid is an efficient data structure
for spectral decomposition. For each level i the image Gi(x, y) is lowpass filtered and
downsampled by a factor of two to produce the image Gi+1(x, y), which is commonly
referred to as the reduce operation.

Gi+1 = reduce(Gi) = (↓ 2)(h ∗ Gi) with

(↓ 2) f (x, y) = f (2x, 2y) .

This is done successively up to a certain level l. Then, the expand operation is applied
successively to get an image with the same size as G0, but containing only the frequency
components of Gl :

G�
i−1 = expand(Gi) = 4 h ∗ ((↑ 2)Gi) .

The weighting function h is often called the generating kernel and is commonly chosen to
be a 5-by-5 binomial filter to approximate the Gaussian. This method for computing the
low frequency components of the input image is obviously more efficient than direct
convolution with a large filter but also more efficient than using standard FFT [1].

Finally, we need to decide how the image data is extended when filtering boundary
pixels; this is the critical step where boundary artefacts occur. In the following, we
present a general framework that covers not only the extrapolation conditions for
rectangular images, but also arbitrary image shapes that occur, for instance, during
image segmentation.

2.3.2. Boundary Extrapolation

Since the filtering operation is defined as

( f ∗ h)(x, y) =
+∞

∑
i=−∞

+∞

∑
j=−∞

h(i, j) f (x − i, y − j)

the image must be extended by two pixels—either virtually or explicitly—in each
direction when using 5-by-5 filters. Commonly, pixels outside the image are set constant
or to the value of the nearest boundary pixel (replicate boundary), or the pixels are
computed by assuming a periodic image (circular boundary).

Given the input image f (x, y) with x ∈ [0, m − 1] and y ∈ [0, n − 1] we seek an
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extended image f �(x, y) with x ∈ [−2, m + 1] and y ∈ [−2, n + 1]. Next, we define for
each pixel (x, y) a set of pixels

Px,y =
��

p x
i , p y

i
��|Px,y|

i=1

that influence the intensity at (x, y) in the extended image. Finally, the function
gPx,y(x, y) defines how to calculate the intensity at (x, y) from the intensities of the set
of pixels Px,y. Thus, we get

f �(x, y) =

�
f (x, y) if x ∈ [0, m − 1] and y ∈ [0, n − 1]
gPx,y(x, y) otherwise.

(2.9)

To simplify notation, we use g(x, y) instead of gPx,y(x, y). Next, we show how the
standard boundary conditions, replicate and circular, as well as different extrapolation
methods fit into this framework.

Boundary Replication

Assuming a replicate boundary, the intensity values of pixels outside the image equal
those of the nearest boundary pixel:

P rep
x,y =

�
�

p x
0 , p y

0
�
�����

p x
0 = min(max(x, 0), m − 1)

p y
0 = min(max(y, 0), n − 1)

�
.

Thus,
��P rep

x,y
�� = 1 for all x and y, and g rep(x, y) = f (p x

0 , p y
0 ). Analogously, a circular

boundary condition can be defined:

P circ
x,y =

�
�

p x
0 , p y

0
�
�����

p x
0 = x mod m

p y
0 = y mod n

�
.

Again, |P circ
x,y | = 1 for all x and y and g circ(x, y) = f (p x

0 , p y
0 ).

Linear Extrapolation

Both replicate and circular boundary assumptions are invalid assumptions when mod-
elling illumination gradients. In almost all cases of natural illumination inhomogeneity
the intensity gradient continues smoothly outside of the image boundary; hence, repli-
cate or circular boundary extrapolation overestimates the intensity gradient at the
boundary, when compensating for vignetting.

A first step towards more realistic boundary assumptions involves simple linear
extrapolation of the intensity values at the boundary. The gradient is the difference
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between a boundary pixel and its nearest neighbour towards the centre of the image;
mathematically, we can express this by:

P lin
x,y =

��
p x

0 , p y
0
�

,
�

p x
1 , p y

1
��

with

p x
0 = min(max(x, 0), m − 1)

p y
0 = min(max(y, 0), n − 1)

p x
1 = min(max(x, 1), m − 2)

p y
1 = min(max(y, 1), n − 2) and

g lin(x, y) = f
�

p x
0 , p y

0
�
+

�
f
�

p x
0 , p y

0
�
− f

�
p x

1 , p y
1
��

·
�����

�
x − p x

0

y − p y
0

������
1

,

where � · �1 denotes the Manhattan distance. This modification improves the illumi-
nation compensation significantly and can be extended, for instance, to least-squares
regression with two-dimensional second order polynomials as shown below.

Least Squares Regression

We define the set Px,y =
��

p x
i , p y

i
��

to contain a 5-by-5 block of pixels within the image
bounds that minimises the mean distance to the point (x, y). Then, we can formulate
the following minimisation problem

minβ �Aβ − b�2 with

A =




p x

0 p y
0 (p x

0 )
2 (p y

0 )
2 p x

0 p y
0 1

...
...

...
...

...
...

p x
24 p y

24 (p x
24)

2 (p y
24)

2 p x
24 p y

24 1





b =




f (p x

0 , p y
0 )

...
f (p x

24, p y
24)



 .

The solution is computed by

β =
�

ATA
�−1

ATb ,

and the intensity at (x, y) is approximated by

g(x, y) =
�
x y x2 y2 xy 1

�
· β .

Note that other regression approaches may also be used. However, the complexity
of a regression model, i.e. the number of parameters to be estimated, should be low,
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as illumination gradients are by definition smooth. The choice of the neighbourhood
size is a trade-off between stability and runtime, but 5-by-5 blocks are sufficient to
remove almost all visible boundary artefacts as demonstrated by our experiments. The
computational complexity of the regression method is no crucial factor, as extrapolation
operates on few boundary pixels only; other operations such as image filtering dominate
the complexity of the illumination correction method.

Arbitrary Boundary Shapes

In some cases, illumination gradients must be removed from images that contain more
than one texture. Here, the different textures should be segmented first and individually
corrected afterwards. In general, these regions are non-rectangular and so the above
methods must be adapted for arbitrary shaped images. Now, the input image f (x, y)
is defined only in certain regions, i.e. the image contains valid intensities for a set of
pixels I ⊂ [0, m − 1]× [n − 1]. Then, Equation 2.9 is modified slightly such that

f �(x, y) =

�
f (x, y) if (x, y) ∈ I
gPx,y(x, y) otherwise.

(2.10)

In this more general case, it is not feasible to pick Px,y from a fixed-size neighbourhood
of a certain shape, e.g. when I is very sparse or has a fractal-like boundary; instead
Px,y should contain a fixed number of adjacent pixels from within I.

2.3.3. Algorithm

So far, we focused on the boundary extrapolation during filtering, but the aim is
to correct illumination inhomogeneities in texture images. In the overall algorithm
(see Algorithm 2.2), extrapolation of boundary pixels is performed by the function
borderExtrapolation.

In the downsampling loop, the image is first extended by two rows and columns
in each direction and then the intensity values of these pixels are determined by
extrapolation; after filtering, the image is cropped to the original size. In the upsampling
loop, the image is first filtered and then the intensity values of the first and last two
rows and columns are recalculated from the inner image by extrapolation. Finally, the
low-frequency image is subtracted from the original image and the mean intensity of
the input image is added to obtain the final image with proper intensity levels.

2.3.4. Experiments

We demonstrate the performance of our method in a series of experiments, for which
we used grey-level images containing intensity values in the range [0, 255]; to avoid
discretisation artefacts we performed each operation in double-precision arithmetic.
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First, we used artificial images that contained no texture but only smooth intensity
gradients as they occur with natural vignetting (see Figure 2.9). Perfect illumination
correction would yield a completely homogeneous image; obviously, the choice of
the boundary condition does not affect the centre of the image, which shows a slight
gradient even after correction. At the image boundary the replicate condition is outper-
formed by linear and polynomial extrapolation, the latter yielding an difference image
intensity range of less than 1, which is optimal in case of 8 bit images.

Second, we measured how boundary artefacts affect the histogram of the intensity
values. Therefore, we calculated the difference between the histograms of the image
boundary (64 pixels wide) and the image centre (see Figure 2.10). The replicate condition
causes the corrected image to be too dark at the boundary, i.e. the histogram of the

I∗ = illuminationCorrection(I, l)

Input: I input image of size W, H
l pyramid depth

Output: I∗ corrected image

G0 ← I � initialise
for i ← 0, . . . , l − 1 do � pyramid down

Gi ← extend(Gi) � extend image
Gi ← borderExtrapolation(Gi) � extrapolate borders
Gi ← h ∗ Gi � image filtering
Gi ← crop(Gi) � crop to original size of Gi

Gi+1 ← (↓ 2)(Gi) � downsampling
end for
G∗

l ← Gl � initialise
for i ← l, l − 1, . . . , 1 do � pyramid up

G∗
i−1 ← (↑ 2)G∗

i � upsampling
G∗

i−1 ← h ∗ G∗
i−1 � image filtering

G∗
i−1 ← borderExtrapolation(G∗

i−1) � extrapolate borders
G∗

i−1 ← 4 G∗
i−1 � correct energy

end for
I∗ ← I − G∗

0 +
1

W H ∑x,y I(x, y) � shift intensity of output image

Algorithm 2.2 (illuminationCorrection): General framework for illumination correction
based on the Gaussian pyramid.
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boundary pixels is shifted towards zero and the histogram difference has a maximum
for small values. Whereas, with linear extrapolation this effect is dramatically reduced;
polynomial extrapolation yields only a slight further improvement.

Figure 2.11 depicts some typical textures as they occur in virtual material design. The
images were acquired with an industrial colour camera (1392 × 1040 pixels, 8bit); they
show clearly visible intensity falloffs towards the image corners. We applied the above
described method for each colour channel individually and compared it to the replicate
boundary condition. The intensity gradients are invisible after correction, however,
other inhomogeneities and artefacts are still visible such as repetitive structures (see
rows 2 and 3) or very subtle blurring towards the image corners due to lens deficiencies.

2.3.5. Discussion

We have shown that removing illumination inhomogeneities from texture images
using the Gaussian pyramid yields accurate results. Whereas with standard filtering
using replicate or circular boundary condition the resulting images show artefacts
at the image borders, a linear or a polynomial boundary condition results in almost
homogeneous images with minimum border artefacts—in case of 8bit images border
artefacts disappear completely.

We have introduced a framework by which inhomogeneous illumination and border
artefacts are removed using different types of boundary extrapolation. The framework
is not limited to linear or polynomial extrapolation, but experiments indicate that no
improvement can be expected using more complex functions, since performance is
already close to optimum when using simpler extrapolation.

The Gaussian pyramid provides a fast way to model arbitrary illumination gradients.
All calculations can be done in real-time—the proposed boundary extrapolation tech-
niques have low complexity, since an image has generally few boundary pixels. In case
of colour images, we apply the illumination correction for each channel separately; we
reach 20 frames per second for colour images (1280× 1024 px, 24bit) and with standard
computer hardware.

Especially in the case of inspecting texture images for subtle deviations, an image
gradient can lead to many false positives. Since simple techniques for gradient removal
still show artefacts at the image boundaries, we expect false positives in these regions
even after correction. Therefore, we will apply the proposed illumination correction with
linear extrapolation during preprocessing of texture images to remove inhomogeneities
completely and to normalise illumination.

Finally, we discuss the role of illumination correction in texture synthesis as it is used
in virtual material design. Besides intensity gradients, other image acquisition artefacts
such as blurred image regions, reflexions, or saturation may occur. All of them will
cause the results of naı̈ve image stitching to look repetitive and unrealistic, especially
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(a) synthetic input image (natural
vignetting)

(b) replicate condition (c)

right border left border
127

137

(d)

(e) linear extrapolation (f)

right border left border
135

138

(g)

(h) polynomial extrapolation (i)

right border left border
135

136

(j)

Figure 2.9.: Comparison of illumination correction methods for an example image. The intensity
levels of the corrected images (left column) are emphasised with contours. Additionally, an
image transition (middle column, 128 pixels from each side, intensity stretched to full range)
and the intensity across the middle row (right column) are shown. Note the different scales on
the y-axis and that the boundary artefacts are reduced.
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(a) texture (b) gradient (c) combined

(d) tiled (replicate condition) (e) tiled (linear extrapolation) (f) tiled (polynomial extrap.)
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(g) border histogram (replicate)

0 255
−6
−4
−2

0
2
4
6 ·10−3

(h) border histogram (linear)
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(i) border histogram (polynomial)

Figure 2.10.: Boundary artefacts in image mosaics. The top row shows a texture (a), a simulated
illumination gradient (b) and the combination of both (c). The middle row shows the correction
results for three methods as 2-by-2 image mosaics. The replicate condition (d) produces dark
areas at image transitions; with linear (e) or polynomial extrapolation (f) the transitions are
almost invisible. The difference between the histograms of centre and boundary pixel intensities
(bottom) verifies this observation.
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at the image borders where textures are non-continuous. One solution would be to
enhance the original image and remove as many artefacts as possible. However, a texture
synthesis approach, such as proposed by Efros and Freeman [32], can compensate for
the image acquisition artefacts by synthesising larger textures from smaller blocks of the
original image. Each new block is chosen to optimise an overlapping region and, finally,
the blockiness of the boundary is reduced by finding the minimum cost path within the
overlapping region. In this scenario, illumination correction is, again, a fundamental
preprocessing step to avoid intensity gradients and our method in connection with
texture synthesis can yield natural-looking textures of arbitrary size and shape.

Figure 2.11.: Real-world colour textures. The performance of the illumination correction is
shown for some real-world textured materials (from top to bottom: paper towel, green linoleum,
wood) in 3-by-3 image mosaics. Without illumination correction (left column) vignetting is
most obvious; with illumination correction using a replicate boundary condition (middle
column) vignetting is still visible; with illumination correction using a polynomial boundary
extrapolation (right column) vignetting is removed almost completely.
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Each feature extraction method proposed in this chapter has been developed completely by myself;
this includes the idea, derivation, implementation, and validation. Some of the work described in this
chapter has previously been published in [101, 105, 104, 103] or is currently under review [98]. Parts of
the proposed methods have been integrated into industrial applications (see Part II).
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3.1. Introduction

The computation of appropriate image features plays a crucial role in the develop-
ment of a machine vision system, since they serve as input for later stages such as
classification and novelty-detection. Even a theoretically optimal classifier will lead
to poor performance, if the computed image features fail to accurately describe the
characteristics of the objects to be classified.

Feature extraction has long been a large research field with various applications; in
medical imaging, image features capture characteristics of tumour and healthy tissue;
in multimedia, image features have been designed such that a motorcycle and a car
can be distinguished and large image databases can be organised; in vision science,
image features are used to describe the focus of attention in natural images and natural
videos; in robot vision, image features describe properties of scene objects such as
doors, stairways, desks, or chairs; in industrial imaging, image features are used to
describe shape or appearance of semi-conductor components.

Since all these feature extraction methods must provide highest performance and
highest reliability, they are specifically designed for a particular application, especially
in case of industrial applications; hence, they achieve inferior results when applied
across different areas or even across different applications within the same area.

In general, feature extraction methods can roughly be divided into geometrical,
statistical, frequency-based, model-based, and hybrid approaches; we can further
categorise them as local or global approaches or as approaches that work on different
image scales, for example. A survey of various methods for feature extraction and their
categorisation can be found in [87], for example.

In this chapter, we introduce four novel feature extraction methods that capture
characteristic image properties of defective and defect-free samples; we only briefly
motivate and derive the approaches here, since we extensively evaluate and compare
our methods for real-world applications in Part II.

First, we present a hybrid approach that computes statistics of geometrical features
and of shape features; this approach can capture, for instance, the specularity of surfaces.
Geometrical features are mostly computed based on a single binary image, however,
if the image contains objects at different grey-levels the geometrical features must be
computed across grey-levels. Then, the question is how these geometrical features are
combined to yield a proper description of the image characteristics. We, therefore, use
a general decomposition framework that separates the input image into a stack of
binary images at different grey-levels; then, connected components are determined
and analysed for certain properties such as orientation, compactness, or eccentricity;
features from each component are averaged first and combined by first order statistics
for each binary image as well as across all binary images afterwards.

Second, we use the decomposition framework and evaluate the characteristics of com-
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ponents in a single binary image by using Fourier descriptors. So far, Fourier descriptors
have either been used for a single binary image or, more recently, for a single binary
image at different image scales [63]. We demonstrate that our general decomposition
framework in combination with Fourier descriptors can capture characteristic image
features that occur due to specular reflections.

Third, we present a novel approach for the analysis of radial intensity variations; this
approach is closely related to the centre detection approach presented in Section 2.2.3
and is motivated biologically. With our novel approach we can capture small and subtle
defects, even in the presence of strong image noise.

Fourth, we propose an approach that analyses local image gradients; the idea is that
the distribution of image gradients in defective regions will significantly deviate from
that of image gradients in defect-free regions. We, therefore, compute a Weibull fit
to the distribution of local image gradients and use the estimated parameters of the
Weibull distribution for novelty detection. Recently, experiments have shown that brain
responses strongly correlate with image statistics described by Weibull features when
viewing natural images [91]. So far, Weibull image features have only been applied
to classify images globally and to organise image databases [116]. We demonstrate
that Weibull features can be applied to capture local variations as well, for instance, of
texture images.

3.2. Specularity Features

The characterisation and inspection of specular surfaces1 is used in a wide range of
industrial applications such as solder joint inspection or welding seam inspection.
Theoretically, the inspection of these surfaces can be simplified if optimal hardware is
used such as a telecentric lens and a telecentric illumination or 3D techniques. However,
such hardware is expensive and hard to integrate into an existing manufacturing
process; with standard hardware the surface cannot be modelled in 3D as precisely
as required to detect subtle defects with high reliability. Therefore, feature extraction
methods that capture particular characteristics—especially small arbitrary deviations—
of a specular surface must be computed rather than a 3D surface model.

We propose a novel feature extraction method that computes specular characteristics
by using a general decomposition framework. The grey-level image is separated into a
stack of binary images and for each binary image a shape analysis of the connected
components is performed; local shape properties are combined within each binary
image and across all binary images by first order statistics. Finally, we obtain a feature
vector that describes shape statistics of different reflections in a grey-level image.

1We, here, use the term specular surface to describe surfaces such as metal or plastic that reflect a large
amount of light.
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The idea of using a stack of binary images instead of using only a single image has
already been proposed, e.g. in [20] or [112]. For an image I with k grey levels a stack
of binary images B = {Iτ} with τ ∈ {1, 2, . . . , k} is created; a single binary image Iτ is
computed by:

Iτ(x, y) =

�
1 : I(x, y) ≥ τ

0 : I(x, y) < τ
.

(3.1)

This decomposition is lossless, since the input image can always be recovered by sum-
ming up all binary images. Figure 3.1 demonstrates the decomposition of a grey-level
image into a stack of binary images and the computation of image features. Each binary
image Iτ is decomposed into a set of black and white components {Cw(τ), Cb(τ)}
with Cw(τ) = {Cw,τ

0 , . . . , Cw,τ
m−1} and Cb(τ) = {Cb,τ

0 , . . . , Cb,τ
n−1} , where m and n are

the numbers of black and white components. Each component C∗,τ
i = {xk} consists

of pixel positions xk ∈ {0, 1, . . . , H − 1} × {0, 1, . . . , W − 1}, where H and W are the
height and the width of the input image. We omit, for convenience, the index and the
colour of a component if these are unnecessary, and we use Ci = C∗,τ

i for abbreviation.
The superscript “∗” is used whenever both component colours are considered.

We employ a weight for each component Ci, which we define as its relative size
compared to the total area of all components with the same colour:

PROP (Ci) =
AREA (Ci)

∑k AREA (Ck)
. (3.2)

For capturing image characteristics that arise due to specular reflections, we use
the decomposition scheme and evaluate local shape features. We, therefore, compute
several general properties of each component such as eccentricity, compactness, or
perimeter (see Table 3.1). We, then, obtain a feature vector gi that describes shape as
well as spatial properties for each black or white component Ci:

g∗
i = (PERIM, DISTC, . . . , REGAR)T . (3.3)

A detailed discussion on geometric shapes can be found in [87, Chapter 9], for instance.
Since these local features are computed for each component in the binary image, we

must combine them to form a feature vector for all components in the binary image. We,
hence, scale each feature g in two different ways; first, we compute the weighted mean
using the component’s relative size PROP (see Equation 3.2) and, second, we compute
the standard mean, i.e. the sum scaled by the number of components (NOC). In case
of the local feature PERIM, for instance, and the binary image Iτ, the two scalings are
computed by:

PERIM(τ) = ∑
k
PERIM(Ck) PROP(Ck) (3.4)

PERIM(τ) =
1

NOC(τ) ∑
k
PERIM(Ck) . (3.5)
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nents
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Figure 3.1.: The decomposition scheme for a grey-level input image I is composed of four stages;
(a) the image is decomposed into a stack of binary images Iτ ; (b) each binary image is separated
into its black and white components, for which local features g, such as area or eccentricity, are
computed; (c) local features are averaged according to the colour of the component; (d) global
features h are computed through statistics over averaged local features.
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Table 3.1.: Features for a component C; using a 4-neighbourhood two successive boundary
points are denoted by xm and xm+1; µ(C), µI are the centre of the component and the centre
of the image, respectively; F(α) is the maximum distance between two boundary points when
rotating the coordinate axis by α ∈ A = {0◦, 5◦, ..., 175◦}; wBR and hBR are the width and height
of the bounding rectangle; a, b are the major and minor axis of the ellipse that has the same
second moment as the component.

feature g(C) formula

perimeter (PERIM) ∑
m
�xm − xm+1�2

distance from centre (DISTC) �µ(C)− µI�2

maximum Feret diameter (MAXFD) max
α∈A

F(α)

minimum Feret diameter (MINFD) min
α∈A

F(α)

mean Feret diameter (MEANF)
1
|A| ∑

α∈A
F(α)

variance Feret diameter (VARFD)
1
|A| ∑

α∈A

�
F(α)− MEANF

�2

area of bounding rectangle (AREAB) wBR hBR

eccentricity (ECCEN)
√

a2+b2

a

aspect ratio (ASPAR) MAXFD(τ)
MINFD(τ)

extent (EXTEN) AREA
AREAB

formfactor (FORMF) 4 π AREA
PERIM2

roundness (ROUND) 4 AREA
π MAXFD2

compactness (COMPT) 2
√
AREA√

π MAXFD

regularity of aspect ratio (REGAR)
�
1 + VARFD + MAXFD − MINFD

�−1
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name formula

maximum maxτ g(τ)

minimum minτ g(τ)

mean
1

|g(τ)| ∑
g(τ)

g(τ)

variance
1

|g(τ)| ∑
g(τ)

(g(τ)− mean)2

median arg minm E(|g(τ)− m|)

sample mean
1

∑τ g(τ) ∑τ τ g(τ)

sample std.
�

∑τ(τ−sample mean)2 g(τ)
∑τ g(τ)

entropy −∑g(τ) pg(τ) log pg(τ)

Table 3.2: Global features, where g(τ) is one
of the averaged local features described be-
fore and τ corresponds to the threshold for
which the binary image has been computed.

With these two scalings, the area of each component as well as the total number of
components is directly incorporated into each local feature.

So far, we obtain two feature vectors that capture averaged local characteristics of the
binary image Iτ

g∗
τ = (PERIM(τ), DISTC(τ), . . . , REGAR(τ))T . (3.6)

Now, we further merge local features by computing first order statistics described
in Table 3.2; most of the statistics combine local shape features into characteristics
that represent shape statistics across all grey-levels, independent of the particular
threshold τ for which the binary image has been computed. In contrast, sample mean

and sample std. take into account the threshold τ to compute the weighted mean and
weighted standard deviation. More precisely, the feature vector that captures shape
statistics of black/white components is defined as

h∗ = (max
τ

PERIM(τ), max
τ

DISTC(τ), . . . , max
τ

REGAR(τ), min
τ

PERIM(τ), . . .)T . (3.7)

Finally, for a gey-level input image we obtain a feature vector h = (hb, hw)T that
contains 448 features composed of 28 local features for a single component (14 for a
black component and 14 for a white component), 2 scaling methods (by the proportional
size and by the total number of components) and 8 global statistics. With this feature
vector we can, for instance, describe the variance of the extent of black and white
components or the entropy of the formfactor of black and white components, and we
can verify whether this corresponds to the physical shape of the object—see Part II.
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3.3. Statistical Fourier Descriptors

In the previous section, we have proposed an approach for computing statistics of
shapes, which can be used for capturing properties of specular reflections, for instance.
However, the local features such as eccentricity, compactness, or perimeter have been
developed specifically for the application of surface inspection; hence, this feature set
may yield worse results when used in other applications. In this section, we propose
a novel feature extraction approach that employs the same decomposition scheme as
before; instead of evaluating specifically designed local shape features, we employ the
Fourier descriptors [39] of the component’s boundary.

Although Fourier descriptors have been used for over 30 years, they are still found
to be a valid shape description tool. In several comparisons, the Fourier descriptor
approach has proved to outperform most other boundary-based methods regarding
accuracy and efficiency [52, 74, 118]. However, Fourier descriptors have not been applied
to images with overlaying objects or to images with multiple grey-levels.

3.3.1. Fourier Descriptors

The boundary line of a two-dimensional object can be represented using a one-
dimensional function f (k), i.e. the shape signature, which can be obtained efficiently by
combining the coordinates (xk, yk) of the boundary points k = 0, ..., N − 1 to a complex
number, i.e. f (k) = xk + j yk. The shape signature, however, must be periodic to be used
for the 1-D discrete Fourier transform. In general, there are three different methods for
obtaining a periodic shape signature: equal points sampling, equal angle sampling, and
equal arc-length sampling; among these methods, the equal arc-length sampling has
proven to achieve the best equal space effect [109]. Obviously, the number of sampling
points N determines the accuracy of the approximation; a small number of sampling
points, though, offer two advantages at the same time: the shape is smoothed and the
Fourier transform is computed efficiently.

Since the shape signature is represented by a one-dimensional periodic signal, it can
be transformed to the frequency domain using the discrete Fourier transform (dft); the
dft of a shape signature f (k) with N samples is given by

Fn =
N−1

∑
k=0

f (k) e−j2πnk/N , 0 ≤ n < N , (3.8)

where Fn are the transform coefficients of f (k) and known as Fourier descriptors.
The Fourier descriptors are often expressed in polar form F∗

n = |Fn| ejφn and several
geometric transformations of the shape can be related to simple operations when
transforming to the frequency domain. Translation of the shape, for instance, only
affects the first Fourier coefficient or scaling the shape with a factor of a leads to a
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(a) (b) (c)

(d) (e) (f)

Figure 3.2.: Two different shapes (1st column), magnitude |Fn| (2nd column) and phase φn (3rd
column) of the first 64 Fourier coefficients. Spectra are shifted such that the zero-component
is located in the centre; axis are identical for each column. We can clearly recognise that the
shapes differ in both magnitude as well as phase.

scaling of the Fourier coefficients by a. Furthermore, the coefficients can be normalised
to be invariant towards the starting point by subtracting the phase of the second Fourier
descriptor, weighted by n, from the phase of all Fourier descriptors:

F∗
n → F∗

n e−jφ1n . (3.9)

Then, the starting point is approximately at angle 0. A detailed description and analysis
of Fourier descriptors can be found in [50], for instance.

A common approach to shape analysis is to use only a subset of low-frequency
coefficients; this captures relevant shape information and removes high frequency noise.
In Figure 3.2 example objects are compared using the magnitude and phase of the first
64 Fourier descriptors. In most applications, we do not know about the shapes that
might occur in the image and we, therefore, use both the magnitude as well as the
phase of the Fourier descriptors.
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3.3.2. Statistical Fourier Descriptors

Since the Fourier descriptor method can only be used for the contour of a single binary
object, we propose a new Fourier-based method, called statistical Fourier descriptor (sfd),
that describes shape statistics of multiple objects of different grey-levels. We, therefore,
use the decomposition scheme presented in the previous section (see Figure 3.1).
Instead of computing specifically designed local shape features, we compute the Fourier
descriptors of the boundary of black and white components extracted from a single
binary image. We simply replace the feature vector (Equation 3.3) that describes the
characteristics of the ith black or white component by

g∗
i = (|F0|, . . . , |FM−1|, φ0, . . . , φM−1)

T , (3.10)

where |Fi| are the magnitudes and φi the phases of the corresponding M Fourier
descriptors, with M ≤ N. We further combine the local shape features of Nc components
in the binary image Iτ such that:

g∗
τ = (µ, σ, m, θ, ρ)T ∈ R3·2M+2 , with (3.11)

µl =
1

Nc

Nc−1

∑
i=0

g∗il , (3.12)

σl =

���� 1
Nc

Nc−1

∑
i=0

�
g∗il − µl

�2 , (3.13)

ml = max
i

g∗il , (3.14)

d =
1

Nc

Nc−1

∑
i=0

(cc − cI) , (3.15)

where θ and ρ are the orientation and magnitude of the displacement vector d, ci
is the centre of component i, and cI is the image centre. With the properties of the
displacement vector we can distinguish between binary images where the components
are located circularly around the centre and binary images where the components are
located at one particular side.

In the last step, we combine the local features of k binary images by calculating
first order statistics such as mean, standard deviation, maximum, and sample mean to
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obtain a single feature vector h = (hb, hw)T ∈ R48M+16 for a given input image:

h∗ = (γ, δ, ε, η)T ∈ R4·(6M+2) , (3.16)

γl =
1
k

k−1

∑
τ=0

g∗
τ l , (3.17)

δl =

����1
k

k−1

∑
τ=0

(g∗
τ l − γl)

2 , (3.18)

ε l = max
τ

g∗
τ l , (3.19)

ηl =

�
k−1

∑
τ=0

g∗
τ l

�−1 k−1

∑
τ=0

τ g∗
τ l . (3.20)

Then, for a given input image, the sfd approach computes a vector with 48M + 16
features, where M is the number of used Fourier descriptors. For large M this feature
vector becomes very high-dimensional and, thus, the performance of certain classifiers
may degenerate; therefore, feature-selection methods can be applied to reduce the
amount of features. Moreover, we also have to set the number of sampled boundary
points N that are used for computing the Fourier transform. Since we are mostly
interested in the low-frequent properties of the boundary’s shape, we use small N, e.g.
N = 128.

In Part II, we demonstrate that both specularity features as well as statistical Fourier
descriptors yield accurate results in real applications such as the inspection of welding
seams.

3.4. Radial Statistics

So far, we have presented feature extraction approaches that compute shape statistics
based on a decomposition of the grey-level image into several binary images. In this
section, we directly use raw intensities as input features. Since the number of image
pixels is large, in most applications, we specifically arrange the intensities into segments
and compute first order statistics for each segment to reduce the number of features
significantly. This particular encoding of raw pixels is not only efficient, but can also be
motivated biologically.

Neurophysiology studies have shown that visual stimuli are roughly represented
in the retina as well as in the primary visual cortex by neighbouring regions, e.g. [23].
Based on these results so-called retinotopic maps have been computed, which illustrate
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si

Figure 3.3.: Radial encoding exemplarily shown for a welding seam (left). A coarse radial grid
will separate the image into few segments si (middle), whereas a fine radial grid yields many
segments (right).

the spatial organisation of neurons that will respond to the same visual stimuli. Moti-
vated by these observations, many methods in computer vision employ such retinotopic
maps implicitly by using a retina-like radial grid (see Figure 3.3), e.g. [92, 35]; this
radial grid is placed directly on the input image to radially encode raw intensities or it
is applied to the results of image filtering, e.g., by a Gabor filter. Based on the radial
separation, the mean value of each segment is computed, in most applications, and
hence the feature vector contains the mean values of all segments.

Here, we present a more general framework for computing statistics of radially
encoded raw pixel intensities to obtain a very low-dimensional feature vector. We
radially divide the image into n segments si, compare Figure 3.3, for which we compute
the mean of intensities

µi =
1
|si| ∑

(x,y)∈si

I(x, y) . (3.21)

We further compute first order statistics of these mean values such as maximum, mean,
and standard deviation to analyse the mean values across all segments:

β1 = max
i

µi , (3.22)

γ1 = min
i

µi , (3.23)

δ1 =
1
n

n

∑
i=1

µi , (3.24)

ε1 =

�
1
n

n

∑
i=1

(µi − δ1)
2 . (3.25)

These measures are combined into the feature vector

f 1 = (β1, γ1, δ1, ε1, η1)
T , where (3.26)

η1 =
1
n

card(Z1) , and Z1 = {µi | ε1 < |µi − δ1|} . (3.27)
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By η1 we compute the fraction of segments for which the mean intensity is signifi-
cantly larger compared to the mean value over all segment means. A large η1 will
indicate an irregular image texture, whereas a small η1 will indicate a rather regular or
homogeneous texture.

However, important image characteristics can be located at the border of two neigh-
bouring segments such that the mean values vary only slightly. We, therefore, compute
the standard deviation σi of each segment and evaluate the same measures as before:

β2 = max
i

σi , (3.28)

γ2 = min
i

σi , (3.29)

δ2 =
1
n

n

∑
i=1

σi , (3.30)

ε2 =

�
1
n

n

∑
i=1

(σi − δ2)
2 . (3.31)

Again, we combine these measures to obtain the feature vector

f 2 = (β2, γ2, δ2, ε2, η2)
T , where (3.32)

η2 =
1
n

card(Z2) , and Z2 = {σi | ε2 < |σi − δ2|} . (3.33)

Finally, we obtain a ten-dimensional feature vector f = ( f 1, f 2)
T for a given input

image I. The only parameter we must choose is the number of segments the image is
divided into.

Alternatively, the image can also be analysed by radial sampling, where the image
is sampled for different orientations αi and the intensities are computed by bilinear
interpolation (see Figure 3.4). Compared to the previous technique, where we compute
the mean of segments using every image pixel, here, the number of orientations
αi controls the number of involved pixels and, therefore, determines computational
complexity. An advantage of this sampling technique is that it implicitly performs
an image transform—the image is unrolled or transformed to polar coordinates (see
Figure 3.4). Hence, we can use the transformed image to compute the features described
in 3.26 and 3.32 column-wise. Figure 3.5 compares the number of involved pixels
between the two radially encoded feature sets; for few orientations the sampling
technique employs only a fraction of pixels compared to the separation into segments
and it grows linearly in the number of orientations; at around 130–140 orientations
both approaches use the same number of pixels; for a large number of orientations the
sampling technique performs an oversampling and employs more pixels than image
pixels.

We use these novel feature sets for the inspection of welding seams and compare
with specularity features as well as statistical Fourier descriptors—see Part II.
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αi

(a) radial sampling (b) radial “unrolling”

Figure 3.4.: Left: Image of a LED sampled radially with 32 directions αi, i.e. angular resolution of
30 degrees; the intensities along each direction are computed by bilinear interpolation. Middle:
Image is sampled radially (counter clockwise) with an angular resolution of 1 degree and a
spatial resolution of 1 px (left). Right: Image after transformation; defects that affect the dark
ring become more visible after transformation and features can be computed column-wise.
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Figure 3.5.: Comparison of both feature-extraction methods concerning the number of pixels
involved for different parameters, i.e. number of segments and number of orientations; we have
used the welding seam image of Figure 3.3.
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3.5. Local Weibull Image Statistics

So far, we have introduced feature extraction methods that either compute geometrical
statistics or specifically encoded pixel intensities. In this section, we focus on the
analysis of image gradient distributions in local image regions, and we demonstrate
how characteristics of image gradients are described efficiently; these characteristics
can be used, for instance, to detect small and subtle deviations in surface properties.

Recent studies have shown that natural image statistics as well as stochastic texture
perception can be analysed by using a Weibull distribution. Geusebroek and Smeulders
[36, 37], for example, found that the distribution of gradient magnitudes of 54 mate-
rials out of 61 in the Curet collection [27] consistently follow a Weibull distribution.
Overall, they report that spatial image statistics change from a power-law to a normal
distribution through the Weibull type distribution as the complexity of the scene in-
creases. Therefore, Weibull distributions can be applied to image and texture analysis.
Furthermore, it has been shown that Weibull image statistics yield accurate results for
unsupervised image segmentation, image classification, and even for the analysis of
visual content [116, 9]. A significant study has been conducted by Scholte et al. [91],
in which they demonstrate that the distribution of contrast values in natural images
generally form a Weibull distribution. More suprisingly, they found that parameters
of the Weibull distribution strongly correlate with EEG responses of subjects viewing
these images.

Although it seems reasonable to analyse the contrast in image patches by evaluating
Weibull statistics, it remains unclear if Weibull statistics yield accurate results for
describing small, subtle, and miscellaneous deviations in texture images.

We present a simple and non-parametric approach to feature extraction of texture
images by using Weibull parameters. Figure 3.6 depicts the steps involved in this feature
extraction approach; first, we extract local image patches of a given texture image, for
which the patch size is automatically determined; second, for each local image patch
we compute image gradients and the distribution of their magnitudes, for which we,

For each patch

Texture image Extract patches

Compute Weibull 
!t and determine 
shape and scale 

parameter

Compute 
distribution of 

image gradients
Novelty detection

Figure 3.6.: Scheme for analysing texture images locally. Methods for novelty detection will be
presented in the following chapter.
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Figure 3.7.: Weibull distributions for different scales and shapes. A distribution similar to
the power-law arises for small shape values (less than 1), whereas a Gaussian distribution is
approximated by shape values around 3; intermediate shape values yield a typical Weibull type
distribution.

then, compute a Weibull fit and obtain the scale and shape parameter; finally, we apply
a novelty-detection method using the two Weibull features. Note that novelty-detection
methods will be introduced in the next chapter, here we focus on the feature extraction.

We will use the parametrized Weibull distribution with the following probability
density function

p(x) =
β

α

� x
α

�β−1
e−(

x
α )

β

, (3.34)

where x > 0 is the edge response of a Gaussian derivative filter, β > 0 the shape
parameter, and α > 0 the scale parameter. Figure 3.7 shows the Weibull distributions for
different shape and scale parameters; apparently, the parametrized Weibull distribution
captures a variety of different distributions such as power-law or Gaussian. Commonly,
the shape and scale parameter are determined by maximum likelihood estimation [38]
and used as image features, for instance, to analyse image content—see Figure 3.8.

Since our goal is to capture small deviations of texture images, we, in constrast, locally
estimate the Weibull parameters of the distribution of edge responses, see Figure 3.9;
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(a) swimmer (b) grass (c) coffee beans
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Figure 3.8.: Example of three different natural images (first row) with significantly different
visual appearance indicated by their Weibull parameters, shape and scale. The gradient mag-
nitudes (second row) are used to compute a histogram (third row) from which the Weibull
distribution is estimated (fourth row). Whereas the gradient magnitude histogram of the first
image (swimmer) follows a power-law distribution, the magnitudes of the second (grass) and
third image (coffee beans) follows a typical Weibull type distribution. Not only the different
visual content of the first image and the other two images is described by significantly different
Weibull parameters, but also the classification between fine textures (grass) and coarse textures
(coffee beans) can be based on the Weibull parameters.
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scale

texture image patches edges Weibull !t Weibull space

Figure 3.9.: Extraction of local texture characteristics. First, we extract local image patches and
compute their gradient magnitudes. Second, the distribution of local gradient magnitudes is
captured by fitting a Weibull distribution via maximum likelihood estimation. Finally, defective
regions are detected by exploring the space that is determined by the Weibull parameters.

we apply first-order directional Gaussian derivative filters Gx, Gy to the image I

G1 =
∂G(x, y)

∂x
, G2 =

∂G(x, y)
∂y

, G(x, y) =
1

2πσ2 exp
�
− x2 + y2

2σ2

�
(3.35)

to compute the gradient magnitude

|∇I(x, y)| =
�
[I(x, y)⊗ G1(x, y)]2 + [I(x, y)⊗ G2(x, y)]2 . (3.36)

By estimating the Weibull parameters of the distribution of local gradient magnitudes
we obtain samples in the space of the shape and scale parameters. The basic idea is
that within this space samples from defect-free image regions build clusters, whereas
samples from defective regions significantly deviate from these clusters such that
novelty-detection methods can be applied to detect these defective regions.

Figure 3.10 shows an example texture image with a subtle defect and samples in the
Weibull space that are obtained by estimating the parameters of the Weibull fit from
the gradient distribution of image patches. Apparently, most of the image patches form
a large cluster, whereas few image patches are further from this cluster—these patches,
obviously, belong to defective image regions. Although, in this example, texture features
such as homogeneity or irregularity could also be computed to capture the defect, we
will demonstrate in Part II of this thesis that local Weibull features can successfully be
applied for various types of defects and various textures.
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Figure 3.10.: Top left: Example texture image with a small, bright deviation near the image
centre. Bottom: In the Weibull space a significant cluster can be detected. Bottom and top right:
The four samples that are most far away from the cluster correspond to local image patches at
the defective region.
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Parts of this chapter are joint work with others. Kai Labusch and I came up almost simultaneously with the
idea for a simple, incremental and support-vector based method for novelty detection. I refined that idea,
implemented the algorithm, called ommo, and derived the proofs. I came up with the idea of performing
fast model selection for MaxMinOver-based learning algorithms and Sascha Klement and I contributed
equally to refining and implementing that idea. Some of the work described in this chapter has been
previously published in [64, 103]; minor parts of this chapter have been included in an article that is
currently under review [98].
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4.1. Introduction

Over recent years, the support vector machine [110, 24] has become a standard ap-
proach in solving pattern recognition tasks. Several training techniques, open-source
toolboxes, and commercial libraries for computing support vector solutions exist, e.g.
sequential minimisation optimisation (smo) [81], libsvm [15], or mosek [5]. Although
these methods are powerful and efficient, the details are diffcult to understand without
a strong background in optimisation theory, and therefore they are difficult to motivate
when explained to practitioners. Especially in industrial applications external libraries
or toolboxes for solving optimisation problems are avoided, since source code is mostly
unavailable and long-term external support is expensive. Hence, efficient, but simple
learning algorithms that can easily be integrated and extended are required.

In many applications, one has to cope with the problem that only samples of one
class are given; this class is often called target class. The task is to describe the target
class and to separate it from the outlier class, which consists of all outliers; methods
that solve this task are called novelty-detection methods. Either only few samples of the
outlier class are given or outlier samples are missing completely. In these cases two-class
classifiers often show poor generalisation performance and, hence, it is advantageous to
employ novelty detection methods. Especially in biomedical applications such as cancer
detection or tissue classification, where samples from healthy patients are frequent
but negative samples are rare, novelty-detection methods have become very important.
Moreover, novelty detection can even be applied for detecting outliers that have never
been seen before, which is required in industrial applications, when only defect-free
samples can be described well, but various new types of defects can occur.

Approaches to novelty detection can roughly be divided into three groups: density-
estimation methods, reconstruction methods, and boundary methods. The first and
the second group are the most powerful, because they derive a model of the data that
is defined everywhere in the input space. In contrast, boundary methods consider an
easier problem, that is, describing only the class boundary, instead of describing the
complete data distribution. Markou and Singh [72, 73] published a comprehensive
survey of novelty-detection methods, where they discuss statistical approaches in the
first part and neural network approaches in the second part.

In this chapter, we describe a novel, simple, and incremental boundary method
based on the support vector approach. First, we show theoretically that our method
is comparable with state-of-the-art support-vector methods for novelty detection and
we demonstrate that our method yields efficient solutions. Then, we demonstrate
its performance and efficiency by comprehensive experiments on several benchmark
datasets. Our novelty-detection method provides state-of-the-art performance despite
being extremely simple and therefore useful especially for practitioners who are not
within the field of machine learning.
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4.2. Previous Work

4.2.1. Kernel Density Estimation

One of the most important non-parametric approaches for novelty detection is the
so-called kernel density estimator (kde) [30] or Parzen estimator [80] that estimates
the underlying density. If the estimated density of a sample is below a particular
threshold, this sample is considered as outlier; the threshold must be chosen to meet
the required specification or can be computed automatically by analysing, for instance,
the corresponding receiver-operator characteristics. Given N data samples xi ∈ RD, the
estimated probability density function at x can be written as

p(x) =
1
N

N

∑
i=1

1
m

k
�

x − xi
h

�
, (4.1)

where h is a smoothing parameter, k : RD → R some kernel function, and m a
normalisation factor such that �

p(x) dx = 1 . (4.2)

A common choice for the kernel function is the Gaussian, which yields the following
kernel density model

p(x) =
1
N

N

∑
i=1

1
(2 π σ2)D/2 exp

�
−�x − xi�2

2 σ2

�
, (4.3)

where σ represents the standard deviation of the Gaussian and D the dimension of the
input space. The density model is obtained by placing a Gaussian over each data point,
summing up the contributions over all data samples, and dividing by the number of
samples for correct normalisation. Figure 4.1 shows the application of the density model
to toy data with different values of σ; apparently, this parameter strongly influences
the estimated model—it yields smooth density models for large σ and very sensitive
models for small σ. There are several techniques for computing appropriate σ such
as maximisation of the log likelihood or cross validation if some defect samples are
available for training.

On the one hand, kde does not require any training phase, which is beneficial in
real-world applications when new samples become available and the model must be
updated, but on the other hand kde requires storage of the whole dataset; moreover,
the cost of evaluating the density of a new sample grows linearly with the size of the
dataset. There are many techniques that achieve a good approximation of the density
with only a limited number of data samples such as reduced set methods or clustering
methods. These optimisations, however, introduce new parameters, which must be
validated and which strongly influence overall performance.
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σ = 0.1 true density
estimated density

σ = 0.7

σ = 5

Figure 4.1.: Estimated density model for toy data and varied bandwidth. Top: For small σ the
estimated model is very sensitive. Bottom: A large σ results in a smoothed model such that the
bimodal nature of the underlying distribution is washed out. Middle: A good density model is
obtained for some intermediate σ.

4.2.2. Kernel Principal Component Analysis

Principal component analysis (pca) has become a standard tool for various applications
such as data analysis, feature extraction, or feature selection. If the input variables
are linearly related to each other, the direction with maximum variance describes
the data best and is therefore called first principal component (see Figure 4.2). If the
input variables are nonlinearly related to each other, the data samples are transformed
from the input space into a feature space of higher dimensionality. It is assumed
that within this feature space the data samples are then linearly related and standard
principal component analysis can be performed—in this case, it is called kernel principal
component analysis (kpca) [89]. Since in most cases the data distribution is unknown,
it is unclear whether the input variables are linearly related to each other.

Hoffmann [46] recently described how kpca can also be used for novelty detection;
there, a sample is considered as novel if its reconstruction error for a particular set of
principal components exceeds a threshold. The density of the reconstruction error is
modelled in the whole input space and therefore this approach can be interpreted as
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x1

x1

Figure 4.2.: The first principal component x1 for exemplary data samples in the linear case (left)
and in the nonlinear case (right).

a special case of a density method for novelty detection—even though the common
properties such as normalisation, see Equation 4.2, for instance, are not necessarily
fulfilled.

In the following we will describe the kpca method and how it can be used as novelty
detector. We denote the transformation function from the input space X to a feature
space H by

φ : X → H , x → φ(x) . (4.4)

Then, the covariance matrix of the samples xi, (i = 1, . . . , N), in feature space can be
written as

C =
1
N

N

∑
i=1

φ̂(xi)φ̂(xi)
T , (4.5)

where

φ̂(xi) = φ(xi)− φ0 = φ(xi)−
1
N

N

∑
i=1

φ(xi) . (4.6)

We assume, for a moment, that the Eigenvectors can be written as a linear combination
of the data samples in features space such that

v =
N

∑
i=1

αiφ(xi) . (4.7)

We, then, obtain the Eigenvectors and Eigenvalues by solving the Eigenvalue problem

nλα = Kα , (4.8)

where Kij := φ̂(xi)Tφ̂(xj) is a kernel matrix centred in the feature space. A detailed
derivation of the Eigenvalue problem and the centred kernel matrix are given in
Appendix A. After computing the Eigenvectors, we can project a data sample φ(z) onto
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the l-th Eigenvector vl = ∑N
i=1 αl

i φ̂(xi) in feature space by

pl(z) = (φ(z)− φ0)
Tvl

= (φ(z)− φ0)
T

�
N

∑
i=1

αl
i(φ(xi)− φ0)

�

=
N

∑
i=1

αl
i

�
K(z, xi)−

1
N

N

∑
j=1

K(z, xj)−
1
N

N

∑
k=1

K(xk, xi) + µ

�

= (αl)T

�
K� − Ke

N

�
+ (µ − µz) eTαl ,

(4.9)

where K�
i = K(z, xi), µz = 1

N ∑N
j=1 K(z, xj), µ = 1

N2 ∑N
j,k=1 K(xj, xk), and e = (1, . . . , 1)T.

Let V be a matrix of row vectors that are the solution of Problem 4.8, i.e. q Eigenvectors
vj; we define the projection of a sample φ(z) onto these q Eigenvectors as

pz := (p1(z), . . . , pq(z))T = Vφ(z) . (4.10)

We can now use the reconstruction error r(z) of a data sample z in feature space as
novelty measure (see Figure 4.3), that is

r(z)2 = �φ̂(z)− V TV φ̂(z)�2
2

= �φ̂(z)�2
2 − 2 φ̂(z)TV TV φ̂(z) + φ̂(z)TV TVV TV φ̂(z)

= �φ̂(z)�2
2 − �V φ̂(z)�2

2

= �φ(z)− φ0�2
2 − �V(φ(z)− φ0)�2

2

= K(z, z)− 2
N

N

∑
i=1

K(z, xi) +
1

N2

N

∑
j,k=1

K(xj, xk)− �pz�2
2

= K(z, z)− 2 µz + µ − pT
z pz ,

(4.11)

where we used VV T = 1.

Only a fraction of Eigenvectors vk are commonly used for further computations;
we, therefore, normalise the Eigenvalues λk such that ∑N

i=1 λi = 1 and sort them
in descending order λ1 ≥ λ2 ≥ . . . ≥ λn. Let τ ∈ (0, 1] be a user-defined threshold
describing the amount of information that should be kept with respect to all Eigenvalues.
We compute the cumulated sum of sorted Eigenvalues and preserve all Eigenvalues
and corresponding Eigenvectors that are necessary to achieve threshold τ.
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r(z)

z

x1

Figure 4.3.: The construction error r(z) of a data point z using the first principal component
x1. Sample contour lines with equal reconstruction errors are shown as solid lines exemplarily;
shades of grey roughly depict the different levels of reconstruction error.

Finally, the kpca algorithm for novelty detection can be summarised as:

1 Compute centered and non-centered kernel matrices K, K̂ according to Equa-
tion A.11.

2 Compute Eigenvalues and Eigenvectors αl by solving Problem 4.8.

3 Normalise Eigenvectors according to Equation A.8.

4 Choose a set of Eigenvectors.

5 Compute the novelty of a new sample z with Equation 4.11.

The kernel matrix K is computed by a user-defined kernel function k which is, in
most cases, a Gaussian: Kij = k(xi, xj) = exp(−�xi − xj�2/2σ2). As for the kernel
density estimator, the kernel parameter σ and the threshold τ are evaluated via cross
validation. Figure 4.4 shows the results of applying the kpca method to toy data and
with different σ and τ.

4.2.3. Boundary Support Vector Methods

Several boundary methods for novelty detection have been developed, among which
two have been introduced almost simultaneously—the approach by Tax and Duin [96,
97] and the approach by Schölkopf et al. [88].

Tax and Duin proposed a method, which is called support vector data description
(svdd), for finding the smallest enclosing hypersphere of given data samples xi ∈
X , (i = 1, . . . , N); the hypersphere is described by radius R and centre w, which can
both be computed by solving the following optimisation problem:

min
w,R

�
R + C ∑

i
ξi

�
s.t. ∀i : �xi − w� ≤ R + ξi , ξi ≥ 0 . (4.12)
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(a) small σ (b) intermediate σ (c) large σ

(d) large τ (e) intermediate τ (f) small τ

Figure 4.4.: The kpca method applied to toy data and with a Gaussian kernel with parameter σ.
Different shades of grey correspond to the reconstruction error; small errors are dark, whereas
large errors are bright. Top row: Models with different σ and large τ; for small σ the solution
is very sensitive (a), whereas a large σ results in a very smooth model that cannot accurately
capture the details of the data (c); a good model is obtained for some intermediate σ (b). Bottom
row: Models with different τ and intermediate σ; large τ yield a model that tries to cover as
many data sample as possible (d); as τ decreases the model covers only regions with high data
density (e); for small σ most of the data samples yield the same large reconstruction error and
thus the solution describes only a small fraction of data samples accurately. Note that all axes
have equal scaling.
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The basic idea of this approach is to compute a hypersphere that describes the target
class, that has minimal volume, and that is determined by only few data samples.
Slack variables ξi are introduced to allow for samples that are located outside the
hypersphere. By setting the partial derivatives of the corresponding Lagrangian to zero
and resubstituting we obtain the dual optimisation problem

min
α

�

∑
i,j

αiαj xT
i xj − ∑

i
αi xT

i xi

�
s.t. ∀i : 0 ≤ αi ≤ C , ∑

i
αi = 1 . (4.13)

The parameter C ∈ [1/n, 1] controls the number of ”outliers“; for C < 1/n no solution
can be obtained, since the constraint ∑i αi = 1 cannot be fulfilled, whereas for C >
1 a solution can always be found. A large fraction of samples will be outside the
hypersphere for small C, whereas the number of data samples inside the hypersphere
increases as C increases, see Figure 4.5.

Note that for the Lagrangian new constraints are obtained, e.g. the centre of the
sphere must be a linear combination of the data samples

w = ∑
i

αixi . (4.14)

Since w is only determined by samples xi with αi > 0, these samples are called
support vectors (see Figure 4.5). According to the Karush-Kuhn-Tucker complementarity
conditions, 0 < αi < C holds for support vectors on the boundary, whereas support
vectors outside the hypersphere yield αi = C. The radius R of the sphere can thus be
obtained by computing the distance between the centre and a support vector on the
boundary. A new sample x is classified by comparing the distance to the centre of the

w

R

(a) large C

w

R

(b) intermediate C

w

R

(c) small C

support vectors
data samples

Figure 4.5.: Example of the svdd method applied to toy data. Left: For large C the hypersphere
captures all data samples. Right: A small C results in a small hypersphere such that only a few
samples lie inside. Middle: A good solution is obtained for some intermediate C.
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sphere and R. In terms of support vectors this becomes

f (x) = sgn
�

R2 − �x − w�2� = sgn

�
R2 − xTx + 2 ∑

i
αixT

i x − ∑
i,j

αiαj xT
i xi

�
. (4.15)

Since, in most cases, the data samples are not spherically distributed, the boundary
must be more flexible to be applied to various data distributions. We can achieve
such a flexible and powerful boundary by replacing the inner products (xT

i xj) with
a kernel function k(xi, xj) = φ(xi)Tφ(xj), where φ maps the data samples into some
high-dimensional feature space, in which Problem 4.13 can be solved. Since xi is solely
involved in inner products, we do not need to compute the mapping φ(xi) explicitly,
instead, the mapping is used implicitly in the dot products—this is frequently referred
to as the kernel trick. More details regarding kernels can be found in [25, chapter 3], for
example. Note that in case of a kernel function, w can only be evaluated if the mapping
φ can be computed explicitly; for some kernel functions φ only an approximation can
be computed, for instance, by using pre-image techniques.

Although several kernel functions have been proposed, especially for two-class
support vector classification, kernel functions that are based on only the distance of
two data samples rather than on their inner product are suitable for svdd. Hence, a
Gaussian kernel

k(xi, xj) = exp
�
−�xi − xj�/2σ2� (4.16)

is applied in cases where the data do not follow a uniform circular distribution (see
Figure 4.6). A Gaussian kernel, however, carries the risk of under- and overfitting if
the kernel parameters are chosen inappropriately. To overcome this problem, cross-
validation techniques are often applied to automatically determine appropriate kernel
parameters.

w

R

(a) no kernel (b) Gaussian kernel

support vectors
data samples

Figure 4.6.: The svdd method applied to toy data; if the data does not follow a uniform circular
distribution a hypersphere yields an inaccurate data description (left), whereas by including a
kernel, such as the Gaussian, one obtains a flexible and accurate data description (right).
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(a) no kernel
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0
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w

(b) Gaussian kernel

Figure 4.7.: The method proposed by Schölkopf et al. computes a linear separation of the data
samples from the origin. Left: Without a kernel the hyperplane linearly separates the data
samples from the origin in the input space. Right: The Gaussian kernel maps the data samples
onto the unit sphere in some higher-dimensional feature space, where the maximum-margin
hyperplane is computed; this separation then corresponds to a non-linear class boundary in the
input space, such as in Figure 4.6(b). Note that for the Gaussian kernel only a two-dimensional
projection of the data samples and the separating hyperplane is shown.

Schölkopf et al. [88] proposed a method, which also belongs to the class of boundary
methods; this method is closely connected to the previous method, as we will discuss
later. They show that data description or estimating the support of a high-dimensional
distribution, as it is called in their article, can be interpreted as two-class classification
problem where the outlier class is represented by the origin (see Figure 4.7). They
consider the problem of finding the hyperplane that separates the data samples from the
origin with maximum distance, which can be formulated as the following optimisation
problem:

min
w,ξ,ρ

�
1
2
�w�2 +

1
νl ∑

i
ξi − ρ

�
s.t. ∀i : wTxi ≥ ρ − ξi , ξi ≥ 0 . (4.17)

Here, ν ∈ (0, 1] is a regularisation parameter similar to C for the svdd approach (see
Equation 4.12). Again, the soft-margin problem is shown, which allows for misclassified
samples by incorporating slack variables ξi. For small ν one obtains the hard-margin
solution that enforces correct classification of most training samples, whereas for large
ν many training samples are on the other side of the hyperplane.

Again, setting the partial derivatives of the corresponding Lagrangian equal to
zero yields an expansion of w in terms of support vectors and upper bounds for the
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Lagrangian multipliers αi, βi:

w = ∑
i

αixi (4.18)

αi =
1

νN
− βi ≤

1
νN

, ∑
i

αi = 1 . (4.19)

Hence, the dual problem is

min
α

�

∑
i,j

αiαjxT
i xj

�
s.t. ∀i : 0 ≤ αi ≤

1
νN

, ∑
i

αi = 1 , (4.20)

and the decision function becomes

f (x) = sgn (wTx − ρ) = sgn

�

∑
i

αixT
i x − ρ

�
, (4.21)

where ρ is recovered by any support vector xj on the boundary

ρ = wTxj = ∑
i

αixT
i xj , ∀xj : 0 < αj <

1
νN

. (4.22)

Note that the major difference between the duals 4.13 and 4.20 is the linear term
∑i αixT

i xi. Moreover, 4.13 and 4.20 turn out to be equivalent, if all xi lie on the surface
of a sphere such that xT

i xi is constant, which is satisfied for every kernel function that
depends on only xi − xj. In the following, we assume that the data samples can be
linearly separated from the origin, which is satisfied in case of a Gaussian kernel, for
instance, since all data samples lie in the same orthant and have unit length; a detailed
discussion can be found in [88, appendix].

4.3. OneClassMaxMinOver

In this section, we introduce a straightforward, incremental, and efficient algorithm,
called OneClassMaxMinOver (ommo), for support-vector data description; it is closely
connected to the previous optimisation problems. We, therefore, rewrite the primal
problem 4.17, proposed by Schölkopf et al., for the hard-margin case:

min
w,ρ

�
1
2
�w�2 − ρ

�
s.t. ∀i : wTxi ≥ ρ . (4.23)

The corresponding primal Lagrangian is

L(w, ρ, α) =
1
2
�w�2 − ρ − ∑

i
αi(wTxi − ρ) , (4.24)
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where αi ≥ 0 are the Lagrange multipliers. Differentiating with respect to the primal
variables yields

∂L
∂w

= w − ∑
i

αixi = 0 ⇔ w = ∑
i

αixi and (4.25)

∂L
∂ρ

= −1 + ∑
i

αi = 0 ⇔ ∑
i

αi = 1 . (4.26)

By resubstituting 4.25 and 4.26 into 4.24 and rearranging we obtain the dual

min
α

�
1
2 ∑

i
αiαjxT

i xj

�
s.t. ∑

i
αi = 1 , ∀i : αi ≥ 0 . (4.27)

Moreover, we can set the margin to a constant value such as ρ = 1, which yields the
dual

min
α

�
1
2 ∑

i,j
αiαjxT

i xj − ∑
i

αi

�
s.t. ∀i : αi ≥ 0 . (4.28)

Obviously, solving 4.27 or 4.28 yields the same maximum margin hyperplane.
Like many maximum-margin methods based on support vectors the primal 4.23 and

the corresponding duals 4.27 and 4.28 implicitly maximise the margin by minimising
the length of w, while ensuring correct classification of all data samples by linear
constraints wTxi ≥ ρ.

We, however, consider a different strategy for obtaining the maximum-margin
support-vector solution—instead of minimising the length of w we explicitly max-
imise the margin ρ while the length of w is constant, that is

max
w

ρ(w) s.t. �w� = 1 , with (4.29)

ρ(w) = min
xi

(wTxi) , (4.30)

w = ∑
i

αixi , αi ≥ 0 . (4.31)

Geometrically, we consider the problem of finding the hyperplane w∗ passing through
the origin and having maximum margin ρ∗ with respect to the given data samples
(see Figure 4.8). Correct classification of all data samples is directly achieved by 4.30
and we assume with 4.31 that w is a linear combination of the data samples xi. Hence,
Problems 4.23, 4.28 and 4.29 yield the same maximum margin hyperplane.

The decision function then becomes

f (x) = sgn(wTx − 1) . (4.32)
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1

1

H

ρ∗

w∗

Figure 4.8.: Comparison of solutions obtained by solving problem 4.23, depicted by H, and by
solving problem 4.29 with w∗ and ρ∗.

We propose a straightforward and incremental algorithm for solving Problem 4.29,
where the weights αi used in the description of the weight vector w, see Equation 4.31,
are updated in each iteration according to a particular learning rule. Let wt be the
approximation of the optimal w∗ at time t and ρt the approximation of the maximum
margin ρ∗. During the iterative optimisation the constraint �w� = 1 is dropped, which
is not critical as we will see later. The algorithm starts with w0 = 0 and after tmax

learning iterations the norm of the final approximation wtmax is set to one. The basic
idea of the novel learning algorithm is as follows. In each learning iteration the sample
that is closest to the current hyperplane defined by wt is selected, that is

xmin(t) = arg min
xi

(wT
t xi) . (4.33)

For each given training sample xi the counter variable αi is increased by some positive
a whenever the sample is selected as xmin(t):

αi = αi + a for xmin(t) = xi . (4.34)

Let X �(t) denote the set of samples xj for which αj > 0 holds at time t. Out of this set,
the algorithm selects the sample being most distant to the current hyperplane defined
by wt:

xmax(t) = arg max
xj∈X �(t)

�
wT

t xj
�

. (4.35)

Whenever a sample is selected as xmax(t), its associated counter variable is decreased
by some positive b:

αi = αi − b for xmax(t) = xi . (4.36)
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Note that 4.34 and 4.36 can be combined to the learning rule

wt+1 = wt + a xmin(t)− b xmax(t) , (4.37)

with a > b > 0. Since the learning rule 4.37 increases the weight for samples close to
the hyperplane and decreases the weight for samples farther from the hyperplane, it is
still very similar to the well-known perceptron algorithm [86]. Reasonable values for
the learning rate a and for the forgetting rate b will be discussed later.

The distance d of a sample xj to the hyperplane at time t can be recovered by

dj := d(xj) = wT
t xj = ∑

i
αixT

i xj . (4.38)

As mentioned in the beginning, we require that the dataset has been mapped into
some feature space where all samples can be linearly separated from the origin. This
transformation, however, is not required explicitly; it can be achieved by replacing the
standard dot product with a kernel that implements an implicit mapping to a feature
space and that satisfies Mercer’s conditions. Using a kernel function we can replace
Equation 4.38 with

d(xj) = ∑
i

αi k(xi, xj) , (4.39)

where k is an appropriate kernel function such as the Gaussian kernel. We can further
rewrite the distances to the hyperplane using the kernel matrix K ∈ RN×N with
Kij = k(xi, xj) such that

d = (d1, . . . , dN)
T = Kα . (4.40)

Altogether, we obtain Algorithm 4.1 for simple and incremental support vector data
description. The correct choice of the kernel and its parameters, such as σ in case of a
Gaussian kernel, is crucial and strongly influences the shape of the decision boundary,
the number of support vectors, and the resulting performance; Figure 4.9 shows
solutions computed with different values of σ. A common technique for determining
appropriate kernel parameters is cross validation—more details on cross validation and
other techniques for model selection can be found in [44, Chapter 7], for instance.

4.3.1. Proof of Convergence

In the previous section, we have presented a novel approach for solving the optimisa-
tion problem 4.29; now we analyse our algorithm theoretically and prove (i) that the
algorithm converges to the maximum margin hyperplane and (ii) that this hyperplane
is solely described by support vectors. However, we will first present a few propositions
that are required for the final proofs.
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α = ommo(K, tmax, a, b)

Input: K kernel matrix of data samples xi, i = {1, . . . , N}
tmax number of iterations, e.g. tmax = 104

a learning rate, e.g. a = 2
b forgetting rate, e.g. b = 1

Output: α coefficient vector

αi ← 0 ∀i = 1, . . . , N
for t ← 1, . . . , tmax do

d ← Kα � compute distances
xmin(t) ← arg min

i
di � determine closest sample

xmax(t) ← arg max
i, αi>0

di � determine farthest support vector

αmin ← αmin + a � increase weight for closest sample
αmax ← αmax − b � decrease weight for farthest sv

end for
d ← Kα, ρ ← min

i
di, α ← α/ρ � scale α such that ρ = 1

Algorithm 4.1 (OMMO): Computes the solution of the primal Problem 4.29 using ommo.

(a) small σ (b) intermediate σ (c) large σ

Figure 4.9.: Example toy data and the solutions of the ommo algorithm with a Gaussian kernel.
For small σ the decision boundary is tight and sensitive due to the large number of support
vectors (left), whereas a large σ results in a smooth and loose decision boundary with few
support vectors (right). A good decision boundary with a limited number of support vectors is
obtained for some intermediate σ (middle).
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Proposition 4.3.1. The length of wt is bounded such that wT
t xmin(t)/ρ∗ ≤ �wt�.

Proof. From the definition of the margin, see Equation 4.30, we already know that the
margin at time t can be obtained by ρt = wT

t xmin(t)/�wt� and is upper bounded such
that ρt ≤ ρ∗; this directly leads to �wt� ≥ wT

t xmin(t)/ρ∗.

Proposition 4.3.2. For a > 0, b > 0, and a = b + 1 the length of wt is bounded such that
�wt� ≤ ρ∗ t + (a + b)

√
t.

Proof. This is done by induction and using the properties

∀i : �xi� = 1 , (4.41)

∀t : wT
t xmin(t) ≤ wT

t xmax(t) , (4.42)

∀t : xmin(t)Txmax(t) = cos β �xmin(t)� �xmax(t)� ≥ −1 . (4.43)

The case t = 0 is trivial and for t → t + 1 it follows that

�wt+1�2 4.37
= (wt + (axmin(t)− bxmax(t)))2

= wT
t wt + 2wT

t (axmin(t)− bxmax(t)) + (axmin(t)− bxmax(t))2

(a=b+1)
= wT

t wt + 2wT
t xmin(t) + 2 (wT

t xmin(t)− wT
t xmax(t))

+a2�xmin(t)�+ b2�xmax(t)� − 2abxmin(t)Txmax(t)

4.41
= wT

t wt + 2wT
t xmin(t) + 2 (wT

t xmin(t)− wT
t xmax(t))

+a2 + b2 − 2abxmin(t)Txmax(t)

4.42
≤ wT

t wt + 2wT
t xmin(t) + a2 + b2 − 2abxmin(t)Txmax(t)

4.43
≤ wT

t wt + 2wT
t xmin(t) + a2 + b2 + 2ab

4.3.1
≤ wT

t wt + 2ρ∗�wt�+ (a + b)2

≤
�

ρ∗ t + (a + b)
√

t
�2

+ 2ρ∗
�

ρ∗ t + (a + b)
√

t
�
+ (a + b)2

= ρ2
∗t2 + 2ρ2

∗t + 2ρ∗(t + 1)(a + b)
√

t + (a + b)2(t + 1)

≤ ρ2
∗(t

2 + 2t + 1) + 2ρ∗(t + 1)(a + b)
√

t + (a + b)2(t + 1)

≤
�

ρ∗ (t + 1) + (a + b)
√

t + 1
�2

.
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Theorem 4.3.3. For t → ∞, a, b > 0, and a = b+ 1 the angle γt between the optimal direction
w∗ and the direction wt found by ommo converges to zero, i.e. limt→∞ γt = 0.

Proof. We need the property of learning rule 4.37 that a sample can only be forgotten,
if it has been learnt before, which is

∀ xmax(t) ∃ xmin(t�) , t� < t : xmax(t) = xmin(t�) . (4.44)

According to the maximum margin property, it holds that

wT
∗xmin(i) ≥ ρ∗ . (4.45)

Then the cosine of the angle between w∗ and wt can be written as:

cos γt =
wT

∗wt

�wt�

=
1

�wt�
t−1

∑
i=0

wT
∗ (a xmin(i)− b xmax(i))

a=b+1
=

1
�wt�

t−1

∑
i=0

wT
∗ (xmin(i) + b xmin(i)− b xmax(i))

4.44
=

1
�wt�

t−1

∑
i=0

wT
∗xmin(i)

4.45
≥ 1

�wt�
ρ∗ t

4.3.2
≥ ρ∗ t

ρ∗ t + (a + b)
√

t

=
1

1 + (a+b)
√

t
ρ∗ t

≥ 1 − a + b
ρ∗

√
t

t→∞−→ 1

We have thus proven that the ommo algorithm converges to the optimal maximum-
margin hyperplane with a convergence rate of at least O(1/

√
t); now, we prove that

the hyperplane computed with ommo is solely determined by support vectors.
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γt

w∗

wt

ut

cos γt�wt�

wt = cos γt�wt�w∗ + ut (4.46)

�ut� = �wt� sin γt (4.47)

�w∗� = 1

Figure 4.10.: Orthogonal decomposition of wt and properties that hold within this decomposi-
tion.

Theorem 4.3.4. Beyond some finite number of iterations t > t� the set X �(t) will always
consist of support vectors only.

Proof. We, first, show that after some finite number of iterations t� < t, xmin(t) will
always be a support vector. Therefore, we use the orthogonal decomposition of wt

depicted in Figure 4.10. Furthermore, X sv will denote the set of final support vectors.
We perform an indirect proof by assuming that a finite number of iterations t� for

which xmin(t) with t > t� will always be a support vector does not exist, i.e.
� t� < ∞ , ∀ t > t� : xmin(t) ∈ X sv. Furthermore, we use the following property

∀z : zTxmin(t) = cos(α) �z� �xmin(t)� 4.41
= cos(α) �z� ⇔ zTxmin(t) ≤ �z� . (4.48)

⇒ wT
∗xmin(t) > ρ∗ (4.49)

≥ ρt

=
wT

t xmin(t)
�wt�

4.46
=

(cos γt�wt�w∗ + ut)
T xmin(t)

�wt�

= cos γtwT
∗xmin(t) +

uT
t xmin(t)
�wt�

4.47
= cos γt wT

∗xmin(t) +
uT

t xmin(t)
�ut�

sin γt

4.48
≥ cos γt wT

∗xmin(t) + sin γt

4.3.3−→ wT
∗xmin(t) for t → ∞ (4.50)
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Due to 4.50 there is a t� where xmin(t) being a non-support vector and t > t� inevitably
leads to a contradiction. Hence, for t > t� only support vectors are added to the set
X �(t), i.e. there is a finite number of non-support vectors contained in the set X �(t). As
a consequence after a finite number of iterations t�� > t also xmax(t��) will always be a
support vector.

Finally, we prove that all non-support vectors in the set X �(t) will be removed.
Assumption: There exists a sample x that is not a support vector but it remains in the
set X �(t), i.e. ∃ x : x �∈ X sv ∧ x ∈ X �(t) for all t.

=⇒ ρ∗ <
wt

�wt�
x <

wt

�wt�
xmax(t)

t→∞−→ ρ∗ (4.51)

Since after a finite number of iterations xmax(t) will always be a support vector, the
assumption leads to a contradiction and hence all non-support vectors in the set X �(t)
will be removed.

We have proven that the ommo algorithm converges with at least O(1/
√

t) to the
maximum margin solution that is solely described by support vectors. Our novel
algorithm can thus be used, without specific knowledge in optimisation theory, for
efficient data description and novelty detection. Moreover, ommo is an alternative
to existing optimisation toolboxes or sophisticated training algorithms, especially for
novices in the field of machine learning.

4.3.2. Soft-Margin Kernelised OneClassMaxMinOver

So far, we have considered the hard-margin problem without allowing a sample on
the other side of the separating hyperplane. To realise a soft-margin we employ slack
variables ξi such that the quadratic optimisation problem becomes

min
w,ξ

�
1
2
�w�2 +

C
2 ∑

i
ξ2

i

�
s.t. ∀i : wTφ(xi) ≥ 1 − ξi . (4.52)

In the hard-margin case (C → ∞) this is equivalent to Problem 4.29. Note that compared
to the Problems 4.12 and 4.17 the non-negativity constraint on each slack variable, i.e.
ξi ≥ 0, disappears, since we use a 2-norm penalisation term in the objective function.
By constructing the primal Lagrangian of 4.52, setting the partial differentiations to
zero, and rearranging we obtain

min
α

�
1
2 ∑

i,j
αiαj

�
k(xi, xj) +

1
C

δij

�
− ∑

i
αi

�
s.t. ∀i : αi ≥ 0 , (4.53)

where δij is the Kronecker delta, which is 1 if i = j and 0 otherwise. As mentioned in
[25] this can be understood as solving the hard-margin problem in a modified kernel
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(a) small C (b) intermediate C (c) large C

Figure 4.11.: Example toy data and the solutions of the ommo algorithm that incorporates
softness; we, here, applied a Gaussian kernel with large σ, compare Figure 4.9c. The parameter
C controls the softness of the class boundary; for small C many data samples are outside the
description (left) and as C increases the number of outliers decreases (middle); for large C
the class boundary covers all data samples (right). Since C is an additional kernel parameter,
appropriate values for C can be computed, for instance, by cross validation.

space with the kernel function k(xi, xj) +
1
C δij. To implement a 2-norm soft-margin

version of ommo we therefore apply a simple modification to Algorithm 4.1 such that

d(xi) = ∑
j

αj

�
k(xj, xi) +

1
C

δij

�
and (4.54)

d = K∗α with (4.55)

K∗ = K +
1
C

I , (4.56)

where I is the identity matrix. Figure 4.11 shows the results of the modified ommo for
different C and a Gaussian kernel with large σ.

4.3.3. Optimisations

Since ommo is simple and can be implemented within only a few lines of source code
and without any sophisticated toolboxes, we can easily integrate several modifications
and optimisations. In the following, we present the most important optimisations:

Stopping Criteria Several ways for defining stopping criteria of an iterative support
vector approach such as ommo have been proposed in the literature, e.g. monitoring
the growth of the dual objective function, monitoring the Karush-Kuhn-Tucker com-
plementary conditions for the primal, or measuring the feasibility gap. For a detailed

69



discussion on stopping criteria see [25, chapter 7] or [90, chapter 10]. We, here, focus
on the so-called feasibility gap f , which is defined as the difference between the values
of the primal 4.52 and the dual objective function 4.53:

f (α, ξ, K) = primal − dual (4.57)

=
1
2

wTw +
C
2

ξTξ − eTα +
1
2

αTK∗α (4.58)

= αTd − 1
2C

αTα +
C
2

ξTξ − eTα , (4.59)

where e = (1, . . . , 1)T and d = (d1, . . . , dN)T = K∗α = Kα + 1
C α. A useful measure of

progress is the normalised feasibility gap

f ∗(α, ξ, K) =
primal − dual

primal + 1
(4.60)

=
2αT − 1

C αTα + C ξTξ − 2eTα

αTd + C ξTξ + 2
. (4.61)

Since we apply a 2-norm slack term and use a modified kernel function, we must
compute the correct ξi to obtain f ∗; this is done by normalising αi such that the distance
of the hyperplane to the origin equals one:

αi ←
αi
ρ

, with ρ = min
i

di , (4.62)

where di is the distance of sample xi to the current hyperplane, see Equation 4.39. The
evaluation of f ∗ takes time O(N) due to the dot products, however, it is sufficient to
compute f ∗ in regular intervals, e.g. every 100th step; hence, the runtime of ommo does
not change significantly.

Kernel Caching The kernel evaluations di are usually the most time consuming compu-
tations of naı̈ve implementations. Whereas for some applications the full kernel matrix
can be computed beforehand, especially in large sample size scenarios kernel values
must be computed online. Instead of recomputing identical kernel values we apply a
kernel cache that stores frequently used values for later usage. The size of the cache
is crucial depending on the number of support vectors of the final solution, but in
most cases only few data samples become support vectors and, hence, the cache often
contains more elements than final support vectors.

Incremental Kernel Evaluation Learning rule 4.1 of ommo changes only αmax and αmin

during each iteration. Hence, di can be evaluated incrementally by

di(t + 1) = di(t) + 2 k(xmin(t), xi)− k(xmax(t), xi) . (4.63)
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As this incremental summation can be numerically instable, si should be recomputed
after a fixed number of iterations, for instance after 1000 iterations. The additional cost
in complexity can be neglected, especially when this recomputation is performed in
combination with the stopping criterion.

Preinitialisation With grid search we can evaluate the performance of a machine learn-
ing algorithm for different parameters, such as the kernel parameter σ in case of a
Gaussian kernel and the softness parameter C. For most applications these parameters
are sampled on a regular grid and the optimal parameters are chosen according to com-
mon performance measures such as the area under the receiver-operator-characteristic
or cross-validation error. Since parameters of adjacent nodes in the grid will yield
similar support vector solutions, we can initialise ommo with the solution of an adjacent
node. In this case, we must omit the scaling of αi, compare last line of Algorithm 4.1.
Moreover, if a transformation between kernel values with different parameters exists
and if it requires less time than a complete recalculation, the kernel values can also be
reused. For Gaussian kernels,

k(xi, xj) ←
�

k(xi, xj)−
δij

C1

�σ2
1 /σ2

2

+
δij

C2
(4.64)

transforms the kernel values of the parameter tuple (C1, σ1) into those of the tuple
(C2, σ2).

Algorithm 4.2 shows a modified version of ommo that employs the evaluation of the
feasibility gap and incremental kernel evaluation; this requires only three additional
lines in the loop. We will demonstrate later that preinitialisation in combination with the
normalised feasibility gap as stopping criterion and the incremental kernel evaluation
yield a significant speed-up when performing cross validation.

4.4. Experiments and Results

In this section, we analyse the behaviour of ommo for different parameters and with the
aforementioned optimisations. Moreover, we compare with a state-of-the-art algorithm
for solving Problem 4.52; if not otherwise noted, we use positive samples from the
banana benchmark dataset1 (see Figure 4.12), a Gaussian kernel with parameter σ and
softness parameter C, and learning rates a = 2 and b = 1.

4.4.1. Feasibility Gap and Convergence Rate

Instead of applying ommo with a fixed number of iterations, the normalised feasi-
bility gap, Equation 4.60, can be used as accuracy measure during the incremental

1http://archive.ics.uci.edu/ml
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α = ommo2(K, fstop, a, b, C)

Input: K kernel matrix with Kij = k(xi, xj) and i, j ∈ {1, . . . , N}
fstop stopping criterion for the feasibility gap, e.g. 10−3

a learning rate
b forgetting rate
C softness parameter

Output: α coefficient vector

αi ← 0 ∀i = 1, ..., N � initialise counter variables
f ← ∞ � initialise feasibility gap
K∗ ← K + 1

C I � modified kernel matrix
d ← K∗α � compute distances
while f > fstop do

xmin(t) ← arg min
i

di � determine closest sample

xmax(t) ← arg max
i, αi>0

di � determine farthest support vector

αmin ← αmin + a � increase weight for closest sample
αmax ← αmax − b � decrease weight for farthest sv
d ← d + a K∗

.,min − b K∗
.,max � update distances incrementally

ρ ← min
i

di � determine scaling parameter

ξ ← max (0, 1 − (d − α/C) /ρ) � compute slack variables

f ←
2
ρ2 αTd − 1

Cρ2 αTα + CξTξ − 2
ρ eTα

1
ρ2 αTd + CξTξ + 2

� current feasibility gap

end while
d ← K∗α , ρ ← min

i
di , α ← α/ρ � scale α such that margin= 1

Algorithm 4.2 (OMMO2): Computes the support vector solution using ommo with stopping
criterion and incremental kernel evaluation.

computation, see Algorithm 4.2. This, however, does not reduce the number of parame-
ters, since we have to select a threshold for the feasibility gap. We, here, address the
question whether the number of iterations for different kernel parameters changes
significantly when using a fixed feasibility gap as stopping criterion for ommo. We
randomly selected 200 data samples from the banana dataset and we stopped ommo
when the normalised feasibility gap has reached the value 10−4. The results in Table 4.1
demonstrate that the number of iterations significantly increases as C increases and if σ
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Figure 4.12.: Positive data samples of the banana dataset used throughout the experiments if
not otherwise noted; the data samples have zero mean and unit variance.

is constant; for a constant C the number of iterations decreases as σ increases. Since the
number of iterations is generally proportional to the number of final support vectors,
these results are reasonable and show that there is no optimal strategy for choosing the
number of iterations that ommo should perform. Hence, the feasibility gap is not only
an appropriate measure for controlling ommo, but will also reduce computation time.

Theoretically, we have proven that ommo converges with at least O(1/
√

t) to the
maximum margin solution that is solely based on support vectors. Here, we will have a
closer look at the convergence rate and the behaviour of ommo. We, therefore, use some
intermediate kernel values, i.e. σ = 0.8 and C = 5, and compute the normalised feasi-
bility gap during each iteration of ommo. Figure 4.13 indicates even faster convergence
than we have proven; within the first ten iterations the feasibility gap is almost constant,
but thereafter convergence is really fast—for 103 iterations ommo achieves a feasibility
gap of less than 10−3 and after 105 iterations the feasibility gap is approximately 10−7.
Moreover, Figure 4.14 illustrates the behaviour of ommo when the number of iterations
varies. Whereas for small t the class boundary describes the data samples roughly, for
t > 100 a tight description of the data samples is already visible; as t > 103 increases
the solution does not change qualitatively.

Although this experiment was only conducted with a particular dataset and a
particular set of kernel parameters, it shows very fast convergence and that, at least in
some cases, one can expect a faster convergence rate than we have proven.
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Table 4.1.: Number of iterations for ommo required to reach a feasibility gap of 10−4 for 200
randomly selected samples of the banana dataset. For small σ and large C almost 600000
iterations have to be performed, whereas less than 8000 iterations are required for large σ. For
intermediate σ and C the number of iterations vary between 10000 and 100000.

σ C = 0 1 2 5 10 100 1000 10000

0.10 18373 20594 23847 29374 36631 82663 226028 579872
0.25 17339 18373 19608 21270 23568 37889 83687 177325
0.50 15694 16239 16780 17459 17761 21731 38527 70759
0.75 14194 14603 15021 15529 15864 17865 24629 32532
1.00 13105 13431 13782 14190 14520 15728 19985 26370
1.50 11178 11547 11906 12331 12563 12327 14123 19258
2.00 9939 10248 10561 10884 11117 10354 11626 13197
5.00 7280 7427 7536 7424 7441 7448 7429 7523

O(1/
√

t)

O(1/t)

O(1/t2)
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Figure 4.13.: Normalised feasibility gap (see Equation 4.60) evaluated during each iteration of
ommo. Whereas we have proven a convergence rate of at least O(1/

√
t), we can experimentally

identify a convergence rate of even O(1/t2).
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(a) t = 101 (b) t = 102

(c) t = 103 (d) t = 105

Figure 4.14.: Solutions of ommo at different iterations t and with a Gaussian kernel where
σ = 0.8 and C = 5. After 10 iterations the class boundary is very loose with few support vectors
and the data samples are described imprecisely (a). In contrast, for t = 102 the class boundary
has evolved into a tighter data description, where most of the true support vectors have been
identified (b). After 103 iterations the solution is refined such that the description becomes
tighter around the data samples and the remaining true support vectors have been detected (c).
Finally, the shape of the boundary does not change significantly with additional iterations (d).
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4.4.2. Stability Analysis

Since in each iteration of ommo the coefficient vector α remains unscaled such that
�w� �= 1, the length of α will increase constantly; this can lead to numerical issues,
especially when computing di—compare incremental kernel evaluation 4.39. However,
for most applications these issues can be neglected, since �α� and di are upper bounded.

Theorem 4.4.1. di(t) is upper bounded by t.

Proof. We assume that a kernel function is applied for which k(x, z) ≤ 1 holds for all
(x, z)—for example a Gaussian. Hence,

di(t) =
N

∑
j=1

αj(t) k
�
xi, xj

�
≤

N

∑
j=1

αj(t) ≤ t . (4.65)

We applied Equation 4.44, which states that a sample can only be forgotten, if it has
been learnt before. Moreover, di can reach the upper bound only if the same αj is
increased and a = b + 1, b > 0. Then,

∀t > 0 : xmax(t) = xmax(t − 1) (4.66)

⇒ xmax(t) = xmin(t) (4.67)

⇒ αmax ← αmax + 1 , (4.68)

which leads to a contradiction, since a hyperplane is always described by at least two
data samples. As a consequence, di(t) is always below t.

Since di is bounded by the number of iterations t, which is itself limited in real
applications, compare Table 4.1, especially when applying the feasibility gap as
stopping criterion, the di will be in a numerically stable range. However, the incre-
mental kernel evaluation of di, i.e. Equation 4.63, can be numerically unstable, if
a k(xi, xmax(t)) ≈ b k(xi, xmin(t)) holds for all xi, which then would not change the di(t).
In practice, this property holds only for few xi and an extremely large sample size.

4.4.3. Computation Time

We compare the computation time of ommo and libsvm [15], which is a state-of-the-
art toolbox for computing support vector solutions and which has been successfully
applied in several competitions as well as real-world applications. Various optimisation
techniques for fast support vector learning have been integrated into libsvm; the current
release 3.1 employs a sequential minimisation optimisation (smo) like algorithm with
kernel caching and sophisticated working set selection as described in [34].

We have used various benchmark datasets from the UCI repository2; we scaled the
2http://archive.ics.uci.edu/ml
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data samples to zero mean and unit variance, and we applied a Gaussian kernel with
σ = 1.5 for the experiments. Since the softness parameters of ommo and libsvm are
difficult to compare, we have used extreme values such that a hard margin solution is
obtained, i.e. C = 106 and ν = 10−3. For ommo’s learning rule we have chosen a = 2,
b = 1, and we have stopped the algorithm once a feasibility gap of 10−4, computed
within each iteration, has been reached. For libsvm we set the stopping criterion to
10−4, which yields approximately the same feasibility gap.

Table 4.2 shows the runtime comparison of both methods; the number of iterations
ommo performs to reach the feasibility gap varies between 400 and 5500, which demon-
strates very fast convergence; regarding the number of support vectors both methods
yield comparable results for almost all datasets, which indicates, in combination with
the parameter setting, that the decision boundaries are also comparable; only for the
datasets flare-solar and titanic ommo obtains considerably more support vectors, which
can not be validated since these datasets are high-dimensional; it is, therefore, hard
to identify the true support vectors. Since for libsvm a threshold for determining the
support vectors must be chosen, we believe that this value may lead to numerical issues
and strongly influence the number of support vectors for the mentioned datasets; in
contrast, the support vectors can be obtained simply and without any numerical issues,
if we set a = b + 1 and b ∈ N \ 0 for the ommo algorithm.

The computation time of libsvm varies between 0.1 ms and 19.0 ms, whereas the
computation time of ommo only varies between 0.5 ms and 10.0 ms. The libsvm
approach obtains faster solutions for 16 datasets, whereas the ommo approach requires
less computation time for 10 datasets. In case of high-dimensional datasets such as
ringnorm or twonorm ommo significantly outperforms libsvm by a factor of 3 to 6.

We can summarise that in most cases the computation times of ommo and libsvm
are comparable and that only minor differences arise due to different implementation
details.

4.4.4. Performance on UCI Benchmark Database

In this section, we compare the classification performance of all novelty-detection
methods we have described so far—these are ommo, libsvm, kde, and kpca. We use the
same benchmark datasets as we have used for comparing computation times. Since we
want to estimate the generalisation error, we split each dataset into 100 train and test
sets (roughly 60% : 40%) and we determined the optimal parameters by performing 10-
fold cross validation for the first five realisations; for reliability we take the median over
the five estimates of optimal parameters, which is a standard procedure for comparing
machine learning approaches on benchmark datasets, see [84] for example.
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Table 4.2.: Runtime analysis of ommo and libsvm for several benchmark datasets; both methods
were implemented in C/C++ and tested on an Intel Core2 2.4 GHz computer. N is the number
of samples and D the number of dimensions for each dataset. We analysed the number of
support vectors (SVs), the computation time t in milliseconds and, for ommo only, the required
number of iterations.

Dataset Class N D
libsvm ommo

SVs t [ms] SVs t [ms] iter.

banana +1 2376 2 7 1.74 7 3.50 1092
banana −1 2924 2 7 2.65 7 4.72 937
breast-cancer +1 81 9 8 0.24 8 0.55 425
breast-cancer −1 196 9 14 0.43 15 0.85 589
diabetis +1 268 8 11 0.39 12 2.14 1511
diabetis −1 500 8 18 0.82 18 3.07 1875
flare-solar +1 589 9 26 1.52 82 9.64 5470
flare-solar −1 477 9 23 0.89 147 6.69 4167
german +1 300 20 19 2.84 19 1.56 1069
german −1 700 20 22 3.79 23 2.33 1316
heart +1 120 13 9 0.24 12 0.68 508
heart −1 150 13 11 0.35 12 0.85 640
image +1 1320 18 20 8.86 24 7.64 3265
image −1 990 18 23 3.45 26 6.60 3279
ringnorm +1 3664 20 31 16.13 32 5.18 694
ringnorm −1 3736 20 32 17.12 32 4.05 613
splice +1 1527 60 40 16.54 48 1.08 436
splice −1 1648 60 46 18.90 48 1.06 408
thyroid +1 65 5 6 0.12 6 0.56 445
thyroid −1 150 5 8 0.18 8 1.66 1248
titanic +1 711 3 8 0.61 260 1.03 555
titanic −1 1490 3 6 0.83 442 4.34 1729
twonorm +1 3703 20 27 12.26 27 2.88 638
twonorm −1 3697 20 30 13.41 30 3.76 768
waveform +1 1647 21 29 7.24 29 1.96 691
waveform −1 3353 21 28 12.84 27 4.26 849
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Table 4.3 shows the results of ommo and libsvm on 26 benchmark datasets. We can
identify that σ, the parameter of the Gaussian kernel obtained through 10-fold cross
validation, is in the same range for most datasets; only for the datasets ringnorm, splice,
thyroid, and twonorm the values are slightly different. Regarding the softness parameters
ν and C, the optimal values are similar except for the positive classes of the datasets
heart, splice, and twonorm. Since we evaluated σ, ν, and C on a discretised grid with
20 nodes for each dimension (parameter), the observed differences may vanish once
the resolution of the grid is increased by orders of magnitude. This assumption is
mainly supported by the observation of the performance rates of both approaches; the
classification performance is evaluated by computing (i) mean and standard deviation
of the balanced error and (ii) the area under the receiver-operator characteristic (auc)
over the 100 test sets. Even though the optimal parameters of both approaches differ
slightly for some datasets, we cannot, in almost all cases, identify significant differences,
neither for the error rate nor for the auc. Moreover, the error rate might indicate that
either approach outperforms the other, see for example positive class of the dataset
splice (31% vs. 48%), but the performance for auc (0.74 vs. 0.77) is almost the same. Only
for positive samples of the dataset thyroid our ommo approach significantly outperforms
libsvm for the error rate (44% vs. 69%) as well as for the auc (0.51 vs. 0.26). The results,
however, demonstrate that ommo and libsvm yield comparable kernel parameters,
which lead to similar support-vector solutions, and they thus achieve comparable
results in terms of different error measures.

So far, we have found that ommo and libsvm compute similar support vector so-
lutions, now we compare both boundary-based methods with kde and kpca—the
two density-based methods described in the beginning of this chapter. Since both
density methods do not automatically provide a class boundary, we compare the four
approaches only according to their auc. Table 4.4 shows the performance regarding
auc of ommo, libsvm, kpca, and kde for the 26 benchmark datasets; Table 4.5 shows
the corresponding ranks. We can make two major observations:

Overall Performance For only 7 out of 26 datasets one particular method significantly
outperforms the others; in 5 out of these 7 cases kde yields superior performance and
in 2 cases kpca significantly outperforms the others. Especially for the positive class
of the dataset ringnorm the kpca method achieves the best auc by far (0.99 vs. 0.15,
0.34, 0.03); this 20-dimensional dataset is artificially created and the analysis of all
two-dimensional projections shows that negative samples are uniformly distributed
in a hypersphere, which is surrounded by positive samples uniformly distributed in
a 20-torus partially overlapping with the hypersphere of the negative class. Due to
this special characteristic kpca can capture the manifold of the positive class more
accurately than ommo and libsvm, which require many support vectors to describe the
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border of the 20-torus precisely. Likewise, positive samples of the dataset thyroid show
similar characteristics such that kpca yields superior performance. In contrast, kpca
fails if the dataset cannot be covered by a manifold, see for example negative samples
of ringnorm (auc: 0.002) or negative samples of thyroid (auc: 0.031), whereas ommo, for
instance, yields accurate results (ringnorm 0.998 or thyroid 0.988). The corresponding
ranks, see Table 4.5, show that kde ranks first for many datasets, although the difference
compared to the method that ranks second is insignificant, in most cases. However,
kde yields the best average rank (1.88)—slightly better compared to ommo (2.00). Even
though kpca achieves superior performance for some datasets the overall rank is worse
(3.34).

Variances in Performance The rank analysis demonstrates that kpca has the highest per-
formance variance; for few datasets kpca yields superior performance by far, whereas
for most of the benchmark datasets kpca ranks last. The kde approach shows medium
variance in performance; for many datasets kde ranks first—however, mostly not signif-
icantly better compared to the method that ranks second—but for some datasets kde
ranks last. In contrast, both support-vector methods, ommo and libsvm, achieve very
stable performances with small variations (standard deviation 0.69 and 0.67), which
demonstrates that they can be successfully applied to a wide range of datasets.

Finally, the results demonstrate that none of the novelty-detection methods we have
used here performs best for every benchmark dataset. Support-vector approaches,
such as ommo and libsvm, are efficient and yield accurate results for various datasets,
whereas kpca yields accurate results only for particular datasets. In contrast, kde
demonstrates accurate results for most datasets, but in few cases its performance can
degenerate. Even though kde seems to outperform ommo and libsvm for some bench-
mark datasets, there are several disadvantages in terms of efficiency and computation
time that prevent kde to be used in large-scale applications; in these cases efficient
methods such as ommo are more appropriate.

4.4.5. Performance on Face Detection

Even though the benchmark datasets from the previous section also include real-world
examples, we want to apply ommo and libsvm to the problem of face detection. Recently,
face detection has become very popular as it has been integrated into consumer digital
cameras, for example. In its nature, face detection is a novelty-detection problem, where
the target class contains images of faces and the outlier class consists of all other images.
In contrast, state-of-the-art approaches treat face detection as a two-class classification
problem, where non-face images are randomly sampled from a large database; this may
be a valid procedure from a technical point of view, but collecting such a large dataset
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Table 4.4.: Comparison of mean area under the curve (AUC) on benchmark datasets; standard
deviation are given in brackets. Methods that significantly outperform all other methods for a
particular dataset are drawn in boldface.

Dataset Class ommo libsvm kpca kde

banana +1 0.859 (0.023) 0.856 (0.026) 0.479 (0.029) 0.909 (0.012)
banana −1 0.902 (0.019) 0.910 (0.016) 0.397 (0.010) 0.925 (0.007)
breast-cancer +1 0.557 (0.059) 0.556 (0.061) 0.503 (0.057) 0.484 (0.060)
breast-cancer −1 0.655 (0.029) 0.632 (0.031) 0.351 (0.031) 0.652 (0.029)
diabetis +1 0.601 (0.033) 0.587 (0.033) 0.521 (0.027) 0.469 (0.031)
diabetis −1 0.707 (0.015) 0.695 (0.015) 0.268 (0.014) 0.757 (0.015)
flare-solar +1 0.493 (0.047) 0.490 (0.040) 0.587 (0.029) 0.358 (0.015)
flare-solar −1 0.665 (0.024) 0.616 (0.040) 0.262 (0.017) 0.685 (0.013)
german +1 0.556 (0.030) 0.537 (0.030) 0.445 (0.026) 0.563 (0.024)
german −1 0.598 (0.015) 0.587 (0.015) 0.382 (0.018) 0.625 (0.018)
heart +1 0.696 (0.042) 0.707 (0.043) 0.348 (0.042) 0.746 (0.038)
heart −1 0.735 (0.034) 0.753 (0.031) 0.235 (0.028) 0.807 (0.024)
image +1 0.864 (0.007) 0.877 (0.008) 0.231 (0.010) 0.941 (0.007)
image −1 0.904 (0.008) 0.894 (0.008) 0.225 (0.016) 0.896 (0.005)
ringnorm +1 0.150 (0.004) 0.347 (0.050) 0.993 (0.001) 0.029 (0.007)
ringnorm −1 0.998 (0.000) 0.998 (0.000) 0.002 (0.000) 0.999 (0.000)
splice +1 0.774 (0.005) 0.743 (0.006) 0.350 (0.069) 0.815 (0.007)
splice −1 0.414 (0.009) 0.348 (0.011) 0.589 (0.006) 0.412 (0.008)
thyroid +1 0.510 (0.101) 0.262 (0.093) 0.811 (0.058) 0.627 (0.086)
thyroid −1 0.988 (0.005) 0.988 (0.005) 0.031 (0.005) 0.987 (0.005)
titanic +1 0.514 (0.079) 0.473 (0.105) 0.556 (0.091) 0.444 (0.127)
titanic −1 0.676 (0.074) 0.606 (0.090) 0.371 (0.080) 0.711 (0.012)
twonorm +1 0.915 (0.012) 0.913 (0.018) 0.090 (0.009) 0.917 (0.006)
twonorm −1 0.913 (0.011) 0.910 (0.015) 0.115 (0.024) 0.911 (0.012)
waveform +1 0.901 (0.006) 0.899 (0.009) 0.114 (0.005) 0.901 (0.004)
waveform −1 0.708 (0.025) 0.684 (0.029) 0.248 (0.020) 0.824 (0.013)
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Table 4.5.: Comparison of the ranks according to AUC in Table 4.4.

Dataset Class ommo libsvm kpca kde

banana +1 2 3 4 1
banana −1 3 2 4 1
breast-cancer +1 1 2 3 4
breast-cancer −1 1 3 4 2
diabetis +1 1 2 3 4
diabetis −1 2 3 4 1
flare-solar +1 2 3 1 4
flare-solar −1 2 3 4 1
german +1 2 3 4 1
german −1 2 3 4 1
heart +1 3 2 4 1
heart −1 3 2 4 1
image +1 3 2 4 1
image −1 1 3 4 2
ringnorm +1 3 2 1 4
ringnorm −1 2 2 4 1
splice +1 2 3 4 1
splice −1 2 4 1 3
thyroid +1 3 4 1 2
thyroid −1 1 1 4 3
titanic +1 2 3 1 4
titanic −1 2 3 4 1
twonorm +1 2 3 4 1
twonorm −1 1 3 4 2
waveform +1 2 3 4 1
waveform −1 2 3 4 1

average rank (std.) 2.00 (0.69) 2.69 (0.67) 3.34 (1.19) 1.88 (1.21)
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of outlier samples is impossible for most applications, since outlier samples are usually
rare.

We use the MIT-CBCL face-detection dataset3 that contains 2901 images of faces and
28121 images of non-faces of size 19x19 pixels. The dataset is divided into a training set
of 2429 faces and 4548 non-faces and a test set of 472 faces and 23573 non-faces. We
used the raw data but applied the preprocessing steps described in [94, 45] to reduce
the within-class variance; first, we subtracted from each image the gradient of the
background to reduce illumination changes by using our novel method described in
Section 2.3; second, we performed a histogram equalisation for each image and, third,
we scaled each pixel to [0, 1]. We applied grid search over the kernel parameter σ and the
softness parameter C or ν to obtain the optimal model for the training set. We evaluated
the performance for a particular parameter set by choosing randomly 1215 faces to
train ommo and libsvm and by evaluating the test error with 1214 faces and 4548
non-faces; to reduce variance we performed 25 runs at all parameter combinations; the
performance for a particular parameter set was evaluated by the equal-error rate (eer)
of the receiver-operator characteristic (roc). After we determined optimal parameters,
we trained with the whole training set of 2429 faces and computed the roc curve of the
24045 test samples.

Figure 4.15 compares the roc curves of ommo and libsvm; even though these
two approaches differ significantly in their implementation complexity, they achieve
comparable performance for auc (0.86860 vs 0.86874) and eer (0.20923 vs. 0.20948),
which is not surprising since both support-vectors solutions are similar—both yield
hard-margin solutions (large C, small ν) and have similar kernel parameters (σ = 1.9879
vs. σ = 1.9545).

4.4.6. Fast Model Selection

We have shown that ommo computes a support-vector solution for novelty detection
and performs comparably for various benchmark datasets as well as for the mod-
ern application of face detection. In this section, we demonstrate that ommo with
its modifications and a particular strategy qualifies for efficient grid search (model
selection).

An optimal grid search should make intensive use of preinitialisation and kernel
reuse. So, we want to find a directed spanning tree that has minimum runtime if we
travel from the root along the edges. For evaluating the reliability of this method we
used 9 benchmark datasets from the same repository we have described previously. Each
dataset was separated class-specifically and scaled to unit mean norm and we created a
logarithmically scaled parameter grid with 20×20 nodes (C ∈ [1, 105], σ ∈ [0.1, 5]) to

3http://cbcl.mit.edu/software-datasets/FaceData.html
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Figure 4.15.: The roc curves show that both algorithms achieve comparable auc and eer
performance on a test set of 472 faces and 23573 non-faces; both models obtained by cross
validation are hard-margin solutions (large C, small ν) with a similar Gaussian width (σ ≈ 1.9)
and almost the same fraction of support vectors.

represent maximum uncertainty throughout the experiment.
A reasonable cost function for describing the computational effort of travelling

between solutions of different parameter sets is

c(i, j) =

�
timei(j) if nodes i and j are neighbours
∞ otherwise

,

where timei(j) describes the runtime of ommo for grid node i, preinitialised with the
results of node j, which itself was trained without preinitialisation. Via the cost matrix,
the minimum spanning tree (mst) was determined for every dataset by Edmond’s
algorithm [31, 95] with each node as a root node. Figure 4.16 shows exemplarily the
mst of the banana dataset obtained by using only the positive samples. Most of the
edges are oriented vertically rather than horizontally, which indicates that an additional
strategy or heuristic for evaluating the parameter grid could reduce computation time
considerably.

We evaluate the mst and compare with four heuristics (see Figure 4.17): (i) starting
in the top left corner and going to the right and to the bottom (r/b), (ii) starting in
the top right corner and going to the left and to the bottom (l/b), (iii) starting in the
bottom left corner and going to the right and to the top (r/t), and (iv) starting in the
bottom right corner and going to the left and to the top (l/t).

Table 4.6 contains the results of the four heuristics and the mst; apparently, vertical
edges in the mst are preferred, i.e. support vector solutions for adjacent kernel widths
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Figure 4.16.: Minimum spanning tree for positive samples of the banana dataset evaluated on
the parameter grid described by the kernel parameters C and σ; the root node is depicted by an
additional circle.
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Figure 4.17.: Two of the four heuristics for evaluating the parameter grid; the result of the
parent node is used as preinitialisation for every node except the root node; the heuristics r/t
and l/t are be obtained by horizontally flipping r/b and l/b.
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Table 4.6.: Results of evaluating the parameter grid with different strategies.

Dataset Class
mst Edges [%] Computation Time [s]

horiz. vertical mst r/t l/t r/b l/b

banana +1 19 81 69.7 374.3 367.6 93.8 71.2
banana −1 17 83 66.7 366.3 359.0 90.8 69.8
breast-cancer +1 16 84 31.4 215.9 212.2 51.5 45.3
breast-cancer −1 14 86 48.2 348.6 342.9 66.4 56.3
diabetis +1 11 89 60.2 454.2 446.7 87.6 74.5
diabetis −1 9 91 80.4 631.9 622.1 103.6 85.7
german +1 14 86 57.5 470.3 462.1 95.1 82.0
german −1 13 87 85.2 718.7 706.0 133.5 113.7
heart +1 16 84 38.5 287.1 282.1 62.1 53.9
heart −1 14 86 44.5 327.1 321.7 66.4 57.0
ringnorm +1 25 75 147.0 1606.1 1576.3 334.6 292.2
ringnorm −1 17 83 145.3 1617.9 1587.5 230.8 187.4
splice +1 33 67 66.4 796.6 780.8 88.8 68.1
splice −1 28 72 78.8 968.0 948.3 109.1 83.4
twonorm +1 18 82 147.3 1615.5 1585.4 280.1 237.2
twonorm −1 20 80 164.3 1836.6 1771.4 310.2 201.1
waveform +1 18 82 97.2 1039.8 1020.2 175.4 147.0
waveform −1 17 83 138.9 1492.7 1464.3 246.6 206.5

median 17 83 74.3 675.3 664.0 99.4 83.4

differ more than those of adjacent softness parameters. Moreover, the heuristic l/b
(see Figure 4.17(b)), which starts in the top right corner and goes to the left and to
the bottom, significantly outperforms the other two strategies. Moreover, the results
indicate that strategy l/b is very close to the optimal strategy—the mst.

The probabilities of the four orientations of edges in the mst differ significantly, see
Table 4.7. Since most of edges are oriented towards the bottom and the left of the grid,
the heuristic l/b is reasonable. We obtain the best improvement when training along
the mst, but according to Table 4.8 the mean relative computation time of l/b is 5.9%
compared to the time without grid strategy, which corresponds to an improvement by
a factor of approximately 17 and which is close to optimum (5.3% for the mst).

Finally, we can observe that with optimisations such as the feasibility gap as stopping
criterion, preinitialisation, and a particular grid search strategy, ommo qualifies for
extremely fast model selection such that the computation for a complete grid search is
reduced to only 5.9% of the full search, which is close to the optimal solution.

87



Table 4.7: Mean probability of edge orien-
tations in the mst over all datasets. Edges
that are oriented towards the bottom of the
grid, i.e. decreasing C and constant σ, ap-
pear most often in the mst, whereas edges
to the right, i.e. increasing σ and constant C,
are rarely used in the mst.

Edge Orientation Mean Probability [%]

Left 11.2
Right 5.8
Top 20.6

Bottom 62.4

Table 4.8: Computation time of the four
heuristics and the mst scaled to the mean
runtime without applying a particular strat-
egy. All heuristics improve the computation
time for grid search; the heuristics going
from bottom to top, i.e. r/t and l/t, reduce
the computation time by a factor of approxi-
mately 2, whereas the heuristic in the oppo-
site direction l/b yields an improvement by
a factor of almost 17.

Strategy Mean Relative Runtime [%]

None 100.0
r/t 48.2
l/t 47.3
r/b 7.0
l/b 5.9
mst 5.3

4.5. Discussion and Outlook

We have introduced a novel, efficient support-vector approach for novelty detection
called OneClassMaxMinOver (ommo). The ommo algorithm employs a perception-
like learning rule that performs a learning step for samples farthest from the current
decision boundary and a forgetting step for samples closest to the current decision
boundary. In its simplest variant, ommo requires only a few lines of code; in the case of
matlab, for instance, it takes less than 10 lines of code with only simple operations
such as dot-products. Hence, ommo can even be used and integrated without specific
knowledge in optimisation theory.

Theoretically, we have shown that ommo converges to the maximum margin solution
that is solely based on support vectors. Moreover, we have performed extensive exper-
iments on various benchmarks datasets, where we compared ommo with libsvm, a
modern toolbox for obtaining support vector solutions, a kernel density estimator (kde)
and an approach based on kernel principal component analysis (kpca). The results have
demonstrated that ommo yields comparable performance regarding computation time
and classification error compared to libsvm in most cases; for few datasets, especially in
high dimension, ommo significantly outperforms libsvm. The ommo algorithm achieves
accurate results over almost all benchmark datasets, whereas the performance of kpca
and kde strongly depends on the characteristics of the dataset.

Furthermore, we have introduced several optimisations for ommo such as kernel
caching, cache reuse, alternative stopping criterion or preinitialisation, which qualifies
ommo for large-scale high-dimension problems. We have demonstrated that these opti-
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misations, in combination with a particular grid search strategy, reduce the computation
time of ommo by a factor of 17; hence, model selection for ommo can be performed
efficiently.

There are still some modifications that can be applied to the ommo algorithm. For
example, outlier samples could be integrated already into the training as it is done
by the svdd approach [96, 97, 114]. However, experiments need to be performed to
verify whether a similar behaviour could be obtained by adapting the threshold of
the hyperplane such that these outliers are outside the data description. Recently, Liu
et al. [71] have proposed a modification to svdd that considerably reduces the time
complexity for the classification of new samples after the decision boundary has been
learnt. Since the kernel expression in the decision function contains a linear combination
of support vectors, the runtime complexity grows linearly in the number of support
vectors. This kernel expansion, however, can be replaced by a single feature vector that
is obtained by pre-image techniques and by using simple relationships between this
vector and the centre of the hypersphere; the decision function is, then, no longer linear
in the number of support vectors, but is constant. It is a question for future research to
investigate whether this optimisation can also be applied to the ommo algorithm.
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This chapter demonstrates the application of specularity features, statistical Fourier descriptors, and
ommo to the problem of welding seam inspection. The data has been provided by Philips GmbH, GTD
Mechanisation, Aachen. Some of the work described in this chapter has been previously published
in [103, 105].
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5.1. Introduction

In many industrial processes, such as printed circuit board assembly or automotive
line spot welding, individual parts are joined by soldering or welding techniques. The
quality of a single welding often defines the grade of the whole product; in areas such
as the automotive or aviation industry, for example, critical failures of the welding
process can cause a malfunction of the whole product. Typically, welds are made by a
soldering iron or a laser, which has recently become more affordable. Even though the
initial cost of a laser-welding system is still high, their wear-out is low and the service
intervals are long. A laser weld is more precise than a weld by a soldering iron, but
the quality can also vary due to shifts of the part towards the laser or due to material
impurities. An inspection of the welding is hence required to guarantee high quality.

Several machine-vision approaches for automatic inspection of solder joints have
been proposed; they can be divided into two groups. Approaches of the first group
focus on the development of specific camera and lighting settings to gain the best image
representation of relevant features [79, 54, 21]; approaches of the second group must
use a fixed camera and lighting setting and comprise sophisticated pattern recognition
methods [58, 82, 79, 28, 54].

Here, we describe a machine vision system for the inspection of cathodes welded by
an Nd:YAG (neodymium-doped yttrium aluminium garnet) laser during the production
of Xenon lamps. We, first, extract the regions of welding seams, for which we, then,
compute characteristic image features that capture the specular reflections of defective
welding seams; finally, we perform novelty detection based on these image features.

5.2. Image Acquisition

An unwelded cathode consists of a socket and a pole that may be composed of different
materials, see Figure 5.1. In a top view with directional parallel light, the unwelded
cathode simplifies to only four components—two black rings (the slant of the neck and
the space between pin and socket), one white ring (neck of the socket), and one white
circle (top of the pin). The analysis of connected components of the welded cathode
can therefore be used to extract specific features.

A correct combination of camera, lens, and illumination is very important to achieve
the best performance in classification. However, sometimes the best setup cannot be
chosen due to limited space or other requirements. We were limited to only one camera
setup for this work (see Figure 5.2) and we used a standard analog monochrome
VGA video camera, a single-sided telecentric lens, and an LED ring light with a
Fresnel lens. The images we captured with this setting contain the cathode as well
as its surrounding area; we, therefore, applied our novel centre localisation approach,
proposed in Section 2.2.2, to extract only the cathode region.
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pin

socket

Figure 5.1.: Left: 3D drawing of the cathode. Upper right: cross-section. Lower right: top-view.

laser
lens

ring light

camera

Figure 5.2.: Drawing of the setup for laser welding (left) and image acquisition (right). The laser
and the camera are located on top of the cathode. A Fresnel lens was mounted in front of the
ring light to obtain bright illumination at the cathode.

Moreover, we removed images of unwelded cathodes and images that are classified
easily to reduce the amount of images. The dataset, thus, consists of only images that
are difficult to classify manually. In total, we collected 934 images containing 657 images
of defect-free cathodes and 277 images of defective cathodes. Each image was labelled
by experts, scaled to different sizes (10×10, 20×20, 40×40, 80×80 px), and smoothed by
a Gaussian filter (σ = 1) to reduce noise. Since we apply feature-extraction algorithms
that use raw pixel intensities and that are not invariant towards rotation, we rotated
each image four times (0, 1

2 π, π, 3
2 π) giving a total amount of 3736 images.

The true class labels are generally unknown, since defective cathodes are determined
by the mean time to failure, which cannot be measured during manufacturing. Experts,
thus, look for arbitrary deviations from typical defect-free samples that have been
selected by extensive benchmark tests; Figure 5.3 depicts some of these examples.
Defect-free samples show various reflections, which result from material impurities or
from an imprecise position of the pin. Moreover, a slight deflection of the pin just before
the welding affects not only the appearance but can also yield defective cathodes. Some
of the defective cathodes have holes caused by a slanted pin, others do not have any
reflections due to a very rough surface. We, therefore, cannot describe the variety of

95



Figure 5.3.: Example images of defect-free (left) and defective cathodes (right); the region-of-
interest was extracted with our novel gradient-based approach for centre localisation proposed
in Section 2.2.2. Note that the differences between the two classes is not obvious.

defects completely, and a novelty-detection system must be applied. Moreover, features
that cover characteristic specular reflections are required.

5.3. Methods

Recently, several approaches for the inspection of solder joints have been proposed [79,
21, 58, 54, 28]. Some of these methods compute simple features in a manually tiled
binary image, others use the pixel intensities directly as input features for a neural
network or a support vector machine [24, 12, 110]. Since the number of pixels is very
large compared to the number of data samples, preprocessing often involves a down-
sampling of the images to reduce the dimensionality considerably; this downsampling,
however, reduces the information contained in the images and therefore yields poor
error rates; in contrast, specifically arranged and compressed pixel intensities yield
superior performance. We will demonstrate that specifically designed features that
capture properties of specular reflections perform best.

5.3.1. Feature Extraction

We apply the two feature sets that have been presented in Section 3.2—specularity
features (spec) and statistical Fourier descriptors (sfd). The spec features describe
statistics of specifically designed shape characteristics based on a stack of binary images
and can cover a wide range of complex shape properties and their dependencies. In
contrast, the sfd feature set captures shape statistics that have not been specifically
designed for the application, but it covers a wide range of characteristic shape properties
using the Fourier transform of the component’s boundary. We compare with raw pixel
intensities (raw), radial encoded raw pixel intensities (radial, proposed in Section 3.4),
and the statistical geometric feature (sgf) algorithm that computes simple geometric
properties of binary components and that has successfully been applied to the problem
of tissue classification [112].

For the sfd, we apply equal arc-length sampling of the boundary with 128 sampling
points and compute the phase and the magnitude of the first 64 Fourier coefficients as
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local shape features. Since position, rotation, and size of components may be relevant
properties, we only scale the Fourier coefficients to be invariant towards the starting
point of the shape signature, see Equation 3.9.

Moreover, we use different image depths ranging from 2 bit to 8 bit, since the perfor-
mance of spec, sfd, and sgf can vary depending on grey level quantisation.

5.3.2. Novelty Detection

Standard two-class classifiers require samples that describe both classes in a proper
way. In our case, however, there are only few defective cathodes that are characterised
well and the classes are imbalanced (2/3 vs. 1/3). We, therefore, apply our simple
and incremental training algorithm for support vector data description with several
improvements for fast parameter validation—see Algorithm 4.2, [64, 102]. In contrast to
standard two-class classifiers, which separate the input space into two half-spaces, our
novelty-detection approach learns a subspace such as to enclose the samples of only the
target class as tightly as possible; this not only increases robustness against unknown
types of outliers significantly, but also extends the time intervals for retraining when
new samples are available.

We choose a Gaussian kernel and perform model-selection using 10-fold cross
validation. We further scale the input features to zero mean, unit variance, and unit
mean norm. Moreover, we perform simple feature selection by removing every integer-
valued feature that takes less than two values to speed up the novelty-detection
algorithm. Finally, we apply a Wilcoxon signed rank test to the test errors to compare
the different feature extraction methods.

5.3.3. Feature Analysis

Most of the techniques we use for feature extraction generate high-dimensional data,
especially if we use the raw pixel intensities. By analysing these feature vectors we
want to address two aspects; first, we want to detect features that contain almost no
information and remove those features to save memory and computation time; second,
we want to evaluate those raw features, sgfs, and specs that are most discriminative
for the description of defect-free and defective weldings. We, thus, can verify whether
the specifically designed features can accurately describe the characteristic specular
reflections and the physical shape of the cathodes. We use two different approaches for
evaluating the feature set—principal component analysis (pca) and linear discriminant
analysis (lda). In case of pca we take only defect-free samples and evaluate those
principal components that show the largest absolute eigenvalues. Even though the class
of defective weldings is not sampled properly, we apply lda and sort the entries of the
resulting weight vector according to their absolute value.
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5.4. Results

5.4.1. Results of Feature Analysis

We analysed the raw pixel intensities using pca as described above; the resulting
Eigenimages show three important aspects (see Figure 5.4). First, pixels in the centre
are more important than pixels at the border of the pole; this corresponds to the
description of the cathode, where white reflections (regions) in the centre of the image
indicate a defect-free welding. Second, the ring structure, i.e. the area at the neck
of the socket, also shows high relevance. Third, more complex geometric shapes are
significant (see Figure 5.4, second row). Based on the observation of the Eigenimages,
we can expect that radially encoded pixel intensities are more appropriate and will yield
better performance than raw pixel intensities without specific organisation. However,
it remains unclear whether a sophisticated feature extraction approach can capture
complex geometric properties more accurately than any specific organisation of pixel
intensities.

We analysed the discrimination performance using lda, which computes a linear
hyperplane such that the classification error that is obtained when projecting both
classes onto this hyperplane is minimised; we ranked the features according to their
absolute value in the normal vector of the lda hyperplane. Some of the most significant
sgfs are: (i) the sample standard deviation of irregularity of white components, (ii)
the mean of irregularity of white components, (iii) the sample standard deviation of
total clump area of white components, and (iv) the mean of displacements of white

Figure 5.4.: Eigenimages with large Eigenvalues that result from images of welded cathodes
of size 80 × 80 px and 8 bit grey level depth. Relevant pixels are depicted by large and small
values (bright and dark), whereas irrelevant pixels are depicted by mid grey, i.e. 128. Obviously,
relevant pixels are not only in the centre or in a ring around the centre (first column), but also
pixels in opposite regions are relevant (third and fourth column); this indicates that a specific
organisation of raw pixel intensities, such as radially-encoded pixel intensities, will describe the
image characteristic more appropriate than raw pixel intensities without specific organisation.
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defect-free defective overlap

Figure 5.5.: Class distributions when projecting the sgf features (80×80 px, 8 bit) onto the
hyperplane obtained by lda.

components. This shows that features of white components are more important than
those of black components. Furthermore, the shape of the components, their position,
and their size are relevant properties for the discrimination. If we project the sgfs of
both classes onto the hyperplane obtained by lda both classes overlap (see Figure 5.5);
thus, in the feature space of sgfs there exists no hyperplane that can separate both
classes perfectly.

Some of the most important spec features when using lda are: (i) the median of
regularity of black components weighted by their area (see Figure 5.6(a)), (ii) the median
of variance of the Feret diameter of black components weighted by the number of
components (see Figure 5.6(b)), (iii) the variance of distances from the centre of the
white components weighted by the number of components (see Figure 5.6(c)), and
(iv) the sample standard deviation of the area of the bounding rectangle of black
components weighted by the number of black components (see Figure 5.6(d)). This
indicates that black components become important when using local features such as
the Feret diameter or the bounding rectangle. Since the sgfs are limited to only a few
local features of white components, properties of black components are completely
ignored. Moreover, the area of a component is also relevant as it is used for the scaling
of the local features. This becomes more apparent by analysing the ranking of the
100 most relevant specs; there, 45 local features are scaled by their area and 55 are
scaled by the number of components. Moreover, 43 local features correspond to black
components and 57 correspond to white components; this demonstrates that properties
of the specular reflections cannot be described accurately by only using a particular
component colour or a single scaling method. If we project spec features onto the lda
direction, the overlap becomes smaller compared to the sgf, which indicates that the
discrimination power of spec is significantly higher (see Figure 5.7). However, there is
also no hyperplane that separates both classes perfectly.

In contrast to sgf and spec, we cannot interpret the sfd features and make a compar-
ison with the specular reflections of the welded cathode. Since we employ a Fourier
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(a) median of regularity weighted by area (black
components)

(b) median of variance of Feret weighted by NOC
(black components)

(c) variance of distances from centre weighted by
NOC (white components)

(d) sample standard deviation of area of bounding
rectangle weighted by NOC (black components)

Figure 5.6.: Example images with large values of the indicated features (top row), medium
values (middle row) and small values (bottom row).

defect-free defective overlap

Figure 5.7.: Class distributions when projecting the spec features (80×80 pixel, 8 bit) onto the
hyperplane obtained by lda.
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defect-free defective overlap

Figure 5.8.: Class distributions when projecting the sfd features (80×80 pixel, 8 bit) onto the
hyperplane obtained by lda.

transform of the object’s boundary we can no longer identify a single feature that, for
example, captures the compactness of the object—instead, the sfd approach computes
statistics of all possible boundary shapes by analysing and combining the coefficients of
the Fourier transform. Figure 5.8 shows the lda analysis for the sfd features, where we
observe that both classes can be perfectly separated by a hyperplane. This demonstrates
the superior performance of the sfd features compared to sgf and spec and it shows
that, in case of welded cathodes, the specular reflections and their dependencies can
be described more accurately when general boundary characteristics are computed
instead of specifically designed characteristics.

5.4.2. Results of Classification

Table 5.1 shows the classification results for the different feature extraction approaches;
we can observe four major aspects. First, radially encoded raw pixel intensities perform
significantly better than raw pixels without any organisation; this neither depends
on the image size nor on the number of grey levels. The best performance of radially
encoded raw pixels is obtained using images of size 40×40 pixels and 16 grey levels
(error of 13.5%).

Second, sgf as well as spec improve the classification performance considerably,
compared to raw and radial features. The best performance (5.3% error) of the sgf
feature set is obtained with images of size 80×80 pixels and 256 grey levels; for the same
image size and the same number of grey levels spec significantly outperforms sgf (3.8%
vs. 5.3% and with p = 0.03). We can further observe that the superior performance of
spec compared to sgf also holds for smaller images (40×40 pixel), which demonstrates
that the spec features can describe properties of specular reflections more properly
than sgf features or radially encoded raw pixels. It further shows that a large number
of grey levels is required to describe specular reflections in both cases, for sgf as well
as for spec.

Third, sfd features yield the lowest error rate by far (0.9 %) using large images
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Table 5.1.: Classification performance of the different features sets in welding seam inspection.
We computed the median error rate (in %) over 10 test sets and the minimum median error rate
for each feature set is highlighted. We omit results for smaller images, e.g. 20×20 pixel, in case
of sgf, spec, and sfd, since they do not yield any improvement.

feature set number of grey levels

4 8 16 32 64 128 256

raw (20×20 pixel) 20.3 17.6 17.5 18.0 18.0 18.4 17.5
raw (40×40 pixel) 22.4 18.9 17.2 18.0 17.5 17.5 17.6
radial (20×20 pixel) 14.8 15.7 14.9 15.3 14.4 14.8 14.8
radial (40×40 pixel) 14.9 14.4 13.5 14.9 15.3 15.4 15.4
sgf (40×40 pixel) 15.7 10.8 8.9 7.1 6.3 6.8 6.8
sgf (80×80 pixel) 7.6 7.6 6.8 6.7 6.2 5.8 5.3
spec (40×40 pixel) 11.9 8.1 5.8 5.5 5.0 5.1 5.2
spec (80×80 pixel) 9.1 6.9 5.8 5.6 5.3 4.0 3.8
sfd (40×40) 6.2 6.0 5.4 5.5 4.2 3.8 3.5
sfd (80×80) 5.1 5.1 4.5 3.2 2.1 1.4 0.9

and maximum number of grey levels; even for small images with few grey levels sfd
yields superior performance compared to the other feature sets. This demonstrates that
the complex specular reflections of welding seams can be captured accurately by a
Fourier analysis of the component’s shapes. Note that we do not obtain zero error rates,
since we have optimised for a high detection rate of defective samples by computing
a compact data description of defect-free samples—in contrast, the lda analysis was
performed using the complete dataset. However, we expect that the estimated error
will decrease as the number of available data samples increases.

Fourth, we cannot observe any significant difference for different image sizes when
using raw pixel intensities—in contrast, the error rate decreases as the image size
increases for sgf, spec, and sfd. However, we can identify that grey level resolution
is more important than spatial resolution. Since the structures of the welded pin and
the socket are merged such that holes and rings cannot be detected any more, the
relationship between grey level depth image size only holds for larger images, e.g.
larger than 20×20 pixels.

5.5. Discussion

We have shown that welding seams can successfully be inspected with our novel feature
set, called statistical Fourier descriptors (sfd). These features significantly outperform
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raw pixel intensities with and without encoding and more sophisticated feature sets
such as statistical geometric features sgf or specularity features (spec). We determined
relevant locations in the image by analysing raw pixel intensities and relevant features
of sgf and spec, and we found white regions in the centre of the image and their
shape to be of high importance for the classification. The spec feature set can cover
several complex shape properties and their dependencies and is, nevertheless, intuitive
and computed efficiently. In contrast, when computing sfd we can no longer interpret
the features and the time complexity increases due to the Fourier transform, but we
achieve significantly better performance. Both spec and sfd are well appropriate for
the automatic inspection of welding seams and can even be applied to a wider range
of machine vision problems concerning complex specular reflections, such as surface
inspection or defect detection with specular objects.

In case of sfd, it is a question for future research to investigate whether the number
of sampling points and the number of used Fourier descriptors strongly influence
classification performance. Moreover, we believe that sfd could also be applied to other
applications such as to the problem of texture classification or to the problem of image
content classification to organise image databases.

The labelling of industrial datasets such as images of solder joints or other weldings
is usually based on experts viewing images and not on the actual functional test. Hence,
these labels are very subjective and do not necessarily correspond to the physical
and electrical properties of the weldings. Therefore, additional information about the
welding such as conductivity, rigidity, or weld strength has to be collected and combined
with a machine-vision based approach to yield further improvement. However, the
error rate of spec and sfd features are already comparable to those obtained by manual
inspection, as reported by internal studies.
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This chapter demonstrates the application of radial statistics and the novelty-detection methods described
in Part I to the problem of defect detection in images of LEDs. The data has been provided by Philips
GmbH, GTD Mechanisation, Aachen. Some of the work described in this chapter is part of [98].
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6.1. Introduction

Over the last few years, light emitting diodes (leds) have been employed in various
industrial products and have recently become popular due to the increased demand
for energy-saving television sets. Similar to Moore’s Law for transistor integration in
integrated circuits, there is the so-called Haitz’s Law [41] for led devices, which states
that every decade the light output level of a led device increases by a factor of 20 and
that the cost per lumen falls by a factor of 10. It is therefore expected that leds will
soon be the dominant technology for many lighting applications.

Like in many other production processes an inspection of led is required for quality
assurance; this inspection must be performed either electrically or visually. Electrical
inspection ensures correct functionality, but since an extensive stress test can only be
applied to few leds, defects that might cause a malfunction after a period of time
cannot be detected with high reliability. Therefore, a visual inspection must be used to
detect potential short-term, long-term, and cosmetic defects. However, manual visual
inspection involves significant labor and production costs. Even though human experts
are very flexible to variations of the production process, different experts may obtain
different results (inter-observer variability) or even one expert may obtain different
results for the same sample (intra-observer variability). Furthermore, visual inspection
may lead to misjudgements due to human fatigue [113]. These shortcomings require an
automatic visual inspection for led manufacturing.

In this chapter, we focus on the inspection of high-power leds, which are used, for
instance, in automobile head- and backlights. The die of a high-power led mainly
consists of three components: light emitting area, disjunctions, and p-electrodes—as
shown in Figure 6.1. Besides several cosmetic defects, one of the most important defects
concerns the p-electrode and its surrounding area. If one of the 16 disjunctions is
slightly damaged or broken, the p-electrode gets directly connected to the light emitting
area and the led will not function. Furthermore, there is a smooth transition between
immediate malfunction and future malfunction of the led and it is directly correlated
to the damage of the disjunction. Thus, this defect type has to be detected as early
as possible. Since the damage of the disjunction is a critical defect, an automated
machine vision system must satisfy two major requirements: (i) 100% detection rate for
defects (true negative rate) and (ii) minimum false alarm rate (false negative rate). Since
manufacturing of high-performance led produces approximately 1 led per second
on each machine, a false alarm rate of 1% may yield over 300.000 rejected led per
year. Manufacturing of a particular product is often performed on several machines
simultaneously to increase production; then, the number of defect-free led wrongly
classified as defective may rapidly exceed a million per year.

Figure 6.2 shows example images of defective led; due to strong image noise and
blurring, some defects are even difficult to detect manually. Simplified, a defect occurs

106



light emitting area

disjunction

p-electrode

Figure 6.1.: Left: Example image (1024 × 1024 px) of an led die with a size of 1 mm2. Right:
Zoomed area around a p-electrode. The die mainly consists of three components: light emitting
area, disjunctions, and p-electrodes. The disjunction, which includes a non-visible dielectric, has
a width of 8 µm and an outer radius of 30 µm. The image resolution is approximately 1 µm/px.

if the dark ring (disjunction) is interrupted. Therefore, we evaluate several image
features and classification approaches to obtain an inspection system that can detect
such discontinuities with high accuracy while preserving simplicity and efficiency.

Recently, some approaches for automatic inspection of led or similar inspection
tasks such as inspection of semi-conductor components have been proposed; Chen
and Hsu, for instance, have employed simple current-voltage statistics as features
for led inspection [19]; others perform blob analysis on a single binary image or a
series of binary images [105, 33, 17, 16]. Within the group of spectral approaches,
wavelet characteristics have been used as features [69, 70]; a good survey on spectral
approaches for texture classification, which is similar to defect detection since a defect
somehow changes the underlying texture, can be found in [83], for example. In the
case of model-based approaches, the comparison with a defect-free reference image,
often called golden template, is one of the simplest approaches [40, 121, 22]; comparison
can be performed by cross-correlation or statistical analysis, for instance. Even though
reference-based methods are simple and intuitive, there are several issues that strongly
influence performance in real applications. For example, in the case of highly structured
surfaces an expensive registration must be performed beforehand to compare with the
template. Furthermore, strong noise in combination with complex texture can affect the
comparison such that subtle defects are missed.

Many of these approaches were developed and optimised for a particular problem at
hand and their performance on novel datasets is very limited. Randen and Husoy [83]
evaluated different methods for texture classification and found that their performance
strongly depend on the image type. Hence, they did not identify a single approach that
performs best on all datasets, which suggests that a powerful feature-extraction method
always incorporates prior knowledge, especially in the case of defect detection with
subtle and arbitrary defects.
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Figure 6.2.: Example images of led with defects (white arrows) at the disjunction. Some of the
defects are clearly visible, for others human experts have to look carefully. Some images contain
strong noise, others are blurred due to a wrong focus. The poor image quality makes manual
inspection even difficult. Note that some defects may be hardly visible on printed paper due to
low printer resolution.

6.2. Methods

6.2.1. Preprocessing

Each die contains 16 p-electrodes placed in a 4-by-4 grid, which we must extract with
high accuracy to apply our radial encoding schemes proposed in Section 3.4. Since the
position of this 4-by-4 grid varies only slightly, we first estimate rough position of the
p-electrodes (see Figure 6.3). Then, we localise the correct centre of each p-electrode by
applying our novel symmetry-based approach for accurate centre detection, which has
been described in Section 2.2. Compared to standard techniques for centre detection
such as the Hough transform our approaches achieve superior performance regarding
accuracy, robustness, and efficiency (see Table 2.1). Based on the estimated centre
we extract a region of 100×100 pixels to cover the p-electrode and its surroundings.
Moreover, we apply our method for illumination correction, see Section 2.3, to remove
inhomogeneities.

6.2.2. Feature extraction

We apply our two novel radially-encoded feature sets, proposed in Section 3.4. The
first set consists of radial segments, for which mean and standard deviation are eval-
uated; the second is based on sampled orientations. For both we combine the seg-
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Figure 6.3.: The preprocessing steps from left to right: (i) rough estimation of the centres by
placing a virtual grid on the die and extraction of the grid elements, (ii) high performance
centre localisation, and (iii) extraction of a 100×100 pixel region of the p-electrode.

ment/orientation characteristics by computing first order statistics such as maximum
and mean. Since defects of the p-electrode affect the appearance of the dark ring such
that it will be distorted or even broken (see Figure 6.2), statistics of raw pixel intensities
that have been radially organised are expected to yield superior performance compared
to pixel intensities without radial organisation.

Pearson’s correlation coefficient

The comparison of an input image with a reference image is very intuitive, since this
is similar to what human experts perform; based on a number of defect-free samples
human experts recognise a defect as a deviation from already known samples.

Pearson’s correlation coefficient is often used for template/reference matching due
to its robustness to brightness variations and noise. If template T and the image I have
the same width W and height H, then Pearson’s correlation coefficient c is defined as:

c(I, T) =
1

σI σT

H

∑
i=1

W

∑
j=1

(I(i, j)− µI) (T(i, j)− µT) , (6.1)

where µI and µT are the image mean and the template mean, and σI , σT are the
standard deviations of the image and the template. If template and image are identical,
the correlation coefficient takes its maximum value (c = 1); for perfect anti-correlation,
which means that the template is identical to the inverted image, the correlation
coefficient will yield its minimum value (c = −1). Since p-electrode defects are subtle
and most of the p-electrode will look similar to the reference image, the correlation
coefficient will be in the range 0 � c < 1.

Radial Statistics

Discontinuities of the p-electrode appear as grey-level variances along the ring, see
Figure 6.2. Since we detected the correct centre of the p-electrode, we radially divide the
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si

(a) Radial segments

αi

(b) Radial sampling (c) Image transformation

Figure 6.4.: (a) The p-electrode, compare Figure 6.2, is radially divided into n = 8 segments
si, for which mean and standard deviation of pixels within each segment are computed. (b)
The p-electrode is radially sampled using 32 directions αi, i.e. angular resolution of 30 degrees;
the intensities along each direction are computed by bilinear interpolation. (c) The p-electrode
is sampled radially (counter clockwise) with an angular resolution of 1 degree and a spatial
resolution of 1 px. In the transformed image, stretched to full range [0, 255], the discontinuity is
clearly visible as horizontal distortion in the lower part.

p-electrode into n segments si, compare Figure 6.4(a), for which we compute statistics
of the segment’s mean and standard deviation. Then, a defect might yield a mean
intensity in one of the segments that is significantly larger than the mean of the other
segments. Moreover, we can distinguish between a homogeneous or inhomogeneous
texture of the p-electrode by analysing the standard deviation of the mean intensity
and the intensity variations over all segments.

Alternatively, we analyse the p-electrode by radial sampling, where the p-electrode
is sampled for different orientations αi and the intensities are computed by bilinear
interpolation (see Figure 6.4(b)). This image transform can also be interpreted as
unrolling the image from the centre such that the new image can be inspected more
easily even in case of manual inspection, see Figure 6.4(c). Furthermore, we can use
the transformed image to obtain the features by computing the mean and standard
deviation columnwise. A detailed description of our novel radial statistics can be found
in Section 3.4.

6.2.3. Novelty Detection

In machine vision applications, often a receiver operating characteristic (roc) is used to
demonstrate the system’s performance or to compare different models. A roc analysis
is based on the four outcomes that can be described by the confusion matrix C:

C =

�
true positive false positive
false negative true negative

�
,

with the definitions:
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term predicted label true label

true positive +1 +1
false positive −1 +1
true negative −1 −1
false negative +1 −1

We use the methods described in Chapter 4 for novelty-detection: (i) kernel density
estimator (kde), (ii) kernel principal component analysis (kpca), and (iii) OneClass-
MaxMinOver (ommo); then, the elements of the confusion matrix are evaluated by
varying the discrimination thresholds, which are: (i) the estimated probability p(x) for
kde, (ii) the reconstruction error r(x) for kpca, and (iii) the distance to the hyperplane
in feature space, i.e. d(x) = ∑i αi K(x, xi)− 1, for ommo. By using the elements of the
confusion matrix we can visualise different ratios such as sensitivity and specificity;
since we must obtain a system that can perfectly detect defects, we are interested in the
ratio between true negative rate and false negative rate, and we will refer to these as
detection rate (of defective samples) and false alarm rate (for defect-free samples).

6.3. Experiments

In many applications, model comparison or model selection based on roc analysis
is performed using the equal error rate (eer) or the area under curve (auc), where
eer is defined as the location on the roc curve at which both detection rate and
false alarm rate (far) have the same value. Hanley and McNeil [43] showed that the
auc can be interpreted as the probability that a randomly chosen negative sample is
correctly classified or ranked with a greater suspicion than a randomly chosen positive
sample; therefore the auc is strongly connected to the nonparametric Wilcoxon statistic.
However, eer and auc are inappropriate measures if the application requires 100%
detection rate for defects and minimum false alarm rate. Figure 6.5 compares two roc
scenarios, where minimising the eer or auc does not necessarily lead to a minimum
false alarm rate. We therefore evaluate the roc curve at 100% detection rate and perform
model selection by minimising the far.

We normalise each feature to [−1,+1], and we perform 10-fold cross validation
[93] to obtain the best parameters for each novelty-detection method, e.g. softness
C and bandwidth σ in case of ommo. Moreover, we randomly divided the dataset
into 100 train and test sets (2/3 vs. 1/3) to evaluate the performance, and we apply
a Wilcoxon sign rank test to analyse if the test errors are statistically significant. We
compare the three novelty-detection methods with respect to three different feature sets:
(i) Pearson’s correlation coefficient, (ii) statistics of mean values for different number
of radial segments (s ∈ {8, 16, 32, 64, 128, 256}), and (iii) statistics of mean values for
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Figure 6.5.: Examples of roc scenarios (the dashed line is the equal-error rate). Left: Two curves
A and B with same eer and auc but different false-alarm rate (far) at 100% detection rate.
Right: Curve A has lower auc and eer than curve B, but B yields a lower far at 100% detection
rate.

Figure 6.6.: Artificial image of a p-electrode used as reference for evaluating the correlation
coefficient.

different number of sampled orientations (α ∈ {8, 16, 32, 64, 128, 256}).

We cannot use the average defect-free p-electrode image as a template to compute
the correlation coefficient, since the images contain different types of noise and we will
produce a bias towards the most frequent noise. Instead of smoothing the images to
reduce the noise, we created an artificial image of the p-electrode, see Figure 6.6, which
serves as reference.

We have collected 53 images of leds, for which we extracted all 16 p-electrodes;
each p-electrode was labelled by three experts, which results in 767 defect-free and
81 defective p-electrode images. Since some of defects are hardly visible (compare
Figure 6.2), we treated a p-electrode as defective, if at least one expert recognised a
defect.
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6.4. Results

6.4.1. Correlation Coefficient

Figure 6.7 shows the roc curve for the correlation coefficient; since we only tested one
single feature in this scenario, an analysis of the roc curve automatically leads to the
best threshold for classification and therefore novelty detection is not required. On the
one hand the correlation coefficient yields a good performance for eer (12%) and auc
(0.94), but on the other hand almost 90% defect-free samples are rejected, if we ensure
100% detection rate for defects. This indicates that the correlation coefficient can cover
only large deviations and small defects cannot be detected, especially in the presence
of strong image noise.

6.4.2. Statistics of Radially Sampled Orientations

Table 6.1(a) shows the results for radially subsampled features; the ommo method
outperforms the other methods for almost all values of α, and it yields the best far
(0.65%) for α = 256. The kpca method yields superior performance compared to kde,
for α > 16 and with a minimum far of 0.78%. The best performance of kde is obtained
for α = 256 (1.3% far). The error rate of all novelty-detection approaches falls strongly
below 5% far if α is increased from 16 to 32 orientations and it drops further by almost
a factor of two for 32 < α < 256, which indicates that there are several small defects.
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Figure 6.7.: roc curve for Pearson’s correlation coefficient. The values for eer (12%) and auc
(0.94) are acceptable, whereas the minimum far at 100% detection rate is very high (0.89%).
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Table 6.1.: False alarm rate at 100% detection rate using the two approaches for computing
radial statistics; the mean far is computed over 100 test sets.

(a) Results using radial subsampling

number of mean far [%]
orientations α kde kpca ommo

8 66.9 68.8 63.8
16 70.6 83.3 54.7
32 4.2 3.6 3.9
64 2.6 1.4 1.8

128 1.4 0.91 0.76
256 1.3 0.78 0.65

(b) Results using radial segments

number of mean far [%]
segments kde kpca ommo

8 6.2 7.0 7.8
16 5.6 3.2 3.5
32 4.1 4.2 3.9
64 1.8 1.8 1.0

128 1.2 0.9 0.51
256 1.1 0.81 0.13

Since the p-electrode is sampled radially using our feature-extraction methods, a large
number of orientations is required to also sample the defective regions. With few
orientations, e.g. α = 16, several defects are located in between two orientations, which
explains the far of over 70%. Since the sampling technique performs an oversampling
for more than 140 orientations as described in Section 3.4, the far improves only slightly
when using 256 orientations instead of 128.

6.4.3. Statistics of Radial Segments

Table 6.1(b) shows the results for radially encoded segment features. Similar to the
previous feature set the ommo approach yields the best performance by far, 0.13%
far, for a large number of segments. In contrast to the previous feature set, kpca
outperforms kde only in few cases, i.e. for 16, 128 and 256 segments. Already for few
segments, e.g. 8, the far of all approaches is below 8% and drops further below 2% for
64 segments.

Both feature sets yield almost the same performance (3.6% – 4.2%) for 32 orientations
and 32 segments independent of the novelty-detection method; for more than 32
segments and orientations, the segment-based features yield significantly lower false
alarm rates. Since a single segment contains more information in terms of pixels than a
single sampled radial orientation, the segment statistics are less prone to image noise
and hence outperform the statistics of sampled orientations.

6.4.4. Comparison

The results indicate that features encoded by using radial segment statistics can capture
p-electrode defects more accurately than radially-sampled orientations, especially in
the presence of image noise. Moreover, the ommo approach outperforms both kpca

114



0 20 40 60 80 100 120 140 160 180 200 220 240 260

10−3

10−2

10−1

100

101

number of segments/orientations

co
m

pu
ta

tio
n

tim
e

[m
s]

radially sampled
radially segmented

Figure 6.8.: Comparison of the computation time per image of both feature-extraction methods.

and kde with an overall performance of 0.13% false alarm rate at 100% detection rate.
Figure 6.8 compares the computation times for both feature-extraction methods; a

small number of orientations yields a computation time of less than 1ms, whereas up
to 10ms are required for many orientations; the computation time grows linearly with
the number of orientations.

The computation times of radial-segment statistics follow the same rule as for the
radial sampled orientations except a scaling factor of approximately 750, which is due
to the bilinear interpolation that we must apply to compute the intensities on each
orientation. However, this scaling factor may decrease once a faster bilinear interpolation
technique is applied.

6.5. Experiments and Results for Centre Localisation

In Section 2.2 we have proposed two novel approaches to accurately localise the centre
of a (semi-) circular object, and we have demonstrated, based on synthetic images, that
our novel approaches do not only significantly outperform common approaches, but
also provide accurate results in case of strong image noise.

In this section, we will show that our novel approaches yield high performance for
accurate localisation of the p-electrode’s centre. Similar to the experiments for synthetic
images, we compare with the approach that employs a Hough transform.

We have selected the 82 most difficult images, for which the centre of the p-electrode
was labelled by experts. We applied the centre localisation approaches with the same
parameter settings mentioned in Section 2.2, and we evaluated the Euclidean distance
between the correct centre and the estimated centre.

Table 6.2 shows the quantitative results for centre localisation of p-electrodes; similar
to the results for synthetic images, the symmetry-based approach significantly outper-
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Table 6.2: Results for the three approaches
for centre localisation applied to images of
p-electrodes. The accuracy is evaluated by
the Euclidean distance between estimated
and correct centre over 82 images, which
were labelled by experts.

method mean error (std.)

Hough transform 3.97 (5.65)
gradient-based 2.16 (2.52)
symmetry-based 0.98 (1.16)

Figure 6.9.: Example images for which the centre has been detected by using our novel
symmetry-based approach, which is extremely robust to noise, occlusions, and reflections.

forms the other approaches with a mean error of only 0.98 pixel, whereas the gradient
approach yields an error of 2.16 pixel. Since some of the p-electrodes are partially
occluded and affected by strong noise, the contour obtained by an edge detector does
not correspond to the contour of the p-electrode; thus, the estimated centre of the
Hough transform is inaccurate for most p-electrode images.

Figure 6.9 shows the qualitative results of the symmetry-based approach; we can
observe that the correct centre is successfully detected for almost all images and even in
cases of higher image degradations such as image noise in combination with occlusions
and strong reflections.

6.6. Discussion

We have demonstrated that p-electrodes in led images can successfully be inspected
by a machine vision systems that employs novel methods for preprocessing, feature
extraction and novelty detection. The experiments were performed on a dataset of 848
p-electrode images, which consists of 767 defect-free and 81 defective images.

First, we have applied two novel approaches to detect the p-electrode’s centre with
high accuracy. The first approach employs image gradients from which the centre is
estimated as the location where most gradient vectors intersect. The second approach
evaluates the radial symmetry of grey levels and the location where the mean grey-
level variation reaches its minimum. Both approaches are robust to occlusion and
strong noise for images of p-electrodes, while preserving simplicity and efficiency. The
symmetry-based approach yields the best accuracy with an error of less than one pixel,
averaged over the 82 most difficult images of p-electrodes.

Second, we have computed the correlation coefficient and two novel methods that
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capture radial statistics; one method divides the p-electrode into radial segments for
which we compute the mean and standard deviation, the other method performs a
sampling on different orientations to evaluate mean and standard deviation.

Third, we have applied different novelty-detection methods instead of commonly
used two-class classification methods, since the underlying problem is the detection
of atypical/defective samples. In particular we use three novelty-detection methods:
kernel density estimation (kde), kernel principal component analysis (kpca), and a
support-vector data-description method (ommo). Since the inspection system must
detect every defect, we perform model comparison by determining the minimum false
alarm rate at 100% correct detection rate for the roc analysis.

Since the images contain strong noise and the defects are small, the correlation
coefficient leads to a high false alarm rate of almost 90%. Moreover, we could observe
that the radial-segment features not only outperform the radial-sampling features in
terms of false alarm rate, but also in terms of efficiency. It turned out that ommo
achieves the best overall performance by far with an false alarm rate of only 0.13%,
which is even better than human performance. In contrast, the other novelty-detection
methods yield false alarm rates of 0.8% (kpca) and 1.1% (kde).

The proposed feature-extraction methods are simple and the resulting feature space
is low-dimensional (10 features). Hence, they can also be used for other (real-time)
industrial applications such as surface inspection (if the relevant objects are ringlike
or circular), iris classification or cell classification. Since the led images contain strong
noise and only 81 defective samples were available, the performance may further
improve once more images are available.
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7. Defect Detection in Texture Images
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This chapter demonstrates the application of local Weibull statistics to the problem of defect detection in
texture images. The data has been provided by Robert Bosch GmbH, Stuttgart. Some of the work described
in this chapter has been previously published in [101].
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7.1. Introduction

Over the past decade, automated optical inspection has proven to reduce the cost
of industrial quality control significantly. Automated defect detection in textured
surfaces has increasingly gained importance in industrial production. One of the major
applications of texture defect detection is surface inspection such as the inspection of
semi-conductor components or textiles. Even though automated inspection systems
have advantages over human inspection such as reliability and reproducibility, they are
often highly adapted to a particular set of defects and they fail if the problem changes
and new types of defects arise.

Texture defects can be either non-textured areas or areas that locally differ from the
background texture of the surface. These defects are often subtle and very hard to
identify even manually; moreover, well-defined defect specifications and pixel-wise
defect labelling are usually unavailable. Figure 7.1 shows some example surfaces such
as textile, wood, or steel with different types of defects.

Several approaches for texture defect detection have been proposed; generally, they
can be separated into two categories: local and global approaches. Since global ap-
proaches are applied to the whole image, they yield accurate results for defects that
affect the overall appearance such as shade or tonality, for instance, but they perform
poorly in texture defect detection. Therefore, approaches that evaluate local texture
characteristics are mostly applied to detect small defects in textures. These approaches
can be separated into statistical approaches (e.g. grey level statistics, fractal dimension),
spectral approaches (e.g. Gabor filter, Fourier analysis), and model-based approaches
(e.g. Markov random fields, model-based clustering). However, these approaches are
often too complex, adapted to a particular defect type, and fail to detect miscellaneous
types of defects.

Scholte et al. recently reported that brain responses strongly correlate with Weibull
image statistics when processing natural images [91]; other researchers found that
Weibull parameters estimated from the distribution of magnitudes of image gradi-
ents yield accurate results for texture classification [116, 9, 37, 36]. However, Weibull
parameters have not been applied to the problem of texture defect detection.

Here, we propose a simple, non-parametric machine vision system for texture defect
detection based on the Weibull features we have introduced in Section 3.5. We review the
steps involved in our novel defect detection approach in Figure 7.2. For each local image
patch we obtain a two-dimensional feature vector that contains the estimated shape
and scale parameter of the corresponding Weibull distribution. Based on these two
Weibull features we apply a novelty-detection method, which evaluates the Euclidean
distance of each local patch to the median in the Weibull space. We assume that most
of the defect-free patches can be described by a single cluster and every defective patch
will significantly deviate from this cluster region. Hence, if the maximum distance is
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(a) textile (b) wood (c) stone (d) steel (e) ceramic (f) LED

Figure 7.1.: Example textured surfaces with different types of (subtle) defects. Note that some
defects may only be visible in the electronic version.
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Figure 7.2.: Scheme of our novel system for detecting arbitrary defects in texture images.

larger than a threshold, the current image patch is considered as defective (negative);
the threshold is automatically determined by minimising a cost-function. Compared to
existing approaches, our approach is more efficient by orders of magnitude and does
not involve any kind of learning or further parameters.

We evaluate the performance of our method by using the highly challenging database
of the contest weakly supervised learning for industrial optical inspection, which was intro-
duced at the dagm conference 2007. The images were proposed by the company Robert
Bosch GmbH and consist of different texture classes and different defect types. We
demonstrate that our method is able to detect arbitrary deviations from the reference
(background) texture.

Detecting defects in textures is a very challenging problem in computer vision.
Although several methods for texture defect detection have been proposed, recent
reviews [115, 61] have shown that there is a clear need for standard evaluation and for
standard benchmark datasets in order to avoid highly adapted methods. Supporting
these aspects, we define the requirements for texture defect detection as follows:

1 Not only a single defect type needs to be detected, but arbitrary defects must be
detected.

2 The method must not be adapted to a specific background texture, instead it must
perform well on various background textures.

3 Specifications of defects are missing and the defects are weakly labelled (not pixel-
wise).
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4 Class-dependent costs must be incorporated (samples with missed defects are worse
than defect-free samples classified as defective).

5 All parameters, e.g. for filtering, feature extraction, or learning, must be determined
automatically.

In addition to the above mentioned requirements, our defect detection system has the
following property:

6 No exhaustive training set is required—our system works even if only a single
defective image is available.

Most approaches proposed for texture defect detection meet only few of these
requirements—we present a machine vision system that meets all requirements, that
yields accurate results, and that is extremely efficient.

7.2. Feature Extraction

We will apply our feature extraction approach proposed in Section 3.5, which describes
local gradient distributions using only two features: shape and scale parameter of a
Weibull fit; these parameters are computed for gradient magnitude distributions of
local image regions.

7.3. Novelty Detection

In Chapter 4 we have described several state of the art methods for novelty detection,
and we have proposed a novel and simple approach for computing a data description
solely based on support vectors. Even though these methods yield superior results in
several benchmarks, we are interested in the simplest model that detects novel samples
and can also be applied even if only a single image of the texture class is available.

Figure 7.3 depicts a straightforward method for novelty detection, which involves the
computation of a hypersphere and can be described as: (i) compute a reference point
such as mean, centre of mass, or median, (ii) determine a threshold for the maximum
distance of a defect-free sample to the reference point. Even though this method is
simple, it yields accurate results if the samples are symmetrically distributed around
the reference. Furthermore, there is only one free parameter, which can be determined
automatically by analysing the variance of defect-free samples or by minimising the
classification error if outlier samples are available. For this work, the reference point
is represented by the median, since few outliers (defective samples) might have a
strong influence on the mean, which will result in an unstable model. This simple
novelty-detection method provides two major advantages: We are no longer restricted
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Figure 7.3: Novelty detection based on the analysis of
distances to a reference point; samples are rejected if
their distance to the reference is larger than the thresh-
old. The reference can be mean or median of all samples
of a defect-free image, for instance; the threshold can
be computed by using a single defective image.

to a particular class of textures or class of defects and we can perform defect detection
for each image individually.

The proposed novelty detection method is closely related to the support-vector data-
description (svdd) approach by Tax et al. [96, 97], where a hypersphere is computed such
that the volume is minimised and the centre is described by support vectors. However,
we generally have to optimise two parameters for svdd, the softness parameter as well
as the distance threshold. Moreover, if new samples become available retraining can be
more time consuming compared to the proposed approach.

7.4. Experiments and Results

We use four classes of texture images provided by the company Robert Bosch GmbH
for the dagm 2007 contest on weakly supervised learning of texture images. The contest
made one of the most challenging databases for texture defect detection available;
this is proven by the fact that only the contest winner obtained acceptable results.
Unfortunately, explicit information about the winning method as well as a detailed
result evaluation has not been published so far. We will elaborate our novel method
and discuss the results to further promote this challenging dataset.

The texture classes we use in this work can be described in the following way (see
Figure 7.4):

Class 1 Defective regions are rather homogeneous with intermediate grey levels and
elliptic shape, whereas the defect-free background texture contains high-frequency
structures with grey levels of high contrast.

Class 2 Defective regions are bright and with fractal shape, whereas the background
contains a speckle pattern of medium size and a global linear gradient with different
orientations.

Class 3 Defective regions contain grating-like structures of varying contrast, whereas
the background consists of speckle pattern and globally varying local contrast.

Class 4 Defective regions are dark and with elongated shape, whereas the background
contains large speckles with high contrast.
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For each texture class the defect size is not constant, but varies to a limited but not
specified extent. Furthermore, the defects are only weakly labelled by a surrounding
ellipse, i.e. pixel-wise defect locations are unavailable and the labelled region also
includes defect-free areas. Each texture class consists of 1000 defect-free and 150
defective greyscale images (512 × 512 pixel).

7.4.1. Experiment Settings

We have to determine three parameters for the novel texture defect detection approach:
(i) size of the local image patches, (ii) width of Gaussian derivative filter, and (iii)
distance threshold for novelty detection. Even though defects are only weakly labelled,
we use the defect statistics to automatically set the patch size. Therefore, we compute
the minimum minor axis of all defective regions and round it to the next power of 2
for computational reasons, which yields a patch size of 32 × 32 pixel for all classes.
Furthermore, we must define the overlap of local patches to avoid border artefacts.
Unfortunately, the number of image patches grows exponentially with increasing the
overlap, which becomes computationally intractable for real-time applications. For
a compromise, we use an overlap of 50% but slight changes of the overlap do not
significantly change the results.

Moreover, we apply directional Gaussian derivative filters to the image to obtain the
gradient magnitudes. The size w and the standard deviation σ of these Gaussian filters
are chosen according to the patch size p, where we use the following relationships
w = ceil(p/11) and σ = w/5. These relationships were experimentally evaluated, but
slight changes will yield similar results.

Since missing a defect (false positive) is worse than detecting a defect for a defect-free
sample (false negative), we employ asymmetric costs for classification errors. According

Figure 7.4.: Example images for the classes of textures used for the experiments. Defects are
weakly labelled by ellipses and contain also defect-free regions. The four texture classes signifi-
cantly vary concerning the background texture as well as concerning the defect characteristics.
Whereas defects for the first three texture classes are small, the defects of the fourth class have
a large extent and cover larger image regions.
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to the terms of the contest, we use the following costs: (i) false positives are penalised
with 20 and (ii) false negatives are penalised with 1. The novelty detection is performed
such that the texture image is classified as defective if the maximum distance to the
median in the Weibull space of all patches is larger than a threshold, and we optimise
this threshold by minimising the total costs. Since our novel defect detection method
does not involve any kind of learning scheme, we use all 1150 images of each texture
class for estimating the classification error.

7.4.2. Results & Discussion

We have already discussed that Weibull image statistics can be used to classify vi-
sual content (see Section 3.5), but how do they perform for measuring local texture
deviations?

Figure 7.5 shows an example image of the first texture class; the Weibull fit of local
patches in defective region yields shape < 1.9 and scale > 17, whereas patches in
defect-free regions have shape > 2 and scale < 14. This indicates that the Weibull
features can successfully describe local texture deviations.

Figure 7.6 depicts the distribution of Weibull features of all local patches within a
defective image; the four patches with maximum distance to the median are detected,
and its location within the image is highlighted. Apparently, defect-free patches build
a single cluster and defective patches can easily be identified as outliers; this holds
for all four texture classes. However, if the pattern of the background texture shows
large variations, some defect-free patches also have a larger distance to the median (see
Figure 7.6 first and second column).

Moreover, we evaluate also receiver operator characteristics (rocs) for all texture
classes to demonstrate the performance for different distance thresholds (see Figure 7.7
and Table 7.1). Based on the roc we compute the equal-error rate (eer), which represents
the optimised error rate for which positive and negative errors are equally important,
and we compute the area under the curve (auc) of the roc, which corresponds to the
overall performance independent of a particular threshold. Furthermore, we apply
asymmetric weights as described before to optimise the total cost (tc).

We obtain an eer of 8.5%, auc of 0.96, and a total cost of 190 for the first texture class,
although the combination of defect type and background pattern is very challenging—
some defects are hard to detect even manually (see Figure 7.4). The results for the second
and third texture class are almost perfect regarding eer (0.1%, 1.3%) and auc (0.99 for
both) and also the total costs are very low (2 and 28). Our inspection system yields
high accuracy (eer 3.2%, auc 0.99, tc 51) for the fourth class, even though this class
is very different from the other classes. The results prove that our inspection system
can successfully deal with different challenging defect types on varying background
textures and yield accurate results in detecting defects in texture images.
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Figure 7.5.: Example image of the first texture class containing a (grating) defect. The first
and second row show two local patches at the defective region and their Weibull fit to the
distribution of gradient magnitudes. The third and fourth row depict two defect-free patches
and the corresponding Weibull fit. Obviously, the distributions of gradient magnitudes for
defective and defect-free patches differ and hence the Weibull features shape and scale yield
significantly different values.
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Figure 7.6.: Demonstrating the usefulness of local Weibull parameters for defect detection.
One example defective image for each texture class is shown (first column)—compare with
Figure 7.4 for defect description and defect location. The distribution of Weibull features for all
local patches (third column) forms a cluster such that outliers can be identified by analysing the
distance to the median. The four samples with maximum distance to the median are depicted
in the Weibull space (third column) as well as their corresponding location in the image (second
column).
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Figure 7.7.: Total costs for varied distance thresholds of each texture class. For the best thresholds
the total costs are between 2 and 190, which means that 2 out of 1000 defect-free images are
classified incorrectly in the case of class 2.

7.5. Discussion

We have described a novel machine vision system for defect detection in texture images.
Our system evaluates the distribution of local gradient magnitudes based on a Weibull
fit; we have used the two Weibull parameters to perform simple novelty detection; we
have computed the median of all samples in the Weibull space and rejected an image if
the maximum distance to the median is larger than a threshold.

We have extensively evaluated the performance of our novel system on the very
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Table 7.1.: Performance evaluation of the novel defect detection approach applied to four texture
classes. Based on the receiver operator characteristic the equal error rate (eer) corresponds to
the error rate at which positive and negative samples are weighted identically, whereas the area
under the curve (auc) captures the overall performance for every possible class weighting. By
optimising the distance threshold such that the sum of false positives (fp) and false negatives
(fn) reaches its minimum, we retrieve the total costs (tc). Note that for optimising total costs
asymmetric weights have been applied here, false negatives count 1 and false positives count
20. The false negative rate (fn∗) at 100% true negative rate indicates the amount of defect-free
images where a defect has been detected, while every defective image has been correctly
classified.

Class eer auc tc fp fn fn∗

1 8.5% 0.96 190 3 130 47.0%
2 0.1% 0.99 2 0 2 0.2%
3 1.3% 0.99 28 0 28 2.8%
4 3.2% 0.99 51 0 51 5.1%

challenging dataset of the dagm 2007 contest. Our system has yield accurate results for
all texture classes, whereas two classes have been classified with an equal error rate of
less than 1.3%. Even in case of large variations of the background pattern within each
texture class and in case of subtle defects, our novel system has proven to be robust
and has yield high accuracy. We have observed that our system can successfully deal
with complex textures and it detects even small and subtle deviations. Additionally,
we have not employed any sophisticated learning algorithms; therefore, we can omit
expensive re-training and exhaustive parameter optimisation. Due to its efficiency our
approach can even be applied to real-time applications. Only the winning team of the
dagm 2007 contest achieved acceptable results and met the maximum allowed total
costs of 200 for each dataset; unfortunately, neither the error rates nor the methods of
the winner have been published.

Since the extracted features are already very powerful in the sense that they form dis-
tinct clusters, we do not expect a significant improvement if more sophisticated methods
for novelty detection are applied. However, for other feature sets the novelty-detection
methods proposed in Chapter 4 are more powerful than the simple hypersphere we
have employed here.

Humans can recognise arbitrary defects in textures almost immediately, since these
regions often seem to stand out compared to the background and therefore defects
can also be interpreted as regions with significant saliency. Several approaches have
been proposed in human vision science to detect and locate salient image regions, and
we believe that these methods could also be applied to the problem of texture defect
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detection. Recently, methods for the detection of salient image points employed sparse
coding techniques to model the subspace of these regions. In contrast, we could try
to model or learn the subspace of all defect-free regions in a texture image by using
sparse coding techniques, for example; with such a sparse representation a defective
region should not be recovered as accurately as a defect-free region.

In general, we believe that every method for texture defect detection should be
evaluated on standard benchmark datasets and we hope for the future that the dataset
we have used here will also be used more frequently by other researchers.
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This chapter demonstrates the application of gradient-based centre localisation to the problem of eye
centre localisation. Some of the work described in this chapter has been previously published in [99]; a
demonstration can be found at http://www.youtube.com/watch?v=aGmGyFLQAFM.
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8.1. Introduction

The localisation of eye centres has significant importance in many computer vision
applications such as human-computer interaction, face recognition, face matching, user
attention or gaze estimation [11]. There are several techniques for eye-centre localisation,
some of them make use of a head-mounted device, others utilise a chin rest to limit head
movements; note that eye-centre detection is not an eye tracker yet. Moreover, active
infrared illumination is used to estimate the eye centres accurately through corneal
reflections. Although these techniques allow for very accurate predictions of the eye
centres and are often employed in commercial eye-gaze trackers, they are uncomfortable
and less robust in daylight applications and outdoor scenarios. Therefore, available-light
methods for eye-centre detection have been proposed; they can roughly be divided
into three groups: (i) feature-based methods, (ii) model-based methods, and (iii) hybrid
methods.

Feature-based methods make use of eye properties such as symmetry, shape, or
colour to estimate the eye centre locations. In the case of grey level images, one of the
simplest methods is to take the position of the darkest pixel as eye centre estimate;
however, this method will be very sensitive to image noise, especially in low resolution
images. More robust methods employ edges, corners, or image gradients to locate the
eye centres. Usually, feature-based methods are applied at the end of a multi-stage
scheme, which consists of: (1) face detection, (2) coarse estimation of eye regions, and (3)
fine estimation of eye centres. Since face detection methods have become very effective
and accurate [111] and rough eye regions can be extracted easily, such a multi-stage
approach is computationally efficient and can therefore be integrated into systems with
low computation performance such as mobile phones or other portable devices.

Model-based methods make use of the holistic appearance of the eye including eyelid,
iris, pupil, or eyebrow. After the eye model has been learned from a set of training
images, it is matched to unknown faces for estimating the eye locations. For learning,
a set of features at different locations within the face is computed, e.g. Haar-like
features, wavelet coefficients, or texture features. Since not only the pupil is considered
but also several other structures around the pupil such as iris, eyelid, or eyebrow,
model-based methods achieve more robust results in detecting the overall eye locations
compared to feature-based methods. However, accurate estimation of the eye centres is
often disregarded and the eye centres are estimated as being in the middle of the eye
corners or in the centre of the eye model. Therefore, these methods achieve poor results
regarding accuracy. Furthermore, model-based methods involving any kind of learning
or classification scheme have several drawbacks, e.g. retraining has to be performed if
the data changes, computational complexity can be high, or model parameters must be
tuned.

Hybrid methods are combinations of a model-based and a feature-based method,
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Figure 8.1.: Multi-stage approach for eye centre localisation: A face detector is applied and
based on the face location rough eye regions are extracted (left), which are used for a fine
estimation of each eye centre afterwards (middle and right).

where candidate eye regions are determined first by some feature descriptor or learnt
eye model and then used by one or more classification frameworks to identify the
correct eye centres. Even though these methods often yield the best performance due
to their robustness, they cannot be easily integrated into other systems due to their
computational complexity.

Instead of elaborating in detail all methods that have been proposed for eye centre
localisation, we refer to Table 8.1, where a number of methods and their properties are
listed. We here propose a feature-based approach for eye centre localisation that can
efficiently and accurately locate and track eye centres in low resolution images and
videos, e.g. in videos taken by a webcam. We follow the multi-stage scheme that is
usually performed for feature-based eye centre localisation (see Figure 8.1), with the
following steps: (i) we apply our novel gradient-based approach for accurate centre
localisation, proposed in Section 2.2.2, which defines the centre of a (semi-)circular
pattern as the location, where most of the image gradients will intersect, and which can
be computed efficiently, (ii) we incorporate prior knowledge about the eye appearance
to eliminate local maxima, reinforce centre estimates and increase robustness, and
(iii) we apply simple postprocessing techniques to reduce problems that arise due to
glasses, reflections inside glasses, or prominent eyebrows. Furthermore, we evaluate
the accuracy and robustness of the proposed approach to changes in lighting, contrast,
and background by using the challenging BioID database1. The obtained results are
extensively compared the with state-of-the-art methods for eye centre localisation
presented in Table 8.1.

8.2. Methods

We briefly motivate our gradient-based approach for centre localisation in case of
detecting the pupil’s centre. Geometrically, the centre of a circular object can be detected

1http://www.bioid.com/support/downloads/software.html
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(a) Image (b) Image gradients

Figure 8.2.: Left: Example image of an eye and its surrounding area. Right: Vector field of image
gradients for the eye image, where the intersection of the gradient vectors along the iris can be
used as an estimation of the pupil’s centre.

by analysing the vector field of image gradients (see Figure 8.2), which has been used
for eye centre localisation previously. Kothari and Mitchell, for example, proposed
a method that exploits the flow field character that arises due to the strong contrast
between iris and sclera [59]. They use the orientation of each gradient vector to draw a
line through the whole image and they increase an accumulator bin each time one such
line passes through it. The accumulator bin where most of the lines intersect will be a
maximum and will thus represent the estimated eye centre. They further propose to
use a accumulator bin size of 5 pixels, which provides a reasonable trade-off between
efficiency and effectiveness. However, they do not consider problems that arise due to
eyebrows, eyelids, or glasses.

We have adopted the concept of analysing the vector field of image gradients and
derived a mathematical formulation of the characteristics of the vector field (see
Section 2.2.2), which can also be used for eye centre localisation by incorporating
prior knowledge.

8.2.1. Incorporating Prior Knowledge

Under some conditions, the maximum of the objective function J(c), see Equation 2.2,
will not be well defined or there will also be local maxima that confuse the iterative
scheme and lead to wrong centre estimates. For example, dominant eyelids and eye-
lashes or wrinkles in combination with a low contrast between iris and sclera can lead
to wrong estimates. Therefore, we propose to incorporate prior knowledge about the
eye appearance to increase robustness. Since the pupil is usually dark compared to
sclera and skin, we apply a weight wc for each possible centre c such that dark centres
are more likely to be a correct centre estimate than bright centres. Integrating this into
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the objective function leads to:

J(c) =
1
N

N

∑
i=1

wc

�
dT

i gi

�2
, (8.1)

where wc = I∗(cx, cy) is the grey value at (cx, cy) of the smoothed and inverted input
image I∗. The image must be smoothed, e.g. by a Gaussian filter, to avoid problems that
arise due to bright outliers such as reflections of glasses. The values of the modified
objective function will not be very sensitive to changes in the parameters of the low-pass
filter, we therefore suggest to use standard parameters relative to the roi size.

Figure 8.3 demonstrates the improvement of incorporating prior knowledge into the
objective function; since the gradients of the dominant eyelid and eyelashes contribute
more to the sum of dot products than the gradients of iris and pupil, the maximum
is not as significant as it is if prior knowledge is incorporated. The maximum not
only becomes more distinctive, but also robustness improves significantly, if we apply
this modification to the objective function. A major advantage of our gradient-based
approach is that we can easily integrate the weight wc into the existing iterative
algorithm to efficiently obtain the maximum of Equation 8.1.

8.2.2. Postprocessing

The proposed summation of weighted squared dot products yields accurate results if
the image contains the eye. However, when we apply the multi-stage scheme described
in Figure 8.1, the rough eye regions sometimes also contain other structures such
as hair, eyebrows, or glasses. Especially, hair and strong reflections in glasses show
significant image gradients with different orientation than the image gradients of the
pupil and the iris; hence the estimation of the eye centres may be wrong. We therefore
propose a postprocessing step to overcome these problems; we apply a threshold on
the objective function, based on the maximum value, and remove all remaining values
that are connected to one of the borders as shown in Figure 8.4. Then, we determine
the maximum of the remaining values and use its position as centre estimate. Based on
our experiments the value of this threshold does not significantly influence the centre
estimates, we suggest to set this threshold to 90% of the overall maximum.

8.3. Evaluation

We have chosen the BioID database for evaluation, since it is the most challenging
set of images for eye centre localisation and many recent results are available. The
database consists of 1521 grey level images of 23 different subjects and has been taken in
different locations and at different daytimes; this results in unconstrained illumination
comparable to outdoor scenes. In addition to the changes in illumination, the position
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Figure 8.3.: The evaluation of Equation 8.1 for the eye image shown in Figure 8.2. Left: Without
any prior knowledge, i.e. ∀c : wc = 1, the global maximum is indistinct due to the dominant
image gradients of the eyelid and the eyelashes. Right: Incorporating prior knowledge yields a
more pronounced global maximum.
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Figure 8.4.: Left panels: Example of a rough eye region, which contains strands of hair; the
image gradients of these structures lead to a maximum of the objective function that is located
at the border. If we apply a threshold (solid plane) and remove all values above the threshold
that are near the border, the peak in the middle remains and corresponds to the correct eye’s
centre. Note that changing the threshold slightly does not have a strong influence. Right panels:
The same holds for eye regions that contains glasses with strong reflections.
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of the subjects change as well as their pose. Moreover, several subjects wear glasses
and some subjects have curled hair near to the eye centres; in some images the eyes are
closed and the head is turned away from the camera or strongly affected by shadows.
In few images the eyes are even completely hidden by strong reflections on the glasses.
Therefore, the BioID database is considered as one the most challenging database
that reflects realistic conditions. The image quality and the image size (286 × 384) is
approximately equal to the quality of a low-resolution (QVGA) webcam and the left
and right eye centres are annotated and provided together with the images.

We perform the multi-stage scheme described in Figure 8.1, where the position of the
face is detected first. Therefore, we apply a boosted cascade face detector that proved
to be effective and accurate on several benchmarks [111]. Based on the position of the
detected face, we extract rough eye regions relative to the size of the detected face.
While anthropometric relations are often used to extract these regions, these relations
do not generally hold for the area determined by the face detector. Here, we used 100
randomly selected images of the BioID database to evaluate the relative positions of
the left and the right eye centres based on the detected face. Let (x, y) be the upper
left corner and W, H the width and height of the detected face. Then, the mean of the
right eye centre is located at (x + 0.3 ∗ W, y + 0.4 ∗ H) and the mean of the left centre
is at position (x + 0.7 ∗ W, y + 0.4 ∗ H). Based on these estimated positions we extract
rough regions for each eye with a size of (0.35 ∗ W)× (0.3 ∗ H)—compare Figure 8.1
or 8.4. The rough eye regions are then used to estimate the eye centres accurately by
applying the proposed approach.

As accuracy measure for the estimated eye centres, we evaluate the normalised error,
which corresponds to the worst of both eye estimations; this measure was introduced
by Jesorsky et al. and is defined as:

e ≤
max

�
eleft , eright

�

d
, (8.2)

where eleft, eleft are the Euclidean distances between the estimated and the correct left
and right eye centres, and d is the distance between the correct eye centres. When
analysing the performance of an approach for eye localisation, this measure has the
following characteristics: e = 0.25 is approximately the distance between the eye centre
and the eye corners, e = 0.10 roughly corresponds to the diameter of the iris, and
e = 0.05 equals the diameter of the pupil. Thus, an approach that should be used for
eye tracking should not only provide high performance for e ≤ 0.25, but must yield
accurate results for e ≤ 0.05. An error of slightly less than or equal to 0.25 will only
indicate that the estimated centre are within the eye, but this estimation cannot be
used to perform accurate eye tracking. We therefore focus on the performance that is
obtained for e � 0.25, when we compare with state-of-the-art methods. Since in some
published articles the normalised error is used in a non-standard way, we also provide

138



the measures

emin ≤
min

�
eleft , eright

�

d
and eavg ≤

�
eleft + eright

�

2 d
, (8.3)

to give an upper bound as well as an averaged error.

8.3.1. Results

Figure 8.5 shows the qualitative results of the proposed approach; we can observe
that our approach yields accurate centre estimations not only for images containing
dominant pupils (first row of Figure 8.5), but also in the presence of glasses (second
row), shadows, low contrast, or strands of hair (third row). This demonstrates the
robustness and proves that our approach can successfully deal with several, severe
problems that arise in realistic scenarios. Our approach yields inaccurate estimations if
the eyes are (almost) closed or strong reflections on the glasses occur (last row). In these
cases, the gradient orientations of the pupil and the iris are affected by “noise” and
hence their contribution to the sum of squared dot products is less than the contribution
of the gradients around the eyebrow or eyelid. In some cases, the eyes are (almost)
closed or hardly visible, which makes it difficult to estimate the eye centres even
manually.

Figure 8.6 describes the quantitative results of the proposed method, where the
accuracy measures e, emin, and eavg are illustrated. By using the standard definition of
the normalised error, Equation 8.2, our approach yields an accuracy of 82.5% for pupil
localisation (e ≤ 0.05), which indicates that the estimates centres are located within
the pupil with high probability; therefore, our approach can be used for eye tracking
applications. Due to the fact that the BioID database contains some images with closed
eyes, the performance will even increase if these images are left out. In the case of iris
localisation (e ≤ 0.10), the estimated centres lie within the iris with a probability of
93.4%, which will also further increase if images with closed eyes are left out. Only
in rare cases (2.0%), the estimated centre is located outside a circle centred within the
pupil and with a diameter equal to the distance between the eye corners— for example
see Figure 8.5 (last row, first image).

8.3.2. Comparison With State of the Art

We extensively compare our method with state of the art methods that have been
applied to the BioID images as well. Instead of elaborating these methods for eye
centre localisation in detail, we refer to Table 8.1 for an overview. For comparison
we evaluate the performance for different values of the normalised error e to obtain
a characteristic curve, i.e. see Figure 8.6 “worse eye”, which we will call worse eye
characteristic (wec). The wec is roughly similar to the well-known receiver operator
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(a) accurate eye centre estimations

(b) inaccurate eye centre estimations

Figure 8.5.: Sample images of accurate and inaccurate results for eye centre localisation on the
BioID database. The estimated centres are depicted by white crosses. Note that the estimated
centres may be difficult to identify due to low printer resolution.
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Figure 8.6.: Quantitative analysis of the proposed approach for the BioID database. In order to
give upper and lower bounds, the accuracy versus the minimum (better eye, emin), the maximum
(worse eye, e) and the average (avg. eye, eavg) normalised error are shown; some characteristic
values are given explicitly.

characteristic (roc) and can be analysed in several ways. As mentioned previously, it
depends on the application, which e should be applied to compare different methods,
e.g. for eye tracking applications a high performance for e ≤ 0.05 is required, whereas
for applications that use the overall eye position, such as face matching, comparing
the performance for e ≤ 0.25 will be more appropriate. In order to compare the overall
performance, i.e. for different e, the area under the wec can be used. However, the
wec of other methods is often not available. We therefore compare the methods for a
discretised e ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. Furthermore, we also evaluate the rank of
each method according to the discretised e, which is roughly inversely proportional to
the area under the wec.

Table 8.2 compares our method with the state-of-the-art methods we have mentioned
earlier in Table 8.1. If the performances for e ∈ {0.05, 0.10, 0.15, 0.20, 0.25} were not
provided by the authors explicitly, but a wec is shown, we measured the values
accurately from the wec. Note that for some methods the authors evaluated the
performance only for few e, see for example [18] or [120].

We can observe that for all e our method performs only 2% worse on average
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compared to the best method for each e. For example, the method proposed by Valenti
and Gevers yields a performance of 84.1% for e ≤ 0.05, whereas our method yields
a performance of 82.5%. However, Valenti and Gevers reported that their method,
which is based on isophotes in combination with a mean-shift clustering, SIFT features,
and a k nearest neighbour for classification, will produce unstable centre estimations
when it is applied to eye tracking with several images per second. Hence, our method
can be considered as one of the best methods for accurate eye centre localisation.
Furthermore, our method has significantly less computational complexity compared to
that of Valenti and Gevers, since it requires neither clustering nor a classifier. Comparing
those methods that do not involve any kind of learning scheme, our method achieves
the best performance by far (82.5% for e ≤ 0.05); second place: method by Valenti and
Gevers (MIC) with 77.5%; third place: method by Asadifard and Shanbezadeh with
47%.

Our method achieves the second best performance (93.4%) in the case of iris location
(e ≤ 0.10); only the method by Cristinacce et al. yields a significant improvement
(96.0%)—however, this improvement implies, again, a higher computational complexity
compared to our method, which is solely based on simple dot products. For larger
normalised errors, e.g. e ≤ 0.15, e ≤ 0.20, or e ≤ 0.25, our method performs comparable
to other methods.

Table 8.3 shows the corresponding ranks of the performances; we can clearly identify
that there is no single method that performs superior for all values of e. Exemplarily,
the method proposed by Türkan et al. achieves accurate estimations for detecting the
overall eye locations, i.e. e ≤ 0.20 and e ≤ 0.25, but it fails for iris localisation (e ≤ 0.10)
and pupil localisation (e ≤ 0.05) with a 13th place in both cases. Moreover, the method
proposed by Cristinacce et al. ranks first for e ≤ 0.10 and e ≤ 0.15, but it ranks only 8th
for e ≤ 0.05. In contrast, our method ranks 2nd for both pupil and iris localisation and
ranks 3rd and 4th for larger e. Hence, our method does not yield the best result for one
single e, but if we evaluate the average rank, our method achieves the best result (3.0).
Compared with the method that yields the second best average rank (3.4, Valenti and
Gevers, MIC+SIFT+kNN) our method shows significantly less variance according to
the individual ranks.

In total, our method performs comparable to state-of-the-art-methods when looking
for a particular e, but it yields the best average performance over all values of e. Hence,
our method proves to be powerful for several problems such as eye centre localisation
(e ≤ 0.05), iris localisation (e ≤ 0.10), and eye localisation (e ≤ 0.25). Comparing only
those methods that do not apply any learning scheme, our method achieves significant
improvements for the more difficult tasks, i.e. 5% improvement for e ≤ 0.05, 7% for
e ≤ 0.10, and 2.6% for e ≤ 0.15.
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Table 8.2.: Comparison of the performance for eye detection on the BioID database. Brackets
indicate values that have been accurately measured from author’s graphs. (∗) Images with
closed eyes and glasses were omitted. (•) Methods that do not involve any kind of learning or
model scheme. Since some authors did not provide any graphical evaluation of the performance,
e.g. by using a wec curve, intermediate values could not be estimated—these missing values
are denoted by “–”.

Method e ≤ 0.05 e ≤ 0.10 e ≤ 0.15 e ≤ 0.20 e ≤ 0.25 Remarks

[6] 47.0% 86.0% 89.0% 93.0% 96.0% (∗), (•)
[60] 65.0% 87.0% – – 98.8%
[108] 77.2% 82.1% (86.2%) (93.8%) 96.4% MIC, (•)
[108] 84.1% 90.9% (93.8%) (97.0%) 98.5% MIC+SIFT+kNN
[107] (18.6%) 73.7% (94.2%) (98.7%) 99.6%
[13] 62.0% 85.2% 87.6% 91.6% 96.1%
[76] (75.0%) 93.0% (95.8%) (96.4%) (97.0%)
[18] – 89.7% – – 95.7%
[7] (44.0%) 81.7% (92.6%) (96.0%) 97.4% (•)
[42] (58.6%) (75.0%) (80.8%) (87.6%) (91.0%)
[120] – – – – 94.8% (•)
[26] (57.0%) 96.0% (96.5%) (97.0%) (97.1%)
[10] (37.0%) (86.0%) (95.0%) (97.5%) (98.0%)
[51] (38.0%) (78.8%) (84.7%) (87.2%) 91.8%

our method 82.5% 93.4% 95.2% 96.4% 98.0% (•)

8.4. Discussion

We have demonstrated that the problem of eye centre localisation can be solved effi-
ciently and with high accuracy by using our novel approach that is based on image
gradients. For every pixel, we compute the squared dot product between the displace-
ment vector of a centre candidate and the image gradient. By summing up these
squared dot products we derive a simple objective function that needs to be maximised.
The position of the maximum then corresponds to the position where most image
gradients (if extended in both directions) intersect. Furthermore, we have demonstrated
that prior knowledge such as grey level intensities can easily be integrated into the
objective function to increase robustness.

Since only image gradients and simple mathematical operations are involved, our
method yields low computational complexity. Moreover, our method is invariant to
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Table 8.3.: Comparison of the ranks according to the performance of Table 8.2.

Method e ≤ 0.05 e ≤ 0.10 e ≤ 0.15 e ≤ 0.20 e ≤ 0.25 avg. rank

[6] 9 7 8 7 10 8.2
[60] 5 6 – – 2 4.3

[108] 3 9 10 6 8 7.2
[108] 1 4 6 3 3 3.4
[107] 13 13 5 1 1 6.6
[13] 6 8 9 8 9 8.0
[76] 4 3 2 4 7 4.0
[18] – 5 – – 11 8.0
[7] 10 10 7 5 5 7.4
[42] 7 12 12 9 14 10.8

[120] – – – – 12 12.0
[26] 8 1 1 3 6 3.8
[10] 12 7 4 2 4 5.8
[51] 11 11 11 10 13 11.2

our method 2 2 3 4 4 3.0

rotation and linear changes in illumination. Due to these properties, our method can
be applied to several (real-time) applications that require a high accuracy such as eye
tracking, industrial inspection of circular objects, or medical imaging analysis (cell
tracking).

We extensively evaluated our method on one of the most challenging databases, which
demonstrates the robustness to changes in illumination, pose, scale, and occlusion—
even for low-resolution images. Compared to several state-of-the-art methods, our
method ranks second for special scenarios such as pupil localisation or iris localisation,
and it ranks first if the average performance over several scenarios, e.g. pupil localisation,
iris localisation, and overall eye localisation, is evaluated. Compared to methods that
do not involve any kind of learning, such as a support vector machine or a k nearest
neighbour classifier, our method achieves a significant improvement of 5–7%. Moreover,
we have created a short video sequence that demonstrates the robustness and accuracy
of our novel approach, see http://www.youtube.com/watch?v=aGmGyFLQAFM.

We believe that our method can be further improved by incorporating context and
more facial features (eye centre must be located between the eye corners). Furthermore,
a learning method used to reduce the number of wrong centre estimates may also
improve the results significantly.
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9. Summary and Outlook

I have presented several methods for image preprocessing, feature extraction, and
novelty detection, and I have demonstrated that these methods yield accurate and
competitive results for benchmark datasets as well as in real-world applications. More-
over, I have already discussed the results individually at the end of the corresponding
chapters. Now, I will only pick up few points, try to take a broader view and give an
outlook on possible requirements of future machine vision systems.

Machine vision systems for inspection and novelty detection have mainly been
designed and tuned for a particular application. It is, of course, very important to
bring research and industry permanently closer, but I believe that machine vision
systems should be evaluated more systematically and put into a general framework
with standard requirements, for instance the ones we have introduced in Chapter 7. In
other areas such as face detection or eye tracking, various public benchmark datasets
have been proposed to make fair comparisons and many researchers have tried to
develop methods that perform well on all of these datasets. This standardisation will
push research forward and will bring research faster into real-life—nowadays, online
face detection is already integrated in state-of-the-art consumer digital cameras and
low-cost eye tracking devices are used for marketing analysis, for example. I believe
that this progress can be achieved as well for industrial applications such as surface
inspection or inspection of semi-conductor components once industrial datasets become
public; the dataset for weakly supervised learning of texture defects provided by the
company Robert Bosch GmbH can be seen as a first step in this direction.

I have demonstrated in a series of experiments that there is no novelty-detection
method that yields superior performance on various datasets; in most cases performance
is roughly comparable. In the field of machine learning, where novelty-detection
methods originated, several techniques, such as the usage of multiple kernels instead of
a single kernel or cascades of support vector machines, have been proposed to further
improve performance. Even though these optimisations may lead to more powerful
learning methods, I think that in case of a machine vision system the input features of
the learning scheme are more important than the learning scheme itself. For example,
our simple gradient-based approach for eye centre localisation, see Chapter 8, does not
employ any kind of learning and it outperforms approaches that use grey values as
input for multiple layers of support vector machines. I do not mean that we should not
derive new learning algorithms, but in case of a machine vision system preprocessing
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and the extraction of appropriate image features are more crucial.
There is a trend in machine vision, and especially in machine learning, that novel

methods are accepted most easily if they contain a sophisticated mathematical deriva-
tion several pages long; unfortunately, this compels researchers to take an existing,
complex method and to modify it only slightly. As a result, methods become more
and more complex and are no longer applicable by practitioners. In this thesis, I have
described methods that are easy to implement—even for practitioners.

Besides simplicity, I believe that future machine vision systems must be more effi-
cient computationally to be applied in non-industrial applications, for which energy
consumption plays a crucial role. In automotive applications, for example, various
driver assistance systems have been developed such as parking assistance or obstacle
detection. Nowadays, the energy that is required for these assistance systems does
not significantly affect driving, since the increased fuel consumption is barely noticed.
However, if all these systems are integrated into electric cars, we would have to review
every assistance system, not only the vision-based, to further increase efficiency. In the
same context, we have to think of new ways for evaluating machine vision systems,
since the computation time does not always correspond to energy consumption. For
example, a master machine vision system could decide to (partially) switch on and
off front and rear camera based on the current driving—in a traffic jam, for instance,
assistance systems such as obstacle detection or pedestrian detection are not required.

Overall, even today’s industrial products are already highly complex and cannot
be inspected manually with high accuracy and reliability. Therefore, efficient but
simple machine vision systems for industrial inspection are becoming more and more
important.

146



A. Solving an Eigenvalue Problem in
Feature Space

For computing principal components in some feature space we have to find non-
negative Eigenvalues λ and non-zero Eigenvectors v satisfying

λ v = C v , (A.1)

where C is the covariance matrix of the samples xi in feature space:

C =
1
n

n

∑
i=1

φ̂(xi)φ̂(xi)
T (A.2)

and

φ̂(xi) = φ(xi)− φ0 = φ(xi)−
1
n

n

∑
i=1

φ(xi) . (A.3)

Since all possible solutions v lie in the span of φ̂(x1), . . . , φ̂(xn), we can also solve the
equivalent system

∀l = 1, ..., n : λ(φ̂(xl)
Tv) = φ̂(xl)

TCv , (A.4)

and there exist coefficients α1, . . . , αn such that the Eigenvectors can be written as a
linear combination of the data samples in feature space:

v =
n

∑
i=1

αiφ(xi) . (A.5)

By substituting (A.2) and (A.5) into (A.4) and rearraging we have to solve the Eigenvalue
problem

nλα = Kα , (A.6)

where Kij := K(xi, xj) = φ̂(xi)Tφ̂(xj) denotes the kernel matrix. We ensure that the
Eigenvectors v in feature space have unit length by

�v�2
2 = vTv =

n

∑
i,j=1

αiαjφ̂(xi)
Tφ̂(xj)

= αTKα = n λ αTα = 1

(A.7)
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and therefore we scale α such that

�α�2 =
1√
nλ

. (A.8)

Since we don’t have the vectors φ(xi) explicitly, we cannot compute the mean φ0 =
1
n ∑n

l=1 φ(xl) in H. Instead, we adapt the kernel matrix such that only dot products of
centered data points appear:

K̂ij = (φ(xi)− φ0)
T �φ(xj)− φ0

�

= Kij −
1
n

n

∑
l=1

Kil −
1
n

n

∑
k=1

Kkj + µ ,
(A.9)

where

µ =
1
n2

n

∑
h,m=1

Khm . (A.10)

Thus, the kernel matrix K in (A.6) can be substituted by

K̂ = K − 1nK − K1n + 1nK1n , (A.11)

where (1n)ij = 1/n.
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